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R real numbers \R

R-o positive integers \Rg

R>o nonnegative integers \Rge

R.g negative integers \R1

R<op nonpositive integers \Rle

Q rational numbers \Q

Z. integers \Z

Z~o positive integers \Zg

Z>o nonnegative integers \Zge

Z.o negative integers \Z1

Z<o nonpositive integers \Zle

(RY)*, (Q%)*, (Z%)* the dual spaces \Rdual, \Qdual, \Zdual

T a triangulation \triang

Ay a simplex \simplex

a the vector with variable name a, all others similar \va

V(P) the vertices of a polytope P \verts(P)

F(P) the facets of a polytope P \facets(P)

OP the boundary (complex) of P \boundary P

II(V) the fundamental parallelepiped of V' \£p(V)

G the integer point generating function\IntPtGenF(shortcuts siehe .sty
oder Text)

G the integer point generating series\IntPtGenS

la] the largest z € Z with z < a \floor
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[a] the smallest z € Z with z > a \ceil
{a} the fractional part a — |a] of a \fracpart
.o/ a point/vector configuration, usually PN Z% \configuration
ehr the Ehrhart counting function \ehrcount
Ehr the Ehrhart series \ehrseries
k a field \kk
1 the column vector with all entries equal to 1 \1
0 the column vector with all entries equal to 1 \O
C' the cone over a polytope \pcone
C* the dual cone to C \dpcone
h* coefficients of the h*-polynomial \hstar
f f-vector entries \fvec
Trp P Tangent cone of a face \tangentcone{P}{F}
L Laurent series\LaurentS
L Laurent polynomials\LaurentP
Q Laurent quotient\LaurentQ
R Laurent rational functions \LaurentR
® The map onto the rational functions \LaurentHom
F <X P Fis a face of P \isfaceof
C* \dual C
C** \ddual C
C** \dddual C
C a polyhedral complex \pcomplex
8 a subdivision \psubdiv
pull(8;v) a pulling refinement \pull{\psubdiv}{\vv}
star(§; F') open star of a face F' in a complex 8 \Star{\S}{F}
star(§; F') closed star of a face F' in a complex 8 \c1Star{\S}{F}
V(P) vertices of P
rank A rank of A
lin A linear space spanned by A
aff A affine hull of A
conv A convex hull of A
cone A conic hull of A
P %@ the join of P and @ P \join Q
vol the (normalized?) volume \vol
nvol,4 the normalized volume \Vol
lineal A lineality space of P
8w (V) regular subdivision induced by w on V \regsubdiv{\vw}{V}
lift(w) the convex hull of the lift of V by w \reglift{\vw}{V}
¥, the convex piecewise linear function \regfunction{\vw}{V}
id The identity matrix
The zero matrix
A A lattice \lattice
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A The mother lattice \1ambdahat

B A basis of a lattice

width(K;a) width of convex body K wrt functional a € A* \width{K}{\va}

widthp (K) width of convex body K wrt lattice A \lwidth{K}{\lattice}

oA packing radius of a lattice \packingradius{\lattice}

w A covering radius of a lattice \coveringradius{\lattice}

nr The unique primitive inner normal of a facet F' of a polytope \innP_F

ur The unique primitive inner normal of C'p corresponding to the facet
F of a polytope P \innC_F

up The unique lattice point of the Gorenstein cone Cp satisfying
(up,z) = 1 for any primitive generator of Cp \innC_P

PV The Gorenstein polytope dual to P dualG P*fi

Ay The standard simplex conv(0, eq,...,eq)

Cy The unit cube {x € RY| 0 <z < 1} = [0,1]%.

TrpP The tangent cone to P at F' \tangentcone{P}{F}

visiblep(m) The complex of faces of P visible from m \visible{P}{\vm}

invitation durchlesen, fertig? exercises? B
neuere Resultate zusammenstellen, klassifizieren rein/exer-
cise/notes/raus

— Ehrhart

— GoN

-UT

Struktur sortieren Kap. GoN vs MinkowskiEhrhart; zus"at-
zliche Themen??

2.3 Lattices streamlinen C
Ch. 2 running examples A
Ch. 3 Ehrhart — Todos

Ch. 4 GoN — gegen Ende gro'se Baustelle (include size?)
Ch. 5 Ehrhart meets Minkowski zu kurz

Ch. 6 Algorithmen schreiben A
Ch. 7 Gorenstein

Ch.8UT

somewhere: Cayley-korrespondenz via lattice-point-
Zerlegung im dualen Kegel

somehwere: Minkowski-sums and refinement of normal fan,
Cayley-Trick
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how do we attribute results? in parantheses after “Theorem
xy”? In a separate senctence before or after? Do we give a
citation, a year? How do we do this for theorems with a
name (like Ehrhart’s Theorem)?
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An invitation
to lattice polytopes
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1.6 Problems .............. i, 15

In this chapter we would like to give the reader a gentle introduction
to the main players of this book. For this, we will mainly stick to objects
in two dimension, that is, we will consider polygons, their subdivisions
into smaller pieces and the lattice of all points with integer coordinates.
However, the reader will already encounter many methods and types of
results studied in more detail later, among them are triangulations, lattice
point counting, estimating volumes, and several classification results.

Our goal is to convey a first impression of the rich flavours of lattice
polytope theory. This is a branch of convex-discrete geometry with an
algebraic touch and a hint of number theory. It is surprising how many of
the interesting features of lattice polytopes already appear in dimensions
one, two or three. And there is no shortage of open questions for these
seemingly elementary objects.
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Fig. 1.1: A lattice polygon

Fig. 1.2: non-lattice

Fig. 1.3: non-convex

N

Fig. 1.4: (b,i,a) = (3,0,1/2)

Fig. 1.5: (b,4,a) = (9,1,4.5)

1.1 Before we begin

Before reading on, we would like to invite the reader to pull out a sheet
of graph paper and play with lattice polygons, making one’s first own
discoveries and building a feeling and an appreceation for the objects and
the questions treated in this book.

When we say lattice polygon, we mean a closed convex polygon with
all vertices at crossing points of your graph paper as in Figure 1.1 (and
not as in Figs. 1.2 and 1.3).

For such a polygon, we can record the number b of graph-paper-
crossing-points on the boundary, the number ¢ of graph-paper-crossing-
points in the interior, and the enclosed area a measured in units of
graph-paper-squares. For example, our first polygon above has (b,i,a) =
(6,5,7).

Your task is now to play with these figures and find out what triples
(b,4,a) you can achieve. That is, if I say (3,0,1/2), you draw the picture in
Figure 1.4, and if I say (9,1,4.5), you draw the picture in Figure 1.5. The
reader is invited to try realizing the cases (5,2,4), (18,0,9), (3,17,17.5)
and (11,2,6.5).

1.2 Lattice polygons and isomorphisms

In this section, we formally introduce lattice polygons, which are the key
player of this chapter, find a famous connection between its lattice points
and its volume, and develop the appropriate notion of when to consider
two such polygons the same.

Definition 1.1 A lattice polygon is the convex hull in R? of finitely
many points in Z.2.

Here, the word lattice refers to Z2 whose elements we call lattice points.
In other words, in dimension 2, lattice points are simply the points on the
grid given by the vectors with all coordinates integral. A lattice polygon
is the smallest convex set that contains a given finite set of lattice points.
Restricting the vertices to lattice points is quite restrictive. In particular,
a lattice polygon cannot be arbitrarily small. We bound the volume with
the next proposition. We will see that even more is true. Any polygon
with this volume will be a triangle, and any such triangles are equivalent
to each other in some sense we develop below.

Proposition 1.2 (Pick’s Theorem) Any lattice triangle with only
three lattice points (which must be its vertices) has area 1/2.

This Proposition may seem unspectacular, at first. But it is remarkable
in several ways. First, the corresponding statement is plain wrong in

— 6 — Haase, Nill, Paffenholz: Lattice Polytopes
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higher dimensions (see (1.1) below). Second, it is the key ingredient in
the proof of Pick’s Formula (Theorem 1.8) answering whether or not the
triple (5,2,4) from Section 1.1 comes from a lattice polygon. Lastly, its
proof uses methods we will come across in several places throughout this
book, and it leads us to the notion of lattice equivalence that we develop
in Definition 1.4.

Proof (of Proposition 1.2). A translation by a lattice vector preserves
the number of lattice points as well as the area. Thus, we can assume
that our triangle A is the convex hull of the origin 0 together with two
linearly independent lattice vectors v and w.

Consider the set

(v,w) == {M+pw : \,pel0,1)}

(cf. Figure 1.6). This is a half-open parallelogram, where the segments
between the origin and v and w (but not v, w itself!) belong to the set,

the other two bounding segments do not. ° .o":' ° °
Its area, | det[v,w]|, the absolute value of the determinant of the K

matrix with columns v and w, equals twice the area of A. ° ’ ° °
We claim that II(v,w) N Z2? = {0}. Suppose u = \v + pw €

(v, w) N Z2. Then either we have A+ 1 < 1 so that u is a lattice ) ) [

point in A which leaves only v = 0 as v,w ¢ I(v,w). Or we have Fig. 1.6: The half-open parallclo-

A+ > 1 so that the reflection v + w — u of u in the parallelogram’s gram in the proof of Pick’s Theorem

center is a lattice point in the interior of A; a contradiction. (Proposition 1.2)

Now, every lattice point z € Z? can be expressed in terms of v, w:
z = +pw = | Ao+ |plw+u
where
W= =)ot (u— L) € T(v,w)
but also
u = z—[Av—|plw e 72,

By the above we must have u = 0, that is, z is an integer linear combi-
nation of v and w.

If we apply this to the standard basis vectors e; and ez, we obtain
integral coeflicients fitting into the matrix equation

A\ (10
[v, w] ww) = \o1)

Because the determinant is multiplicative, the reciprocal of the integer
det[v, w] is an integer. Hence, det[v,w] = +1 and A has area 1/2. O

Haase, Nill, Paffenholz: Lattice Polytopes — 7 —
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We will dwell on this proof a little longer. The method of decomposing
an arbitrary lattice point z into an integral linear combination of v and
w plus a lattice point from the parallelogram is an instance of a general
decomposition, Lemma 3.26, which we will use over and over again.

Moreover, this proof shows more than what we set out to prove. It
shows that, if A = conv(0, v, w) is such a lattice triangle with only three
lattice points, then every lattice point is an integral linear combination
of v and w and thus the matrix [v,w] has an intergral inverse and its
determinant is +1. This deserves a definition.

Definition 1.3 A vector space basis v,w of R? is a lattice basis of Z?>
if the set of integral linear combinations equals 7.2 :

M+pw : \peZ}y = Z2.

In other words, a lattice basis of Z? consists of two integral vectors so
that every other integral vector is an integral linear combination of these
two. A change of basis matrix A must have integer entries (Why?), and
so must its inverse A~1. We define

Clay(Z) := {A € Cla(R) : A, A~ e z?*?).

A change of lattice basis corresponds to a linear map R? — R? represented
by the change of basis matrix in Glz2(Z). We do not care which lattice
basis we use to coordinatize a given lattice polygon. So we will consider
to lattice polygons the same if they are related by such a Gly(Z)-map.
Also, it should not matter which lattice point we declare to be the origin.
Therefore, we also allow translations by lattice vectors, leading us to
consider affine maps

x— Az +b, with A€ Gly(Z) and b e Z?.

We call such maps affine lattice automorphisms of Z? or unimodular
transformations.

Definition 1.4 Two lattice polygons P and P’ are isomorphic (also
called unimodularly equivalent or lattice equivalent ), if there is an affine

lattice isomorphism mapping P onto P'.
Exercise 1.1

Exercise 1.2 A more general definition is given in the next chapter (see Definition 2.74).

Exercise 1.3 With the new nomenclature, we can formulate a stronger version of Pick’s

Theorem (Proposition 1.2) which follows from our proof. For this let us
Exercise 1.4
denote by

Exercise 1.5

Ay := conv(0,e1,e2)

the standard or unimodular triangle.

— 8 — Haase, Nill, Paffenholz: Lattice Polytopes
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o} o} o} o Q o} o}
O O o o Q O
O o o O O

Proposition 1.5 Any lattice triangle with only three lattice points is
isomorphic to As.

It is important to build an intuition what these unimodular transforma-
tions are, and what they do. Figure 1.7 shows three examples of lattice
triangles. The three triangles look quite different: their vertices have
different Euclidean distances and different angles. Still, the top one is
considerably distinguished from the lower two: it has four lattice points,
while the others have only three. They cannot be lattice equivalent, as
unimodular transformations preserve the number of lattice points by
design. But the lower two triangles are equivalent by Proposition 1.5. If
we pick the filled lattice point as the origin and the other two vertices
of the third triangle as basis vectors (1,0) and (0, 1). Then the second
and third triangles are indeed isomorphic by the following affine lattice

72 572z -l z+ L )
—12 4

There are five more lattice isomorphisms carrying the third triangle to

isomorphism:

the second. The reader is invited to find them.

So angles and Euclidean distances are not preserved by unimodular
transformations. But, as we observed at the end of the proof of Pick’s
Theorem (Proposition 1.2), a change of lattice basis has determinant +1
(cf. Exercise 1.7). So unimodular transformations do preserve the area.
And there is also a replacement for Euclidean length.

Definition 1.6 The lattice length of a lattice segment e = conv(v, w) C
RY is
length(e) == |enZ4| —1.

As this is the only reasonable notion of length in our context, we often
refer to the lattice length of a segment simply as its length. The following
is a summary of what we know thus far.

Proposition 1.7 FEgquivalent lattice polygons contain the same number
of lattice points, they have the same area and the same lattice perimeter.
O

Pick’s Theorem (Proposition 1.2) about the area of triangles is at the
heart of the proof of Pick’s Formula (Theorem 1.8) in the next section. Be

Fig. 1.7: Lattice Triangles

Exercise 1.6

Exercise 1.7

Haase, Nill, Paffenholz: Lattice Polytopes — 9 —
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Exercise 1.9

Fig. 1.8: Reeve’s Tetrahedron

Fig. 1.9: Splitting P into pieces.

The first image is for the case
b > 4, the second for ¢ > 1.

warned, however, that the corresponding version fails in higher dimensions.
This is famously shown by the so called Reeve simplices:

d—1
Rg(m) := conv <0,61,eg,...,ed_1,Zei+med> (1.1)

i=1

Here, d is the dimension of the simplex, and m is a positive integer
(its normalized volume, see Definition 2.80 in the next chapter for this
notion). Figure 1.8 depicts the 3-dimensional Reeve simplex R3(4). As
the reader is encouraged to prove in Exercise 1.9, any such simplex has
only its vertices as lattice points. This shows that in dimension d > 3
there are infinitely many lattice simplices containing only d 4 1 lattice
points each and which have pairwise different volumes. In particular they
are non-isomorphic. As we will discuss later in Section 4.6, this makes
life considerably more interesting in higher dimensions, and it highlights
once more how remarkable Pick’s Theorem (Proposition 1.2) really is.

1.3 Triangulations and Pick’s formula

The goal of this section is to prove an elegant formula for the computation
of the area of a lattice polygon just by counting lattice points. We have
seen this miracle already for triangles (Pick’s Theorem (Proposition 1.2))
and we will now generalize it to arbitrary lattice polygons. We thus find
a first relation among the parameters b, ¢, a from Section 1.1.

Keep in mind that the Reeve simplices (1.1) exclude a straightforward
generalization to higher dimensions. To find some generalization is the
topic of Chapter 3 on Ehrhart Theory.

Theorem 1.8 (Pick’s Formula) Let P be a lattice polygon with i in-
terior lattice points, b lattice points on the boundary, and (Euclidean)
area a. Then

b
—it-—1.
a (3 9

This shows, for instance, that the triple (5,2,4) from Section 1.1 can
never come from a lattice polygon.

Proof. We prove this by induction on the number [ := b+ ¢ of lattice
points in the polygon P.

The smallest case b = 3 and ¢ = 0 is covered by Pick’s Theorem
(Proposition 1.2). There are two cases to consider for the induction:
(1) either P has b > 4 lattice points on the boundary, or (2) b = 3 and
we have at least one interior lattice point, i.e. ¢+ > 1.

— 10 — Haase, Nill, Paffenholz: Lattice Polytopes



Chapter 1. An invitation to lattice polytopes (draft of June 28, 2021)

If P has at least four lattice points on the boundary then we can
cut P into two lattice polygons Q1 and @2 by cutting along a chord
e through the interior of P given by two boundary lattice points. Let
Qj, j = 1,2 have area aj, b; boundary lattice points, and i; interior
lattice points, respectively. Let e have 4. interior lattice points (and two
boundary lattice points). Both @1 and Q2 have less than [ lattice points,
so by induction Pick’s Formula holds for Q and @', i.e.

) b ) b
alzll—Q—?l—l, a2222—|—52—1.
Further
i = i1+ 02+ e, b = by +by—2i.—2,
SO

1
a = aptaz = ir+iz+ (b1 +b2) -2

1 b
i—ietg(b+2e+2) -2 = it -1

If b= 3 and i > 1 then we can split P into three pieces @1, @2, and Q3
by coning over some interior point of P. See Figure 1.9.

Again, all three pieces have fewer lattice points than P, so we know
Pick’s Formula for those by our induction hypothesis. A similar compu-
tation as the one above shows that Pick’s Formula also holds for P (see
Exercise 1.10). O

The reader is invited to prove that the same relation is true for ® ' ot e

non-convex lattice polygons in Exercise 1.13. One can also prove that this

theorem is equivalent to the Euler relation (see Exercise 1.11). Note that ° ¢ ° ° e

the same induction shows that any lattice polygon can be subdivided into Fig. 1.10: Not allowed in a triangula-
triangles which are isomorphic to Ay (called unimodular triangles). As tlon
the Reeve simplex shows, this is not true in higher dimensions. Questions Exercise 1.10
about the existence of such unimodular triangulations will be discussed
in the last Chapter 8 of this book. See also Exercise 1.12. Exercise 1.11
The idea of subdiving a convex object into triangles, or simplices Exercise 1.12

in dimensions 3 and above, is quite influential. We will devote a whole
chapter to this (Chapter 8).

Definition 1.9 (Triangulation) Let P be a lattice polygon. A (lattice)
triangulation of P is a collection 8 of lattice triangles such that

(1) Any two triangles Ay, simplex’ € § intersect in an edge of both, and
(2) the union (as point sets) of all triangles is P.

Figure 1.10 shows two configurations of triangles that are not allowed in
a triangulation. In the first, the intersection is not a full edhe in both, in

Haase, Nill, Paffenholz: Lattice Polytopes — 11 —
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Exercise 1.13

Fig. 1.11

Fig. 1.13: The bot-
tom and top edge of P

Fig. 1.14: Bounding the volume

: A triangulation

the second, the triangles intersect in more than an edge. A proper lattice
triangulation is shown in Figure 1.11.

In fact, Pick’s Formula (Theorem 1.8) also holds in a non-convex
setting. We can generalize it to any (non-convex) lattice polygon with
the property, that any vertex is incident to exactly two edges and no
edges intersect. You will prove this in Exercise 1.13.

1.4 A Classification of Lattice Polygons

Scott’s theorem gives a precise bound on how large a lattice polygon
can be, given the number of interior lattice points. It thus provides the
answer to all questions (triples) from the end of Section 1.1. Problems
like these, which relate information about lattice points of a convex body
to its geometry and its invariants are subject of the field of Geometry of
Numbers. We deal with such questions again in Chapter 4.

Theorem 1.10 (Scott, 1976 [51]) Let P C R? be a lattice polygon
with © > 1 interior lattice points and Fuclidean volume a. Then either

(1) P =2 3As and hence, a = 9/2 andi =1, or
(2) a <2(i+1).

Proof. Let b be the number of boundary lattice points. Using Pick’s
Formula (Theorem 1.8) we can reformulate the condition to

b < a+t+4

unless P = 3 Ao, in which case b = 9 and a = 9/2.

Lattice isomorphisms preserve a, b and 4, so we can place P tightly
into a rectangle R := [0,p'] x [0,p] and p is the smallest possible among
all lattice equivalent P. Then p > 2 as 7 > 1. Exchanging coordinates is
a lattice isomorphism, so we have

2 < p <. (1.2)

The polygon P intersects the bottom and top edge of the rectangle in
edges of length ¢ and ¢/, see Figure 1.12.

At most 2(p — 1) boundary lattice points of P are not on the two
horizontal edges of R, so

b < q+l4+p—1+q¢d+1+p—1 = qg+q +2p. (1.3)

Subdividing the convex hull of the top edge and the bottom edge into
two triangles as in Figure 1.14 we get

Sa+d). (14)

> Lot iy
a —_ —_ =
= 210(] 2QP
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Using Pick’s Formula (Theorem 1.8) and ¢ > 1 we also know that
a>b/2. (1.5)

We split the proof into four cases:

(1) p=2orq+dq >4,

(2) p=q+d =3,

(3) p=3and ¢+¢ <2,
(4) p>4andq+q <3

For (1) we can combine (1.3) and (1.4) into

2b—2a < 2(¢+¢ +2p) —pla+d) = (¢+¢ —4)(2—p)+8,
(1.6)

which is at most 8 as the first summand is at most 0. This implies
b < a+4 as desired.

For (2) we can use the same inequality to obtain 2b —2a < 9, i.e.
b < a+9/2. Now, if P has at least one vertex not on the upper or lower
edge of R, then (1.4) and hence also (1.6) become strict inequalities, so
that in this case b < a +9/2. As a € %Zzo, this implies b < a + 4. If|
on the other hand, all vertices of P are on the upper and lower edge
of R, then a = p(¢+d')/2 = 9//2 and b < a+9/2 = 9. If b < 9 then
b < a+ 4. Otherwise, all vertices are on the upper and lowe redge of
R, b =9, a=9/2and thus ¢ = 1. A simple geometric consideration
shows that then either ¢ = 3 or ¢ = 3 and P must be the triangle 3 Ag
(Exercise 1.14). In case (3) the inequlity (1.3) implies b < 8 and (1.5)
shows

b—a < b—1b/2 < 4.

Now assume we are in the forth case, so p > 4 and g + ¢’ < 3. We choose
points L = (1,0), U = (u,p), X = (0,z), and Y = (p/,y) in P such
that § := |u — | is minimal. See Figure 1.15. We can assume that u <
,0) and U" = (I,p). The
triangle Sy, spanned by A, L', and U bounds the volume of the triangle
spanned by X, L, and U (look at the height over the edge XU). Similarly,
the triangle Sy spanned by Y, U’ and L bounds the volume of the triangle
Y,U, and L from below. Hence,

(otherwise we flip the polygon). Let L' = (u

The shearing

Fig. 1.15: The §-gap

Exercise 1.14

e L

Fig. 1.16: Estimating the area of P
from below: The triangle XUL

Haase, Nill, Paffenholz: Lattice Polytopes — 13 —
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@)
@) @)
(a) Realization for b =3 (b) Realization for 4 < b <i+5 (c¢) Realization fori+5 < b <

Fig. 1.18: Realizations of pairs (i,b)
according to Scott’s Theorem

Fig. 1.17: An arbitrarily big rational
triangle with one interior lattice point

Exercise 1.15

Exercise 1.16

117
T

2i+6

is a lattice isomorphism that, if applied to P, leaves p, ¢, and ¢ invariant.
Hence, we can transform P such that

1

0 < 5p—a—-4q). (1.7)

As p was chosen to be minimal, we also still have p < p’ after this

transformation. This implies

a >-plp+aqg+4d),

N

so that

4(b—a) < 8p+4q+4d —plp+q+d) = pB8—p)—(p—4)(¢+¢).

We have p > 4, so that the left hand side is bounded by 16. This shows
b<a-+4. O

Note that for polygons that are not lattice polygons, there is no such
upper bound on their areas. Figure 1.17 shows why.
Scott’s theorem defines a polyhedral set L given by the inequalities

i > 1 a > 3/2 a <2(i—1)

such that any pair (a,4) coming from a lattice polygon is either (a,i) =
(9/2,1) or inside L. What about the converse? Is every point

1
(a,i) € 3ZxZNL

the volume an number of interior lattice points of some lattice polygon?
This is easier to answer when we move from the pair (a,7) used in Scott’s
Theorem to the pair (b,) using Pick’s Theorem. With this transformation
our inequalities read

i > 1 b > 3 b <2(i+3).

We can indeed realize all of these pairs of integers as the number of lattice
points in the interior and the boundary of a lattice polygon. Figure 1.18
shows the construction.

— 14 — Haase, Nill, Paffenholz: Lattice Polytopes
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1.5 Dilations

If we know the number of interior and boundary lattice points of a
lattice polygon P, then we know its area by Pick’s Theorem. Can we also
say something about dilates of P, i.e. about the number of interior or
boundary lattice points of k- P for some k € Z>¢? The interior points
cannot just scale: Even for lattice polygons without interior lattice points
all sufficiently high multiples will contain a lattice point in their interiors.
However, the volume clealy scales with k2, and the number of boundary
lattice points scales with k.

We can plug this into Pick’s Theorem to obtain the number i(k) of
interior lattice points in k - P:

b
i(k) = aktikﬂ.

which is a polynomial of degree 2 in k with coefficients a, —b/2 and 1. We
can reformulate this for the number [(k) = i(k) 4+ b(k) of total lattice
points in k - P to obtain

I(k) = i(k)+b(k) = kQa—kg+1+kb = ak2+gk+1,

which is again a polynomial of degree 2 in k. Furthermore, we observe
that i(k) = I(—k).

