Integer Points in Polyhedra

Andreas Paffenholz	TU Berlin
Exercise Sheet 10	Summer 19
	June 27, 2019

10.1. Let *P* be a reflexive polytope in a lattice Λ .

For $\mathbf{x}, \mathbf{y} \in \partial P \cap \Lambda$, $x \neq y$ we write $\mathbf{x} \sim \mathbf{y}$ if there exists a facet of P containing \mathbf{x} and \mathbf{y} . For distinct $\mathbf{x}, \mathbf{y} \in \partial P \cap \Lambda$

- (a) either $x \sim y$
- (b) or x + y = 0
- (c) or $x + y \in \partial P \cap \Lambda$.

If (c) holds, then

- $\triangleright \ \mathbf{x} \sim \mathbf{x} + \mathbf{y} \text{ or } \mathbf{y} \sim \mathbf{x} + \mathbf{y} \text{ and}$
- ▷ there are $a, b \in \mathbb{Z}_{\geq 1}$ such that for $\mathbf{z} := a\mathbf{x} + b\mathbf{y} \in \partial P \cap \Lambda$ we have $\mathbf{x} \sim \mathbf{z} \sim \mathbf{y}$ and a = 1 or b = 1.

Conclude that the diameter of the graph of a simplicial reflexive polytope is at most 3.

- 10.2. Prove the classification of reflexive polygons given on the back.
- 10.3. Show that a polytope *P* is Gorenstein of index *r* if and only if for all $k \ge r$

$$e_P(-k) = (-1)^d e_P(k-r).$$

- 10.4. Prove that the Birkhoff polytope B_n (the convex hull of $n \times n$ -permutation matrices) is a Gorenstein polytope of codegree n. What is its dimension and degree? What is the unique interior lattice point of nB_n ?
- 10.5. Finish the exercises of Sheets 1 to 9.

