Integer Points in Polyhedra

Andreas Paffenholz	TU Berlin
Exercise Sheet 11	Summer 19
	July 04, 2019

11.1. Let *P* be a Gorenstein polytope of index *r*, **w** the unique inner point of $rP \cap \Lambda$ and

$$P^{\times} := \mathbf{x} \in C_p^{\vee} \mid \langle \mathbf{x}, \mathbf{w} \rangle = 1 \},$$

where C_P^{\vee} is the cone dual to the cone over *P*.

- (1) Show that P^{\times} is a Gorenstein polytope of index *r*.
- (2a) Show that for r = 1 and $\mathbf{w} = \mathbf{0}$ this coincides with P^{\vee} .
- (2b) Show that this is not true for r > 1.
- 11.2. Show that any pair of vertices of a Gorenstein polytope of index r > 1 either is in a common face or is an antipodal pair (with respect to the point **w**, where **w** is the unique interior point of rP).
- 11.3. A lattice polytope is *integrally closed* or has the *IDP property* if each lattice point in kP is the sum of k lattice points in P, for every $k \ge 1$.

Show that a lattice polytope is integrally closed if it admits a unimodular triangulation.

- * 11.4. If *P* has a (regular) unimodular triangulation \mathcal{T} then its dilation *cP* has one too, for every positive integer *c*.
 - Hint: Use *lattice dicing* to subdivide multiples of simplices. Convince yourself that you can do this in a way that the subdivisions on the boundary coincide. Now turn this into a triangulation.

11.5. Let

$$A_{n-1} := \{ \mathbf{e}_i - \mathbf{e}_j \mid 1 \le i, j \le n \}$$

be the root system of type *A*. Show via lattice dicing that lattice polytopes with facet normals in A_{n-1} have a regular unimodular triangulation.

*** 11.6. Let

$$B_n := \{ \pm \mathbf{e}_i \mid 1 \le i \le n \} \cup \{ \pm \mathbf{e}_i \pm \mathbf{e}_i \mid 1 \le i < j \le n \}$$

be the root system of type *B*. B_n splits into the sets of *long* roots $\pm \mathbf{e}_i \pm \mathbf{e}_j$ and *short* roots $\pm \mathbf{e}_i$. Show that you can use a "partial" lattice dicing using only the short roots to prove that that lattice polytopes with facet normals in B_n have a regular unimodular triangulation.

11.7. Finish the exercises of Sheets 1 to 10.