We will see that this observation is a special case of two much more
general and funcamental theorems, the Theorems of Ehrhart and Ehrhart-
Macdonald, which we will study in detail in Chapter 3. The catch is that
in any dimension the number of lattice points in the k-th dilate of a
polytope is given by a polynomial in &, and that the number of interior
lattice polytopes is given (up to sign) by evaluating this same polynomial
at —k.

1.6 Problems

1.1. Let P be the lattice polygon with the vertices A, B,C, D (and P’
respectively with the vertices A’, B',C’, D’) as given in Figure 1.19.
(1) Compute the areas of P and P’.

(2) Are P and P’ isomorphic? If yes, find an explicit unimodular
transformation mapping P to P’.

1.2.

1.3.

A D

Fig. 1.19: Two lattice polygons

Exercise 1.18

included on page 8
included on page 8
included on page 8

included on page 8
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included on

included on

included on

included on

included on

included on

included on

page 9

page 9

page 10

page 11

page 11

page 11

page 12

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

A vector v € Z2 (or in any lattice) is called primitive if it is not a

non-trivial integer multiple of some other lattice vector.

(1) Show that any primitive v € Z? is part of a lattice basis.

(2) Show that every rational simplicial 2-dimensional cone is uni-
modularly equivalent to a cone spanned by (10) and (p ¢) for
integers 0 < p < q.

Show that an integral matrix A € Z2*2 has an integral inverse if
and only if det A = £1, that is,

GlL(Z)={Ae€Z>? : det A==£1} .
Show that the converse of Proposition 1.7 is wrong.

Show that Ry(m) are d-dimensional simplices of volume m/d! with
d + 1 lattice points.

Hint: projection map.

Finish the induction in the proof of Pick’s Formula (Theorem 1.8)
for the missing case b =3 and 7 > 1.

Euler’s Formula states that a finite planar graph with v nodes, e
edges and f bounded faces satisfies

v—e+ f =1

Show that this is equivalent to Pick’s Formula.

We have seen in Pick’s Formula (Theorem 1.8) that there is a
simple relation between the area and the lattice points of a convex
lattice polygon. Prove, that the same relation also holds for non-
convez lattice polygons, where a non-convex polygon is a connected
subset of R? bounded by straight noncrossing segments starting
and ending in lattice points (the vertices) such that to any vertex
there are precisely two incident segments.

Hint: The proof for the convex case essentially works. The part that
needs consideration is the induction step, where we assume
that we can subdivide our polygon with a diagonal.

— 16 — Haase, Nill, Paffenholz: Lattice Polytopes
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1.14.

1.15.

1.16.

1.17.

k1,18,

Show that a polygon with volume 9/2, one interior lattice points, 9
boundary lattice points, and whose vertices are on parallel lines at
distance 3 must be the simplex 3 Aa.

Describe as precisely as you can which pairs (b,4) can be realized
for lattice polygons.

Hint: Consider long and flat quadrilaterals in which the interior
points are lined up on a straight line. We will study this in
detail in Chapter 3

Let P be a lattice polygon, b(P) the number of boundary lattice
points, and i(P) the number of interior lattice points. Prove that a
given pair (b,7) of nonnegative integers equals the (b(P),i(P)) for
some lattice triangle P if and only if there exist integers A, B,C €
Z with A > 0 and 0 < B < C such that b = A+ ged(B,C) +
ged(B— A,C) and i = (AC —b)/2 4+ 1. In this case, the triangle
with vertices (0,0), (4,0), (B,C) can be chosen.

Hint: Move a vertex of the triangle into the origin and use Exer-

cise 1.6.

Following up on Exercise 1.16 one can plot (b(P),i(P)) for all
lattice triangles P in a given range, see Figure 1.20. Prove that the
region at the bottom, denoted by o7, is given by Scott’s theorem
(the special point (9,1) is not visible in the very dense plot). Can
you also describe the other prominent regions o7 (for i > 1)?

included on page 14

included on page 14

included on page 15
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i (interior points)

. L
1000 1500 2000
b (boundary points)

Fig. 1.20: Number of boundary and in-
terior lattice points of lattice triangles
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You have seen in the previous chapter how polygons and integer points
interact nicely and produce some nice and useful classification results.
We will show that all these results can, with appropriate modifications,
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actually be carried over to general dimensions. However, before we can
start with this in the chapter on Ehrhart Theory (Chapter 3) we should
take a closer look at the objects we are considering. We will do this in
the next sections, but only very briefly. Most of the topics are covered in
other courses, and we will give pointers to other books where appropriate.

2.1 Polyhedra

Polyhedral cones are the intersection of a finite set of linear half spaces.
Generalizing to intersections of affine half spaces leads to polyhedra. We
are mainly interested in the subset of bounded polyhedra, the polytopes.
Specializing further, we will deal with integral polytopes.

In the second part of this chapter we link integral polytopes to
lattices, which are discrete subgroups of the additive group R?. This gives
a connection to commutative algebra by interpreting a point v € Z% as
the exponent vector of a monomial in d variables.

2.1.1 Cones and Polytopes

We use Z,Q,R and C to denote the integer, rational, real and complex
numbers. For X € {Z,Q, R} we use

Xso = {zreX]|z>0} X>0 = {reX |z >0}

and similarly X< and X<g.

We are mostly concerned with objects that can be defined from a,
usually finite, subset X C R%. We can study spaces generated by such a
set. The most commonly studied notion here is the linear span of X.

Definition 2.1 Let X C R%. A linear combination of X is a sum
v o= Z Az T
zeX

where Ay = 0 for all but finitely x € X. The linear hull or linear span
lin(X) of X is the set of all linear combinations of X,

Az € R
lin(X) := AzT :
in(X) { g{ ot and Ay = 0 for all but finitely many m}

The set X is a linear space if X equals its linear span.

A linear combination is an affine combination if addtionally the sum
of the coefficients Ay is 1. The affine hull aff (X) of X is the set of all
affine combinations,

aff (X) := { Z)\zx : Av € Rowith 3 ex Ae =1 } )

= and Ay = 0 for all but finitely many x
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The linear span of X is the smallest linear space containing X and the
common intersection of all linear spaces containing X . Similarly, the affine
hull of X is the smallest affine space containing X and the intersection
of all affine spaces containing X. For a matrix A € R¥*" with column

vectors ai,...,ay we also write
lin(A) := lin({a1,...,an}) and aff(A) := aff ({a1,...,an})

A set of points X is linearly or affinely independent if no point of X
can be written as a linear or affine combination of the other points.
Linear spaces can always be spanned by a finite subset of X. All
minimal such sets, the bases of lin X, have the same size, which is the
dimension of lin X. The translation of a subset ¥ € R by a vector
t e R% is

Y-t ={y—t:yeY}

For any affine space A = aff X we can consider its translation by a vector
x € A. This is a linear space. The dimension of A is the dimension of
A — z. Hence, any point in the affine hull of X can be written as an affine
combination of at most d 4+ 1 points in X.

Definition 2.2 A linear combination is conic if all coefficients are non-
negative, and it is convex if it is conic and affine. The set of all conic
combinations of a set X is the cone over X, denoted by cone(X). The
set of all convex combinations of X is the convex hull conv(X). X is a
cone if X = cone(X) and X is a convex set if X = conv(X).

A polyhedral cone is the cone of a finite subset of R%. A polytope is
the convex hull of finitely many points in RY.

The dimension of a cone is the dimension of its linear span. The
dimension of a polytope is the dimension of the affine space it spans.

See Figure 2.1 for an example. Again, we sometimes write cone(A) and
conv(A) for the conic or convex hull of the set of column vectors of a
matrix A € R¥"™, We are mostly interested in cones and convex sets
defined by a finite set X. Clearly, if the dimension of a polytope is less
than the dimension of the ambient space, then we can restrict to that
affine space. Hence, we may assume that the dimension of our polytopes
coincides with the dimension of the space (we will see later that it will
be useful to also consider lower dimensional polytopes, though).

For polytopes in dimension 2 we have already seen the polygons in
the previous chapter. Those are all 2-dimensional polytopes.

We need at least d + 1 affinely independent points in R? to affinely
span R, so any full-dimensional polytope has at least d 4+ 1 points in its
defining set. Any polytope defined by precisely d 4 1 affinely independent
points is called simplez. Any two simplices can be identified via a bijective

O O
@) @)
O O
@) @)
O O

Fig. 2.1: Cone (blue) and Polytope
(red) for the point set of the red
points.
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LHLYBE

Fig. 2.2: Simplex, Cube, Cross Poly-
tope, Dodecahedron, Icosahedron

Fig. 2.3: An interior point
¢ and a boundary point b.

affine map (if you translate both simplices such that one point is in the
origin this a just a change of basis).

In dimension 3 there are the famous regular polytopes, which are
the cube, the tetrahedron, the octahedron, the dodecahedron, and the
icosahedron, see Figure 2.2. Three of them can be generalized to higher
dimensions. We have seen the simplex above, which is a tetrahedron in
dimension 3. The unit cube Cy is the convex hull of the set X := {0,1}<.
The octrahedron can be realized as the special case d = 3 of the polytope
defined as the convex hull of te; for 1 <4 < d, where e; is the j-th unit
vector in R?. In general, those polytopes are called cross polytopes.

Let us also look at a slightly more complicated, but highly intersting
group of polytopes, the hypersimplices. The hypersimplex h(d, k) C R4
for 1 <k < d-—1 is most easily defined as a polytope of one dimension
less than its ambient space. It is the convex hull of all vertices of the unit
cube whose coordinates sum up to k:

d
h(d,k) := conv (m e {0,1}¢ : le = k‘)
i=1

d
= C’dﬂ{xeﬂ{d : chz—k}
i=1

For k =1 and k = d — 1 we obtain a (d — 1)-dimensional simplex. You
can of course extend the definition to k¥ = 0 and k& = d, but these are
just single points in R%.

Definition 2.3 (boundary and interior points) Let K be a convex
set. A point x € K is an interior point of K if there is some € > 0 such
that B, (e) C K. Otherwise x is a boundary point.

x € K is a relative interior point of K if it is an interior point of K
if considered as a subset of aff K.

See also Figure 2.3.

Similar to the linear and affine spaces above any point x in a cone
can be written as the conic generation of at most d elements of X, and
a point in the convex hull as the convex combination of at most d + 1
elements of X . Diffently from above, however, the choice of these points
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depends on x. The followinf theorem, whose proof ist left as Exercise 2.1,
makes this precise.

Theorem 2.4 (Carathéodory’s Theorem) Let X C R¢, C' = cone(X),
andy € C. Then there are x1,x2,...,xq € X and A1, A2,..., g > 0 such
that

d
Yy = Z)\Zx,
i=1

Similarly, for P = conv(X) and z € P there are zg,x1,...,04 € X
and Ao, M, ..., g > 0 such that

d d
z = Z)\ixi and Z)‘i = 1.
i=0 1=0

See also Figure 2.4

2.1.2 Convex hulls and half-spaces

There is a second definition of a polytope that we want to introduce now.
Fig. 2.4: x can be written as a convex

combination of v, vz and vs.

Definition 2.5 (hyperplanes and half-spaces) For any non-zero func-
tional a € (R%)* and B € R the set

Exercise 2.1

H = {z|(a,z) < B}

is the affine hyperplane defined by a and 3. An affine hyperplane is a
linear hyperplane if 5 = 0. The (negative) half-space corresponding to
an affine hyperplane is

H™ = {z|(a,z) <B}.
We say that a point y € R? is beneath H if (a,y) < 8 and beyond H if
(a,y)>B.

Note that Aa, A for any A # 0 defines the same hyperplane as a, 3, and
the same affine half space if A > 0. Hence, the defining functional for a
hyperplane or half space is unique only up to a non-zero and positive
factor, respectively.

Definition 2.6 A polyhedron P is the intersection of finitely many
affine half spaces,

P = (z|(az)<B} = {z|(ar,2) <Br,...,(am,x) < B}

for a; € R? and Bi € R and 1 < i < k. This is often written in the more
consise form
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Fig. 2.5: The poly-
gon of Example 2.7(2)

P = {z] Az <b}

where A € R¥*% whose rows are the functionals a1, as, ..., a; and b is
the vector with entries By, B2, ..., k.

Example 2.7 We look at some simple examples.

(1) The unit cube Cy is defined by the inequalities

z; > 0 r; <1 for1<i<d.

(2) The inequalities

xy >0 x1—29 < 2 2a214+312 <10 3x1—22 > 0
define a polygon with vertices

oL g

see Figure 2.5.
Definition 2.8 A polyhedron P is a (polyhedral) cone if all defining
inequalities are linear, that is,

P =H,, (2.1)
for some a1, as,...,a; € (RY)*.

We have already defined a cone over a set X as the set of all conic
combinations in the previous section. We will see below that this and the
newly defined notion of a polyhedral cone coincide if X is a finite set,
i.e. any polyedral cone can equally be described as the cone over some
suitably chosen finite set X, and any cone over a finite set is polyhedral.

We will not encounter non-polyhedral cones, that is, cones defined
as the set of conic combinations over an infinite set X, in this book.
Therefore, we will often omit the word polyhedral and just speak of cones
in the text, and only stress this restriction in definitions and theorems.

The dimension of such a polyhedron defined by half spaces is again
defined as the dimension of its affine hull. We sometimes use the notion d-
polytope for a d-dimensional polyhedron. A polyhedron is full dimensional
if dim P = d.

Definition 2.9 Let P = ﬂHa_l 3, be a polyhedron. The recession cone
and lineality space of P are

recP = (H, o and lineal P = () Ha,0-

A polytope is pointed if lineal P = @&.
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Example 2.10

We can associate a cone to each polyhedron P C R? that esssentially has
the same combinatorial and geometric properties. This is the homoge-
nization of P or just the cone over P defined by

C(P) := cone({1} x P) C R4, (2.2)

soif P:={x| (a1,z) < B1,...,{am,x) < Bm} € R? with a; € (R?)*,
Bi € R for i € [m] then

C<P) = {(CE(),CE) | 751$0+<a1,l’> SO?"'afﬁme_'_(amax» SO} .

It is often convenient to look at the homogenization of the polyhedron
instead of the polyhedron itself as it is defined by linear instead of affine
inequalities. We can recover the polyhedron by intersecting the cone with
the hyperplane g = 1 (and projecting).

Definition 2.11 (Minkowski sum) The Minkowski sum of two sets
X, Y CRY is the set
X+Y = {z+y|lzeX,yeY}.

A set X is finitely generated if it can be written as a Minkowski sum
of a polytope, a cone, and a linear space, that is, there are v; € R%,
1=1,. rrjelR j=1,...,s vb, € R% k=1,... tsuch that

7N‘7Vk€1R
X = Ai : by
Z U7,+Z:u1rz+zyl7, “u]>ozl =1

(2.3)

Theorem 2.12 (Weyl-Minkowski Theorem) Let P C R%. Then P
s a polyhedron if and only if it is finitely generated.

A proof of this theorem can be found in [50]. Projections of polyhedra are
again polyhedra, finitely generated by the projections of the generators.

Example 2.13 In the notation of Weyl-Minkowski Theorem (Theo-
rem 2.12) we can define a polyhedron with

e ] B e 1) 1)

see Figure 2.7. It is defined by the inequalities

3x1—x2 > 3 r1>1 r1+x9 > 3 x1 — 3z < —1.

Fig. 2.6: The orange polygon is the
Minkowski sum of the red and blue

polygons
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U1

V2

T,

\ T2

v3

Fig. 2.7: The polyhedron
of example Example 2.13

The Minkowski sum of a polytope with a cone C' or a linear space L is
unbounded if C' or L have positive dimension. Hence, we can deduce the
following duality for polytopes from the Weyl-Minkowski Theorem.

Corollary 2.14 (Weyl-Minkowski-Duality) A bounded set P C R¢
is a polytope if and only if it is the bounded intersection of a finite number
of affine half spaces. O

From this theorem we obtain two equivalent descriptions of a polytope:

(1) as the convex hull of a finite set of points in R¢,
(2) as the bounded intersection of a finite set of affine half spaces.

The first is called the interior or V-description, The second is the exterior
or H-description. Both are important in polytope theory, as some things
are easy to describe in one and may be difficult to define in the other.

2.1.3 The face lattice

Throughout this section let P := {z | (a1,2) < B1,...,{am,x) < Bm}
be a polyhedron defined by a; € (R4)*, 3; € R for i € [m]. We have seen
in the examples above that some intersections of the hyperplanes distin-
guish lower dimensional subsets of a polyhedron. We want to formalize
this observation in this section.

A hyperplane H := {x | (a,z) < 8} for some a € (R?)* and 8 € R
defines a wvalid hyperplane if P is contained in the negative half space of
H, that is, if (a,z) < S for all x € P. A valid hyperplane is supporting
if PN H is non-empty.

Definition 2.15 (faces) Let P be a polytope. A face F of P is either
P itself or the intersection of P with a valid linear hyperplane. If F' # P
then F is a proper face.

Observe that the empty set is also a face of P. For any face F' we have

FNP=aff FNP,

so faces of polyhedra are again polyhedra and a face of a face of the
polyhedron is a face of the polyhedron. The dimension of a face of a
polyhedron P is its dimension as a polyhedron,

dim F' := dimaff F'.

We sometimes use the notion k-face for a k-dimensional face of a polytope
P. If for a polyhedron P and a functional a € (R%)* the value 3 of

max{{a,z) |z € P}
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is finite then H := {z | (a,2) < 8} is a supporting hyperplane of P and
PN H is a face of P, the face defined by a. The functionals defining a
face are exactly those in the negative dual of the recession cone.

Any functional a; in the definition of P for some ¢ € [m] is an implied
equality if (a,z) = B; for all x € P. The set of all implied equalities of
Pis

eq(P) :={je{l,...,m}| (a;,x) = Bj for all x € P}.

Observe that this is a property of the specified hyperplane description,
not of the polytope itself. The affine hull of P is then given by the
intersection of the implied equalities,

aff(P) = () {z](aj,z)=5;}.

Jjeeq(P)

The hyperplane description is irredundant if no proper subset of the half
spaces defines the same polytope, and redundant otherwise. Let P := be
a polyhedron. A point = € P is a relative interior point of P if

(aj,z)=0; forallieceq(P) (ajxz)<pf; forallidgeq(P).

Any polytope of dimension d > 1 has a relative interior point. Observe
that this notion of relative interior points coincides with the one given in
Definition 2.3. So we have two different ways to check whether a point is
in the realitve interior of a polyhedron.

If F' is a proper face of P, then F = {x | (a;,z) = B; fori e I} NP
for a subsystem I C [m] of the inequalities of P. In particular, P has
only a finite number of faces. A proper face F' of P is a facet if it has
dimension dim P — 1.

Now assume that P is full dimensional and the defining functionals
ai,...,am are irredundant. Then F' is a facet of P if and only if F' = {z |
[Taiz = B;} N P for some i € [m]. Furthermore, if P is full dimensional,
then aq,...,a, are unique up to scaling with a positive factor. Also, any
proper face of P is contained in a facet, and if F7, F» are proper faces,
then Fy N Fy is a proper face of P. A face F' of P is minimal if there is
no non-empty proper face G of P with G € F. F is minimal if and only
if FF = aff F if and only if it is a translate of lineal P. The minimal faces
of a pointed polyhedron are called wertices. They are points in R?. The
set of all vertices is denoted by V(P). If P is pointed, then F is an edge
of P, if e is a segment, and a extremal ray otherwise. If P is a cone, then
F is called a minimal proper face. Two vertices of P are adjacent if they
are contained in the same edge. Faces of a polyhedron are ordered by
inclusion. Hence, the set faces(P) of all faces of P (including the empty
set and P itself) is a poset, which is actually an Eulerian lattice, the face
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Exercise 2.5

Exercise 2.6

Exercise 2.7

lattice of P. A k-face F and a j-face G of P are incident if either F is a
face of G or vice versa. The f-vector (or face vector) of P is the vector

f(P) == (fo(P),...,fa—1(P)),

where f;(P) is the number of i-dimensional faces of P, for 0 <14 <d — 1.

Let P C R? be a full-dimensional polyhedron with 0 € int P. The
polar dual of a polytope P is

Theorem 2.16 Let P C R? be a d-dimensional polytope with O € int P
and vertices v1, . ..,vm. Then P* is defined by the inequalities

pP* = {ae (RH* : (a,v1) <1,...,{(a,vm) §1}

and its vertices are 1/b;a; for each facet defining inequality (aj,x) < b;
of P. O

You will show in Exercise 2.7 that dualizing twice gives back the original
polytope.

Corollary 2.17 Let P C R? be a d-dimensional polytope with 0 €
int P. Then we have a bijective correspondence between k-faces of P
and (d —1—k)-faces of P* for 0 <k <d—1 and if a k-face F of P is
contained in a (k+ 1)-face G of P, then the face corresponding to G in
P* is contained in the face corresponding to F' in P*. O

Corollary 2.18 If f = (fi,...,f4_1) is the f-vector of P and f' =
(f_1,....fy) that of P* then

fi = 1, for 0<i<d-1. O

For the next observations we switch to the interior description of a
polytope. Let ¢ : R? — R® be an affine map and P = conv(vy,...,v,) +
cone(wy, . .., w;) a polyhedron for some vy, ..., vn, w1, ..., w; € RE Then

d I d I
P D N+ i | =) Nivi+ Y pw;
i=1 j=1 i=1 j=1

so @P is again a polyhedron.

Definition 2.19 (affine equivalence) Let P C RY and Q C R° be
two polytopes. P and @ are affinely equivalent if there are affine maps
¢ : R = R® and ¢ : R® = R such that

P =Q Y@ =P.
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A polytope is simplicial if all faces are simplices. It is simple if all k-
dimensional faces are incident to exactly dim P — k faces. It suffices
to check this condition for the vertices. Simplicial and simple are dual
notions, that is, the dual of a full dimensional simplicial polytope is
simple, see Exercise 2.8.

f-vectors of simplicial polytopes have been completely charecterized
in the g-Theorem of Billera, Lee [12] and Stanley [55] following a conjec-
ture of McMullen [39]. This theorem can best be described with a linear
transformation of the f-vector, which we introduce now. We can write
the f-vector as a polynomial in the form

d

ft) = (=D fiat—1)""

i=1

Writing this polynomial in the basis 1,¢,¢2,...,t% gives the h-polynomial

d
f) = Zhjtj.
=0

We also need the following notion of an M-sequence. For any integers
n,k > 1 there is a unique way to express n in the form

() () - )

with ag, > ap_1 > ... > a; > i > 1. We define

(ky _ [ Ph—1 Ap—2 aj—1
e () ) e ()

and 000 = 0. A nonnegative sequence (mq, m1,me,...) is an M -sequence

if mg=1and mlik> < my_q for all k£ > 2. With this notion we have the

following theorem.

Theorem 2.20 (g-Theorem) A sequence h = (ho,...,hq) is the h-
vector of a simplicial polytope if and only if

(1) hiZhd,i fOT'iZO,...7|_d/2J
(2) (90,91, 9|4/2)) is an M-sequence, where go = ho and g; = h; —
hi—y fori=1,...,|d/2 |.

Example 2.21

2.2 Decompositions of Polytopes

We start our considerations with subdivisions of polytopes into smaller
pieces and study polyhedral complexes and triangulations.
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T

Fig. 2.8: The upper figure

is not a polyhedral complex.

The second is, but it is not
pure, the third is also pure.

2.2.1 Polyhedral Complexes

Definition 2.22 (polyhedral complex) A polyhedral complex € is
a finite family of polyhedra (the cells of the complex) such that for all
P,QeC

(1) if P € C and F is a face of P then F € C, and
(2) F:=PNQ is a face of both P and Q.

A cell P is maximal if there is no Q € C strictly containing it. The
dimension of € is the maximal dimension of a cell of the complex. A
complex is pure if all maximal cells have the same dimension. In this
case the mazimal cells are the facets of the complexr. We will denote by
Clk] the set of k-dimensional faces of C.

A polyhedral complex 8 is a subcomplex of C if its cells are a subset
of the cells of C.

Example 2.23 Here are some examples of a polyhedral complex. See
also Figure 2.8.

(1) Any polytope or cone can be viewed as a polyhedral complex. This
complex has one mazximal cell, the cone or polytope itself. This is
also called the trivial subdivision of the cone or polytope. In general,
subdivisions are defined with the next definition below.

(2) The boundary complex of a d-dimensional polytope naturally has
the structure of a pure polyhedral complex. The maximal cells are the
facets of the polytope, and its dimension is d — 1, the dimension of
the facets of the polytope.

(3) See the middle figure in Figure 2.8 for a non-pure polyhedral complezx.
It has three 2-dimensional maximal cells and one 1-dimensional

mazimal cell.

Definition 2.24 (face vector) The face vector of a pure d-dimensional
polyhedral complex C is the vector

f(€) = (f-1,fo,....fa)
where f, counts the number of k-dimensional faces of C.

Observe that this is completely analogous to our earlier definition of the
face vector of a polytope. Further, f_; corresponds to the empty face,
hence, f_1 = 1 for any polyhedral complex. We will see later that the
entries of the face vector satisfy a linear relation, the Euler equation. The
FEuler characteristic of the complex C is

X(€) i= —f_y +fo—f1 +... 4+ (=1)%,.

— 30 — Haase, Nill, Paffenholz: Lattice Polytopes



Chapter 2. Polytopes and Lattices (draft of June 28, 2021)

This satisfies some addition formula. Let € and €’ be two polyhedral
complexes such that €N € is a subcomplex of both. Then there union is
also a polyhedral complex and

x(€) +x(€) =x(eue)—x(Eene). (2.4)

Definition 2.25 (fan) A fan is a pure connected polyhedral complex

such that all cells of the complex are cones.

