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Preface

These notes have been written for the class Integer Points in Polyhedra at TU Darmstadt
in summer 2022. They are based on previous notes on a similar course at TU Berlin
in 2019, and on the notes of a course on Lattice Polytopes at FU Berlin in 2007, that I
prepared together with Benjamin Nill and Christian Haase.1

Sections marked with an asterix (*) in front have not been covered in the course.
Please contact me if you find errors or typos in the script, or if you have suggestions

for improvements or additions.
Darmstadt, summer 2022 Andreas Paffenholz

1Haase, Nill, and Paffenholz, Lattice Polytopes.
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1. Introduction

In its most common form the basic problem in Discrete or Integer Optimization is the
task to find integral solutions for a linear programming problem

max
(︁
ctx : Ax ≤ b

)︁
, (LP)

for a system of linear inequalities Ax ≤ b with a rational right hand side b ∈ Qm and a
rational matrix A ∈ Qd×m, that is to solve the problem

max
(︂
ctx : Ax ≤ b and x ∈ Zd

)︂
, (IP)

The set of feasible points of (LP) is a polyhedron

P = P (A,b) := {x : Ax ≤ b } ,

where A is a (rational) matrix in Qm×d and b ∈ Qm is a (rational) vector. The feasible
points of (IP) is the intersection of P with the set of integer points, i.e. P ∩Zd. One may
also consider programs where only some of the variables are required to be integral, so
called mixed-integer programs

max
(︂
ctx : Ax ≤ b and x ∈ Zk ×Rd−k

)︂
, (MIP)

for some 1 ≤ k ≤ d. We will restrict to pure integer programs of the form (IP), but
with some, often mostly technical, effort, corresponding results can also be obtained for
these mixed-integer programs. See Figure 1.1 for an illustration of the sets of feasible
points in each case.

(a) The feasible region of a lin-
ear program

(b) The set of feasible points
of a mixed integer program
where x1 ∈ Z

(c) The set of feasible points
of an integer program

Figure 1.1.: Feasible regions

5
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(a) A triangle in the standard basis (b) The same triangle normalized,
with the transformed lattice

Figure 1.2.: An example

Sets of feasible points for integer programs, or their convex hull, the integer hull of
the polyhedron P , are not yet well understood. In this notes we will discuss various
geometric and algorithmic topics connected to such sets of integer points in polyhedra.
Despite the apparent similarity between (LP) and (IP), these two problems differ

vastly in various respects. Solutions to (LP) may be arbitrarily far away from solutions
to (IP), even in small dimensions. For a simple example, we can consider the triangle
given by

P k := conv
(︁
[ 00 ] , [

0
1 ] ,

1
2

[︁
k−1
k

]︁)︁
See Figure 1.2(a) for k = 5. If we set ct := (1, 1), then the solution to (LP) is 2k − 1

2 ,
realized by the point 1

2

[︁
k−1
k

]︁
. However, the solution to (IP) is 1, realized by [ 01 ].

While solving linear programs it is often useful to normalize the problem in some way,
i.e. to apply an affine transformation ϕ(x) := Tx+ t for some (non-singular) matrix T
and a translation t to the polyhedron P of feasible points in such a way that P has a
nice representation, e.g. in the sense that the sizes of the entries of the constraint matrix
don’t differ too much. We can solve the transformed problem and apply the inverse map
ϕ−1 to the solution to obtain a solution of the original problem.

We cannot necessarily do the same with integer linear programs, as a bijective affine
transformation ϕ need not preserve integrality. Hence, we either have to restrict to
affine maps that map Zd into Zd or we have to generalize our notion of integrality to
solutions in T (Zd) instead of Zd. Such images Λ := T (Zd) of Zd are called lattices. See
Figure 1.2(b) for the triangle of Figure 1.2(a) after an affine transformation that maps
the triangle into a standard triangle. Sets Λ := T (Zd) can also be seen as the set of all
linear combinations of the vectors Tei for the standard basis e1, . . . , ed with integral

6
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coefficients,

Λ :=

{︄
d∑︂

i=1

λiei : λi ∈ Z for 1 ≤ i ≤ d

}︄
.

The set {Te1, . . . , Ted } is called a basis of Λ in analogy with the bases in linear algebra.
More generally, we may face the optimization problem to find solutions in some

discrete subset Λ that satisfy linear constraints Ax ≤ b defining a polyhedron P . If Λ is
a subgroup of Rd (i.e. it is closed under taking sums and inverses), then we say that Λ is
a lattice. For example, we may require that some or all of the coordinates of the solution
should be even, i.e. feasible solutions should be in Λ := (2Z)k ×Zd−k for some k. We
will see that such sets are always of the form ϕ(Zd) for some linear map ϕ(x) := Tx.
Thus, in principle we can reduce to the problem of finding integer solutions. Yet, as this
also transforms the polyhedron P , which may vary its shape, its volume, or the size of
the coordinates, this may not always be desirable.
Sometimes we are given the discrete structure of the feasible solutions not with the

standard basis of Zd, but with some other basis B, and a solution is feasible if it can
be written as an integer linear combination in this basis (and satisfies some linear
constraints). We then face the problem to find a suitable simple basis for the discrete set
of solutions, or the problem to decide if our basis actually generates Zd or only some
proper subset. For example, consider the two bases in Figure 1.3. Both in fact generate
Z2, but you may feel that this is easier to check for the basis in Figure 1.3(a).

There are two tasks connected with this. The first is to decide if both bases generate
the same lattice, which, as we will see, can be solved efficiently with the computation
of the Hermite normal form.
The second task turns out to be harder. Comparing the two bases in Figure 1.3 we

see that the first has shorter vectors and they are orthogonal. In the linear setting we
can easily achieve this, e.g., with Gram-Schmidt-Orthogonalization. For lattices, such
a basis need not exist, and finding at least some approximation with short and almost
orthogonal vectors is surprisingly difficult. We will discuss the celebrated LLL-algorithm
of A.K. Lenstra, H.W. Lentra Jr., and L. Lovász,1 that computes such a basis and is the
foundation of many other algorithms in this field.

