Integer Points in Polyhedra

Andreas Paffenholz	TU Berlin
Exercise Sheet 9	Summer 19
	June 20, 2019

9.1. Let $P \subset \mathbb{R}^n$ and $Q \subset \mathbb{R}^m$ be lattice polytopes. The *product* $P \times Q$ of *P* and *Q* is

$$P \times Q := \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in P, \ \mathbf{y} \in Q \},\$$

and the join $P \star Q$ is

$$P \star Q := \operatorname{conv} \left(P \times \{\mathbf{0}\} \times \{\mathbf{0}\}, \{\mathbf{0}\} \times Q \times \{1\} \right).$$

- (a) Show that the Ehrhart polynomial of $P \times Q$ is the product of the Ehrhart polynomials of *P* and *Q*.
- (b) Show that the h^* -polynomial of $P \star Q$ is the product of the h^* -polynomials of P and Q.
- 9.2. Let *P* be a polytope that contains **0** in its interior. The dual polytope is

$$P^{\vee} := \{ \mathbf{a} \in (\mathbb{R}^d)^* \mid \mathbf{a}(\mathbf{x}) \ge -1 \ \forall \, \mathbf{x} \in P \}.$$

Prove the following:

- (a) It suffices to check $\mathbf{a}(\mathbf{x}) \ge -1$ for all vertices of *P*.
- (b) The vertices of *P* are facet normals of the dual.
- (c) We have a bijective correspondence between facets *P* and vertices of P^{\vee} .
- (d) $(P^{\vee})^{\vee} = P$.
- 9.3. A lattice polytope $P := \{\mathbf{x} \mid A\mathbf{x} \le \mathbf{b}\}$ is *reflexive* if there is a lattice point $\mathbf{w} \in P$ such that all facets have lattice distance 1 from \mathbf{w} . Prove the following:
 - (a) **w** is the unique interior point of *P*.
 - (b) If all rows of *A* are primitive and integral, then $\mathbf{b} = \mathbf{1}$.
 - (c) If **w** is the origin, then P^{\vee} is a lattice polytope.
 - (d) If **w** is the origin, then P^{\vee} is reflexive.
- 9.4. Let *P* be a reflexive polytope. Show that the number of interior points in 2*P* equals the number of lattice points in *P*.Determine the Ehrhart and *h**-polynomial of a 3-dimensional reflexive lattice polytope.
- 9.5. Show that a polygon $P \subseteq \mathbb{R}^2$ is reflexive if and only if it has a unique interior lattice point. Show that this is not true in higher dimensions.
- 9.6. Finish the exercises of Sheets 1 to 8.