Definition 2.26 (normal cone) The normal cone Np(F') of a face F
of a polytope P is the set of linear functionals a such that there is some
B with {(a, Fy=f and {(a,P) < S.

Proposition 2.27 The normal cone is a polyhedral cone spanned by the
facet normals defining the face F'. a

Definition 2.28 (normal fan) The normal fan of a polytope P is the
collection of all normal cones of proper faces of P.

Fans naturally have the structure of a polyhedral complex. In this case
all cells are cones.

Definition 2.29 (tangent cone) Let P be a d-polytope and F' a face
of P. The tangent cone Tp P of F is the cone

TpP:={p+veR?|peF, p+ecveP for somee>0}.

The tangent cone is the common intersection of all supporting half-spaces
at F. Note that the tangent cones are not cones in the usual sense, as
their apex is not in the origin. We call them affine cone if we want to
emphasize this. We can use a point w € F to shift the cone into the
origin. The following proposition is proved in Exercise 2.9.

Proposition 2.30 The shifted cone Tp P —w is dual to the normal cone
of F.

2.2.2 Regular Subdivisions and Triangulations

Often it is useful to subdivide a polytope into smaller pieces and look at
the pieces separately. It will turn out that the most useful subdivisions
are those where all pieces are simplices. Such subdivisions are called
triangulations of the polytope. The next definition formalizes this notion.

Definition 2.31 (Subdivision and Triangulation) A subdivision of
a polytope P is a pure polyhedral complex 8 such that P = |Jocg C.
A subdivision is a triangulation of P if all cells are simplices.

Exercise 2.9

Exercise 2.10
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Exercise 2.11

Example 2.32

A subdivision or triangulation is without new vertices, if V(A4) C V(P)
for any A; € T. We will use the basic fact that for every finite V c R%
the polytope conv V' has a triangulation with vertex set V. Similarly, the
cone posV has a triangulation with rays {R>ov : v € V} [19].

Definition 2.33 (regular subdivision) A subdivision 8 of a polytope
with vertices {vi,...,vm} (of the subdivision) is regular if there is a
weight vector w such that 8 is the projection of the lower hull of

conv((w,v;) |1 <i<m),

where the lower hull is the polyhedral complex of those facets whose normal
has negative first coordinate.

Given a set of points V := {v1,..., v} and a weight vector w € R™
we denote by 8,(V') the regular subdivision obtained as the lower hull of
lift (w) = conv((w;,v;) | 1 <i < m).

You will show in Exercise 2.11 that all subdivisions of a polygon using only
the vertices of the polygon are regular. WISHLIST: convex piecewise
linear function ¥y, (z) = min{h : (h,z) € lift(w)}

Definition 2.34 (polyhedral sphere, polyhedral ball)

Theorem 2.35 Fvery d-polytope P has a regqular triangulation using
only the vertices of the polytope.

Proof. Let V := V(P) be the vertices of the polytope. We can assume
that P is full dimensional. We claim that any sufficiently generic vector
w induces a regular triangulation.

The subdivision induced by w is a triangulation if and only if for
each facet of the lower hull of lift(w) is a d-simplex, i.e. if at most d + 1
of the points

(wl,vl), ey (U}d, Ud)
lie on a common hyperplane. For any (d 4 2)-tuple

(wi17vil>7"'7<wid+2avid+2)

being on a common hyperplane means that the determinant

1 1 --- 1
det | wy wiy -+ wiy,,
Uiy Vig =" Vigio

vanishes. We can view this determinant as a linear functional in the entries
of w. There are (;',) different such functionals, hence, the complement
Z¢ of the union of the zero sets of these functionals is not empty. Choosing
any w € Z° satisfies our requirements. a
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It is important to realize that not all triangulations of a polytope are
regular. See e.g. Figure 2.9 for a simple example. You will prove that it
is indeed not regular in Exercise 2.12

(1) intersections
(2) refinements

Corollary 2.36 FEvery pointed cone C can be triangulated into simplicial
cones without introducing new generators.

Proof. If C is pointed, then there is a functional u such that
ulz >0 for all x € C.

Then P := CN{z | u'x = 1} is a polytope, and C' is the cone over P. By
the previous Theorem 2.35 P has a regular triangulation 7 without new
vertices. The cones over the cells in this triangulation give a triangulation
of the cone C without using new generators. a

2.3 Lattices

We introduce the central tool for this book. It will link our geometric
objects, the polytopes, to algebraic objects, namely toric ideals and toric
varieties.

Throughout this section, V' will be a finite-dimensional real vector
space equipped with the topology induced by a norm || .|| and with a
translation invariant volume form.

2.3.1 Discrete Subgroup and Lattice Bases

Lattices can be defined in two different (but equivalent) ways. On the one
hand as the integral generation of a linearly independent set of vectors,

on the other hand as a discrete abelian subgroup of the vector space.

We will start with the latter characterization of a lattice, This is often
very useful to describe lattices without the explicit choice of a basis. We
will deduce the other representation in a sequence of propositions that
introduce some interesting structure ofr lattices.

Recall that a subset A C V is an additive subgroup of V if

(1) 0€eA
(2) r+y€eA for any z,y € A
(3) —x €A for any x € A.

Exercise 2.12

Fig. 2.9: A non-regular subdivision
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Exercise 2.13

Exercise 2.14

Exercise 2.15
Exercise 2.16

)

)

Exercise 2.17

O O O
O O

O

O O O

Fig. 2.10: The lattice Z>2

Fig. 2.11: The lattice Ao

Definition 2.37 (lattice, rank) A lattice A inV is a discrete additive
subgroup A of V': for all x € A there is € > 0 such that B.(z) NA = {x}.
The rank of A is the dimension of its linear span, that is, rank A :=
dimlin A.

Note that this notion of a lattice is not connected to the face lattices that
we looked at earlier. You will show in Exercise 2.15 that this definition
is independent of the chosen norm, and in Exercise 2.16 that one can
choose the same ¢ for all z € A.

Example 2.38 (1) The standard integer lattice is the lattice spanned
by the d standard unit vectors e1,...,eq. It is commonly denoted by
Z%. We will later see that essentially any lattice looks like this integer
lattice. See Figure 2.10.

(2) Root systems are a famous class of lattices. We introduce some of
them here, and you can explore more in the exercises.

a) We can identify R with the linear subspace

d
L = {:vGIRdH : le = 0}.
=0

The set Ag := LNZ% is a lattice in L. Ay is clearly discrete,
as it is a subset of a discrete set, and the addition of any two
elements in A stays in L, as this is a linear subspace. The same
is true for the multiplication by —1. This is the root lattice Ay.
See Figure 2.11.

b) Let Dy be the set

d
Dy = {x ezt . sz is even} . (2.5)
i=1

Again, this is a discrete set and addition and multiplication by
—1 stay inside the set. This is the root lattice Dy.
(3) Subgroups of lattices are again lattices. To make a concrete example
for this, the set

Aoz = {w e 7% . 1+ 22 =0 modS}

is a lattice.
(4) Let A be a lattice and L C'V be a proper linear subspace of V.. Then
ANL is a lattice in L.

For a set B = {b1,...,bq} C V of linearly independent vectors we define
the subgroup

d
A(B) = {Z/\ibiui €z, lgigd}

i=1
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Definition 2.39 (lattice basis) A linearly independent subset B C V
is called a lattice basis (or A-basis) if it generates the lattice: A = A(B).

1o

Definition 2.41 (parallelepiped) For a finite subset o = {v1,..., v} C
R? the half-open zonotope I(.«f) spanned by these vectors is the set

Example 2.40 B = {

} s a basis of the lattice in FEz-

ample 2.38(3).

k
(o) = {Z)\iviog)\i<1for1§i§k}.

i=1
If . is linearly independent, the zonotope is a parallelepiped.

Here is one of the most fundamental definitions for lattices.

Definition 2.42 (fundamental parallelepiped) Let A be a lattice
with basis B = {b1,...,bg}. The parallelepiped T1(B) is the fundamental
parallelepiped of the lattice with basis B.

See Figure 2.12 for an example. Clearly, the fundamental parallelepiped
depends on the chosen basis. However, its volume, the determinant of
the lattice, does not, and we obtain a very nice representation of points
in the underlying vector space with the following proposition.

Proposition 2.43 Let A be a lattice in V and assume it has a basis
B ={b1,...,bq}. Then any point x € lin A has a unique representation
r=a+y fora€A andy € II(B).

Proof. There are unique Aq,...,Aq € R such that z = Zgzl Aib;. Set
a:=% [ N|band y := 3% {\;}bi. Then y € TI(B), a € A, and
r=a+y.

Now assume that there is a second decomposition = a’ + 3 with
a # a’' (and thus also y # y'). We can write y and v as

d d
y=>_ aib y = ab;
i—1 i—1

for some 0 < a;,a) < 1,1 <4 <d. Hence, |a; —a}| < 1. From

d

a’—a:y—y/:Z(ai—a;)bi
i=1

and ' —a € A we know that a; — o) € Z for 1 < i < d. Hence,

a; — o), =0,s0y =y Hence, also a = d’. O

From this theorem it follows immediately that the parallelepipeds of a
lattice with basis B tile the space, see also Exercise 2.18.

0

Fig. 2.12: A parallelepiped spanned
by some vectors
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Exercise 2.18

Corollary 2.44 Let A be a lattice in R? and assume it has a basis B :=
{b1,...,bq} and let T1 :=TI(by,...,by) be the fundamental parallelepiped.
Then R is the disjoint union of all translates of I1 by vectors in A. 0O

We now show that any set B of linearly independent vectors actually
generates a lattice with basis B.

Lemma 2.45 Let B = {by,..., by} CV be linearly independent. Then
the subgroup

d
A(B) == {Zmi T MNEZ 1<i< d}
i=1
generated by B is a lattice.

Proof. The linear map R? — lin B given by X — E?:l Aqb; is bijective,
and hence a homeomorphism. It maps the discrete set Z% ¢ R? onto
A(B).

Let z € RYNTI(by,...,bg) be an interior point of TI(by,...,bg).
Then there is € > 0 such that B.(z) C I(b1,...,bs). We claim that
Bo(z)NA = {z} for all z € A. Indeed, if y € B.(z)NA = {z} and
y#x, Then 2’ :=x—y e Aand 2/ + 2z € (by,...,by), a contradiction
to Proposition 2.43. a

Theorem 2.46 Fuvery lattice has a basis.

For the proof we need some prerequisites. The following lemma is imme-
diate from the definition.

Lemma 2.47 If K CV is bounded, then K N A is finite. O

Definition 2.48 (A-rational subspace) A subspace U C V is A-
rational if it is generated by elements of A.

Proposition 2.49 Let V be a finite-dimensional real vector space, let
A CV be alattice, and let U CV be a A-rational subspace. Denote the
quotient map w: V —V /U .

(1) Then w(A) C V /U is a lattice.

(2) Furthermore, if ANU has a basis b1,...,by, and w(A) has a basis
Cl,...,Cs, then any choice of preimages ¢; € A of the ¢; for1 <i <s
yields a A-basis by, ..., by, ¢C1,...,Cs.

In the situation of the proposition, we will often write A/U for 7(A).

Proof. (1) w(A) is the image of a group under a homomorphism. Hence,
it is a subgroup of V' /U. The hard part of the proposition is to prove
that m(A) is discrete in V/U.

The space U is A-rational. So we can choose a vector space basis
{v1,...,0.} CANU of U. We can extend this basis to a vector space
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basis B = {v1,...,v4} C A of lin A. These bases yield maximum

norms

= max ({|N| : i =1,...,d})

d
Z )\ivi
i=1
on lin A and
d
’ (Z )\ivi> +U
i=1

on lin A/U. Denote the unit ball of lin A by W. By Lemma 2.47, the
set W N A is finite. Set

!/

= max ({|N| : i=r+1,...,d})

e = min ({1} U{[v+U|" : ve WNA\U}) .

This minimum over a finite set of positive numbers is positive. Now

suppose

d
vo= Z)\ivi € A
i=1

with [|v + U]’ < e. Then

r d
o o= Z()\l — I_)\ZJ)UZ + Z L)\ZJM € A
i=1 i=r+1
represents the same coset: v+ U = v/ + U, and v/ € WNA. We
conclude v/ € U and thus v +U =0¢ V/U.

(2) Let by,...,bq,¢1,...,8 be as in the proposition, and let v € A. Be-
cause the ¢; form a lattice basis of w(A), there are integers Ay, ..., As
so that m(v) = >2% 1 Ajej. Thus, v — 377 1 A\jé; € kerm = U. Be-
cause the b; form a lattice basis of AN U, there are integers pi1, .. ., iy
so that v — 2;21 Njéj =Y iy pibi. So by,..., by, é1,. .., & generate
A. They must be linearly independent for dimension reasons. a

Definition 2.50 (primitive vector) A non-zero lattice vector v € A
is primitive if it is not a positive multiple of another lattice vector, i.e.
conv(0,v) NA = {0,v}.

Proof (of Theorem 2.46). We proceed by induction on r := rank A. For
r = 0, the empty set is a basis for A. For r = 1, a primitive vector yields
a basis.

Assume r > 2. Let b € A be primitive, and set U := linb. Then
{b} is a basis for UNA, and A/U is a lattice by the first statement of
Proposition 2.49. Because rank A/U = r — 1, it has a basis by induction.
By the second statement of Proposition 2.49, we can lift to a basis of
A. O
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Exercise 2.20
Exercise 2.21

Definition 2.51 (unimodular transformation) Let A and A’ be lat-
tices. A linear map T: lin A — lin A’ which induces a bijection A — A’ is
called unimodular or a lattice transformation. T is a lattice isomorphism
if A=AN.

Definition 2.52 (sublattice and index) Let A C R? be a lattice.
Any lattice T C A is a sublattice of A.

Sets of the form a+T :={a+z |z €T} for some a € A are cosets
of T in A. The set of all cosets is A/T. The size [T'/A| is the index of T
m A.

Theorem 2.53 Let A’ C A be lattices with lin A = lin A’. Then there
is a basis by,...,by of A and integers ki, ..., ky € Zso with \j|\ix1 for
1<i<d-—1 such that k1b1,..., kb, is a basis of A.

Proof. We proceed by induction on r := rank A = rank A’. For r = 1, a
A-primitive vector has a positive integral multiple which is A’-primitive.

Assume r > 2. Because lin A = linA’, for every v € A there is a
positive integer k so that kv € A’. Choose b, € A and k, € Z~¢ so that
b, is A-primitive, and so that k, is minimal.

Set U :=linb,. Then b, is a basis for U N A, and k,.b, is a basis for
UNA'. By Proposition 2.49, A'/U C A/U are lattices of rank r — 1. By
induction, there is a basis by,...,b,—1 of A/U together with positive
integers ki,...,ky._1 so that kiby,..., k._1b,._1 is a basis for A’/U.

Let b; € A be representatives of the b; for i = 1,...,7 — 1. Then there
are representatives ¢; € A’ of the k;b;. By Proposition 2.49, b1, ...,b, is a
basis for A, and cy,...,c—1, kb, is a basis for A’. By adding a suitable
multiple of kb, € A’ to the ¢;, we may assume that ¢; = k;b; + 1;b, for
0<lj<krandforalli=1,...,r—1.

But then, ¢; is a positive integral multiple of some A-primitive vector:
¢; = mya;. The two expressions for ¢; together imply I; = 0 or m; < I; <
k, in contradiction to the minimality of k.

Altogether, we obtain I; = 0 for all 7, and hence, ¢; = kib; as required.

|

Corollary 2.54 Let A’ C A be lattices with lin A = lin A’, and let B’ be
a basis of A'. Then

IA/N| = [I(B)NA| = dety A

Proof. The quotient map 7: A — A/A’ induces a bijection II(B ) NA —
A/A by Proposition 2.43. So the first two quantities are equal, and in
particular the second one is independent of the chosen A’-basis.
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That means, for the proof that the last two quantities agree, we can
choose bases as in Theorem 2.53. Then the change of bases matrix is
diagonal with determinant & - ... - k,, while the set TI(B’) N A consists
of the points Y, [;b; for 0 < ; < k; — 1. ad

In dimensions d > 2 there are infinitely many unimodular matrices.

Hence, there are also infinitely many different bases of a lattice. In
Section 6.4 we deal with the problem of finding bases of a lattice with
some nice properties. We will e.g. construct bases with “short” vectors.

Definition 2.55 (dual lattice) Let A C V be a lattice with lin A =V,
Then set

A = {aeV*|ala) € Z for alla € A}
is the dual lattice to A.

If by,...,by is a basis of A and «q, ..., qaq is the corresponding dual basis
(ie. a;(bj) = 1if i = j, and ;(bj) = 0 otherwise), then A* is spanned by
at,...,oq as a lattice. Hence, the dual lattice is indeed a lattice. Further,
dualizing twice gives us back the original lattice, A** = A, as by,...,bq is
a dual basis to aq,...,aq. The following observation is left to the reader
as as Exercise 2.32.

Lemma 2.56 det(A)det(A*) =1.
Recall the distance function in R?,
d(z,y) := [l —
and d(z,8) := inf (d(=, 2))
EISH)
for any z,y € R%, 8§ C R

Lemma 2.57 Let A C R? be a lattice and vy, ..., v, € A, k < d, linearly
independent. Define V :=lin(v1,...,vx). Then there isv € A—V and
x €V such that

d(v,z) < d(w,y) foranyyeV,we A-V.

Proof. Let I :=(vy,...,vg). Then IT is a compact subset of R<%. Choose
any a € A —V and set r := d(a,II). Let

B, (1) := {x | d(x,II) <r}.

Then a € (B, (IT) — V) N A. Further, B, (II) is bounded, so B, (IT) N A is
finite by Lemma 2.47. Hence, we can choose some v € (B, (IT) — V)N A
that minimizes d(v, IT). Choose some z € IT such that d(v,z) attains this

Exercise 2.22
Exercise 2.23
Exercise 2.24
Exercise 2.25
Exercise 2.26
Exercise 2.27
Exercise 2.28
Exercise 2.29

Exercise 2.30
Exercise 2.31

Exercise 2.32
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minimal distance. We will show that these choices satisfy the requirements
of the proposition.

Let w € A=V and y € V. By definition of V there are coefficients
ALy ..., Ar € R such that

k
Y= Z)‘ivi .
i=1

k k
Set z = Z M), vi,and 2= Z {A} v,
i=1

i=1
Then z,w — z € A and 2z’ = y — z € II. Further, w — z ¢ V. Hence,
d(y,w) = dly —2z,w—2) > d(w—2,1I) >d(v,1I) = d(v,z). O

We obtain a second proof that any lattice has a basis. For this, let
V1,...,0q € A be any linearly independent set in A. We consider the
chain of subspaces

Ly := {0} and L; := lin(vi,...,v;)
Lo € L1 & ... & Lg.

By Lemma 2.57 we can find b; € L; closest to 0. Let w be any other
lattice vector in Li. Then there is A such that w = Aby, and

0 < Jlw=[Albu]] < 1.

By our choice of b; now A € Z.

Now assume by induction that we habe a lattice basis of Lj_1. Choose
any by € Ly \ Lr_1 closest to Lp_1 via Lemma 2.57. Let w € AN L.
Then there are p;,m; € R for 1 <i < k such that

by, ::Zuiw and w o= me.

Potentially flipping b, we can assume than p; > 0. We can find some
¢ € Z such that 0 < ) := n — lug, < . Then
d(w — by, Ly—1) = d(ngog, Lik—1) < d(pavr, Lg—1) = d(bg, Li—1) -
Hence, by our choice of b we conclude that w — £b, € Li_1 — capA, so
that £ € Z. As we already know a lattice basis by,...,bp_1 of Li_1 we
ontain an integral representation of w in by, ..., b;. Hence, wen we habe
reached L4, then we have constructed a lattice basis of A. This reproves
Theorem 2.46.

So far, we have considered lattices in linear spaces. We can shift all
definitions to affine spaces.

Definition 2.58 (affine lattice) Let A be a subset of an affine space
A. A is an affine lattice if for some © € A the set A — x is a lattice. A
subset B C A is an affine lattice basis of A if B — x is a lattice basis of
A —b. An affine lattice isomorphism is a map on A that comes from a
lattice isomoprhism on A — x.
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2.3.2 Coordinates and Normal Forms

So far, all our considerations about lattices did not depend on a particular
basis and a representation of transformations in coordinates w.r.t. to such
a basis. However, sometimes, in particular for explicit computations in
examples, it is more convenient to consider lattices and transformations
in a given basis. We now reconsider some notions in the presence of a
basis and introduce the Hermite and Smith normal form. Those allow us
to compute bases and reprove Theorem 2.53.

Lemma 2.59 Let B and B’ be bases of the lattices A and A’ respectively.
Then a linear map T: linA — lin A’ is unimodular if and only if the
matriz representation A of T with respect to the bases B and B’ is
integral and satisfies | det A| = 1.

Proof. The matrix A has only integral entries if and only if T(A) C A’.
Similarly, if T is unimodular, then the inverse transformation exists,
and its matrix A~! also has integral entries. Thus, det A and det A~! are
integers with product 1.
Conversely, if A is integral with |det A] = 1, then, by Cramer’s rule
A~ exists and is integral. ad

Lemma 2.60 Let A € Z%¢ be non-singular. Then AN = pu has an
integral solution \ for any integral p € Z¢ if and only if | det A| = 1.

Proof. “=": By Cramer’s rule, the entries of X are \; = & det(4;), where
A; is the matrix obtained from A by replacing the i-th column with pu.

“”: If |det A| > 1, then 0 < |det A~!| < 1, so A~! contains a
non-integer entry a;;. If e; € Z™ is the j-th unit vector, then A\ = e;
has no integer solution. ad

The set of such matrices is denoted by Gl(d,Z).

Corollary 2.61 An integral matriz A € Z%* is the matriz representa-
tion of a unimodular transformation of a lattice if and only if | det A| = 1.
O

Corollary 2.62 Let A be a lattice with basis by,...,bglinA. Then

C1,...,¢q € N is another basis of A if and only if there is a unimod-

ular transformation T :€ A — lin A such that T(b;) = ¢; for 1 <i <d.
O

We are now ready to define an important invariant of a lattice.

Definition 2.63 (Determinant of a lattice) Let A’ C A be lattices
with lin A = lin A/, and let B and B’ be bases of A and A" respectively. Let
A be the matriz representation of the identity lin A’ — lin A with respect
to the bases B’ and B. Then the determinant of A’ in A is the integer
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Exercise 2.33
Exercise 2.34

5000
1200
3140

A matrix in Hermite normal form.

dety A" = |det A].
If A = Z%, we will often write det A’ for det zal\.

By Lemma 2.59 and Corollary 2.62 this definition is independent of the
chosen bases.

Next we study a way to obtain a nice basis for a lattice generated by
a set of (not necessarily linearly independent) vectors in Q.

Definition 2.64 (Hermite normal form) Let A = (a;;) € Q™™
with m > d be of full row-rank. The matriz A is in Hermite normal
form if

> a;; =0 for j >1i and
> ajj >a;; >0 fori>j.

So a matrix in Hermite normal form is an lower triangular matrix, and
the largest entry in each row is on the diagonal.

Depending on the context we sometimes use the transposed matrix,
i.e. we claim that a matrix is in Hermite normal form if it has at least as
many rows as columns, it is upper triangular, and the largest entry in
each column is on the diagonal (and if the matrix is square we can also

consider lower triangular matrices).

Theorem 2.65 (Hermite normal form) Let A € Q%™ of full row-
rank. Then there is a unimodular matriz U € Z™*™ such that AU s in

Hermite normal form.

Proof. Let g be the common denominator of all entries of A. Then gA is
an intergral matrix, and if H is in Hermite normal form with a unimodular
transformation U such that gA = HU, then also 1/¢gH is in Hermite
normal form and A = 1/¢HU. Hence, in the following we can replace A
by gA and assume that A is an integral matrix.

Now observe that the following three transformations on the columns
of a matrix A can be realized by a multiplication with suitably chosen
unimodular matrix T" from the right:

(1) Exchanging two columns, and
(2) multiplying a column by —1, and
(3) adding an integral multiple of one column to another column.

These operations are called elementary transformations for a matrix.
Any succession of such operations is then realized by the product of the
corresponding transformation matrices, which is again unimodular. In
the following, we will show that we can transform A into its Hermite
normal form using only such elementary transformations. The unimodular
matrix U in the theorem is then given by the product of the corresponding

tranformation matrices.
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We show that we can tranform A into its Hermite normal form by
induction on the rows of A. So assume that A already has the form

BO
MC

A= (2.6)

for matrices B,C, M where B € Z**F is in Hermite normal form and
k > 0. Consider the first row (c11,...,¢1m—k) of the matrix C. Using
elementary column operations we can transform C such that

(1) ec11 > c12>...,¢1m—k > 0 and
(2) c:=ci11+c12+ -+ c1m—k is as small as possible.

Then c¢1; > 0 as A has full row rank. Further, if ¢12 # 0, then we can
subtract the second from the first column and reorder the columns if
necessary to obtain a smaller total sum c. Hence, c12 = ¢13 = ... =
¢1,;m—k = 0. The column operations on C clearly extend to A without
affecting B and M, so we can apply them to A to obtain a matrix

B 00
A = m c11 0 B
M &

where m’ is a row vector of length k, the first row of the matrix M.
By adding or subtracting multiples of the (k + 1)st column (the one
containing 1) to the first k£ columns of A we can assume that all entries
of m are nonnegative and smaller than c7.