If we want to have short vectors in our basis we may, as a first step, ask for one shortest
nontrivial vector (say, in the Euclidean norm) the is in the integral span of our basis.
This is the Shortest Vector Problem. Already this problem turns out to be difficult to
solve, and we can efficiently only produce approximations, based on the LLL-algorithm.
Given some point x ∈ Rd we may also ask for the closest point in the integral span,

which leads to the Closest Vector Problem. Although seemingly similar to the shortest
vector problem it is not quite, as we cannot just translate x into the origin. We would
need to translate Λ as well, but then 0 is not contained in the lattice anymore, unless
x ∈ Λ.

The problem (IP) may not have a solution at all, even if the first is feasible. Strips of
the form P := [1/3, 2/3]× [a, b] for a < b show that this can happen for arbitrarily large
polyhedra. Note, however, that P appears to be thin in some direction. We will see that

1A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, “Factoring polynomials with rational coefficients”.

7
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(a) The standard short basis of Z2. (b) Another basis of Z2.

Figure 1.3.: Bases of Z2

this is, in some sense, true for any such example.
More precisely, we will consider polyhedra P := {x : Ax ≤ b } such that P ∩ Λ is

empty. The Flatness Theorem of Khinchine then tells us that there is a universal bound
c(d) only depending on the dimension, such that the lattice width widthZd(P ) of P
satisfies

widthZd(P ) := min
ct∈(Zd)⋆

(︁
max

(︁
ctx : x ∈ P

)︁
− min

(︁
ctx : x ∈ P

)︁)︁
≤ c(d) (1.1)

We will see that the currently best bound for the width is O(d4/3 log ad) for some integer
a > 0,2 but it is conjectured to be O(d). There is much research activity around this
question. Also, people are interested in precise bounds for certain families of lattice
polytopes, and for examples of polytopes of large width.

The Flatness Theorem follows from results in Geometry of Numbers, an area of mathe-
matics that connects results from number theory with lattice points and convex sets. The
initial result in this area by Minkowski from 1898 shows that any centrally symmetric
convex body contains a non-zero integral point (it always contains 0 if it is not empty)
if the volume is large enough.

A convex body is a closed convex set K in Rd, and it is centrally symmetric if −x ∈ K
for all x ∈ K. The result of Minkowski states that there is a ∈ (K ∩ Zd) \ {a} if
vol K > 2d. Equivalently, λ1 ·K contains a non-zero integral point if λ1 >

2
d√
vol K

. This
is the first successive minimum ofK. One can further extend this and ask for the smallest
scaling factor λk such that λk ·K contains k linearly independent integer points. These
are the successive minima of K, see Figure 1.4. We may extend this to general lattices.
Then the first successive minimum of the unit ball is the length of the shortest vector.

This leads to results on the packing radius of the lattice, which is the largest radius
such that balls with this radius around lattice points at most touch on the boundary,
and the covering radius, which is the smallest radius such that the corresponding balls
around all lattice points cover the space.

2Rudelson, “Distances between non-symmetric convex bodies and theMM∗-estimate”, Cor. 2.

8
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λ2

λ1

Figure 1.4.: Successive Minima

Given any convex body P the task of actually computing a short lattice direction, i.e.
a direction which realizes the bound of (1.1), is difficult. If we want to compute such
a direction in polynomial time, then we currently only know algorithms that give an
approximate solution, and we have to be satisfied with the much weaker bound of O(2d)
on the width in this direction. Nevertheless, we will discuss an algorithm for this, as it
turns out that this is a crucial ingredient to gain more insight into the complexity of
integer linear programming.

For this recall first that the problems (LP) and (IP) also differ algorithmically. While we
know that the first is algorithmically solvable in polynomial time3, the second problem
is only known to be in NP. It is even NP-complete,4 so there is no hope to solve it
efficiently5, unless actually P = NP.

To learn more about what makes (IP) difficult to solve we may look at the contribution
of the various input parameters, e.g. the number of variables (the dimension), or the
size of the constraints. We will see that the problem can be solved in polynomial time if
we fix the number of variables, which is the dimension of the polyhedron. This has been
discovered by H.W. Lenstra Jr..6 This is essentially based on the observation, that, given
a polyhedron P , we can, in polynomial time, either find a lattice point in P or we obtain
a direction in which P is flat in the sense that we can slice P with a polynomial number
of parallel hyperplanes containing all lattice points in P . We can then use recursion in
the dimension to solve the problem.

This result of Lenstra gave rise to the LLL-algorithm that we have already seen above,
and which is now part of the proof of Lenstra’s Theorem, but also found many other
applications in different branches of mathematics, in particular also for algorithmic
results in the geometry of numbers.

The Flatness Theorem considers lattice polyhedra without interior lattice points. It is
easy to see that in dimensions d ≥ 2 there are infinitely many such lattice polyhedra,
even, if we, as is sensible to obtain a meaningful result, identify lattice polyhedra that
can be mapped into each other with a unimodular transformation.

3Although not via the commonly employed simplex algorithm, which is not known to be polynomial. Yet,
the ellipsoid method is, and we will reuse some of its ideas later.

4Alexander Schrijver, Theory of linear and integer programming. Thm. 18.1.
5Efficiently here means in terms of its theoretical worst case complexity. As (IP) is such an important
problem in applications, people developed many algorithms that run efficiently on certain instances that
appear in these applications. See, e.g., the book of Nemhauser and Wolsey (Nemhauser and L. Wolsey,
Integer and Combinatorial Optimization)

6Hendrik W. Lenstra, “Integer Programming with a fixed number of variables”.

9
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Figure 1.5.: Multiples of a lattice polytope. The polytope P contains 6 integral points, 2P
contains 16, and 3P contains 31. These values are given by the polynomial
5
2k

2 + 5
2k + 1.

