Integer Points in Polyhedra

Andreas Paffenholz Exercise Sheet 8

TU Berlin Summer 19 June 13, 2019

- 8.1. Let $C = \text{cone}(\mathbf{a}_1, \dots, \mathbf{a}_k) \subseteq \mathbb{R}^d$ be a cone of dimension $e \leq d$. The *polar* cone is $C^{\vee} := \{\alpha \mid \alpha(\mathbf{x}) \leq 0 \text{ for all } \mathbf{x} \in C\}$.
 - (a) Show that $(C^{\vee})^{\vee} = C$.
 - (b) Show that C^{\vee} contains a linear space if e < d.
 - (c) Prove that the polar of a unimodular cone is a unimodular cone.
- 8.2. Let $C = \operatorname{cone}(\mathbf{a}_1, \dots, \mathbf{a}_d) \subseteq \mathbb{R}^d$ be a cone of dimension d and let D_1, \dots, D_k be a signed (or some other) decomposition of the cone C^{\vee} , so that, for some $\varepsilon_i \in \{1, -1\}$, $1 \le i \le k$ we have

$$G_{C^{ee}}(\mathbf{x}) = \sum_{i=1}^d arepsilon_i G_{D_i}(\mathbf{x}) \, + \, ext{contributions from lower dimensional cones} \, .$$

(a) Show that

$$G_C(\mathbf{x}) = \sum_{i=1}^d \varepsilon_i G_{D_i^\vee}(\mathbf{x}) + \text{contributions from cones with lineality}.$$

and deduce that

$$g_C(\mathbf{x}) = \sum_{i=1}^d \varepsilon_i g_{D_i^{\vee}}(\mathbf{x}).$$

- (b) Test this equation on some cones of your choice.
- 8.3. Compute the Ehrhart or h^* -polynomial using Barvinok's algorithm of
 - (a) P = [1, 5]
 - (b) $P = [0, 1]^2$
 - (c) some other polytope of your choice.

You can use a primal decomposition as in the lecture, or the dual decomposition of Exercise 8.2. For the evaluation you may want to use a computer.

8.4. Prove

(a)
$$\rho(\mathbb{Z}^d) = \frac{1}{2}$$

(a)
$$\rho(D_4^+) = \frac{1}{2}$$

(b)
$$\rho(A_n) = \rho(D_n) = \frac{\sqrt{2}}{2}$$
 for $n \ge 2$

(b)
$$\rho(D_6^+) = \sqrt{\frac{3}{8}}$$

(c)
$$\rho(D_2^+) = \frac{1}{2\sqrt{2}}$$

(c)
$$\rho(D_n^+) = \frac{\sqrt{2}}{2}$$

8.5. Finish the exercises of Sheets 1, 2, 3, 4, 5, 6, and 7.