In this way we have again reached a matrix of the form (2.6), but this
time B has size (k+ 1) x (k+1). After d steps A is in Hermite normal
form using only elementary operations. a

Remark 2.66 Using only elementary column operations in the proof
was convenient as this directly provides a proof that the transformation
matriz turning A into its Hermite normal form H is unimodular.

Howewver, this is inefficient for cumputations. Here one usually does
the following. To transform the first row of C into one where all but the
first elements are zero one does the following steps:

(1) swap a column with a non-zero entry in the first position to the front,
possibly multiply by —1 to make it positive

(2) for any column c; with non-zero first entry ci1j one computes the
greatest common divisor g of c11 and c1; and two integers x,y such
that g = xc11 +y + c1;. This can be done with the extended Euclidean
algorithm. Now we replace the first column c1 by xc1 + yc; and
the column c; by 1/g<61j61 — cucj). Note that in the second linear
combinations the coeffcients 1/gc1; and 1/gc11 are both integral.
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A simple consideration shows that the transformation matrix correspond-
ing to the transformation used in the second step has determinant +1
and thus is unimodular.

Using this approach implies that a Herminte normal form of any
rational matriz can be computed in polynomial time in the size of the
input matriz A.

Theorem 2.67 The Hermite normal form of a matriz A € Q™™ s

unique. O

Remark 2.68 We can use the Hermite normal form to efficiently per-
form various tasks on lattices. For this, Let B and B’ be matrices whose
columns generate lattices A := A(B) and A := A(B').

(1) The first d colunms of the Hermite normal form of B give a basis of
the lattice A.

(2) The lattices A and N are equal if and only if the Hermite normal
forms of B and B’ coincide.

(3) lattice’ is a sublattice of A if and only if the Hermite normal forms of
B and the matriz obtained by adding the columns of B’ to B coincide.

For the Hermite normal form we have used elementary column trans-
formations, which we can realize by multiplication with a unimodular
matrix from the right. Clearly, we can study the same transformations
also for the rows of a matrix, and we can realize them by multiplications
with a unimodular matrix from the left. This leads to another important
normal form of a matrix, which we explain with the next theorem.

Theorem 2.69 (Smith normal form) Let A € Z¥™ be a matriz
of full row rank. Then there are unimodular matrices L € Z%% and
R € Z™*™ such that S = (sij)1<i<d,1<j<m ‘= LAR satisfies

(1) s;j =0 fori # j,
(2) sy >0 for 1 <i<d, and
(8) si—1i—1 divides s;; for2 <i<d.

The matriz S is unique, the companion matrices L and R are not.

The last statement about the non-uniqueness of L and R follows from
the obsevation that there are unimodular matrices that commute with
S. When actually computing smith normal forms with their companions,
this fact can be used for an attempt to keep entries in L and R small.

Proof. As in the proof of the Hermite normal form it suffices to show
that we can transform A into its Smith normal form using elementary row
and column operations. The existence of the companions then follows.

We again use induction. Suppose that after some elementary trans-
formations A has the form
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S0
=[5 o

where S is a diagonal matrix with positive entries s11,...,sg; for k>0
on the diagonal such that s; 1 ;1 divides s;; for 2 < j < k, and sy
devides all entries of C.

Among all transformations of C' that we can reach with elementary
row and column operations we pick one such that min(|e;;] | 1 <@ <
d,1 < j < mandc;; # 0) is minimal. We can also assume that this
minimum is attained by a11. Then clearly c11 is the only non-zero element
in the first row and column, as otherwise we can obtain a smaller entry
by a suitable row of column operation. Further, a similar consideration
shows that c¢;1 must divide all other entries of C'. We have extended our
induction form (2.7) from k to k + 1.

Uniqueness of S follows from the observation that in each step the
element c17 that we construct is the greatest common divisor of the
elements in C. O

You will use the Smith normal form to reprove Theorem 2.53 using bases
of the lattices in a representation w.r.t. to a basis of the vector space in
Exercise 2.35.

2.3.3 Metric Geometry

In this section, we will give a short discussion about lattices and metric
geometry (mainly following [4]). This is the first point in the book where
A really is meant to be a (non-standard) lattice in R?. An interesting
geometric application can be found in the next section.

Usually, when dealing with lattice polytopes we start with an abstract
lattice A = Z% and associate an abstract vector space A ®7 R = R? with
the volume form which evaluates as 1/d! on a fundamental domain of
A. In particular, note that the ’length’ of a vector is not well-defined. In
general, we define the dual lattice as

A* := Homgz(A,Z)
and the dual vector space as

(A Xz ]R)* = HOHl]R(A Rz R, ]R) .

Note that the dual lattice naturally sits inside of the dual vector space.

While these definitions are abstract, they stress the point that in general
it is not necessary and often misleading to identify dual spaces or lattices.

In contrast, in lattice theory the viewpoint is opposite to ours. The
starting point is an euclidean vector space, say, R% with the usual scalar

Exercise 2.35
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product (-,-). Now, the choice of the embedded lattice matters! For
instance, their determinants differ. In this section, we will follow this
convention.

So, let A C R? be a lattice of full rank, and we assume that we have

*

a scalar product (-,-). Now, we can identify R? and (R%)
R? = (RD", z— (-, ).
In particular, we get under this identification
A = {zeR?: (z,y) e ZVyec A} CR?.

Note that while A** = A, it may happen that A* # A. For instance, if
A =Z%/2, then A* = 274,

2.3.4 Hilbert Bases

Let v1,...,vy € A. Then C := cone(vy,...,v,) is a polyhedral cone. Let
Sc := CNA Then S¢o with addition is a semi-group, the semi-group of
lattice points in C. Indeed, 0 € S¢ and if xz,y € So, then x +y € Se.
A set H C S¢ generates So as a semigroup if for any = € S¢ there are
An € Z>q for h € H such that

r=> Mh.

heXH

Such a set is a Hilbert basis of S¢. A Hilbert basis is minimal if any other
Hilbert basis of S¢ contains this basis.

Observe that in general an inclusion-minimal Hilbert basis is not
unique. Consider e.g. the cone C' = R?. Then both 3 := {e1, 2, —(e1e2)}
and Hg := {£e;, £ea} are minimal Hilbert bases, but they differ even in
size.

A vector a € Z% is primitive if ged(ay, ..., aq) = 1.

Theorem 2.70 Let vi,...,u, € A, C := cone(vy,...,vy), and S :=
CNZ% the semi-group of lattice points in C. Then Sc has a Hilbert
basis.

If C is pointed, then Sc has a unique minimal Hilbert basis.

Proof. Define the parallelepiped

k
H:—{Z)\iyi|0§)\i§1,1§i§k}.

i=1
Let H := I NA. We will prove that H is a Hilbert basis.

(1) K generates C, as y1, ...,y € H.
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(2) Let x € C'N A be any lattice vector in C. Then there are 1, ...,n; > 0
such that x = Zle 1;y;. We can rewrite this as

xr =

(i) +{ni}) vi

1

7

k

so that

k K
z=Y Imilyi = > Anityi-
i=1 i—1

The left side of this equation is a lattice point. Hence, also the right
side is a lattice point. But

k
ho= Y {mlyi e,
=1

so h € TINZ®* = H. This implies that x is a integral conic combina-
tion of points in H. So H is a Hilbert basis.

Now assume that C' is pointed. Then there is b € R? such that

bz > 0 for all x € C—{0}.
— tas f
Let K:= {y ecnz™ | Y # 0, two othgr?gtleb;n‘}eitors in C} .

Then K C H, so K is finite.

Assume that K is not a Hilbert basis. Then there is € C such that
x & Z>oK. Choose x such that bz is as small as possible.

Since x ¢ K, there must be are x1,x2 € C such that z = x1 + 2.
But

bz >0, blag >0, bz >0 and bz =>bla +0bas,

so blay < btx, blag < bla.

By our choice of z we get z1,x2 € Z>0K, so that x € Z>9K, a contra-
diction. O

From the above proof it follows that for a simplicial cone all Hilbert
basis elements ecept for the generators of the cone are contained in the
fundamental parallelepiped of the cone. Computing these points in the
parallelepiped can be done by computing the Smith normal form. This,
together with the generators of the cone is only a generating set G for
the integer points in the cone. So we need to check for all of the (finitely
many points) whether it is a sum of two other elements in G and in this
case remove it from G.

For non-simplicial cones we can obtain a Hilbert basis in three steps:
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Exercise 2.36

Q O O

e} Q O

O O O
O

o

Fig. 2.13: Lattice triangles

(1) Triangulate the cone

(2) Compute a Hilbert basis in each simplicial cone

(3) Combine all Hilbert bases. This is a generating set for the integer
points in the original cone. Reduce this set to a Hilbert basis by
removing all points from it that are the sum of two other points in
the set.

Definition 2.71 (homogeneous) Let A C R be a lattice and C C R?
a finitely generated cone with generators vy, ...,vqg € A. C' is homogeneous
with respect to some linear functional ¢ € Z% if there is \ € Z such that
ctvj:)\forlgjgd.

The height of an integer point x € C is

ht(z) = 'z

Definition 2.72 (normal cone) A finitely generated cone C which is
homogeneous w.r.t. a functional ¢ is normal if all Hilbert basis elements
have height 1.

2.4 Lattice polytopes

Definition 2.73 A lattice polytope is a polytope in R% with vertices in
a given lattice A C RY.

Note that dim(P) < rank(A). Usually we will consider full-dimensional
lattice polytopes, i.e., dim(P) = rank(A). However, we note that we can
always consider P as a full-dimensional lattice polytope with respect to
its ambient lattice aff (P) N A of rank dim(P) in its ambient affine space
aff (P). Note that we need to be careful when considering lattices in faces
of a polytope w.r.t. to the lattice of the polytope, see Exercise 2.36.

Throughout (except when explicitly noted otherwise), the reader should
assume A = Z%. In this case, a lattice polytope is also called integral
polytope. We will use more general lattices only at very few places in the
chapter on Geometry of Numbers (Chapter 4).

2.4.1 Equivalence

Having introduced the objects of our interest, we should next state
when two of them are considered isomorphic. Figure 2.13 shows three
examples of lattice triangles in dimension two. As the reader should
notice, all three triangles look quite different: their vertices have different
Euclidean distances and different angles. Still, the top one is considerably
distinguished from the lower two: it has four lattice points, while the
others have only three. Actually, more is true: the second and third are
isomorphic.
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Definition 2.74 Two lattice polytopes P C R® and P’ C R (with
respect to lattices A C R% and A’ ¢ RY ) are isomorphic or unimodularly
equivalent, if there is an affine lattice isomorphism of the ambient lattices
ANaff(P) — A Naff(P") mapping the vertices of P onto the vertices of
P,

Recall from Definition 2.51 that a lattice isomorphism is just an iso-
morphism of abelian groups. Moreover, an affine lattice isomorphism is
an isomorphism of affine lattices. Here, note that an affine lattice does
not need to have an origin (e.g., consider the set of lattice points in
a hyperplane). However, if we fix some lattice point to be the origin,
an affine lattice isomorphism can be defined as a lattice isomorphism
followed by a translation, i.e., z +— Tx + b where T : A — A’ is a (linear)
lattice isomorphism and b € A’.

Luckily, by Corollary 2.61, in our usual situation A = Z% = A’ there
is an easy criterion to check when a linear map R% — R? is a lattice
automorphism of Z%. The matrix corresponding to the map must have
integal entries and its determinant is 1 or —1.

Again, as we have seen from the example above, it is very important
to realize that in our setting isomorphisms do not preserve angles or
distances! Let us note an immediate consequence of Corollary 2.61

Corollary 2.75 Unimodularly equivalent lattice polytopes have the same
number of lattice points and the same volume. ad

2.4.2 Examples of Lattice Polytopes and Constructions.

A theory only comes to life through its examples and counterexamples.
Luckily, there are many interesting lattice polytopes, reflecting the many
mathematical fields where lattice polytopes play a role. Repeatedly, the
same polytope comes by several different names, due to the fact that
it has been (re-)discovered from different points of departure. In the
following we collect only the most important constructions and examples
as provisions for the road through this text. More examples are treated
in the exercises.

Definition 2.76 A, := conv(0,e1,...,eq) is called the standard or
unimodular d-simplex. We also call any polytope isomorphic to Ay a

unimodular d-simplex.

In other words, a lattice polytope is a unimodular simplex if and only
if its vertices form an affine lattice basis. This is the simplest possible
lattice polytope.

We discuss ways to construct new lattice polytopes from given ones.
We have seen already the Minkowski sum construction introduced in

Exercise 2.37
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Definition 2.11. Clearly, if in this construction both summands are lattice
polytopes, then so is their sum.

One of the most useful constructions is the product of two (or more)
polytopes. Given two lattice polytopes P in R% and Q in R® we can
construct a lattice polytope P x Q, the product of P and Q in R%*¢ via

PxQ = {(p,q)eRd+e : pePandqu}.

The product has vertices (p, q) for vertices p of P and q of Q. Thus P x @
is a lattice polytope. The prism over P is a special case of a product
where @) is just an interval. Mostly, one takes @ = [0, 1] if nothing else is
specified.

Let P = conv(vi,...,vy) be a polytope. P is a pyramid with apez v1
if there is an affine hyperplane H such that vs,...,v, € H and v1 € H.

Given a polytope P, we can construct a pyramid over P by embedding
P into {0} x R? C R x R? and taking the convex hull with any z ¢
{0} x R%. We define

Pyr(P) := conv({0} x P, egp),

where eg is the first standard unit vector in R x R<.
Let P C {0} x R? be a polytope and z,y ¢ {0} x R?, such that the
segment between x and y intersects P in the interior of P. Then

BiPyr(P) := conv(P,z,y),

is the bipyramid with apices © and y. A polytope Q is a bipyramid if it
can be written as an (affine image) of the bipyramid over a polytope P.
The join of two lattice polytopes P and @ of dimensions d and e is

P%Q = conv (P x 0. x{0},04xQx{1}),

where 04 and0Q, are the zero vectors in dimension d and e. This is clearly
again a lattice polytope. Note that a pyramid is a special case of this,
where we take () to be a single point.

Further constructions, e.g. Cayley polytopes and Lawrence prisms
will be discussed at the relevant places in the next chapters.

Lattice polytopes also play an important role in various branches of
mathematics. We give a few examples.

(1) In enumerative combinatorics one can study the order polytope

(2) cut polytopes or traveling salesperson polytopes in combinatorial opti-
mization

(3) hypersimplex

(4) Birkhoff polytope and the permutation polytopes
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2.4.3 Volumes

This section is devoted to a fundamental result on lattice polytopes.
In Section 1.2 we have shown that for polygons the number of interior
lattice points and the volume are connected. Here we will prove that
in any dimension d there are only finitely many isomorphism classes of
d-dimensional lattice polytopes of fixed volume. We have seen that for
polygons this implies that there are only finitely many isomorphism types
with a fixed number of lattice points. Unfortunately, no such result is
true in dimensions three and above and you have constructed examples
in Exercise 1.9. It is an extremely important point to realize that starting
already in dimension three, having information about the volume of a
lattice polytope is much stronger than just knowing the number of its
(interior) lattice points.

Remark 2.77 Note that here we always take the volume as induced by
the lattice A, i.e., the volume of a fundamental parallelepiped equals one.
For instance, |0, 1]d is a fundamental parallelepiped for Z4.

Consider the standard simplex A4 defined in Definition 2.76. Note that
vol(Ay) = 1/4 The following observation shows that the standard simplex
defined in is indeed the smallest possible lattice polytope:

Proposition 2.78 Let P C R? be a d-dimensional lattice simplex. Then
there is an affine lattice homomorphism ¢ : Z%¢ — Z% x — Az +b
mapping the vertices of Ay onto the vertices of P. In this case,

d! vol(P) = |det(¢)| € Z>;.

Proof. We may assume that P = conv(0,v1,...,v4). In this case, ¢ is
given by e; — v; for ¢ = 1,...,d. Hence,
1
vol(P) = |det(p)| vol(Ag) = ’det ((m Ud))‘ ik O

Corollary 2.79 Let P C R? be a d-dimensional lattice polytope. Then
d! VOI(P) S Zzl.
We have d! vol(P) =1 if and only if P is a unimodular simplex.

Proof. By Theorem 2.35 we can triangulate P into simplices without
introducing additional vertices apart from those of P. In particular, any
simplex is a d-dimensional lattice simplex. Now, the statement follows
from the previous proposition. a

This motivates the following definition.
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Exercise 2.38

Definition 2.80 The normalized volume of a d-dimensional lattice poly-
tope P C R? is defined as the positive integer

nvol(P) := d! vol(P).

Remark 2.81 Note that it makes sense to extend the previous defini-
tion also to low-dimensional lattice polytopes by considering them as
full-dimensional polytopes with respect to their ambient lattice. Hence,
nvol(P) > 1 for any lattice polytope.

Note that, if P = conv(0,v1,...,v4) is a d-dimensional lattice simplex
in R?, then by Proposition 2.78 the normalized volume of P equals the
volume of the parallelepiped spanned by v1, ..., vq4.

As we have seen, lattice polytopes have normalized volume at least
1. Given a triangulation of a lattice polytope P of normalized volume V/
into lattice simplices, we see that this triangulation can have at most V'
simplices. This observation gives us an empirical reason why there should
be only finitely many lattice polytopes of given volume and dimension
(of course, up to unimodular transformations). Finally, let us give the
formally correct proof.

Theorem 2.82 Let P C R? be a d-dimensional lattice polytope, nvol(P) =
V. Then there exists some lattice polytope @ C R% such that Q C
[0,d-V]? and P = Q.

Moreover, if P is a simplex, then d-V may be substituted by V.

Corollary 2.83 There exist only finitely many isomorphism classes of
lattice polytopes of given dimension and volume. O

We will first prove Theorem 2.82 for simplices. We need the following
useful observation to extend this result to arbitrary polytopes. The proof
is left as Exercise 2.38. The centroid of a simplex with vertices vg, ..., vg

: 1 d
is g Do Vi
Lemma 2.84 Let P C R% be a d-dimensional polytope. Then there

erists a d-dimensional simplexr S C P whose vertices are vertices of P
such that

S CPC(-d)S—2z)+uz,

where x is the centroid of S. In other words, if vg,...,vq are the vertices
of S, then
d
S CPC(-dS+) v u|
1=0
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Proof (of Theorem 2.82). We can assume that one vertex of P is the
origin 0. First, let P = conv(0,v; ...,v4) be a simplex. Let V € Zx4
be the matrix whose columns are the coordinate vectors of vq,...,v4.
By the Hermite normal form (Theorem 2.65) (where we transpose the
left and right side of the equation) there exists U € Glg(Z) such that
UV = H and H is an upper triangular matrix with non-negative integer
entries such that in each column the maximal element is on the diagonal.

We denote the columns of the right matrix by Ay, ..., hg. Therefore,
U defines a unimodular transformation mapping P to

Q = conv(0,hq,...,hg) C [0,det H]¢,

where the last inclusion follows, as det H > hy; for all 1 < i < d and
0 < hyj < max hg;. This proves the claim for simplices, as nvol(P) =
nvol(Q) = det H.

In general, there exists a lattice d-simplex S C P as in Lemma 2.84.
Then the previous part of the proof shows that there exists a unimodular
transformation ¢ : Z¢ — Z4 such that

©(S) C [0,nvol(9)]¢.

Let S have vertices v, ..., vq. Then
d
P = o(P) C (=d)p(S)+ > o(v)
i=0
d
C [0, —dnvol(S)]% + Z o(v;) .
=0

Since nvol(S) < nvol(P), the statement follows after an affine unimodular
transformation (translating by — Z?:o ©(v;) and multiplying by —1). O

2.5 Software

We can du actual computations with polytopes, cones and fans using the
software framework polymake.
polytope> $c=cube(3);

polytope> print $c->VERTICES;
1000

s
H ORr RP, OOR
B = O, O O
H B, P, ORP OO

Haase, Nill, Paffenholz: Lattice Polytopes — 53 —



Lecture Notes Lattice Polytopes (draft of June 28, 2021)

included on

included on

included on

included on

included on

included on

included on

included on

included on

included on

included on

included on

included on

page 27

page 27

page 27

page 28

page 28

page 28

page 29

page 31

page 31

page 32

page 33

page 34

page 34

2.6 Problems

2.1.

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

Prove Carathéodory’s Theorem (Theorem 2.4).

Show that the preimage of the projection of a face F' is again a
face (but not necessarily the original one).

If some z € R? is in the relative interior of two faces of a convex
set, then the two faces coincide.

Let 7 : R? — R™ be a projection that maps a d-dimensional
polytope P onto a m-dimensional polytope @). Then, if x is a point
in the interior of Q, relint(7~1(z) N P) C int (P).

Show that a d-dimensional polytope has faces in any dimension
0<k<d-1.

Prove that any (d — 2)-dimensional face of a d-dimensional polytope
is contained in precisely two facets.

Let P C R? be a d-dimensional polytope with 0 € int P. Prove
that dualizing the dual polytope P* gives you back the original
polytope P.

Show that simple and simplicial are dual notions.

Prove Proposition 2.30.

Prove that the tangent cone of a face of a polytope is precisely the
intersection of the half spaces defining F'.

Show that any subdivision 8 of a polygon P such that V(8) = V(P)
is regular.

Prove that the subdivision in Figure 2.9 is not regular.
Show that a discrete additive subgroup of R? is closed.
Let A be a discrete closed subset of R¢ (for instance, a discrete
additive subgroup by Exercise 2.13) and B a bounded subset of

R?. Then AN B is a finite set. Give an example that shows that
this is not correct for general discrete subsets.
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2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

Show that the definition of a lattice in Definition 2.37 does not
depend on the norm chosen to define the balls.

Show that in Definition 2.37 we can choose the same ¢ for all x € A.

Prove that the following subsets of R? are lattices.

(1) Bq

(2) Recall the definition of Dy from (2.5). Let us define D;/Q =
Dy+(31+Dy) for even d. Show that this is a lattice. For
d = 8 this is the root system Eg.

(3) E7

(4) Eg

These are the so called root systems.

Let A C R? be a lattice wit fundamental parallelepiped II. Show
that the lattice translates of IT cover R? without overlap, i.e.

U (z4+1) = R?
TEA

and (x+A)N(y+A) =@ forz,y e A, z #y.

Show that any full-dimensional cone contains a lattice basis.
Hint: Use induction over the dimension.

Let by, ..., by be linearly independent lattice points in a lattice A of
rank d. Show that the closed fundamental parallelepiped spanned
by b1,...,bg contains a lattice basis of A.

Let A C R? be a lattice and vq,...,v4 € A be such that
volII(v1,...,vq) = det A. Then vy,...,v4 is a basis of A.

Let A’ be a sublattice of A C RY with rank d. Let II be the
fundamental parallelepiped of a lattice basis of A.
Show that v — v + A’ is a bijektion from IINA to A/A’ ist.

Show that ZZ/ < kiei,koeg >z = Z/k\Z B Z/koZ for ki, ko €
Z

Let A be a lattice of rank d in R? and let L be a linear subspace in
R¢ of dimension n. Show that, if LN A is a lattice of rank n, then
any lattice basis of L N A’ can be extended to a lattice basis of A.
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2.25.

2.26.

2.27.

2.28.

2.29.

2.30.

2.31.

2.32.

2.33.

2.34.

Let A be a lattice and v € A prtimitive. Show that v is part of
some lattice basis.

Let A be a lattice of rank d in R? and B := {by,...,by} C A
linearly independent.

Show that B is a lattice basis of A if and only if TI(B) as volume
det A.

The following map is a (canonical) isomorphism

¥ R = (RY*)*, 2 — (u— u(x)).

The map ¢ ¢ from Exercise 2.27 induces a natural isomorphism
between A and (A*)*.

Let A be a lattice of rank d in R%, and 7' : R% — R? a linear
map with T'(A) C A.

Show that for T* : (RY)* — (RY)*, ¢+ (v o(T(v))) we
have that T*(A*) C A*.

let by,...,byg be a basis of R%. For z = Z?Zl \ib; € R? we define
b (z) = A;. Show that b,...,b% is a basis of (R?)*.

Let bi,...,bg be a lattice basis of the lattice A in R?. Then
by, ..., b7 is a lattice basis of the lattice A* in (R%)*.

Prove Lemma 2.56.

Let A € R? be a lattice, v1,...,v € A, L := lin(vy,...,vp)
and L' its orthogonal complement with orthogonal projection
m: R - Lt

(1) Show that T := 7(A) is a lattice in Lt

(2) Show that I'* C A*.

Let A C Z% be a sub-lattice of rank d, and let vy, ..., v, be a basis
of A with fundamental parallelepiped

H(vl,...,vd) = {Z)\Z‘bi | Ai € [071)} .
Show that

|Z4/A| = |T(v1,...,09) NZ% = detA.
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2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

Reprove Theorem 2.53 using the Smith normal form (Theo-
rem 2.69).

Construct a A-polytope P and a face F' where

aff FNA # af FN(PNA) # af FN(FNA).

Show that A, has volume 1/4!.
Hint: think of Ay as iterated pyramids or subdivide [0,1]% into d!
simplices.

Let P C R? be a d-dimensional lattice polytope (or any convex
body) Show that there is a simplex S C P with vertices v, .. .,vq
such that

P C (-d)(S—=z) + 2z = (=d)S + (d+ 1)z (2.8)

and
PC (d+2)(S—z) — 2z = (d+2)S — (d+1)z  (2.9)

where

1 d
xr = 7d—|—1 21&'
i=

is the centroid of S.