The situation drastically changes once we consider the class of lattice polyhedra with
a fixed number k > 0 of lattice points in the interior. For any given k there are only
finitely many such polyhedra (of course, we again have to identify polyhedra that can
be mapped into each other via a unimodular transformation).
This follows from volume bounds for the lattice polyhedron that depend on the

dimension and the number of interior lattice points. For d = 2 this is a result of Scott,7
and in the general case a result of Pikhurko.8

We can take a different approach to determine feasibility of (IP) and ask, whether
we can, given a polytope P , enumerate or count the number of lattice points inside P ,
i.e. whether we can compute

P ∩ Λ or |P ∩ Λ| .

It turns out that instead of this question one should consider the function

f(k) := |k · P ∩ Λ| for k ∈ Z>0

that counts the lattice points in integer dilates of the polytope. The Theorem of Ehrhart
shows that this function is indeed given by a polynomial of degree d, the Ehrhart
Polynomial.

Its generating function

F (x) := 1 +
∑︂
k≥1

f(k)xk

7Scott, “On convex lattice polygons”.
8Pikhurko, “Lattice points in lattice polytopes”.

10
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can be represented by a short rational function

1 +
∑︂
k≥1

f(k)xk =
h(x)

g(x)

that can be computed with the algorithm of Barvinok.9 Evaluation at 1 gives the number
of lattice points inside P . This is an efficient algorithm that can be used in applications.
The polynomials f(x) and h(x) encode a lot of information about the polytope, with
applications in number theory, algebra, and algebraic geometry. Much of this is still a
topic of current research.

Barvinok and Woods10 have later extended the counting algorithm to integer points
in integer projections of polyhedra in fixed dimension, i.e. to sets of the form{︂

x ∈ Zk : ∃y ∈ Zd−k s.th. (x,y) ∈ P
}︂
.

This is based on results of Kannan on parametric integer linear programming, which is
solvable in polynomial time in fixed dimension.11

The Ehrhart polynomial and its generating function have many interesting properties,
with applications not only in optimization, but also in number theory and algebra. For
example, we can count lattice points in the relative interior of k · P by evaluating the
polynomial of f at −k.
Polyhedra with no interior lattice points can be employed as a tool in algorithms to

solve (IP). This generalizes the notion of split cuts. The feasible region of the linear
relaxation of (IP) is the polyhedron

P := {x : Ax ≤ b } ,

and the general idea of cutsis the approximation of the integer hull of P , i.e. the set

PI :=
{︂
z : Ax ≤ b x ∈ Zd

}︂
with polyhedra Q that satisfy

PI ⊆ Q ⊊ P

using new inequalities ctx ≤ δ, called cuts,that separate some points in P \ PI from
PI . You can find various ways to generate such cuts in the literature, e.g. the Chvatál-
Gomory-Cuts, which where among the first to be considered.12

Given an integer program as in (IP), a classical split cut is a cut derived from the
maximally lattice free set

S :=
{︁
x : π0 ≤ πtx ≤ π0 + 1

}︁
9A. Barvinok and Pommersheim, “An algorithmic theory of lattice points in polyhedra”.

10A. Barvinok and Woods, “Short rational generating functions for lattice point problems.”
11Ravi Kannan, “Lattice translates of a polytope and the Frobenius problem”; Ravi Kannan, “Test sets for

integer programs, ∀∃ sentences”.
12Nemhauser and L. Wolsey, Integer and Combinatorial Optimization.

11
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Figure 1.6.: A split cut of width 1

for some π ∈ Zd and π0 ∈ Z. Here, we say that a set S is lattice free if the relative
interior of S does not contain any lattice points. We obtain an approximation of PI via

Q(P, S) := conv (P \ S) .

This is again a polyhedron, and if S contains a vertex of P in its interior, then also
Q(P, S) ⊊ P . See Figure 1.6 for an example.

This can be generalized to mixed integer programs with solutions in P ∩ (Zp×Rd−p)
by considering lattice free sets of the form S ×Rd−p for some lattice free set S ⊆ Rp.
However, for simplicity, we only consider pure integer programs in the following.

The lattice free set S we have considered is of the form S = I×Rd−1 for some interval
I of length 1. We can generalize this idea and use sets of the form S := L×Rd−k for
a convex set L ⊆ Rk that is lattice free, i.e. that does not contain lattice points in its
relative interior. We then consider the relaxation

Q(P, S) := conv (P \ S)

= conv
(︂
(x1,x2) ∈ Rk ×Rd−k : (x1,x2) ∈ P, x1 ̸∈ intL

)︂
.

Clearly, PI ⊆ Q(P, S) ⊆ P and for any lattice free convex sets S′ ⊆ S we have

Q(P, S) ⊆ Q(P, S′) .

Hence, we are interested in maximally lattice free sets, i.e. inclusion maximal convex
lattice free sets. Such sets are polyhedra,13 so we are looking for inclusion maximal
lattice free polyhedra.

13Lovász, “Geometry of numbers and integer programming”.
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2. The Geometry of Lattices

The main player in these notes are polyhedra and lattices, which we can consider as
a generalization of the set of integer points in Rd.1 We will introduce lattices in this
chapter while we assume that the reader is familiar with the basics of polyhedral theory.2
We will briefly repeat some some of this, together with some additional material from
convex geometry, in Appendix A.
Although trivial to define, lattices have a surprisingly rich geometric structure and

many, even basic, theoretic and algorithmic questions are still unsolved. Here we discuss
basic properties, while the more interesting topics will be spread over the following
chapters.

2.1. Lattices

We can define lattices in two ways, either as the integral span of a finite set of vectors
in Rd, or, equivalently, as discrete additive subgroups of Rd. We start with the latter
version and introduce that second and prove equivalence in Theorem 2.12.

Recall that a subset Λ ⊆ Rd is an additive subgroup of Rd if

(1) 0 ∈ Λ

(2) x+ y ∈ Λ for any x,y ∈ Λ

(3) −x ∈ Λ for any x ∈ Λ .

A subset Λ ⊆ Rd is discrete if for all x ∈ Λ there is ε > 0 such that Bε(x) ∩ Λ = {x},
where we define the ball of radius ε in the given norm as

Bε(x) := {y ∈ V : ∥x− y∥ ≤ ε} .

Definition 2.1. A lattice in Rd is a discrete additive subgroup Λ ⊆ Rd.
The rank of a lattice Λ is the dimension of its linear span, that is,

rankΛ := dim linΛ .

The lattice has full rank if it has rank d, i.e. the dimension of its ambient space.

1One can define lattices in any finite dimensional vector space with a norm, but Rd is sufficient for our
applications.

2e.g. from the courses Einführung in die Optimierung and Discrete Optimization. If needed we may repeat
the relevant notions in the exercises.
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(a) The lattice Z2 (b) The lattice A2 (c) The lattice D2

Figure 2.1.: Some lattices

You will show in Problem 2.1 that for lattices one can choose the same radius ε for
the ball for all lattice points. Any discrete additive subgroup is closed in Rd in the

Problem 2.1 usual topology induced by the scalar product (Problem 2.2), and the intersection of any
bounded subset with the lattice is a finite set (Problem 2.3).

Problem 2.2
Problem 2.3

Example 2.2. (i) The set Zd of points with integral coordinates in Rd is a lattice of
full rank, the standard integer lattice. We can write this as the set of all linear
combinations of the d standard unit vectors e1, . . . , ed with integral coefficients.
See Figure 2.1(a) for an example in dimension 2.
We will later see that any lattice has such a generating set, and thus essentially
any lattice looks like this integer lattice.

(ii) For any lattice Λ and linear subspace L ⊂ Rd the set Λ ∩ L is a lattice in L.
(iii) The set

Λ2;3 :=
{︁
x ∈ Z2 : x1 + x2 ≡ 0 mod 3

}︁
is a lattice and a subgroup of the lattice Z2. More generally, any subgroup of a
lattice is again a lattice.

(iv) We can identify Rd with the linear subspace

L :=

{︄
x ∈ Rd+1 :

d∑︂
i=0

xi = 0

}︄
.

See Figure 2.1(b) for d = 3 (note that the lattices lives in a 2-dimensional sub-
space). We claim that the set

Ad := L ∩Zd+1

is a lattice in L. To check this we first observe that Ad is clearly discrete, as it is a
subset of a discrete set. Further, the addition of any two elements in A stays in L,
as this is a linear subspace. The same is true for the multiplication by −1. Hence,
it is also an additive subgroup.
This lattice is the root lattice Ad. We will discuss this again later.

14
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(v) Let Dd be the set

Dd :=

{︄
x ∈ Zd :

d∑︂
i=1

xi is even

}︄
. (2.1)

Again, this is a discrete set and addition and multiplication by −1 stay inside the
set. Hence, it is a lattice, the so called root lattice Dd. See Figure 2.1(c) for the
case d = 2.

For computational purposes the abstract definition via discrete subgroups is not very
useful. As for linear spaces, where we express elements in terms of coordinate vectors
w.r.t. to a chosen basis, we would prefer to have some kind of generating set for a
lattice. Our examples suggest that this should be possible. For the lattice Zd of integer
points we have already seen in its definition, that we can obtain the lattice as the set of
linear combinations of the standard basis e1, . . . , ed with coefficients in Z (instead of R
when considering this basis as a basis of the linear space Rd). We want to formalize this
approach. Let A = {a1, . . . ,am } ⊆ Rd be a finite set of vectors and define the additive
subgroup

ΛA :=

{︄
m∑︂
i=1

λiai | λi ∈ Z, 1 ≤ i ≤ m

}︄
=

m⨁︂
i=1

Zai

We will show that any such set is in fact a lattice if the elements of A are linearly
independent. We make the following definition.

Definition 2.3. Any linearly independent subset B ⊆ Rd that generates a lattice Λ, i.e.
Λ = ΛB (as subsets of Rd), is a lattice basis (or Λ-basis) of Λ.

We will also consider more general sets A, but you will see in Problem 2.4 that we
need some restriction on A.

Problem 2.4

Example 2.4. Before we prove that all sets of the form ΛA for a linearly independent
set A are a lattice we want to construct explicit sets for the examples in Example 2.2.
(i) The set

B :=

{︃[︃
3
0

]︃
,

[︃
−1
1

]︃}︃
is a basis of the lattice Λ2;3 that we have seen in Example 2.2.

(ii) The set B := { ei − ei+1 : 1 ≤ i ≤ d } generates the lattice Ad, and for Dd we
may choose the roots of Ad−1 together with ed + ed−1. You will prove this in
Problem 2.5.
These sets of vectors are sets of simple roots of the root systems of type Ad and Dd.
Generally, root systems are finite vector configurations Φ ⊆ Rd with the property
that

▷ their linear span is Rd,

15
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0

u

v

Figure 2.2.: A fundamental parallelepiped Π. Note that the points u, v, u+ v are not
contained in Π.

▷ for any v ∈ Φ also −v ∈ Φ, and this is the only linear multiple of v contained
in Φ,

▷ Φ is closed under reflection at any hyperplane {x : ⟨x,v ⟩ = 0 } for some
v ∈ Φ, and

▷ for any two u,v ∈ Φ the projection of u onto the line spanned by v is an
integer or half-integer multiple of v.

A root lattice is the lattice spanned by a root system. A root system is irreducible if
it cannot be decomposed into a direct sum of root systems. There is only a finite
set of families of irreducible root systems, which give rise to corresponding lattices
(You will consider them in Problem 2.6).

Problem 2.5
Problem 2.6 For the proof that any lattice has a basis we introduce the following notion of a

fundamental zonotope Π(A) of A via

Π(A) :=

{︄
k∑︂

i=1

λivi | 0 ≤ λi < 1 for 1 ≤ i ≤ k

}︄
.

The (half-open) zonotope is a (half-open) parallelepiped if A is linearly independent.
See Figure 2.2 for an example.

Definition 2.5. Let Λ be a lattice generated by a basis B. The parallelepiped Π(B) is
the fundamental parallelepiped of Λ w.r.t. B.

Lemma 2.6. Let B = {b1, . . . ,bd} ⊆ Rd be a finite set of linearly independent vectors.
Any x ∈ linΛB has a unique representation x = a+ y for some a ∈ ΛB and y ∈ Π(B).