Hint: Choose S := conv(vg,...,vq) C P with maximal volume in
P.
For any 0 < ¢ < d let H; be the facet hyperplane of the
facet of S not containing v;, 7; := d(v;, H;) and R; := {z :
d(.’L‘7HZ) S T‘i}.
Show that P C R; for 0 <14 <d.
Express (\°_, Ri, (—d)(S —z) +z, and (d +2)(S — z) — va
in barycentric coordinates with respect to vg,...,vg and
compare.

Sei K eine konvexe Menge in R%, und a, b € Z>. Zeige (a+b)K =
aK +bK = {ax + by : z,y € K}. (Gilt das auch fiir a,b < 07)

Recall the isolation theorem : Given an open convex set S in R%.
Then any point outside of .S can be strictly separated from S. Finde
explizite Beispiele in Dimension 2, dass

(1) dies die Voraussetzung konvex braucht

(2) dies die Voraussetzung offen braucht
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2.41.

2.42.

2.43.

2.44.

2.45.

2.46.

2.47.

2.48.

2.49.

(3) eine abgeschlossene konvexe Menge kann einen Extrempunkt
haben, der keine Seite (Ecke) ist

(4) eine kompakte Menge K eine Seite F' haben kann, die eine
Seite G hat, die aber keine Seite von K ist

Wie kann man die affine Hiille mithilfe von ‘Affin-Kombinationen’
beschreiben? kleinster ist!

(Hirter) Sei S ¢ RY, z € RY. Zeige: « ist ein Extrempunkt von
conv(S) g.d.w. z € S und z ¢ conv(S\{z}).

Check that Weyl-Minkowski for cones implies that for polytopes

Man erinnere sich, wieso die Determinante einer linearen Abbildung
unabhéngig von der Basiswahl ist. Nun beweise fiir ein Gitter
A C R? dass wenn T eine lineare Abbildung von R? nach R?
ist, so dass die Einschrankung T : A — A wohldefiniert ist und
surjektiv, dann ist T bijektiv. (Tipp: wieso ist T bijektiv?) Zeigen
Sie allgemeiner(?), dass ein Homomorphismus von A — A surjektiv
ist g.d.w. bijektiv.

Dualizing non-polyhedral cones.
Existence of a Hilbert basis

Man mache sich an einem Beispiel plausibel (oder beweise fiir
i = 1), dass fiir gegebenes i € {1,...,n} und fiir ganzzahlige n X n-
Matrizen der ggT aller Determinanten von ¢ x i-Untermatrizen bei
Multiplikation mit unimodularen Matrizen invariant bleibt. Wieso
impliziert dies die Eindeutigkeit der Smith-Normalform?

Man berechne die Smith-Normalform fiir

30
014
und fiir eine 3 x 3-Matrix Ihrer Wahl.

Sei P ein d-dim. Gitterpolytop in R¢ mit 0 € int (P) und F eine
Facette von P. Zeige dass es eine lineare unimodulare Transforma-
tion gibt, die F auf eine Teilmenge von R~ x {m} fiir m € Z>
abbildet. qDie Zahl m ist der ganzzahlige Abstand des Ursprunges
von F'). Hinweis: Betrachten Sie 7z und bilden Sie es auf e ab.
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2.50.

2.51.

2.52.

2.53.

2.54.

2.55.

2.56.

2.57.

Ist ein Skalarprodukt (-,-) auf R% gegeben, so ist
¢ RY = (R, y s (2 (y,2))

ein Isomorphismus.

Ein Gitter-Isomorphismus Z™ — Z™ wurde definiert als eine Z-
lineare Abbildung, die bijektiv ist. Man mache sich klar, dass hier
eine Z-lineare Abbildung nichts anderes als ein Gruppenhomo-
morphismus ist (wenn man von Gruppen und Homomorphismen
schon gehort hat). Priife, dass die inverse Abbildung eines Gitteriso-
morphismus auch wieder ein Gitterisomorphismus ist. Kennen Sie
Beispiele z.B. aus der Analysis wo ‘bijektiv’ und ‘Isomorphismus’
nicht das gleiche sind? (Idee: stetige Funktionen).

Man mache sich klar:

Jeder Gitter-Isomorphismus Z"™ — Z" definiert auch einen Vektorraum-

Isomorphismus R” — R"™ (Hinweis: Betrachte die Standardba-
sis). Jeder Gitter-Isomorphismus ist durch eine Gl,(Z)-Matrix
gegeben. Dies ergibt eine Bijektion zwischen Gitterisomorphismen
und Gl,(Z)-Matrizen.

Zeige, dass fiur vy,...,vq € R? das Volumen des aufgespannten
Parallelepipeds gleich d! mal dem Volumen der konvexen Hiille von
0,v1,...,vq ist.

Zeige, dass unter einer affin-linearen Abbildung die konvexe Hiille
des Bildes einer Menge gleich dem Bild der konvexen Hiille ist.

Hmm, kann man eigentlich einen Isomorphiebegriff fiir rationale
Polytope (also solche, deren Ecken alle rationalen Koordinaten

besitzen) formulieren?

Finde das normalisierte Volumen der konvexen Hiille von (2,0, 4),
(17 ]-7 0)7 (07 23 _2)

Ist der Endlichkeitssatz fiir Gittersimplizes scharf? (Offen: was fiir
Gitterpolytope?)
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In this chapter we will be concerned with counting lattice points in

polytopes. The central theorem of this chapter gives a very beautiful
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| 16] 3| 2| 13|
| 5[10[11] |
| 9| 6| 7| 12|
| 4f15]14] 1

Table 3.1: Diirers magic square of 1514.

Fig. 3.1: Approximating a convex
body by smaller and smaller cubes

relation between geometry and algebra. It is due to Eugéne Ehrhart and
tells us that the function counting the number of lattice points in dilates
of a polytope P C R?, the Ehrhart counting function,

ehrp(k) = |k-PnzY,

is the evaluation of a polynomial ehrp(¢) of degree d in ¢t = k. This
polynomial ehrp(t) is called the Ehrhart polynomial of P, and it is at
the heart of the theory of lattice polytopes.

3.1 Motivation

Pick’s Theorem and Reciprocity
Monomials of degree d in R[z1,..., 4]

Semi-Magic Squares A magic square is an n by n grid filled with
n? positive integers, such that the sum of each row, each column, and
the two main diagonals is the same for all. This number is the magic
constant. Sometimes it is additionally required that the entries in each
row, column and diagonal are pairwise distinct and the total set of entries
is {1,...,m2}. See Table 3.1 for a famous example that already appeared
in the painting Melancholia I by Albrecht Diirer in 1514.

The number of possible n X n magic squares with magic constant b
is given by the set of positive integer solutions to

n—1 n—1 n—1
§ Lij § Tj; — § Ti; — § Tin—i — b
1=0 =0 =0

for0<j<n-1.

Volumes The most important natural invariant of a convex body is
its volume. Computing the volume of a convex body is in general a
complicated problem. Counting lattice points in multiples of a polytope
is directly related to it. Let P € R? be a convex body. As illustrated
in Figure 3.1, we can approximate the volume by counting the volume
of little cubes centered at the more and more refined lattice Z<¢/k (for
k — 00).

vol(P) = /de

1
d : d
khm |PO(Z /k)| = khm kd\kPﬂZ |

1
= lim —eh
Jim -ge rp(k)

(3.1)

We see that knowing infinitely many values of the Ehrhart counting
function allows to determine the volume. However, if we would know
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that ehrp(k) is actually a polynomial function, then by Equation (3.1)
it must have degree d and leading coefficient vol(P). In particular, the
Ehrhart polynomial would be determined by knowing d 4+ 1 many values
of it. It follows that if the Ehrhart counting function of P is polynomial
with constant term 1 (as we will show later for lattice polytopes P), then
vol(P) can be explicitly computed from |kP NZ%| for k = 1,...,d. This
looks already very much like a generalization of Pick’s formula (which we
have seen in Pick’s Formula (Theorem 1.8))! In Exercise 3.1, the reader
is invited to work this out explicitly in dimension three.

Exploiting the important reciprocity principle which we will also
learn about later in this chapter, one can even show that (and this is
just one possibility of such a generalized Pick’s formula), the volume of
a d-dimensional lattice polytope can be determined from knowing the
number of lattice points in kP for k = 1,...,[d/2] together with the
number of interior lattice points of kP for k = 1,...,|d/2]|. This gives
a nice formula for the volume of a three-dimensional lattice polytope
(see Exercise 3.2) that should satisfy the curiosity of the reader for a
Pick’s formula in dimension three and convey the usefuleness of Ehrhart’s
theorem.

Of course, there are many more arguments why Ehrhart polynomials
are important:

» they allow to read off important properties of the polytope,
» their coefficients form a basis for the space of ...,

» they have algebro-geometric analogues,
>

3.1.1 Examples of Ehrhart polynomials

In this short section, we compute for some simple examples the counting
function ehrp (k) of a polytope directly. We will observe that it is indeed
given by a polynomial, and that evaluating at negative integers gives the
number of interior points.

Before we start, we want to give a formal definition of the counting
function. For this, let S C R?, and let k € Z~g. The k-th-dilation of a
set of S is the set

kS = {kx : xz € S}.
We introduce the following counting function.

Definition 3.1 The Ehrhart counting function of a bounded subset
S C RY is the function

ehrg(k:) 5221 — 221
ko— ‘kSﬁZd‘.

Exercise 3.1

Exercise 3.2
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Exercise 3.3

[ e—zee
2], e—o—c—0 @

3L e—eo—o—o—200

Fig. 3.2

Fig. 3.3: Lattice points
in a standard simplex.

With this definition we can look at our first examples. Let L :=
[a,b] C R, a,b € R be an interval on the real line. Here, counting is easy,
L contains [b] — [a] + 1 integers. The k-th dilate of P is [ka, kb]. By the
same argument it contains |kb| — [ka] 4 1 integral points, so

ehry (k) = [kb] — [ka] + 1.

Figure 3.2 shows the interval 7 = [0, 3] and its second and third dilation.

If the boundary points a and b are integral and a < b, then we can
simplify the formula. In this case also all multiples of @ and b are integral,
and we can omit the floor and ceiling operations to obtain

ehrp (k) = k(b—a)+1.

We observe that this is a polynomial of degree 1 in k. We will see that
this observation is a very special case of the Theorem of Ehrhart that we
will prove below.

Now we turn to some examples of polytopes in general dimension
d > 0. Let us first consider the standard simplex

Ay := conv(0,e1,...,¢eq)

introduced in Definition 2.76. See Figure 3.3 for the lattice points in a
multiple of this ismplex.

Proposition 3.2 Let Ay be the d-dimensional standard simplex. Then

ehrp, (k) = (dzk) - (d+k)-(d+k;!1).....(k+1)

Observe that this is a polynomial in the variable k of degree d with
leading coefficient 1/d!.

Proof. There is a bijection between the lattice points in k Ay and se-
quences of k dots and d bars: to each such sequence, assign the vector
x € R* whose ith coordinate equals the number of dots between the ith
bar and the (i + 1)st bar for 1 < i < d—1 (we don’t write down the
number of dots after the last bar, it is determined by the rest):

el e = (2,3,0)

This yields a bijection between the sequences and lattice points with
non-negative coordinates and with > x; < k. O

Another simple, but very important example is the unit cube defined in
Example 2.7(1). The k-th dilate of the cube is kCy = k- [0,1]¢ = [0, k]<.
Hence, the Ehrhart counting function is given by

ehro, (k) = (k+1)7.

Note again that this is a polynomial in k& of degree d.
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3.2 Generating Functions for Lattice Points

The examples in the previous sections show that we really want to
investigate lattice points S := PN Z® in polytopes or polyhedra P C R,
i.e. count them (if the nuber is finite), enumerate them, explore structure
on this set S, or explain their interactions with polyhedral geometry,
algebra and other field.

All of this requires us to first find a way to distinguish lattices points
in a polyhedron from all others, i.e. a way to encode them, preferably in
an efficient and explicit way, that we can easily write down in a short and
concise form. It should be simple from our notation to decide whether a
point is in our list or not.

We have already seen two more indirect ways already above, directly
from the interior and exterior description of a polytope. A lattice point x
is in our set S if it is either a convex combination of the vertices of P or
satisfies all defining inequlities of P. This description is fine for a single
particular lattice point. But it does not tell us much about the whole set
of points, nor about the structure of the set.

For this, we need to find a way to make our description of the set .S
more explicit. In a first, rather naive approach, we could now be tempted
to explicitely list all lattice points in our polytope (this clearly only
works well for bounded objects). To make a simple example, look at the

polytope P3 := [0,3]. This is the simple segment shown in Figure 3.4.

The naive approach gives us the list:
0,1, 2, 3.

This works well in this small example, but consider the structurally
similar example Pjggo2 := [0, 10002]. Here, our plain list

0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, . ..

easily exceeds a line, and also the length of this book. To get a compact
encoding of the points we need a better idea.
Here is one that might look really strange at first, but will prove to

be very powerful. We can replace each point k € P3 with its monomial ¢*.

With this we define a polynomial that contains precisely the monomial
corresponding to points in our polytope:

3
L+t+ 2+ =)t
=0

The option to write our polynomial as a sum already shows a quite
compact way to encode the lattice points. Observe, that the representation
is not really more complicated for Pjggo2. However, it is pretty obvious

- O=0=0=0-

Fig. 3.4: The polytope Ps.

Haase, Nill, Paffenholz: Lattice Polytopes — 65 —



Lecture Notes Lattice Polytopes (draft of June 28, 2021)

L 1f the reader feels slightly wary about
what happens at t = 1, be assured that
in our approach here we will not deal
with any analytic convergence issues

and will not evaluate at certain values.

that this particular compact notation as a sum is only possible in very
special cases, so we need to look further.

If you look at the polynomial you may realize that there is another
option to write this more condensed than using a sum: We can also write
this as the geometric series

1—¢4

Gps(t) = =7

whose expansion is again our polynomial. Again, doing the same for
Piooo2 does not really make this notation more complicated:

1— t10003

Gjo,10002) (1) = -
We will see that this idea of using a geometric series to specify the
lattice points in a polyhedron is both sufficiently flexible to work for all
polyhedra, and efficient enough that we can use it to really study the
structure of the set of lattice points.

Her comes another surprising and powerful property of our last
observation. If we try to do write down the lattice points of the unbounded
polyhedron Py, := [0, c0), then our first two approaches obviously become
infeasible. However, the third works and turns out to be even shorter
and more appealing!! As a geometric series we can consisely describe all
lattice points in P, via the monomials in

1

As this extended example suggests, the generating function we used to
encode the lattice points will indeed provide a powerful bookkeeping tool
for counting and enumerating lattice points in polytopes.

It will soon become apparent it is indeed quite useful and natural to
encode lattice points not only in polytopes, but more generally in any
bounded or unbounded subset of R?, as in the last example of a ray in
R!. You should keep this in mind for the following considerations.

In the above example of the one-dimensional cone x > 0 C R we
have seen that we can use rational functions in one variable ¢ to describe
the infinite series of all monomials corresponding to the lattice points in
the cone. We now want to formalize this idea, and directly generalize it
to arbitrary dimensions. Let k be some ground field (you can just think
of k = C, if you like). We assign the monomial

e a,
t =115 -t

in d variables to a lattice point a = (a1,...,aq) € Z% In the above
example all lattice points were non-negative and thus lead to the “usual
kind” of monomials. In general, the coordinates of a are allowed to be
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negative, so this is a Laurent polynomial living in the Laurent polyonmial
ring

+1 +1
L= k[t7,....t7].

Moreover, note that the sum of monomials for the cone x > 0 is infinite.

Since we do not care about convergence, we will actually consider our
sums not as Laurant polynomials, but as series in a subset of the L-module

T — gEl +1

L := ki; ... 1
of formal Laurent series. We give an example before we write down the
proper definition.

Example 3.3 Let P be the polygon

P := conv 0 223
1-120

(see Figure 3.5). Recall that the convexr hull of a matriz is defined to be
the convex hull of the column vectors of the matriz. We list the lattice
points as monomials in the Laurent polynomial
242
tity
+ ty + tity + 11ty
o+ 4+
+ 3 /to

Definition 3.4 (integer point series) For S C R? the integer point
series Gg is the formal Laurent series

Gs(t) == Y t"elL.
aeSNA
Translating a set S C R? by some integral vector a € Z% amounts
to multiplication of its generating series with ¢%,

Gass (t) = "G (1) -

Remark 3.5 (Warning) When dealing with formal power series and
rational series, one has to be very careful in order not to make a mistake.
Therefore, we would like to give an ezample here (just for one variable)
that justifies this caution: Consider the following expression of formal
Laurent series

Gr () (1-1)

(ot 2t It ) (1 1)
= (ot Pt It )
— (et 23

v

Fig. 3.5: The polygon of Example 3.3.
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Exercise 3.4

Clearly, we deduce

0
GR(t) = -+t 24t L1+t +2 4+ = T =0 (2

However, this is wrong! The left side of the last equation is definitely
not zero as a Laurent series. So, where is our mistake? In case the

reader hasn’t already found it, we will explain this apparent riddle in
Remark 3.10.

Actually, not all Laurent series appear as a generating series for lattice
points in polyhedra. The ones we will encounter have a nice additional
structure that we will work out with the next definitions and theorems.

Definition 3.6 (summable Laurent series) A Laurent series Gel
is summable if there is a Laurent polynomial g € L such that the series
gG is a Laurent polynomial.

Clearly all Laurent polynomials are summable. On the other hand,
the series

L2484 0 47+t B 7= 14 ) 4
k prime
cannot be summable. We will denote the set of all summable Laurent
series by LS"™. We leave the proof of the following proposition to the
reader as Exercise 3.4.

Proposition 3.7 "™ is a L-submodule of L. O

Example 3.8 Before we continue we want to work out some simple, but
quite important examples of summable series coming from polyhedra.

(1) Let us first consider the polyhedron Ps, = [0,00) that we introduced
above. The integer point series is

Gp, (t) = > t"=1+t+2+5 4.
aEZZO

Using the polynomial g(t) := (1 —t) we obtain g(t)Gp, (t) =1, so
Gpoo (t) is a summable series.

(2) Now let C := cone(ey,ez) for the standard unit vectors ey, es € R2.
Then

w5 o (25

a,bEZZO

T+t+s+t2+s2+ts+t34---.

Similar to the previous case we can use the polynomial
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g(t,s) == (1-t)(1—s)

to obtain

g(t,s) Go(t,s) = 1—t)-[ S tr] - (1-s)-| Y & =1

GEZZO bEZZO

Hence, Go (t,s) is a summable series.
(3) Finally, let V := {e1,...,eq} and C = cone(V). In the same way,

we see

d d

[Ta-t)- 3 ¢ = JLa-e)- 3 (e e
i=1 sezd, i=1 (n1ma)€Zd,

(3.3)
Hence, Ge (t) is summable.

Proposition 3.9 There is a natural homomorphism from summable

series to rational functions
®: L5 5 R:= ﬂ((t1,...,td)7

mapping G to /g if ga =fin L. We will abbreviate this also by writing

g/
g

The proof of this proposition is left as FExercise 3.5.

Remark 3.10 (Resolving the warning of Remark 3.5) We can now
explain where the mistake was. The equation (3.2) should be replaced by
the following correct expression:

BGR (1) = @(--+t 24t +1+t4+24-)
0
= —— = 0.
1-t
In other words, not the Laurent series is zero but only its associated
rational function! While it is often very convenient to use the equality

‘=" between a summable Laurent series and a rational function

sign
(instead of using a cumbersome and non-standard notation such as @),
one cannot stress enough that one must be aware that such an equality
only holds on the level of rational functions and not on the level of Laurent
series. We hope to make this point clear by using the W2y symbol instead

in these situations.

In particular, we see from the previous example that ® is not an injective
map. However, it clearly is for Laurent polynomials (check!). In other

Lsum

words, L is a submodule of , and ®|| is the identity map. A more

general criterion on injectivity is proven in Exercise 3.6.

=1

Exercise 3.5

Exercise 3.6
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Definition 3.11 (integer point generating function) Suppose S C
R? is a set so that Gg (t) is summable. The integer point generating
function of S is

Gs (1) = #(Gs (1)).

If S € R? is bounded, then we are allowed to identify (see also
Exercise 3.6)

Gs(t) = > .

a€SNZa

In the one-dimensional example P, = [0,00) above we have already
computed the image of the generating series in R, it is Gp,_ (t) = 1%15

We can now generalize this observation to rational simplicial cones
(which will be generalized to half-open simplicial cones later). Let
D be a simplicial rational cone in R? with primitive ray generators
V= {a1,...,aq}. We recall the fundamental parallelepiped of V from

Definition 2.42

n(v) := {Zuvv Dy €10,1) forveV}

veV

We know from Corollary 2.44 that the fundamental parallelepipeds tile
the space without overlap (strictly, there we talked about lattice bases,
however, the same argument works for the generating set V).

Proposition 3.12 In this notation, Gp (t) is summable with

> €n(D)nz4 t¥
0 = [ a-m

Proof. Let Z>oV stand for the set of Z>¢-linear combinations of V. By
replacing the Laurent monomial t¢ by ¢% in (3.3), we get

d d

[[a-e)- > = J[a-t)- > @)™ ()™ = 1.

i i— d
i=1 2€Z>0V =1 (nl,_,.,nd)ezzo

By Corollary 2.44 we get
d d

[[a-t- > = J[a-t)- > yoowt

i=1 reDNZ4 1=1 y€N(D)NZ4 2€Z >0V

d
= [[a-t9- > - >
i=1

z2€Z>0V yel(D)NZ4

= Z v O

yel(D)nzd
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Our integer point generating series contain a monomial for every lattice
point in a set. If we have the series for two sets S,S’, then we can obtain
the series for the union S U S’ by adding the two series and subtracting all
lattice points that we encoded in both series, i.e. the generating series for
the lattice points in the intersection S N .S’. This principle clearly extends
to the union of any finite number of sets. We can compute the generating
series from the generating series of the sets and all partial intersections
if we keep track of the multiplicities a partial intersection appears in
the total sum. This is called the principle of inclusion-exclusion. You
will study this in more detail in Exercise 3.9. Triangulating a rational
polyhedral cone into rational simplicial cones (see Section 2.2)) and using
inclusion-exclusion (see also Figure 3.6) yields the following general result.

Corollary 3.13 The integer point generating series of a rational poly-
hedral cone is summable.

3.3 Ehrhart’s theorem

After these preparations, let us prove Ehrhart’s theorem.

Theorem 3.14 (Ehrhart’s Theorem) The Ehrhart counting func-
tion given by k — ehrp(k) for k € Z>y extends to a polynomial function
t — ehrp(t) of degree d and leading coefficient vol(P).

Definition 3.15 (Ehrhart polynomial) For a polytope P the polyno-
mial ehrp(t) as in the previous theorem is the Ehrhart polynomial of
P.

We have already seen in § 2.1.2 that it is convenient to homogenize a
polytope and work with the cone over P instead of P. Recall that we
have defined C(P) in (2.2) via

C(P) := cone ({1} x P) € R%*!,

We usually write a vector € RT! with indices starting from 0 and use
xq for the special coordinate. See Figure 3.7 for the cone over a triangle.

In our setting the especially convenient property of this representation
of our polytope is the fact that we can recover all dilates of P from C(P).
More precisely, for any k > 0 we get the k-th dilate of P by intersecting
C(P) with the hyperplane zy = k, and the lattice points in kP by
intersecting with {k} x Z9.  Hence,

Gopy (B,1,-..,1) = Z‘kPﬂZd‘tk = 1+ ) ehrp(t)t".
k>0 k>1

Fig. 3.6: Let @ be the dotted chord
of the polygon and Pi, Py the two
polygons obtained by cutting P along
Q. Then |PNZ2| = |PLNZ?| +|P2N
72| -|Qnz?.

Fig. 3.7
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Exercise 3.7

Exercise 3.8

As substituting variables clearly keeps summability, by Corollary 3.13
the following definitions make sense.

Definition 3.16 Let P be a lattice d-polytope. The Ehrhart series of P
is the summable formal Laurent series
Ehrp = 1+Zehrp t* e kt
E>1

in one variable t. The corresponding rational function will be denoted
Ehrp(t) := ®(Ehrp(t)) € k(t).
To proceed we consider some well-known results on generating functions.
Lemma 3.17 For j € Z>,
k+d—j @ 2
;( i)
The proof will be given in Exercise 3.7.

Proposition 3.18 Let f,g: R — R be such that

tz:%f(t)zt 25 (lf(j))dﬂ

Then f(t) is a polynomial of degree at most d if and only if g(z) =
Zkez>0 912" is a polynomial of degree at most d. In this case:

ft) = 90<t—;d>+g1<t+2_1>+...+gd<fl>.

and the leading coefficient of f is T) In particular, f has degree d if

and only if g(1) # 0.

Proof. We define the polynomials f;(t) := (H(di_j) for 0 < j < d. The
set {fo,..., fa} is a basis of R[t]<q (Exercise 3.8).
Let f be a polynomial of degree at most d. Then there are g, ..., gq
such that
d

t)IjZi:Ogjfj Z (t+d ])-

The coefficient of t? is % >~ gj- We compute

ZZ <t+d g)k ZQJZ(t+d J)zk

>0 j=0 —0 >0
d
¢, Xinosr?
(1— 2)dtl

__9(®)
(1—z)dt1
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For the converse direction, injectivity of @ on polynomials implies f(t) =
Z;‘lzo 9j (Hfli_]). Now, we use again the basis property. O

Now, let us compute the Ehrhart generating function for lattice simplices.