Proof. There are unique λ1, . . . , λd ∈ R such that x =
∑︁d

i=1 λibi. Set

a :=

d∑︂
i=1

⌊λi⌋bi and y :=

d∑︂
i=1

{λi}bi .

16
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y

x

0

u

v

a

Figure 2.3.: A fundamental parallelepiped Π. Note that the points u, v, u+ v are not
contained in Π.

See also Figure 2.3. Then y ∈ Π(B), a ∈ ΛB, and x = a+ y.
Now assume that there is a second decomposition x = a′ + y′ with a ̸= a′ and,

consequently, also y ̸= y′. We can write y and y′ as

y :=

d∑︂
i=1

αibi and y′ :=

d∑︂
i=1

α′
ibi

for some 0 ≤ αi, α
′
i < 1 and 1 ≤ i ≤ d. Then

a′ − a = y − y′ =

d∑︂
i=1

(αi − α′
i)bi

and a′ − a ∈ ΛB implies that αi − α′
i ∈ Z for 1 ≤ i ≤ d.

Now |αi − α′
i| < 1 for all i, so αi − α′

i = 0. This implies that y = y′ and a = a′.

Proposition 2.7. Let B = {b1, . . . ,bd} ⊆ Rd be linearly independent. Then ΛB is a
lattice.

Proof. Let z ∈ Π(B) ∩Rd be any interior point of Π(B). Then there is ε > 0 such that
Bε(z) ⊆ Π(B). We claim that Bε(x) ∩ Λ = {x} for all x ∈ ΛB.

Indeed, if y ∈ Bε(x)∩ΛB and y ̸= x, then x′ := x−y ∈ ΛB \ {0} and x′+ z ∈ Π(B).
This is a contradiction to Lemma 2.6.

So any linearly independent set of vectors generates a lattice. While Problem 2.4
shows that this is generally not true for linear dependent sets, we will see later that any
finite set of rational vectors generates a lattice.
It follows directly from Lemma 2.6 that the parallelepipeds of a lattice with basis B

tile the space. The full proof is left to the reader in Problem 2.7.

17
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R2/U
U

b1

ĉ1

c1

Figure 2.4.: A one-dimensional Λ-rational subspace U with lattice basis {b1} of Λ ∩ U , the
projection R2/U with {c1 + U} as lattice basis of π(Λ) and the basis obtained by
the basis {b1} of U with the pull-back {ĉ1} of the basis in R2/U

Corollary 2.8. Let Λ be a lattice in Rd with basis B. Then V is the disjoint union of all
translates of Π(B) by vectors in Λ.

Problem 2.7
Thus, sets of the form ΛB for a basis B of linearly independent vectors are indeed

lattices. We now aim for the opposite direction and want to show that any lattice can
be obtained from some basis.

We will do this by induction and construct a basis first in a subspace and then extend
it to a basis of the full lattice. Although we have already seen that for a k-dimensional
subspace U of Rd the intersection Λ′ := Λ ∩ U of a lattice Λ of rank d with U is again a
lattice, it is not true that the rank of Λ′ must coincide with the dimension of U . A simple
example is the integer lattice Z2 ⊆ R2 together with the subspace U spanned by the
vector

[︂
1√
2

]︂
. Hence, we make the following definition.

Definition 2.9. A subspace U ⊆ Rd is Λ-rational if it is generated by elements of Λ.

The following proposition then shows that this condition is sufficient to make our
inductive approach to construct a basis feasible.

Proposition 2.10. Let Λ ⊂ Rd be a lattice with a Λ-rational subspace U ⊆ Rd and the
quotient map π : Rd → Rd/U .
(i) π(Λ) ⊂ Rd/U is a lattice.
(ii) If Λ ∩ U has a basis b1, . . . ,br, and π(Λ) has a basis c1, . . . , cs, then any choice of

preimages ĉi ∈ Λ of the ci for 1 ≤ i ≤ s yields a Λ-basis b1, . . . ,br, ĉ1, . . . , ĉs.

In the situation of the proposition, one often writes Λ/U for π(Λ).

Proof. (i) π(Λ) is the image of a group under a homomorphism. Hence, it is a
subgroup of Rd/U . The hard part of the proposition is to prove that π(Λ) is
discrete in Rd/U .

18
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The space U is Λ-rational. So we can choose a vector space basis

{v1, . . . ,vr} ⊆ Λ ∩ U

of U . We can extend this basis to a vector space basis B = {v1, . . . ,vd} ⊂ Λ of
linΛ. These bases yield maximum norms⃦⃦⃦⃦

⃦
d∑︂

i=1

λivi

⃦⃦⃦⃦
⃦
Λ

:= max ({|λi| : i = 1, . . . , d})

on linΛ and⃦⃦⃦⃦
⃦
(︄

d∑︂
i=1

λivi

)︄
+ U

⃦⃦⃦⃦
⃦
Λ/U

:= max ({|λi| : i = r + 1, . . . , d})

on linΛ/U . Denote the unit ball of linΛ by W . By Problem 2.3, the set W ∩ Λ is
finite. Set

ε := min
(︂
{1} ∪ {∥v + U∥Λ/U : v ∈W ∩ Λ \ U}

)︂
.

This minimum over a finite set of positive numbers is positive. Now suppose

v =

d∑︂
i=1

λivi ∈ Λ

with ∥v + U∥Λ/U < ε. Then

v′ :=
r∑︂

i=1

(λi − ⌊λi⌋)vi +
d∑︂

i=r+1

⌊λi⌋vi ∈ Λ

represents the same coset: v+U = v′ +U , and v′ ∈W ∩Λ. We conclude v′ ∈ U
and thus v′ + U = 0 ∈ Rd/U .

(ii) Let b1, . . . ,br, ĉ1, . . . , ĉs be as in the proposition, and let v ∈ Λ. Because the cj
form a lattice basis of π(Λ), there are integers λ1, . . . , λs so that

π(v) =
s∑︂

j=1

λjcj .

Thus,

v −
s∑︂

j=1

λj ĉj ∈ kerπ = U .

19
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Because the bi form a lattice basis of Λ ∩ U , there are integers µ1, . . . , µr so that

v −
s∑︂

j=1

λj ĉj =
r∑︂

i=1

µibi .