Proposition 3.19 Let S be a d-simplex. Then

h*(t)

Ehrg(t) = W

where h* is a polynomial of degree < d. Further, for h*(t) = ZZ:O it
we have

hy = #(M(C(S))NZ4M N {z | z0 = k}) € Z>o.

In particular, hf =1 and h*(1) # 0.

Proof. Let {ag,a1,...,aq} be the vertex set of {1} x S, with a; = (1, v;)
for i = 0,...,d. Applying the substitution (¢o,?1,...,tq) by (to,1,...,1)
to Proposition 3.12 we obtain that

h*(to)

Ehrg(t) = W

for the polynomial h*(to) = 3=y, 4 en(c(s))nzd ! toe.

Let (yo0,y) = %o Xi(1,01) € I(C(S)) NZ4H 500 < Ay < 1 for
1 =0,1,...,d. In particular, yg < d+ 1, so yg < d. Moreover, yy > 0
with equality if and only if also y = (0,0, ...,0). O

We have now collected all necessary tools and definitions to prove
Ehrhart’s Theorem (Theorem 3.14).

Proof (of Ehrhart’s Theorem (Theorem 3.14)). Combining Proposi-
tion 3.19 with Proposition 3.18 we get that the Ehrhart counting function
of an n-dimensional lattice simplex in R? uniquely extends to a polyno-
mial function of degree at most n.

For a general polytope P we triangulate it into maximal-dimensional
simplices F; and consider the triangulation of C'(P) into the associated
simplicial cones C(F;). Then we apply inclusion-exclusion (e.g. Exer-
cise 3.9). Finally, we use (3.1). O

Remark 3.20 At this point it is intuitive, but wrong, to conclude
ehrp(0) = ‘opmzd‘ = 1.

As we will see later in Corollary 3.35, ehrp(0) = 1 does hold if P is a
polytope. But the interpretation as IOPﬂZd ‘ is wrong as the following
example shows.

Fig. 3.8: The boundary complex of a
triangle

N

O O

Fig. 3.9: Inclusion-Exculsion on the
boundary complex

Exercise 3.9
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Exercise 3.10
Exercise 3.11
Exercise 3.12
Exercise 3.13
Exercise 3.14
Exercise 3.15
Exercise 3.16

Fig. 3.10: Making a cone half open.

The right face and the origin are
not part of the half open cone.

Exercise 3.17

We can count lattice points in dilations of complexes of lattice poly-
topes. The entire chain of arguments given carries over to this setting.
We obtain a counting function which is the evaluation of a polynomial.
Consider, for example, C to be the boundary of a standard triangle, see
Figure 3.8. Then our counting polynomial turns out to be ehre(k) = 3k
with constant coefficient zero! See Figure 3.9. We will come back to this

example in Remark 3.36.

3.4 Stanley’s theorem

3.4.1 Half-Open Decompositions of Cones

The goal of this chapter is to deduce more information about the Ehrhart
polyonomial. For instance, as we have seen in Remark 3.20, we haven’t
even determined what its constant term is! And while we know that the
numerator of the Ehrhart series of a d-dimensional lattice simplex is a
polynomial of degree at most d whose coefficients are all nonnegative
integers, we weren’t able to conclude these strong statements for arbitrary
polytopes from our naive inclusion-exclusion proof of Ehrhart’s theorem.
In fact, this is the content of Stanley’s celebrated theorem, and in order to
prove it we will need a more refined way of decomposing our polytopes into
simplices. The goal is to have no overlap in order to avoid any overcounting
(and thus subtraction). This is called half-open decomposition [9, 31].
There are various ways how to do this. We will use a generic reference
point as an arbiter to decide which points belong to which cells. As above,
the right setting to do this is to consider cones instead of polytopes.

Definition 3.21 (half-open decomposition) Given a vector & € RY,
we define the half-open cone C¢ with respect to & € R?

C¢ = {yeC : y+eteC foralle>0 small enough} .

We say & € R? is generic with respect to C (respectively, a triangulation
T of C) if € is not in the linear hull of a (d — 1)-dimensional face of C
(respectively, any simplicial (d — 1)-cone in T).

C¢ can also be described as precisely the set of elements in C' that are
not visible from & (Exercise 3.17). See Figure 3.10 for an example.  Let
us note some properties:

» If £ is generic with respect to C, then

C¢ = {yeC : y+e¢ eintC for all ¢ > 0 small enough} ,
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> If £ € C, then C¢ = C, and if ¢ is additionally generic, then
C¢ = intC.

» If £ € C is generic with respect to a triangulation T of C, then it is
also generic with respect to C. In this case, £ € int D C int C for a
unique D € T[d].

Our first goal is to show that making cones half-open is compatible with

decompositions.

Proposition 3.22 Let T be a triangulation of the d-cone C, and let
€ € R? be generic with respect to T. Then we have the following disjoint

unton:

ct = || D
DeT[d)

where T[d] is the set of d-dimensional faces of the triangulation (see
Definition 2.22). Ze
In particular, if € € C is generic with respect to T, then

C = |_| D¢ and ntC = |_| D¢,
DeT[d] DeTId]

A half-open decomposition in this way is illustrated in Figure 3.11, where
this shows a slice through C' containing &.

Proof. Let y € DS. Then for any & > 0 small enough y + &€ € int (D) C
int (C), so y € C&. Conversely, let y € C¢, so y + &€ € int (C) for any
€ > 0 small enough. This implies that there exists a unique D € T[d] so

that y 4+ &€ € int D for small enough ¢ > 0. The uniqueness argument

implies disjointness of the union on the right hand side. a

. . L . Fig. 3.11: A triangulation and its half
We remark that there is also a beautiful generalization of the previous open decomposition.

result using indicator functions described in the book of Hemmecke et
al. [18].

Let us now focus on simplicial d-cones D C R?.
Definition 3.23 Let D be a simplicial d-cone in R% and V = {vi,...,vq} C
RY the primitive ray generators. Let us note that ¢ € R? is generic with

respect to D if and only if all coefficients Ay, in the unique representation
&= > A\ are non-zero. We define

I (&) == {veV : X\>0} and I_(§) = {veV : A\, <0}.

Using this notation, let us note the following alternative description of a
half-open simplicial cone (Exercise 3.18). Exercise 3.18
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U1

Fig. 3.12: Half open cone and funda-
mental parallelepiped for £ and —¢’.
The dashed lines and the vertices
with withe points are not part of the
cone or fundamental parallelepiped.

Exercise 3.19

Exercise 3.20
Exercise 3.21

Lemma 3.24 Let £ € R? be generic with respect to a simplicial d-cone
D with primitive ray generators V.. Then

£ _ M >0 forve I (§) and
b= {gﬂvv "y >0 forvel (€) '

We have seen in Corollary 2.44 how to translate R? with translates of
parallelepipeds. In the following, we will use this idea for the half-open
cones DE.

Definition 3.25 Let D be a simplicial d-cone with primitive ray genera-
tors V. In case € € R is generic, we define the half-open parallelepiped
(D) with respect to & as

3 — € [0,1) forv e I, (&) and
D) = {1;/,%11 " € (0,1] forv e I_(€)

Note that TI* (D) C DS. See Figure 3.12 for an illustration. For x strictly
in the interior of D we recover the usual half-open fundamental paral-
lelepiped of D with generating set V.

The following result generalizes Corollary 2.44 and is left as Exercise 3.19.

Lemma 3.26 Let V = {v1,...,v4} C R? be linearly independent, and
suppose & € R is generic with respect to the simplicial cone D := cone V.
Denote by A the lattice generated by V.

Then any point w € R has a unique representation w =y + z with
y €A and z € (D).

We can further decompose each of the half-open simplicial cones into
half-open boxes. Recall that Z>¢V stands for the set of Zx-linear
combinations of V.

Proposition 3.27 Let V be the set of primitive ray generators of a
simplicial d-cone D C R%, and let ¢ € R be generic with respect to D.
Then we have the following disjoint union:

p*= || w+n&D)

wEZZ()V

Proof. The fact that the translates by A-vectors are pairwise disjoint
follows from the uniqueness in Lemma 3.26. From the existence part we
see that R? is covered by all A-translates of I1¢(D). It remains to observe
that for w € A
w+T8(D)  for w € ZsoV

pén (w+mE(D)) = . .

We leave the verification of this identity to the reader (Exercise 3.20). O

Exercise 3.22
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3.4.2 The integer point generating function of half-open cones

Let us compute the integer point generating series and generating function
for half-open cones.

Corollary 3.28 Let V = {v1,...,vq} C Z% be a linearly independent
set of primitive vectors, let D = coneV, and let € € R% be generic with
respect to V.. Then the integer point generating function of the half-open
cone D¢ is summable, and

B Grie(p) (1)
Gpe (t) - (1—t”1)(1—t52)--~(1—t”d).

(3.4)

Using Proposition 3.27 the proof follows precisely along the lines of the
proof of Proposition 3.12 (just replace Corollary 2.44 by Lemma 3.26).
Together with Proposition 3.22 we get the following nice formula.

Corollary 3.29 Let C be a rational cone in R%, let T be a triangulation
of C into rational simplicial cones, and let £ € C be generic. Then

Go(t) = > Gge(t), and G (t) = > Gge(t). (3.5)
SeT(d] SeT|d]
In particular, both series are summable, and (3.5) also holds on the level

of rational functions.

Proof. Equation (3.5) is a translation of Proposition 3.22 into generating
functions. By Corollary 3.28, all the summands are summable Laurent
series. a

3.4.3 Stanley’s theorem and the h*-polynomial of a lattice polytope

Let us apply the previous results to cones over lattice polytopes.

Proposition 3.30 Let P C R be a lattice polytope, let T be a triangu-

lation of the cone C(P) which is induced by a lattice triangulation of P,

and let € € C(P) be generic. Then Ehrp(t) is summable with sum
 2seTla+1) Gneosy) (6 1)

Ehrp () = Gep (1,1) = = . (3.6)

Now, we are nearly done. It remains to show the following lemma,

which we leave to the reader as Exercise 3.24.

Lemma 3.31 Let S C R? be a d-dimensional lattice simplex, and let
€ € R be generic. We define

hZC(S),g = {yens(C(s)nzdtt : yg=1d}

Then

Exercise 3.23
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Exercise 3.24

(1) £ € int C(S) if and only if hS,C(S),g = 1. Otherwise, haC(S),g =0.
(2) —¢ € int C(S) if and only ifhEJrl,C(S),g = 1. Otherwise, h2+1,C(S),§ =
0.

In particular, Zfiol h;c(s) 21

Here is the main result of this chapter.

Theorem 3.32 (Stanley’s Non-Negativity Theorem) Let P be a
d-dimensional lattice polytope. Then
_ hE A Bt + Rt -4 Rt

Ehrp(t) = (1—t)d+1 )

hi,...,hy >0 and hi = 1. In particular,

t+d t+d—1 t+1 t
ehrp(t)—(—; )+h;(+d )+---+h§1(z )+h;(d),
(3.7)

Proof. We simply apply Proposition 3.30. In this notation

O+ hit+ s bt = Y Gre(oqsy) (£1)
SeT[d+1]

From Lemma 3.31 and ¢ € int (C(P)) (as & is generic), we conclude that
h§ = 1 and hj, ; = 0. The last statement follows now from Proposi-
tion 3.18. a

Definition 3.33 (h*-polynomial) The polynomial h* that appears in
the numerator of the rational generating function of the Ehrhart series
of P is the h*-polynomial of P.

Example 3.34 Why do we consider the h*-polynomial and don’t stick
to the original description? For this, let us consider the Reeve simplex
from (1.1) for m =13, i.e.

R := conv(0,e1,e2,e1 + e2 + 13e3) .

Then the Ehrhart polynomial is 1 — 1/6t + t> 4 13/6t3, however, it’s h*-
polynomial is 1+ 12t. This shows why working with the h*-polynomial is
so much more convenient: the values are integers and they are nonneg-
ative. As the proof shows, the reason is that they have a nice counting
interpretation as the number of lattice points in half-open parallelepipeds.

Corollary 3.35 Let P be a d-dimensional lattice polytope for d > 0.
Then the following holds:

(1) The constant term of the Ehrhart polynomial is 1 if P is non-empty.
(2) h*(1) = S°% o h* = d!vol(P) = nvolya(P).
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(3) Wy =ehrp(1) —d—1=|PNZ% —d—1.

Proof. (1) This follows from Equation (3.7) by plugging in ¢ = 0.

(2) This follows from Proposition 3.18 (or directly from Equation (3.7)).

(3) This follows from plugging in ¢t = 1 into Equation (3.7).
O

Remark 3.36 We already raised the issue of the constant coefficient in
Remark 3.20. Coming back to the boundary C of the standard triangle,
there are two different half-open decompositions.

The one on the left yields an h*-polynomial 1+t + t2 while the one
on the right yields 3t. Which one is “correct”? Looking at the cone over
C, we see that the decomposition on the left contains the origin (once),
while the one on the right does not. This explains the difference:

L+t+¢2 3t

-0z ~ a-p2th

We also see that there is exactly one choice for the multiplicity of the
origin (in this case zero) so that the h*-polynomial has degree < 1 which
we need if we want the counting function to agree with the evaluation of
a polynomial. We will identify this choice with the Fuler characteristic in
Remark 38.46 below.

Finally, let us note the following theorem proved by Stanley in [53]. A
completely different proof appears in (Beck, Sottile [9]). The reader can
try to give a proof using the methods developed above in Exercise 3.26.

Theorem 3.37 (Stanley’s Monotonicity Theorem) Let P and Q
be two lattice polytopes such that P C Q, d = dim Q and let h}p and hz?
be their h*-polynomials. Then h}g’i < hZ?,i for all 0 <i <d.

Proof. easy if dim P = dim Q, else, choose £ € relint Q and wiggle to
generic & € relint P. then half-open decomposition from C¢ induces on Q
the same half-open decomposition as £'. proof missing

Corollary 3.38 For two lattice polytopes P and Q with @ C P we have
deg Q < deg P. In particular, any face of P has degree at most deg P.
O

3.4.4 Where does the h*-notation come from?

Example 3.39 h* of Ay. do half-open simplex as well
d+1—k

Ay with k facets removed has <j+1—k

) many j-faces.

The origin for the funky notation h* is its close connection to the
h-vector from enumerative combinatorics. Suppose C is a simplicial

@ o @

Fig. 3.13: Two half open decomposi-
tions of the boundary of a triangle.

Exercise 3.25

Exercise 3.26
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complex with fy vertices, fi edges, and so forth. Then the combinatorial
h-vector of C is defined by the implicit equation

d
d+1-k
;= h 3.8
fi Z k (J 41— k‘) (3.8)
k=0
This is, in fact, an invertible linear transformation between f-vector and
h-vector. Its relation to the h*-vector is given by the following result

[11]:

Theorem 3.40 (Betke and McMullen 1985) Let P be a lattice poly-
tope with a triangulation T. Let h* be the h*-vector of P and h the h-vector
of the triangulation. Then hy < hj for 0 < k < d with equality if and

only if the triangulation is unimodular.

Proof. The number of simplices with k facets removed in a half-open
decomposition satisfies the h-vector equation. Such a simplex has a box
point at height k, so it contributes one to hj. It contributes more if the
simplex was not unimodular. a

3.5 Reciprocity

The interior of L = [a,b] is int L = (a,b). For integers a,b we can count
the lattice points inside int L:

ehrine (k) = k(b—a) — 1.
Evaluating ehry, (k) at —k for some positive integer k gives

ehr;(—k) = (=k)(b—a)+1=—((—k)(b—a) —1) = —ehrjn; . (—k) .

So for intervals the Ehrhart polynomial evaluated at negative integers
counts (up to a sign) the lattice points in the interior of the interval. This
would be a nice property, but maybe the example of an interval is too
special to conjecture such a relation in general. So let us compute the
interior lattice points in a more complicated example.

We consider the d-dimensional standard simplex A, that we have
already seen in the beginning of this chapter. We use the following
observation to count lattice points in the interior A4. As we only want to
count the lattice points in the interior of the k-th dilate of the simplex,
we can first consider all lattice points and then leave out lattice points

(1) that have a 0 among their coordinates, or
(2) whose coordinates sum up to k.
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This just means that we only want to count lattice points that satisfy
the inequalities x; > 1 for 1 < i < d, and whose coordinates sum up to
at most k — 1. Hence, we want to count lattice points in the set defined
by the inequalities

d
21 and Zwiék‘—l.
i=1
Translating this by 1 € R? gives the simplex defined by the inequalities
d
xz; >0 and Zwigk—d—l,
i=1

and this simplex clearly contains the same number of lattice points. We
have computed this number in Proposition 3.2, so

k—1
s~ (1),

We see that also the number of interior lattice points is a polynomial in
k of degree d. From

(d;k) _ (_1)d<k—dji—d—1) _ (_1)d(k;1)

we can conclude that

ehriya, (k) = (—1)%ehra (k) -

We can make the same observation as for the interval: The lattice points
in the interior of the k-th dilation of the simplex are (up to a sign) the
evaluation at —k of the Ehrhart polynomial!

Let us check one more example, before we attempt to prove our
observation. Consider the standard unit cube C;. Counting the interior
points in this case is rather simple. We obtain

ehring o (k) = (k= 1) = (=1)*((=k) + 1)? = (=1)%ehrc (k) ,
and again, the number of lattice points in the interior is given by the
Ehrhart polynomial evaluated at negative values.

3.5.1 Stanley reciprocity for cones

Let = (z1,...,24) € (R?—{0})% Then i denotes the vector

1 1
T ag )
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Lemma 3.41 Let D C R? be a simplicial cone with primitive generators
V = {v1,...,vq}, and let £ € R? be generic.
Then the map

a:n8(V)NZH — n (V) nzit!

d
f — ZUZ'—
1=0

s a bijection.
Proof. Let y € TI$(V), so y has a representation of the form
y=Z)\vv+Zuvv for0< Ay <1, 0< pupy <1

vel veJ
Hence
Zv@ y = Z (I=X)v+ Z(l —pp)v € M 8(V)nzdt,
vel veJ
Wthh proves the claim. O

It follows from Corollary 3.29 (pick —¢ € int C') that Gimo (t) is also

a summable Laurent series.

Theorem 3.42 (Stanley’s Reciprocity Theorem) Let C be a d-di-
mensional polyhedral cone with rational generators. Then

Go () = (—1)% Gy e (1) .

Proof. Let T by a triangulation of C' and £ € C generic as above. For
S € T[d] let V(S) be the set of primitive generators of S, and let
s(5) = X yev(s) v denote their sum. Then, Lemma 3.41 implies

a S —a S 1
Gresy ()= > 1= D> = Gy (t)

a€lé(S)Nzd acli—§(S)Nz4
By Corollary 3.29 and Corollary 3.28 we can just sum up this equation
over all maximal cones to obtain the desired result:

Ge (t) = Z Gge (t) = > H 5) ()

SeT(d SeT[d) L veV(S <1 —t)

ts(s) G-¢(s) (%)
[Loevs)(1—1)

SeT(d]
_ (_1)(1 GH_g(S) (%)
- 1
SeT(d] HvEV(S)(l - tTJ)
1
SeT(d

It is important to note that Stanley’s theorem is clearly wrong on the
level of Laurent series!
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3.5.2 Ehrhart-Macdonald reciprocity for lattice polytopes

Finally, we can formalize our observation from the beginning of this
section.

Theorem 3.43 (Ehrhart-Macdonald Reciprocity) Let P C R? be
a d-dimensional lattice polytope with Ehrhart polynomial ehrp(t), and let
k€ Z~gy. Then

ehrp(—k) = (-1)¢ |int kPN ZY).

The proof needs a little fact about the map & that maps summable
Laurent series to rational functions.

Lemma 3.44 Let f be a polynomial. Then

S Fk)EE 2 0.

keZ

Proof. Tt suffices to prove this for the basis f, := (*7™), m € Z, of

m

R[t]. So pick some m. Then
k +m k@ 1
St =3 (")
k>0 k>0 m (1 + t)m
We compute the other sum:

P e G

k<—1 k<—1

my—(m 1 -1)m
= (1) “)(1_%)%1 _ tm+1§1_)1)m+1
I G L o O K G O L 1
(t—1DmtT — T (1—pmtl (1 —g)mtl

O

Using this we can finally prove our reciprocity theorem.
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Proof (Ehrhart-Macdonald Reciprocity (Theorem 5.43)). We make two
computations:

&> [imtkPNZYt" | = Giyop) (t1,...,1),
k>1

and, using Lemma 3.44 for the second equation,

o[ (—1)?S ehrp(—k)tt | = o[ ()¢ Y ehrp(k)tik

k>1 k<-1

1
= [ (-1)4! Zehrp(k) n
k>0

- (—1)d+1Ehrp<1>

1

Theorem 3.42 and Exercise 3.6 imply

S lintkPNZYtF = (=1)4> ehrp(—k)t*.
k>1 k>1

Comparing coefficients of these two Laurent series gives the desired result.
O

As an immediate application we can compute the Euler characteristic.

Proposition 3.45 (Euler-Characteristic) Let 8 be a subdivision of
the rational polytope P C R? into rational polytopes. Then

Z (_1)dimF - 1.
0£Fe8

The restriction to rational objects is an artefact of our method and is not
necessary for the validity of the assertion.

Proof. Scaling P and & by a positive integer, we can assume that §
contains only integral polytopes. Using the disjoint decomposition of P
into the relative interiors of faces of § we see that for all k € Z>1

kPNZ%Y =" |relint kF N ZY).
Fes8

Thus, by Ehrhart-Macdonald Reciprocity (Theorem 3.43), we have an
equality

ehrp(t) = Z(—l)dimFehrF(—t)

Fes

of polynomials. Evaluating at ¢ = 0 and applying Corollary 3.35(1) yields
the desired identity. O
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Remark 3.46 The same argument shows that the constant coefficient
of the counting polynomial of a complex of lattice polytopes equals the
FEuler-characteristic of the complex: ehre(0) = x(C). This resolves the
riddle raised in Remarks 3.20 and 3.36.

3.6 Properties of the h*-polynomial

As an immediate application of the results about counting lattice points
that we have obtained so far we prove some facts about the relation
between the geometry or combinatorics of lattice polytopes and their
h*-vector. We will obtain more such results in the following chapters.

3.6.1 Degree and codegree of lattice polytopes

Let us give some more applications regarding the h*-polynomial.

Definition 3.47 (Degree and Codegree) The degree of P is defined
as
deg(P) :=max(k € Z>o : hj #0).

The codegree of P is defined as

codeg(P) := d+ 1 —deg(P).

Ehrhart’s theorem implies 0 < deg(P) < d, so 1 < codeg(P) < d+ 1.
The degree of a lattice polytope can be seen as an algebraic measure of
the complexity of a lattice polytope. Its concrete geometric interpretation
is given by the codegree.

Corollary 3.48 The codegree of a d-dimensional lattice polytope equals
the smallest positive integer k such that kP contains an interior lattice

point.

Proof. This follows from Lemma 3.49 and the Ehrhart-Macdonald Reci-
procity (Theorem 3.43). O

Lemma 3.49 Let p be a polynomial of degree d with rational generating

function
S p()et = hg + byt + hit? + -+ hitd
_ f\d+1
= (1—1%)
Then hy = I} | = ... =hi ;=0 and hy, # 0 if and only if p(—1) =
p(=2)=...=p(—(d—k)) =0 and p(—(d — k+ 1)) # 0. In this case,

b =p(—(d+1-k)).

Exercise 3.27
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Exercise 3.29

The proof is left as Exercise 3.28. Applied to our situation this has the
following immediate consequence.

Corollary 3.50 Let P be a lattice polytope. The highest non-zero coeffi-
cient ., py of B* equals the number of lattice points in int((codeg P)P).
O

Finally, using reciprocity it is possible to compute the second highest
coefficient of the Ehrhart polynomial.

Proposition 3.51 Let P be a lattice polytope with Ehrhart polynomial
ehrp(t) = co+ cit + cat? + -+ + cqt. Then cq_1 equals half of the
normalized surface area of the boundary of P.

You will prove this result in Exercise 3.29.

The following proposition is immediate from the fact that the sum
of the coefficients of the h*-polynomial is the lattice volume and that the
linear coefficient counts the number of lattice points minus (d + 1).

Proposition 3.52 A d-dimensional lattice polytope P has lattice volume
nvol,a(P) = |PN2Z% —d if and only if deg(P) < 1.

In particular, P has lattice nvolya(P) = 1 if and only if its degree
deg(P) is 0. In this case P is the standard simplex. O

Proposition 3.53 Let P be a lattice polytope of degree deg P < k. Then
int FNZY= @ for all faces F of P of dimension at least k + 1.

Proof. Assume there is a face F' of P of dimension k + 1 that contains a

relative interior lattice point v. Then there are k + 2 vertices uy, ..., ug 2
of F such that
k+2 k+1

v o= Z/\iui Z)‘i =1 and X, > 0 for 1<i<k+2.
i=1 i=1

Further, we can find d — 1 — k vertices ugy3,...,uq+1 of P such that
Ui, ..., uq+1 is affinely independent. Consider
k+2 d+1
1 1
- s — )
voi= Zd_kAlUl = d—kuz'
i=1 i=k+3

This is a point in int P. Now (d — k)v’ is integral, so (d — k) int PNZ? #
@. Thus, codeg P < (d—k), or deg P > k + 1.

In particular, this implies that for deg P = 0 only the vertices are lattice
points, and for deg P = 1 the only lattice points that are not vertices
are on the edges of P.

Let X = {z1,... z} € PN A be a set of k lattice points that is not
entirely contained in a proper face of P. Then =z :=x1 + -+ x} is an
interior lattice point of kP. This proves the next propisition.

— 86 — Haase, Nill, Paffenholz: Lattice Polytopes

Exercise 3.28



Chapter 3. Ehrhart Theory (draft of June 28, 2021)

Proposition 3.54 Let P be a d-dimensional lattice polytope of degree
at most s. Then any subset W C PN A of at most d — s lattice points is
contained in a proper face of P. a

We have viewed these propositions so far by first fixing the dimension.

We could swap this view and fix the degree. Then the proposition for
example tells us that in a polytope of dimension d > s+ 2 any two lattice
points must be in a common face.

Let P be a d-dimensional lattice polytope in R%. We define the lattice
pyramid over P as

Pyr(P) := conv(P x {0},eq41) C R4,

where e1,...,eq+1 is the standard basis of R4+, See Figure 3.14 for an
example. In Exercise 3.30 you will show the following proposition.

Proposition 3.55 For a lattice polytope P the lattice pyramid Pyr(P)
of P has the same h*-polynomial as P. a

Definition 3.56 (Lawrence Prism) A Lawrence prism with heights

hi,...,hg > 0 and hy + -+ hg > 2

is the polytope

07617"'5611715 )

Law(hi,...,hq) := conv
(s 2 (61 + hieg, ..., eq—1 + hqg_1eq, hgeq

Let A% := 2 Ag. This is sometimes called the exceptional triangle. We
have the following proposition.

Proposition 3.57 Let P be a k-fold lattice pyramid over a lawrence

prism or the exceptional triangle for some k > 0. Then P has degree 1.

Proof. The h*-polyonmial of the exceptional triangle is 1 4 3¢, which
proves this part of the proposition. Further, lattice pyramids do not
change the h*-polynomial, so we only have to check the proposition for
lawrence prisms.

For a lawrence prism L := Law(hq, ..., hq) we have a natural lattice
projection 7 : L — Ay_1. Hence, if kL has an interior lattice point, then
so has k Ay_1. Hence k > d, and deg L < 1.

As by assumption hy + -+ hg_1 > 2 for L we can find d lattice
points not contained in a common face of L, so dL contains an interior

lattice point. Hence, deg L = 1. a

Definition 3.58 A lattice polytope P is empty if the vertices are the
only lattice points in P.

%
Fig. 3.14: A lattice pyramid over a
unit square

Exercise 3.30
Exercise 3.31
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Exercise 3.32

Fig. 3.16: Lattice polygons re-
alizing4d < b < 2i+6

Proposition 3.59 Let P be a lattice polytope of degree at most 1 such
that no lattice point is strictly between two other lattice points. Then P
s empty.

Proof. By Corollary 3.38 any face of P has degree at most 1. Hence, no
lattice point can be in the interior of a k-dimensional face for £k > 2. 0O

Proposition 3.60 Let P be a lattice polytope of degree deg P = 1 such
that V(P) = PNZ%. Then P is a simplex or there are u1,us,us,us €
V(P) such that

Ul +us = uz+uq.

Proof.

3.6.2 Ehrhart polynomials of lattice polygons

As an example, we will completely classify Ehrhart polynomials of lattice
polygons in this section. Essentially, the main work was already done in
the Chapter 1 by proving Scott’s inequlity (Theorem 1.10). Now, we just
have to exploit the properties of the h*-polynomial.

Proposition 3.61 A polynomial hit? + kit + 1 for h, hy € Z> is the
h*-polynomial of a lattice polygon if and only if

(1) h5 =0 and hY is arbitrary. Then P has no interior lattice points.
(2) h5 =1 and hy = 7. Then P = 3A.
(8) 1 < h} < ht¥ <3h5+3. Then P has interior lattice points.

See Exercise 3.34 for concrete examples.

Proof. Let us first show that these conditions are necessary. Note that hj
is the number of interior lattice points 4, while hf = b+ 14— 3, where bis the
number of boundary lattice points. Moreover, vol(P) = nvol,a(P)/2 =
(14 k% + h3)/2. Hence, Scott’s theorem tells us that, if ¢ > 1 and P %
3Ag, then h < 3h3 + 3. Finally, if ¢ > 1, then by =i < h] =b+i—3,
since b > 3.

It suffices to realize lattice polygons satisfying each of these conditions.
For i = 0, any b > 3 can be realized by lattice polygons of the form
as depicted in Figure 3.15. In fact, it is not difficult to show that these
In fact, as Exercise 3.33 shows these are precisely the lattice polygons
without interior lattice points.

Let ¢ > 1. The condition h3 < h} < 3h3 + 3 is equivalent to 3 < b <
2i + 6. The case b = 3 is easy to realize, so let b > 4. Then any of these
cases is realized by Figure 3.16. O
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All possible pairs (h7, h%) are depicted in Figure 3.17. Let us now deduce
all Ehrhart polynomials cot? 4+ ¢1t 4+ 1 of lattice polygons. By Pick’s
Theorem 1.8 c2 equals the area of P, and by Proposition 3.51, ¢; is
half the number of boundary lattice points of P. The following theorem
characterizes all pairs (c1,c2) that correspond to an Ehrhart polynomial
of a polygon.

Corollary 3.62 A polynomial eot? + 1t + 1 with c1,c0 € /27 and
c1 > 3/2 defines the Ehrhart polynomial of a lattice polygon P if and only
if one of the following three conditions is satisfied:

(1) ¢c1 —ca = 1. Then P has no interior lattice points.
(2) c1 = ca =9/2. Then P is 3A,.

(8) ¢1 <c2/2+42. Then P has interior lattice points.
3.6.3 Polytopes with Small Degree

3.7 Brion’s theorem

The goal of this final section is the celebrated Theorem of Brion. It relates
for any lattice d-polytope the integer point generating functions of all

vertex cones of P to the integer point generating function of the polytope.

Let P be a rational d-dimensional polytope and F' a face of P. Recall
the tangent cone of F' in P from Definition 2.29:

TpP:={veR?: JweF, e>0: wte(v—w)e P}.

The tangent cone is the common intersection of all supporting half-spaces
at F'. We have seen in Proposition 2.30 that the shifted cone TpP — x
for some x € F is dual to the normal cone of F'.

We can use the generating series of tangent cones to compute the
generating series of the polytope.

Theorem 3.63 (Brianchon-Gram Theorem) Let P be a rational d-
polytope. Then

Gp(t) = Z ()4 Gy p (1)
F=P

where the sum is over all non-empty faces of P.

The Brianchon-Gram identity is valid more generally on the level of
indicator functions. In order to prove it, we need to study the complex
of visible faces. We say that a face F' of a polytope P is visible from a
point v ¢ P if for some (equivalently every) w € relint F' the segment
conv(v,w) intersects P only in w.

Fig. 3.17: (h}, hY) of lattice polygons

Exercise 3.34
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Fig. 3.18: m ¢ P. The
complex S is drawn in red.

Lemma 3.64 F is visible from v if and only if v TpP .
Proof. 1f v € Tp P, there is a separating linear functional a:
(a,v) > max(a, TpP) > max{a,P).

But then, this strict inequality is true for every point of the form (1 —
A)v + Aw for A € [0,1). So none of them can belong to P. That is, F is
visible from v.

If, conversely, v € Tp P, we know that there are w’ € F and an € > 0
so that v := w' + e(v —w’) € P. Further, taking a smaller ¢ if necessary,
we can assume that w” := w +e(w —w') € F, because w € relint F. But
then the point

v+ 1-Hw = (1—e)uw" +ev'
belongs to both conv(v,w) and to P, and F is not visible from v. O

Corollary 3.65 If P is a rational polytope and v & P a rational point,
then the set visiblep(v) of faces of P wisible from v is a polyhedral complex,
and as such is isomorphic to a rational subdivision of a rational polytope.

Proof. From the definition of visibility we see that G < F € visiblep(v)
implies G € visiblep(v). So visiblep(v) is a subcomplex of the boundary
of P.

Let H be a rational hyperplane separating v from P, and consider
the rational polytope @ := H N conv(P U {v}). Then

{HNconv(FU{v}) : F € visiblep(v)}

is a subdivision of @ which is combinatorially isomorphic to visiblep(v).
O

Proof (of the Brianchon-Gram Theorem (Theorem 3.63)). Think of the
Laurent polynomial on the left hand side as an infinite Laurent series that
contains all possible monomials, but most coefficients are 0. To prove this
relation we compare coefficients of an arbitrary monomial ¢ on both
sides. We have to distinguish the two cases m € P and m ¢ P.

(1) m € P: Then m € TpP for every non-empty face F' of P. Hence, the
coefficient of ¢t on the right hand side is

Z (_1>dimF =1,

0AF=P

using Euler’s relation.
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(2) m & P: See Figure 3.18. By Lemma 3.64, the coefficient of t™ on the
right hand side is

Z (_1)dimF_ Z (_1)dimF: 1-1=0,

0£F=<P 0#Fevisiblep(m)
using the fact that the Euler-characteristic of visiblep(m) is 1 by
Corollary 3.65 and Remark 3.46.
O

Now recall the map @ : L — R that we introduced in Section 3.2.
There we have only applied it to pointed polyhedral cones. We now
want to study this map also in the case of cones that have a nontrivial
lineality space. Recall that for a cone C the lineality space is defined as
lin(C) := CN(—C). It is the maximal linear subspace contained in C.

We start with a simple example that explains the basic idea of our
next theorem. Consider the sets

CT:=[0,0)cR O :=3-C"=(-0,3] P:=10,3].
Cy is a one-dimensional cone, and P is the intersection of Cy and C—,

P = CTNC~. We compute the integer point generating function and
the image under ® for C™ and C~. The series are

Gor (1) =Y t*

k>0
Go- (1) =D _th=13Y"th =33 17,
k<3 k<0 k>0
so we obtain the functions
~ 1
Go+ (t) = @(Ge+ (t) = 1+
Go (1) =8(Ge () =P = =
R T S
The integer point generating function of P is the finite geometric series
G 1 2 .3
Gp (t) =Gp (t) = 1_t:1+t+t +t°.

We observe that
Gp (t) = Ge+ (1) + Ge- (t) -

Using the construction of the map ® we can make the following symbolic
calculation

Gp (1) = #(Ger (1)) +@(Go- (1)) = @(Gor (8) + G (1)
= &(Gryp (1)) = #(Gr (1) +2(Gp (1))

This can only hold if @(GR (t)) = 0, i.e. if ® maps the infinite series
Y okez t* to 0. The following proposition shows that this indeed holds in

&(Gg
&(GR

general for cones with nontrivial lineality space.
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Exercise 3.35
Exercise 3.36

(0,1)

(1,1)

Proposition 3.66 Let C C R? be a polyhedral cone with integer point
series Go (t). If lineal C' # {0} then ®(G¢) = 0.

Proof. Let v € lineal(C) — {0}. Then Rv C C, so that
t'Ge (1) = G (t) -
Applying the map ® gives
t'®(Ge () = @(Ge (1)) = (1-t")8(Ge (1) =0.
v # 0 implies ®(G¢) = 0. |
We can apply the observation of this proposition to obtain a very simple
formula for the integer point generating function of a polytope.

Theorem 3.67 (Brion’s Theorem) Let P be a rational d-polytope.
Then
Gp(t)= Y, Grpe(t).
v vertex of P
Proof. Apply the map & to both sides of the Brianchon-Gram Identity of
Brianchon-Gram Theorem (Theorem 3.63). The only non-pointed tangent
cones are those originating from a vertex of P, so by Proposition 3.66

only the contributions of the vertices are non-zero on the right hand
side. O

Example 3.68 Let P be the = 0/1-square in R?. See Figure 3.19. Then

1 T
Crlev) =T iy Ta-Da-y
Yy + Ty
-o0-0) Ta-5a-1
1 —x?
"oty Taoaaw
. _y2 . 222

(1-2*)(1-v?)
(1-2)(1-y)
=l+ax+yt+uay

SoGp(1,1)=1+14+1+1=4.

The theorem provides us with a general method to explicitly compute the
function Gp (t). We have seen in Corollary 3.28 how we can compute the
integer point generating series of a simplicial cone. To use this formula
in the Theorem of Brion we triangulate the polytope P, and compute
the generating function of each simplex in the triangulation (including
the lower dimensional ones). We then sum up the generating functions
using the principle of inclusion-exclusion.
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3.8 Problems

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

Determine a formula for the volume of a 3-dimensional lattice
polytope using the number of lattice points in the k-multiple for
k=1,2 and 3.

Determine a formular for the volume of a 3-dimensional lattice
polytope using |P N Z3|, |int (P) N Z3|, |2P N Z3|.

The reader is also invited to find many more such formulas by
using different values of the Ehrhart polynomial.

Show
i (k + d) ok 1

- _ p)d+1°
= d (1-=)

(Why is the equality sign justified here?)

The goal of this exercise is to give a proof of Proposition 3.7.

(1) Show that the set L™ of summable Laurent series is an L-
submodule of L, i.e. show that for f € L and g,h € L™ also
f+-gand g+ h are summable.

(2) Prove that this turns ¢ into a homomorphism of L-modules,
i.e. show that ®(f-g) = f®(g) and ®(f 4+ g) = &(f) + ®(9).

Prove that there is a natural homomorphism from summable series
to rational functions

é:L— R:=k(z1,...,2q),
mapping G to f/gif ga = fin L.

Let S, S’ be subsets of the a (possibly translated) pointed cone in
R?. Then Gg (t) = Ggr (t) implies Gg (t) = Ggr ().

Prove Lemma 3.17.
Hint: do j = 0 first

Zeige dass (Hi—j ) mit j =0,...,d eine Basis des Vektorraums der

Polynome vom Grad < d ist.

Let subsets S1, ..., S, of R% be given. Then

Ui = 2 DI

0A£1C[m]

(t).

iel Pt

Remark: This is just the usual inclusion-exclusion formula for sets.

included on page 63

included on page 63

included on page 64

included on page 68

included on page 69

included on page 69

included on page 72

included on page 72

included on page 73
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3.10.
included on page 74

3.11.
included on page 74

3.12.
included on page 74

3.13.
included on page 74

3.14.

included on page 74

Determine the Ehrhart polynomial of the reeve tetrahedron defined
in (1.1) for m € Z>;.
What do you observe for m = 207

Let P be a lattice polytope with Ehrhart polynomial ehrp(¢).
Compute the Ehrhart polynomial of the bipyramid over P.

Compute the Ehrhart polynomial of the cross polytope.

Let P be a d-dimensional lattice polytope with Ehrhart polynomial
Zi:o cit*. Show that

1
Cd—1 = 5 VOl(aP)

Here, vol(9P) denotes the surface area of P, namely,

vol(OP) := Z vol(F),

FeF(P)

where F(P) is the set of facets of P and vol(F') denotes the (non-
normalized) volume with respect to the lattice aff(F) N Z<. For
instance, note that vol(conv((1,0),(0,1))) equals 1 and not /2.
Hence,

vol(d conv((1,0),(0,1),(-1,0),(0,-1))) =4.
A simplex which is unimodularly equivalent to the standard sim-
plex is called unimodular. A triangulation is unimodular if all its
simplices are.

(1) For a k-dimensional unimodular simplex A and ¢ € Z>; show
that

-1
|ZF Arelint(tA)] = (t i ) .

(2) Suppose P admits a unimodular triangulation T with fo(7T)
vertices, f1(7) edges, ..., f4(T) d-simplices. Show that

ehrp (1) = éfkm (%)

(3) Conclude that any two unimodular triangulations have the
same f-vector (fo,..., fq)-
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3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

3.24.

3.25.

Prove that the coefficients of the Ehrhart polynomial of a d-
dimensional lattice polytope are in Z/d!.

For integers p,q with ged(p, q) = 1 define the tetrahedron
R b0
= p|.
pg = conv | 80 1P

(1) Argue that its vertices are its only lattice points. (White
proved a converse: every lattice tetrahedron with only four
lattice points is unimodularly equivalent to a Apg.)

(2) Compute the Ehrhart polynomial and the h*-polynomial of
Apg-

3) For which parameters are A, and A/, unimodularly equiva-

Pq P'q
lent?

Let £ € R? and C a d-cone. Then
C¢ = {yeC : y.eC forall e >0 small enough},

where y. := (1 —¢)y + &£.
Prove Lemma 3.24.
Prove Lemma 3.26.

Check carefully and rigorously the last identity in the proof of
Proposition 3.27.

Show directly that C\C[z) is a union of faces of C.

Let T be a triangulation of a full-dimensional cone C'. Show that
there is always a generic element £ € int (C).

Consider the polygon with vertices (0,0), (1,0), (0,2), (2,4). Com-
pute, using a half-open decomposition Gg(py (t1,t2,t3).

Prove Lemma 3.31.

Let @, P be lattice polytopes with @ C P. Show that there exists
a triangulation of P that restricts to a triangulation of Q.

Hint: Let 'V denote the set of vertices. Choose first a generic regular
triangulation w : V(Q) — R, leading to linear functions s
on simplices o of the triangulation. Now, choose generic values
of w on V(P)\'V(Q) such that w(v) > l5(v) for all o in the
triangulation of @ and vertices v € V(P)\V(Q).

included on

included on

included on

included on

included on

included on

included on

included on

included on

page 74

page 75

page 76

page 76

page 76

page 76

page 77

page 78

page 79
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included on p

3.26. Let @, P be lattice polytopes with Q C P. Show Stanley’s Mono-
tonicity Theorem (Theorem 3.37)

h¢y < hp coefficientwise.
Hint: Choose a triangulation as in Exercise 3.25.
included on page 85

3.27. Give a direct geometric proof using Carathéodory’s Theorem (The-
orem 2.4) that codeg(P) < d+ 1 for a d-dimensional lattice poly-
tope.

included on page 86

3.28. Prove Lemma 3.49.
included on page 86

3.29. Prove Proposition 3.51.
included on page 87

3.30. Show that hI*Dyr(P) = h} for a lattice polytope P.
included on page 87

3.31. Let m € Z>1. Use Exercise 3.30 to show that

is a polynomial in k. What is its degree and leading coefficient?
included on page 88
3.32. Calculate the h*-polynomial of an empty 3-dimensional lattice
polytope P with a vertices and of normalized volume b. Here
empty means that any lattice point in P is a vertex of P. Deduce
the h*-polynomials of the tetrahedra A, of Exercise 2.2. Check
that you get the same solution for the Ehrhart polynomial as before
=)
included on page 89
3.33. Let P be a lattice polygon. Show that P has no interior lattice
points if and only if P is unimodular equivalent to 2As or it
is unimodularly equivalent to conv((0,0), (a,0),(0,1), (0,b)) for
some a, b > 0.
included on page 89
3.34. Are
(1) 1+ 8t+¢2
(2) 1+9t+¢2
(3) 1+ 2t 2¢2
(4) 1+t + 2t
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h*-polynomials of a lattice polygon?

3.35. Compute the Ehrhart generating function of P = 0, 1]2 using the
Brion’s Theorem (Theorem 3.67).

3.36. Apply Brion’s identity to
P := conv [

and verify that both rational functions coincide (you may want to
use a computer for this).
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Geometry of numbers deals with the relation between two objects:
convex bodies on the one hand, and lattices one the other hand. A typical
question in this area is whether and how the volume and the number of
lattice points of convex body are related.

The term “geometry of numbers” was coined by Minkowski who used
convex geometric methods, in particular his fundamental theorem Corol-
lary 4.3, in order to bound class numbers in algebraic number theory.
In the 20th century geometry of numbers has grown into an established
field of research with connections into many branches of mathematics.
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Exercise 4.1

Exercise 4.2

While most of the theory treats general convex bodies, in these notes
we will focus on those tools which we need to prove results that apply
only to lattice polytopes.

4.1 Minkowski’s Theorems

Minkowski’s two theorems are the basis of this whole branch of discrete
mathematics. Both essentially tell us something about generators of
the lattice and prove that we can find such generators with a bounded
Euclidean length. The theorems, of which we will only prove the first, are
however not constructive. We will remedy this in Chapter 6. Throughout,
A C R? is a lattice of rank d (the reader may think of Z%).

A set K C R4 is centrally symmetric if x € K implies —z € K.

Definition 4.1 A subset K CIR" is a convex body if K is bounded and
convex. The set of convex bodies in R? is deneted by ©. The subset of
centrally symmetric convex bodies is Cq.

Note that the definition of the term conver body varies in the literature.
The following theorem establishes a fundamental correspondence between
lattice points in a centrally symmetric convex body and its volume.

Theorem 4.2 (van Der Corput, 1935) Let K C R? be a centrally
symmetric conver set. Then

vol(K) < 2% |K NA|det A.

If K is compact, then the inequality is strict.

Minkowski’s First Theorem, that he proved almost forty years earlier, is
now a direct corollary of this. This result is the fundamental theorem in
this area and it is considered to be the starting point of the theory.

Corollary 4.3 (Minkowski’s First Theorem, 1898) Let K C R4
be convex and centrally-symmetric with vol K > 2% det A.

Then there exists a # 0 in K NA. If K is also compact, then it
suffices to assume vol K > 24 det A. O

For the proof of these results we need the following lemma, which uses a
beautiful pidgeonhole-style argument to prove that the intersection of a
sufficiently large set with some affine translate of the lattice is large.

Lemma 4.4 (Generalized Blichfeldt’s Theorem, 1914) Let § C
R? be a (Lebesgue measurable) set with vol(8) > mdet(A) for a
positive integer m. Then there exist m + 1 pairwise distinct points
Pl,---,Pm+1 €8 such that p; —p; € A for all i,j.
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Proof. By considering a sufficiently large subset, we may assume that S is
bounded. Choose a closed fundamental parallelepiped (see Definition 2.42)
I :=TI(A) of A. Note that det A = volIl. For any = € A let

Sz:={yel|z+ye8}=0ON(S—1)

Note that 8; # 0 if and only if z € (§ —II) NA. As 8§ —II is bounded,
Exercise 2.14 implies that there are only finitely many =z € A with 8, # .
This implies that the function

f= Zidéﬂa
TEA

where id; is the indicator function on 8, (i.e., it evaluates to 1 on 8, and
0 elsewhere), is well-defined. Using that fundamental parallelepiped tile
the space (Corollary 2.44) we compute

/ﬁf de = Z/ﬁidm dr = > vol(8,)

TEA TEA
= > vol(N(8—=)) = > vol($N (z+1I)) = vol(8)
TEA TEA

> mdet A = /7mda:
i

Hence there is y € TI with f(y) > m. Since f only evaluates to integers,
we get f(y) > m + 1. In particular, there exist z1,...,Zm+1 € A such
that y € 8z, N---N8§
i=1,...,m+4 1 yields m + 1 points which have the desired properties.

O

Therefore, defining p; := y+x; € § for

Tm+1"

Now, we can easily prove van der Corput’s Theorem (Theorem 4.2).

Proof (of van der Corput’s Theorem (Theorem 4.2)). We will give an
indirect proof. Let us assume that

vol(K) > m29det(A)

for a positive integer m. Our goal is to show that there exist m distinct
pairs of non-zero lattice points +x1, ...,z in K. Together with the
origin this will give 2m + 1 lattice points in K.

Let T = %K Then volT = % > mdet A. Hence, by Gen-
eralized Blichfeldt’s theorem (Lemma 4.4), there are m + 1 distinct
points p1,...,pm+1 € T such that p; —p; € A for all 4,j. Choose
Tj = p; —Pm+1 for @ = 1,... m as the desired lattice points. Note
that z; = p;i + (—pm+1) €T+ T = K.

Let K be compact and vol K = 2¢det A. Since K is compact, for
each z € 2K\K there exists 0 < €, < 1 such that z ¢ (1+¢;)K.

o @) o
o @) ()
o 0] (0]
o o o

(a) The set 8 and the fun-
damental parallelepiped TI

o ©
/e
Y\
Vg
\
O ©
(b) And the shifted

intersections with the fun-
damental parallelepiped

Fig. 4.2: Illustrating the proof of
Generalized Blichfeldt’s theorem
(Lemma 4.4)
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Fig. 4.3: A triangle in the plane
together with two scaled copies
with scaling factors A\; and As.

Exercise 4.3

Boundedness of 2K implies that 2K has only finitely many lattice points.
Let € be the minimum over ¢, for all x € (2K\K) N A. This choice
ensures that (1 + ¢)K and K have the same set of lattice points (note
that oK C o/ K for 0 < a < o’ as K is centrally-symmetric and convex).
Since vol((1+ €)K) > 2%det A, the result follows. 0

Centrally-symmetric convex bodies with the origin as their only
interior lattice point which have maximal volume 2¢det(A) are also
called extremal bodies. Minkowski’s theorem does not tell us how to find
the integral point, it just tells us it exists. There are polynomial time
algorithms to explicitly find such a point, but only for a much larger
volume bound. See Section 6.4 on the LLL-Algorithm for a method.
Finding a short lattice vector is a very important problem in integer
optimization and in cryptography, see e.g. [24, 49, 50]. Although we cannot
easily compute a shortest vector of a lattice, Minkowski’s Theorem at
least allows us to estimate the length of such a vector.

Proposition 4.5 Let A C R? be a lattice. Then there is a vector v €
AN {0} such that

o] < Vd(det A)?.

Proof. Let Vq be the volume of the d-dimensional unit ball By and

choose
det A\ ¢
a = 2( c ) . (4.1)

Then
vol(aBq) = adVy > 2%7detA.