So b1, . . . ,br, ĉ1, . . . , ĉs generate Λ. They must be linearly independent for di-
mension reasons.

Definition 2.11. A set b1, . . . ,bk ∈ Λ of linearly independent lattice vectors is primitive
if their integral span coincides with the intersection of of the lattice with their linear
span, i.e.

lin {b1, . . . ,bk } ∩ Λ =

{︄
k∑︂

i=1

λibi : λi ∈ Z

}︄
.

In particular, a non-zero lattice vector v ∈ Λ is primitive if it is not a positive multiple
of another lattice vector, i.e. conv(0,v) ∩ Λ = {0,v}.

Any lattice basis is also a linear basis of its linear span, so it follows from linear
algebra, that any subset of a lattice basis is a primitive set.

Theorem 2.12. Every lattice has a basis.

Proof. We proceed by induction on r := rankΛ. For r = 0, the empty set is a basis for
Λ. For r = 1, a primitive vector yields a basis.

Assume r ≥ 2. Let b ∈ Λ be primitive, and set U := lin{b}. Then {b} is a basis
for U ∩ Λ, and Λ/U is a lattice by the first statement of Proposition 2.10. Because
rankΛ/U = r−1, it has a basis by induction. By the second statement of Proposition 2.10,
we can lift to a basis of Λ.

Problem 2.8
If B is a basis of a lattice, then no further lattice points except 0 and B can be inside

the simplex conv({0} ∪ B), which is a subset of Π(B) ∪ B. However, with Problem 2.9
you will prove that this is not sufficient to characterize a basis, we need to consider the
full fundamental parallelepiped.

Problem 2.9
Problem 2.10
Problem 2.11

The proof of Proposition 2.10 shows that we can extend any primitive set of lattice
vectors to a lattice basis of the the whole lattice. The proof of the next proposition is
left as an exercise. Here we set gcd(0, 0) := 0.

Proposition 2.13. Let b1, . . . ,bd ⊆ Λ be a lattice basis of Λ, a :=
∑︁d

i=1 λibi for λi ∈ Z,
and let 1 ≤ j ≤ d. Then the set A := {b1 . . . ,bj−1,a } is primitive if and only if
gcd(λj , . . . , λd) = 1.

Proof. See Problem 2.12.
Problem 2.12

20
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(a) The lattice Z2. (b) The lattice sheared with e1 ↦→ e1 and e2 ↦→
e1 + e2.

Figure 2.5.: Shearings are unimodular transformations

2.2. The Hermite normal form

Definition 2.14. Let Λ and Λ′ be lattices. A linear map

T : lin Λ −→ linΛ′

inducing a bijection Λ→ Λ′ is called unimodular or a lattice transformation. T is a lattice
isomorphism if Λ = Λ′.

See Figure 2.5 for an example of a unimodular transformation.

Lemma 2.15. Let B and B′ be bases of lattices Λ and Λ′ of full rank respectively.
A linear map T : linΛ→ linΛ′ is unimodular if and only if the matrix representation A

of T with respect to the bases B and B′ is integral and satisfies | detA| = 1.

Proof. Let d be the rank of Λ and Λ′, and A = (aij)1≤i,j≤d. If A has only integral entries,
then T(Λ) ⊆ Λ′. Conversely, let bj ∈ B be the j-th basis vector. Then

x := T (bj) =
d∑︂

i=1

aijb
′
i ∈ Λ′ .

As the vectors in B′ are linearly independent the representation of x in this basis is
unique, and thus all aij , 1 ≤ i ≤ d must be integral (here we have used that the lattices
have full rank).

Further, if T is unimodular, then the inverse transformation exists, and its matrix A−1

also has integral entries. Thus, detA and detA−1 are integers with product 1.
Conversely, if A is integral with | detA| = 1, then, by Cramer’s rule A−1 exists and is

integral.
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Corollary 2.16. An integral matrixA ∈ Zd×d is the matrix representation of a unimodular
transformation of a lattice if and only if |detA| = 1.

The set of matrices corresponding to unimodular transformations is denoted by Gl(d,Z).

Corollary 2.17. Let Λ be a lattice with basis b1, . . . ,bd ∈ Λ. Then c1, . . . , cd ∈ Λ is
another basis of Λ if and only if there is a unimodular transformation T :∈ Λ→ linΛ such
that T(bi) = ci for 1 ≤ i ≤ d.

Problem 2.13
Problem 2.14 Let A = {a1, . . . ,am} be a generating set of a lattice Λ in Rd. We do not require that

A is a basis. Recall, however, that not all sets of vectors generate a lattice (Problem 2.4).
Given any basis C in V (not necessarily a lattice basis), we can represent the vectors

of A in this basis. Writing the vectors in A as coefficient vectors in C we obtain an
(d×m)-matrix A. We assume in the following that A ∈ Qd×m, which also ensures that
A spans a lattice.

We want to find linear combinations of the vectors in A that yield a particularly nice
basis of Λ (in the representation as coordinate vectors of C).
For this, we introduce the Hermite normal form H of a matrix A and show that we

can find a unimodular transformation U ∈ Gl(m,Z) that maps coefficient vectors w.r.t.
A into coefficient vectors w.r.t. H. Further, we will see that the Hermite normal form is
unique (while the transformation U is unique only if A was already a basis).

Definition 2.18. Let A = (aij) ∈ Qd×m with m ≥ d be of full row-rank. The matrix A
is in Hermite normal form if

▷ aij = 0 for j > i and
▷ ajj > aij ≥ 0 for i > j .

So a matrix in Hermite normal form is an lower triangular matrix, and the largest
entry in each row is on the diagonal.

We can view the columns of U as coefficients of linear combinations on the columns
of A that produce the new basis vectors (and possibly some representations of 0, if A
has more than d columns). Alternatively, if λ ∈ Zm is the vector of coefficients of a
point x ∈ Λ w.r.t. A, then Uλ give the coefficients for x w.r.t. the columns of H.

Example 2.19. A matrix in Hermite normal form.⎡⎣ 5 0 0 0
1 2 0 0
3 1 4 0

⎤⎦
Depending on the context we sometimes use the transposed matrix, i.e. we claim that

a matrix is in Hermite normal form if it has at least as many rows as columns, it is upper
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triangular, and the largest entry in each column is on the diagonal (and if the matrix is
square we can also consider lower triangular matrices).

Theorem 2.20. Let A ∈ Qd×m of full row-rank. Then there is a unimodular matrix
U ∈ Zm×m such that AU is in Hermite normal form.
The matrix H is unique.

Proof. This was proved in the class Discrete Optimization. Alternatively you can find a
proof Schrijver’s book.3

You can prove this yourself with Problem 2.15.

Problem 2.15

Example 2.21. The matrix of Example 2.19 is the Hermite normal form of

⎡⎣ 5 0 0 0
1 2 0 0
3 1 4 0

⎤⎦ =

⎡⎣ 10 −5 0 15
2 −1 −2 1
10 −7 −1 12

⎤⎦ ·
⎡⎢⎢⎣
−1 2 −1 2
0 1 −2 1
−1 0 0 1
1 −1 0 −1

⎤⎥⎥⎦

The transformation U ∈ Zm×m is unimodular, so U−1 ∈ Zm×m is also integral. So any
integral linear combination x := Aλ of the columns of A for some λ ∈ Zm corresponds
to an integral linear combination x = Hµ for integral coefficients µ := U−1λ and vice
versa. This implies that the columns of A and H span the same lattice. The non-zero
columns of H are linearly independent, as H is a lower triangular matrix. Thus, if we
delete the zero columns from H we obtain a basis of the lattice spanned by the columns
of H.
If the columns of A are linearly independent, then we obtain a new basis of the

same lattice. The linear map between the two lattices as in Corollary 2.17 is given in
coordinates by the matrix U−1.

Example 2.22.

A :=

⎡⎣ 10 5 15
6 3 7

12 8 15

⎤⎦ and H ; =

⎡⎣ 5 0 0
1 2 0
3 1 4

⎤⎦
H is the Hermite normal form of A with unimodular transformation

U :=

⎡⎣ −2 2 −1
0 −1 2
1 −1 0

⎤⎦ and U−1 ; =

⎡⎣ 2 1 3
2 1 2
1 1 1

⎤⎦
3Alexander Schrijver, Theory of linear and integer programming. Thm. 4.1 and 4.2.
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The columns of A and H span the same lattice, and the coefficient vectors

λ :=

⎡⎣ 1
−2
3

⎤⎦ w.r.t. the basis given by A and

µ := U−1λ =

⎡⎣ 9
6
2

⎤⎦ w.r.t. the basis given by H

both correspond to the lattice vector

x :=

⎡⎣ 45
21
41

⎤⎦ .

We want to use the Hermite normal form later in algorithms, so we want to compute
it in polynomial time. The next proposition shows that this is indeed possible. Bounding
the number of steps with a polynomial in the input size relies on the fact that we can run
the extended Euclidean algorithm on two integers a and b in time O(log(a) · log(b)). This
algorithm computes the greatest common divisor g of a and b together with integers x
and y that linearly combine g in a and b, i.e.

g = gcd(a, b) = x · a + y · b

via a succession of divisions with remainder. A bound on the size of the entries of H
follows from the observation that the product h11 · h22 · · ·hdd of the diagonal entries of
H is the greatest common divisor D of (d× d)-subdeterminants of A. Finally, we can
bound the size of all intermediate matrices with the observation, that adding integer
multiples of D to entries of the matrix does not change the final result. The full proof is
left as Problem 2.16. It can also be found in the book of Schrijver.4

Proposition 2.23. The Hermite normal form of a rational matrix A can be computed in
polynomial time in the size of the input matrixA. In particular, the size ofH is polynomially
bounded in the size of A.

Problem 2.16
We can interpret the fact that we can add multiples of D to entries of intermediate

results also geometrically. We will explain this in the next section, once we have
introduced sublattices.

Problem 2.17
Problem 2.17 shows a nice application of Hermite normal forms to linear Diophantine

equations.
While the Hermite normal form certainly is of high theoretical and computational

value in the theory of lattices, the Hermite normal form can have very bad geometric
properties. For example, there are bases b1, . . . ,bd of a lattice, such that bi ∈ { 0,±1 }d

4Alexander Schrijver, Theory of linear and integer programming. Sec. 5.2 and 5.3.
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Figure 2.6.: The root lattice D2 is a sublattice of index 2 in Z2.

for 1 ≤ i ≤ d, but all basis vectors in the Hermite normal form H = (hi)1≤i≤d have
length

∥hi∥ ≥ 2Ω(d) ≫
√
d ≥ ∥vbj∥

for all 1 ≤ i, j ≤ d. You will construct such a basis in

2.3. Sublattices

Implicitly we have met already sublattices, which are subsets of lattices respecting the
group structure, when we considered lattices Λ generated by a basis of integral vectors.
Such vectors are contained in the integer lattice Zd. With the following definition we
want to formalize this and explore relations between a lattice and its sublattices.

Definition 2.24. Let Λ ⊂ Rd be a lattice. Any lattice Γ ⊆ Λ is a sublattice of Λ.
Sets of the form a+Γ := {a+ x | x ∈ Γ} for some a ∈ Λ are the cosets of Γ in Λ, and

the set of all cosets is Λ/Γ.
The size [Γ : Λ] := |Λ/Γ| is the index of Γ in Λ.

See Figure 2.6 for an example of a sublattice of index 2 in Z2.

Definition 2.25. Let Λ ⊆ Rd be a lattice of full rank with basis B. Then

det Λ := |det B|

is the determinant of Λ.

This definition assumes that we have chosen a basis of Rd and written the basis of the
lattice in these coordinates to obtain a matrix of column vectors. We choose the usual
basis of unit vectors in Rd in all of the following. With another choice some results
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below may need an additional factor det T for a transformation mapping the standard
basis into the chosen one.

Problem 2.19
Problem 2.20 Observe, that the fundamental parallelepiped of Λ depends on the chosen lattice basis.