By Minkowski’s First Theorem (Corollary 4.3) there is a non-zero lattice
point v in o By, hence, of length at most . We need to estimate the size
of a.

The volume of the unit ball is

v xld/2]9f4/2) (gm)dh - (4)“
d = N =\ e 5
[To<icas,(d — 2i) d d

where the first approximation follows from Stirling’s formula d! ~ v/27d gd

adn the second from 2me > 4. Inserting this into (4.1) proves the result.
O

Definition 4.6 (Successive Minima) Let K € Cy. For 1 < k < d we
define the k-th successive minimum of K to be the number

M = M(K) = )i\r;fo{dimlin()\KﬂA) > k}.

For K = Bq we call A\ := A\ (Bgq) the k-th successive minimum of the
lattice A. See also Figure 4.3.
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Then
AL < A <<y

Note that A; > 0 as A is discrete. The following corollary is equivalent
to Minkowski’s First Theorem (Corollary 4.3).

Corollary 4.7 Let K € Cy. Then )\‘f volK < 2¢detA.

Note that a compact centrally symmetric convex body defines a norm
|.llx on R via

x|l = mgx(quK) ,

and any norm is of this form.

Proposition 4.8 Let K € Cy be compact and A C R? be a lattice with
successive minima A1, . . ., A\g with respect to K. Then there is a (vector
space) basis v1,...,vqg € A such that ||vi|]| g = A for 1 <i <d.

Proof. Pick some index 1 < j < d. By definition of A; there is a se-
quence (w;)i>1 C A of lattice vectors such that lim;_o [Jw;|| = X;. For
sufficiently large i we have w; € 2K. K is compact, so we can find a
convergent sub-sequence w;, , converging to some vector w. We need
to prove that w € A. By definition, limj_, [[w — w;, ||k = 0, so for
sufficiently large k

lw—w;, ||k < /2.
The triangle inequality then implies for sufficiently large k, [
Jwi, —wy [k < Jlw—willx + [[w—w [k <Ar.

But w;;, —wj, is a lattice vector, so w;, = w;, for sufficiently large k, I.

1
Hence, w;, = w for sufficiently large k, and w is a lattice vector. a

Remark 4.9 The vectors found in the previous proposition need not be
a basis of the lattice A. For an example, the lattice polytope

P := conv (+ey, eq, £(e1 + ez + 2e3))

in the lattice Z3 is centrally symmetric and its lattice points are the
vertices and the origin. Hence, the successive minima are A\ = Ao =

A3 = 1, but no subset of the vertices is a lattice basis of Z3.

The following result is a cornerstone of the theory of successive minima.
We will not prove this much stronger theorem here. A proof of the upper
bound can be found in [26].
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(a)

Packing of the square

lattice

(b)

lattice

Packing of the hexagonal

Fig. 4.4: The packing ra-
dius for different lattices

Theorem 4.10 (Minkowski’s Second Theorem, 1896) Let K € Cg.
Then

1
y 2%det A < Ap--- Agvol K < 2% det A.

Theorem 4.11 (Minkowski, 1910) Let K C R be a centrally sym-
metric convex set with int (K)NA = {0}. Then |[K NA| < 3%,

Proof. We may choose A = Z%. Assume the statement fails. We consider
the map ¢ : Z¢ — (Z/3Z)d given by assigning each coordinate its
congruence class modulo 3. This is a homomorphism (so p(z £y) =
o(x) £ ¢(y)). Note that (Z/3Z)? has 3¢ elements. Hence, by the pigeon
hole principle there exist two distinct lattice points z,y € Z¢ with
o(x) = ¢(y). Therefore, p(z —y) = 0, thus

r—y

= eA.
b 3
Since K is centrally symmetric,
T -y 2
0 = -4+—=— € -K.
Fr =gty €3
This contradicts the assumption in the theorem. a

Recently, it was shown that up to unimodular transformations the stan-
dard cube [~1,1]? is the only centrally-symmetric lattice polytope with
int (K)NA = {0} and |[K NA| = 3% [20].

Theorem 4.12 (Betke, Henk, Wills, 1993 [10]) Let K € Cy. Then
2 d
|[KNZ"| < L + 1J
A1
Proof. proof missing

Conjecture 4.13 (Betke, Henk, Wills, 1993 [10]) Let K € Cy. Then

d
2
KnzZ™ < — .
Knzrl < I] { v 1J
i=1
4.2 Coverings and Packings
For r > 0 and z € R? let
Br(z) = {zeR| ||z -z < r}

be the open ball of radius r around z. In this section we consider the
configuration of all translates of such a ball to all lattice points. We want
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to determine for which radii these translates are pairwise disjoint or cover
the whole space, and relations between these two. We start with the first
and introduce the packing radius of a lattice, which is the largers redius
of a ball such that any two translates to a lattice point either coincide or
are disjoint.

Definition 4.14 (packing radius) Let A be a lattice in R?. The pack-

ing radius is

o(A) := sup(Br(z)NB,(y) = @ for all z,y € A) ,
r>0

i.e. the largest r > 0 such that the open balls of radius r around any two
distinct lattice points do not intersect.

See Figure 4.4 for some examples. You will prove the folloing lemma in
Exercise 4.4.

Proposition 4.15 Let A C RY be a lattice and v a shortest mon-zero

lattice vector in A. Then o(A) = %|[v]. 0

Recall that the dual of a lattice A is defined to be the set of all linear
functionals that map lattice points to integers. This is itself a lattice A*

in (]Rd)*.
Proposition 4.16 Let A be a lattice in R with dual lattice A*. Then
o(A) - o(A%) < d/a.

Proof. By Proposition 4.15 the packing radius is half the length of a
shortest non-zero lattice vector, and by Proposition 4.5 we can bound
this length with

ola) < %ﬁ(dem)l/d o(A*) < %x/&(dem*)”d

both for A and its dual. The proposition now follows as det A - det A* = 1.
O

Now we switch the view and want to find out how large we need to make
the radius of our balls so that the translates cover the wohle space. This
is captured with the next definition.

Definition 4.17 (Covering Radius) Let A be a lattice in R?. The

covering radius is

p(A) := maxd(z,A),
r€R4

i.e. the largest possible distance between any point in R% and its nearest

lattice point.

Exercise 4.4

Exercise 4.5

Exercise 4.6
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See Figure 4.5 for an example. The reader should convince her- or himself
that the covering radius is indeed well-defined and finite. In particular, the
maximum is attained for some point z € R? (by a standard compactness
argument).

Lemma 4.18 Let A be a lattice with successive minima Ai,. .., g and
linearly independent vectors vy, ...,vg such that \; = ||v;|| for 1 <i < d.

Then Fig
of the
1

pw(A) > §Hvill for1<i<d.

Exercise 4.7

Proof. Let u = 1/2v4. Assume there is w € A such that d(u, w) < 1/2||vy||.
Then

lwll < Hlull + d(u,w) < vall,

so u cannot be linearly independent of vy, ...,v4_1 by the choice of v,.
Hence, w is in the span of vy,...,v4_1. But then 2w — v, is linearly
independent, and

12w —val| = [2(w—=w)| < fvall

again contradicting the choice of vg. Hence, d(u, A) = d(u,0) = &|vg]|.

This implies that
1 1
n(A) = §||Ud|| 2 §||Uz'||
for 1 <4 < d, where the latter follows from |[vg|| > ||vi|| for all i. O
Proposition 4.19 Let A be a lattice in R® with dual lattice A*. Then
Au(A) - o(A") > 1

Proof. Let A be a lattice with successive minima A1, ..., Ay and linearly
independent vectors vi,...,vg € A such that A\; = |jyg| for 1 < i < d.
Let u be a shortest non-zero lattice vector in A*. Proposition 4.15 and
Lemma 4.18 imply for any 1 <i¢ <d

Ap(A)-o(A%) = 2p(A) -Jlull = ol - fJull- (4.2)

The vectors v1, . .., vq are a basis, so for at least one ¢ we have |v;(u)| > 1.
Hence, for that i

il - flull = 1,
which, together with (4.2) implies the claim.

The following theorem is the key ingredient for the flatness theorem that
we will prove in Section 4.3.
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Theorem 4.20 Let A be a lattice in R% with dual lattice A*. Then
4p(A)-o(A%) < d2.

Our proof of this theorem is based on an argument by Schnorr, Lagarias,
and Lenstra [36].

Proof. We use induction over d. For d = 1 we have, for some A > 0,
A = 274 and A = Alzd

Thus, u(A) = »/2 and o(A*) = A7"/2, so that 4 u(A) o(A*) = 1.

Now let d > 1. We choose a shortest non-zero lattice vector v € A.
Then |[v|| = 20(A). Let L be the orthogonal complement of v with
projection 7 : R? — L and T' := 7(A). Then T is a lattice in L and
'™ C A* by Exercise 2.33. Hence

o(T*) > o(A¥). (4.3)

We now want to bound p(A). For this, let z € R, y = n(z) and u a
closest point to y in I'. Then

lu—y| < w().

Consider the line 7=!(u). Any two neighboring lattice points of A on this
line have distance |v||. Hence, we can pick a point w € AN7~!(u) such
that

1
Ao+ (=) < Ll
Using the right angled triangle z, w,w + (y — u) we compute
lz —w|* < [lz = (w+ (y—w)|* + Iy — ul*.

Now x was chosen arbitrary, so we can assume it is a point with maximum
distance to the lattice and we can estimate (note that w need not be a
lattice point closest to x)

1
p(A)? < o —wl? < u(l")zﬂjllv\\2 = u(T)? +o(A).
Hence, we obtain

p(A)?-o(A*)? < p(T)?- o(A*)? + o(A)? - o(A%)?

< u(T)? - o(T*)% + o(A)? - o(A%)?
1

< 13 T2
< (d-1) +16d
< d°,

where the second inequality follows from (4.3), the third from Proposi-
tion 4.16 and the fourth by induction. This proves the theorem. a
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Exercise 4.8

Exercise 4.9

4.3 Flatness Theorem

Playing around with two-dimensional convex sets the reader may get the
impression that a convex body without interior lattice points cannot be
arbitrarily wide. Indeed this is a fundamental fact in the geometry of
numbers. The following considerations are based on an argument given
in [5].

Definition 4.21 (width) Let A C R be a lattice with dual lattice A*.
Let K C R? be a full-dimensional convex body. The width of K with
respect to a non-zero lattice vector a € A* is defined as

idth(K;a) := — mi .
width(K;a) max a(z) min a(z)
We define the width of K with respect to A as

widthy (K) := inf(width(K;a) : a € A*\ {0}).

You will show in Exercise 4.8 that for full-dimensional convex bodies the
infimum is actually a minimum, and in Exercise 4.9 that the width of
convex bodies with dimension less than the ambient dimension is actually
0. Recall that an ellipsoid is the image of a ball (in some norm)
under an affine linear map. See Definition A.2 for a full definition and
the whole Appendix A for properties. Our approach to bound the lattice
width of empty convex bodies will proceed in three steps. We first prove
it for balls, then extend to ellipsoids and finally use Theorem A.5 to
approximate an arbitrary convex body with ellipsoids from the interior
and the exterior. The following lemma does the first two steps.

Lemma 4.22 Let A be a lattice, v € A* a shortest non-zero lattice vector
and E an ellipsoid such that ENA = @. Then width, (E) < d*/>.

Proof. We prove this first for the case that E is a ball. In this case we
know by Proposition 4.15 that ||v|| = 2 ¢(A*). Let r be the radius of the
ball. Then r < u(A). Now

widthy (E) = r|lv|| = 20(A%) u(A),

and the latter is at most d*2 by Theorem 4.20.

For the extension to ellipsoids we use that the bound d*2 obtained
is independent of the lattice. Further, any ellipsoid is a linear image of
a ball and the image of a lattice A for a non-singular linear map T is a
lattice.

More precisely, let « — Tz +t be the affine map such that T(E) = B
is a ball, and let A’ := T(A). Then A’ is a lattice in R and BNA' = @.
Hence, for a shortest non-zero vector v/ € A/, its preimage ¢ := T~ 'v and
a shortest non-zero vector vw € A we have

widthy (E) < width, (E) = width,(B) < d”/2. 0
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We can extend our bound for the width of a convex body from balls and
ellipsoids to general convex bodies with empty interior, albeit only with
a weaker right hand side. The key observation for this is Theorem A.5,
which tells us the we can estimate any convex body from the interior and
exterior with a suitably chosen ellipsoid.

Theorem 4.23 Let K € R be a convex body with KN A = (). Then

[S][s)

widtha (K) < d

Proof. Let E be a maximum volume ellipsoid in K with center z. Then
also ENA = @. Let v be a shortest non-zero lattice vector in A such
that width(E;v) < d¥? by the previous Lemma 4.22.

Clearly, the width of K is translation invariant, so we can assume
that z is the origin. By Theorem A.5 we deduce K C dF, and thus

width, (K) < dwidth,(E) <d-d*/* = d"/*. 0

Remark 4.24 In fact, the bound of the previous theorem can be strength-
ened to be of order d*/?, so that

widtha (K) < ﬁ(d%) .

Note that the upper bound only depends on the dimension and not on
the given lattice. It is unknown and an active subject of current research,
whether the sharp bound is actually of the form 0(d).

4.4 Finiteness of lattice polytopes
with few interior lattice points

If a lattice polytope does not have interior lattice points, its volume
can be arbitrarily large. However, if the polytope is centrally symmetric,
Minkowski’s First Theorem (Corollary 4.3) shows that its volume is
bounded, if it contains only one interior lattice point. The same statement
is wrong without central symmetry. The examples in Figure 4.6 have one
non-lattice vertex. The reader will not be able to construct such examples
of arbitrary large volume and only one interior lattice point using lattice
polytopes. The reason for this is one of the arguably most important
finiteness result about lattice polytopes. We prove here a qualitative
version, following and extending an idea of Borisov & Borisov [14] (see
also [13, Theorem 4.1]).

Theorem 4.25 Given positive integers d, i, there is a bound V(d,1)
so that every lattice d-polytope with exactly i interior lattice points has
volume less than V (d,i).

Fig. 4.6: An arbitrarily big rational
triangle with one interior lattice point

Fig. 4.7: An arbitrarily big triangle
without interior lattice points
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For dimension d = 2, Scott’s theorem Theorem 1.10 makes this result
precise. In general, this is still subject of current research. From Corol-
lary 2.83 we derive a powerful finiteness theorem.

Corollary 4.26 Given positive integers d, i, there are, up to lattice
equivalence, only finitely many lattice d-polytopes with exactly i interior
lattice points.

4.4.1 Finiteness of barycentric coordinates of lattice simplices

For the proof of Theorem 4.25 we need to investigate the barycentric

coordinates of interior lattice points in simplices, if the number of interior

. lattice points is bounded. The trick is to consider a quite general setup.
(E) Let 7% := R%/Z%. Any element in 7% has a unique representative

in the half-open standard square [0, 1)d, see Figure 4.8. We denote the

N
i quotient map R? — T by z + [2].  We consider the open simplex
—~ ;

Ny = {xeR?: z;>0foralli=1,...,dand Zmi<1} c R?
Fig. 4.8: The torus T i=1

and its (bijective) image in T¢
Ag = {lz] eT? : zeNg} T

For y € T¢, let us define the generated subgroup (y) = {ky : k€ Z} C
T<¢. For the considerations in the next paragraph the following is the
crucial definition:

M = {yeDg : [(y)NAg|<i}cT?

Q
< 2 Lf Example 4.27 Let d =2, y:=[(1/2,1/3)] € Aa. Then

3

() = {l(0,0)],[(1/2,1/3)],[(0,2/3)], [(1/2,0)], [(0,1/3)], [(1/2,2/3)]}-

4 See Figure 4.9 for an illustation. Hence, (y) N Ag = {[(1/2,1/3)]},
\k[ b / thus, y € ME.

N 7,7 o The main result of this section will be the following proposition.
Proposition 4.28 //lid is finite.

Note that so far there is no lattice involved! This is all just about
Fig. 4.9: An element y € #2 and (y) . . .
subgroups of the torus of finite order. In order to relate this to our lattice
polytope problem, let us recall the notion of barycentric coordinates. If a
d-dimensional simplex S has vertices vy, . .., v4, then any point x in S can
be uniquely written as © = Bgvg + - - - + Bqvg with Sg+ -+ 84 = 1 and
B0, ---,84 > 0. Here, x is in the interior of S if and only if Sy, ..., 84 > 0.
Now, the relation to our problem about lattice polytopes is given by the

following observation.
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Corollary 4.29 Let S € R? be a d-dimensional lattice simplex with
i:=|int (S) NA| > 1. For vertices vy, . ..,vq of S, we define the bijective
map

d
Bo:int(S) = Ag, Y Bivy = (B, Ba)]-

=0
Then
B(int (S)NA) C 4l

So the set of barycentric coordinates an interior lattice point of such a

simplex can have is finite.

Proof. The map f is called barycentric coordinates. It is linear and
thus yields a homomorphism R% — T9 As k times a lattice point
w € int(S) NA is a lattice point we have (8(w)) N Ay is contained in
B(int (S) NA).

We may assume that after a lattice translation vg = {0}. Let x =
S8 Biv € int (S)NA, and y := B(z) = [(B1,..-,84)] € Ag. If for
k € Z>o, ky € A4, then there exists 2/ = sz:l Biv; € int (S) with
B(a’) = [(BY,---,By)] = ky = [(kB1,...,kBq)]. This implies that 3] —
kB; € Z fori=1,...,d, thus

d d
z = <Z(ﬁ; - kﬁ,-)m) +k <Z ﬁivz) €A

=1 i=1

Hence, the number of elements in (y) N Ay is at most the number of
elements in int (S) N A which is 4. This proves y € //tid. O

In other words, there are only finitely many barycentric coordinates
possible for interior lattice points in a lattice simplex which contains a
certain, non-zero number of interior lattice points overall.

Let us give some preparations for the proof of Proposition 4.28. We
need a natural translation-invariant distance function on 7"

d(y,y) == minf|lz —2'|| : y=[z],y =[] for z,2’ € R}.

Look at Figure 4.10 to get a better intuition for this definition. —Note
that there are two kinds of elements of the group 7% the rational points
have finite order, and the irrational points have infinite order.

Lemma 4.30 For x € {0}" x R (with 0 <r < d) and € > 0 there is
a positive integer k and z € {0} x R¥™" with [2] = [kx] and ||2|| < e.

Proof. If x is rational, then there exists a positive integer k such that

[kz] = 0, so define z = 0 € R?. If x is irrational, then ([x]) is infinite.

Fig. 4.10: Illustrating the definition of
our metric
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Fig. 4.12: B.(z*) N
(RZ, x RI") € Ag?

As T is compact, there must be an accumulation point. Hence, there
are natural numbers k' > k" so that

d((K = K")[x], [0]) = d(¥'[x], K"[2]) < e

Choose k := k' — k. As kx € {0}" x R%", the definition of the metric
d([k=], [0]) implies the existence of z € {0}" x R9™", as desired. (Note
that we do not claim that z € [0,1]%, see Figure 4.11.) a

Proof (Proposition 4.28). As A% is in bijection with A4%, every element
in //lid C A% corresponds to an element in //Zid C Ay% Let us define
the (compact) closure of A4% in R%:

d
z;>0foralli=1,...,dand Y x; <1} C R?
=1

Ad = {zeR?:

We assume that #¢ (thus, £%) is not finite. Then there exists an
accumulation point z* € A4 of //Zid. Changing the coordinate system

on T% if necessary, we may assume that z] = ... =z = 0, and

iy Ty, 1= Z?Zl x; > 0. In particular,

z* e {0}" x ]R‘iar.

We can assume this by permuting just the coordinates, since /ﬂid can be
characterized in a symmetric way, see Exercise 4.10.

Let us choose ¢ > 0 so that B.(z*) N (R, x R¥™") C AyY, see
Figure 4.12.

Now, Lemma 4.30 implies the existence of a positive integer k£ and
and z* € {0}" x R4 so that [kz*] = [2*] and ||2*|| < £/2i. With z*
being an accumulation point of //Zl-d7 there is an = € //Zid such that

[l — || <e/(2(ik +1)) and = # z* — 2" /k.
Note that we have x — x* € lRiO x R4, We define for j =0,1,...,i
wj =%+ jz* + (jk+1)(z — 2*) € R%
Let us show that
[w;] € ([z])nad for j =0...,4,

where all these (i 4+ 1) elements are pairwise different. This would show

[z] & 47, which is a contradiction.
First, we observe that
> w; € Ry x R,

> fwj—2*|| <ig + Gk + Vg <&
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Hence, the definition of ¢ implies that w; € Ayt Next, let us use
[kz*] = [2*] to deduce

[wj] = j["] + Gk + 1)[2] — jk[z"] = [(jk + 1)2] € ([]).
Finally, let us note
wj=a+j(z* +k(z—2z)).

As z* 4+ k(z — z*) # 0 by the choice of z, we see that wy,...,w; are
pairwise different. This finishes the proof. a

4.4.2 Coeflicient of asymmetry

Now that we have braved the technical core in the proof of Theorem 4.25,
the machinery will give us a volume bound V' (d, 7) in terms of a parameter
e(d,1) that we introduce below. It will depend only on the dimension
and the number of interior lattice points.

The smallest barycentric coordinate of a point inside a simplex is
a measure for how far in the interior of the simplex the point sits. To
measure the same thing for points in more general polytopes (or convex
bodies), we use the convex-geometric notion of coefficient of asymmetry.

Definition 4.31 Let K C R? be a d-dimensional convex body, w €
int K, then

max{A\ >0 : w+ e K}
ca(K;w) := sup
’l’]E]Rd\{O} max{/\ > 0 LW — )\77 S K}

1s the coeflicient of asymmetry.

We have ca(K;w) > 1. Note that ca(K;w) = 1 if and only if K is
centrally symmetric with respect to w. So, the closer ca(K;w) is to 1
the more w lies in the 'center’ of K (the converse may not be true). See
Figure 4.13 for two examples. We now extend Proposition 4.28 from
simplices to polytopes.

Definition 4.32 (Minimal barycentric coordinates) For positive in-
tegers d and i, the minimal barycentric coordinate of any interior lattice
point in any lattice d-simplex with precisely i interior lattice points will be
denoted by sbe(d, ). This definition yields a well-defined positive number
sbe(d, i) because of Corollary 4.29, a consequence of the main result of
the previous section.

You will prove some simple properties in Exercise 4.11.  Here is a simple
fact that you will prove in Exercise 4.12.

Lemma 4.33 Ford >1 and i > 1 we have sbc(d 4 1,1) < sbe(d, 1) /2.
O

w+ An

(a) An example with ca(K;w) =1

(b) An example with ca(K;w) > 1

Fig. 4.13: Coeflicient of Asymmetry

Exercise 4.11
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p <

AN
h——

Fig. 4.14: The coefficient of asym-

metry is attained at a vertex

Exercise 4.13

Exercise 4.14

Exercise 4.15

N

Fig. 4.15: ca(P;w)
ca(S;w) for some simplex

Exercise 4.16

Exercise 4.17

<
S

Proposition 4.34 Let P C R? be a d-dimensional lattice polytope with
i > 0 interior lattice points, and let w € int PN Z%. Then

1

P; < _—
ca(P;w) < max (sbc(d,i’)

—1:1<4d< z) .
The proof uses two auxiliary results. You will prove the following lemma
in Exercise 4.13.

Lemma 4.35 Let P € R? be a polytope, and let w € int P. Then the
coefficient of asymmetry is attained at a vertex. That is, there is a vertex
v of P so that

1

ca(P;w) = max{\ >0 : w—Av—-w) € P}’

(4.4)

O

The following corollary justifies the claim that the coeflicient of asymmetry
of a point in a polytope is a qualitative generalization of the smallest
barycentric coordinate of a point in a simplex.

Corollary 4.36 Let S = conv(vy,...,vq) C R? be a d-simplex, and let
0<pBo<...< By with Z;lzo B =1. Set w:= Z?:o Bjvj. Then

ca(S;w) = ﬂi —1.
0

You will give a proof of this in Exercise 4.14.

Proof (of Proposition 4.34). Let v be a vertex of P as in (4.4). Let
1

¢ := ca(P;w), and denote the opposite point by v' := w — £ (v — w).

There is a face F' of P which contains v’ in its relative interior. In a
lattice triangulation of F' there must be a lattice simplex S’ which contains
v’ in its relative interior. Hence, the lattice simplex S := conv(v, S") of
dimension 1 < d’ < d contains w in its relative interior, and the segment
conv(v,v’) certifies ca(S;w) > c. Furthermore, every relative interior
point of S is an interior point of P, so S contains j interior lattice points
for 1 < j <. The statement follows now from the previous corollary. 0O

4.4.3 Bounding the volume
We are finally in the position to finish the proof of Theorem 4.25. For this
we need the following observation. You will prove this in Exercise 4.17.

Lemma 4.37 Let K be a d-dimensional convex body with 0 € int K. Set
c:=ca(K;0). Then —1K C K.
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Proposition 4.38 Let K C R be a d-dimensional convex body. If
w € int K NZY, then

vol(K) < 2971 ca(K;w)?(|int K N Z4| +1).

Proof. We set i := |int K NZ% and ¢ := ca(K;w). We may assume
that w = 0. Consider Q := conv(—%KU %K) We have Q = —Q, and
1K C @ C K by the previous lemma. Hence, |int @ NZ% < i so that
by van der Corput’s Theorem (Theorem 4.2) vol Q < (i +1)2¢~1. This
yields vol(K) < ¢?vol(Q) from which the statement follows. 0

The bound is tight, as you will show in Exercise 4.18. 