However, by Lemma 2.15 and Corollary 2.17 the determinant is independent of the
particular choice. The determinant det Λ also coincides with the usual Euclidean volume
of the fundamental parallelepiped. Hence, also the volume of Π(B) is also independent
of the chosen basis B.

Problem 2.21
The following proposition connects the index and the determinant with the number

of lattice points in the fundamental parallelepiped of the lattice in some basis.

Proposition 2.26. Let Λ ⊆ Zd be a sublattice of rank d, and let B := {b1, . . . ,bd } be a
basis of Λ with fundamental parallelepiped Π(B). Then

|Zd/Λ| = |Π(B) ∩Zd| = det Λ .

See Figure 2.7 for an illustration.

Proof. Let v,w ∈ Π(B) ∩Zd with v ̸= w. Then v ̸∈ w+Λ by Lemma 2.6, so cosets for
different points in Π(B) ∩Zd are disjoint, and we have at least |Π(B) ∩Zd| cosets. On
the other hand, the union of the cosets for points in Π(B) ∩Zd covers Zd. This implies
the first equality.

For the second we note that the k-th scaling of Π(B) is the disjoint union of translates
of the fundamental parallelepiped Π(B),

k ·Π(B) =
⋃̇︂

0≤mi<k
1≤i≤d

(m1b1 + · · ·+mdbd) + Π(B) .

This follows with the same arguments as for Corollary 2.8. Further, we clearly have

| (v +Π(B)) ∩Zd| = |Π(B) ∩Zd|

for any v ∈ Zd. Hence,

| (k ·Π(B)) ∩Zd| = kd|Π(B) ∩Zd|

We compute the volume of the fundamental parallelepiped by covering it with a collec-
tion of small cubes as in Proposition A.4. This implies

vol(Π(B)) := lim
k→∞

1

kd
|Π(B) ∩

(︁
1
kZ
)︁d |

= lim
k→∞

1

kd
|k ·Π(B) ∩Zd|

= lim
k→∞

1

kd
kd|Π(B) ∩Zd| = |Π(B) ∩Zd| .

Finally, by definition, vol Π(B) = det(B) = det Λ. This proves the result.
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Figure 2.7.: The lattice spanned by
[︁−2

2

]︁
and [ 11 ] has index 4 in Z2, determinant 4, 4 points in

the fundamental parallelepiped and 4 cosets (drawn in different colors). Each
coset has a unique representative in the fundamental parallelepiped.

More generally we can prove the following with the same arguments as in the proof
of Proposition 2.26.

Corollary 2.27. Let Γ ⊆ Λ be a sublattice of rank d in a lattice Λ, and let the columns of
B be a basis of Γ with fundamental parallelepiped Π(B). Then

|Λ/Γ| = |Π(B) ∩ Λ| = det Γ

det Λ
.

Proof. Let B0 be a basis of Λ. We can apply the transformation T given in matrix
form by B−1

0 to both lattices. Then T (Γ) is still a sublattice with the same index, and
x ∈ Π(B) ∩ Λ if and only if Tx ∈ Π(T B) ∩ TΛ. Further,

det TΓ

det TΛ
=

det T B

det T B0
=

det T · det B
det T · det B0

=
det B

det B0
.

T maps Λ into the standard lattice, so the claim follows from the previous Proposi-
tion 2.26.

A useful fact about a sublattice Γ of a lattice Λ is the observation that a suitable scaling
of the Λ is in turn a sublattice of Γ. You will prove the following fact in Problem 2.22.
In the next section we will see that we can even find bases of both lattices in such a way
that the i-th basis vector of Γ is an integral multiple of the i-th basis vector of Λ. This
much stronger observation will of course also imply the next proposition.

Problem 2.22

Proposition 2.28. Let Γ be a sublattice of Λ of index D := |Γ/Λ|. Then

DΛ ⊆ Γ ⊆ Λ ,

i.e. DΛ is a sublattice of Γ.

This gives a geometric interpretation of the fact used in the previous section in the proof
that the entries of all intermediate matrices in the computation of the Hermite normal
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form can be bounded by the greatest common divisorD of all maximal subdeterminants
ofA. Namely,D is the index of the lattice ΛA spanned by the columns ofA as a sublattice
of Zd, and so DZd is a sublattice of Λ. Hence, adding the columns Dei for 1 ≤ i ≤ d of
A does not change the lattice ΛA, and we can use these lattice generators to reduce the
entries of intermediate results.

2.4. The Smith normal form

While the Hermite normal form is computationally important, the geometrically more
important canonical form is a variation of this, the Smith normal form.

Theorem 2.29. Let Γ ⊆ Λ be lattices with linΛ = lin Γ.
Then there is a basis b1, . . . ,br of Λ and integers k1, . . . , kr ∈ Z>0 with ki|ki+1 for

1 ≤ i ≤ d− 1 such that k1b1, . . . , krbr is a basis of Γ.

Proof. We proceed by induction on r := rankΛ = rankΓ. For r = 1, a Λ-primitive
vector has a positive integral multiple which is Γ-primitive.

Assume r ≥ 2. By assumption, Λ and Γ span the same linear spaces, so for every
v ∈ Λ there is a positive integer k so that kv ∈ Γ. Among all Λ-primitive vectors we
choose b1 ∈ Λ and k1 ∈ Z>0 with k1b1 ∈ Γ so that k1 is minimal with this property.
Set U := linb1. Then b1 is a basis for U ∩ Λ, and k1b1 is a basis for U ∩ Γ. By

Proposition 2.10, Γ/U ⊆ Λ/U are lattices of rank r − 1. By induction, there is a basis
b2, . . . ,br of Λ/U together with positive integers k2, . . . , kr so that k2b2, . . . , krbr is a
basis for Γ/U , and ki|ki+1 for 2 ≤ i ≤ r − 1.
Let bi ∈ Λ be representatives of bi and ci ∈ Γ of kibi for i = 2, . . . , r. By Proposi-

tion 2.10,

b1, . . . ,br is a basis for Λ, and
k1b1, c2, . . . , cr is a basis for Γ .

By adding a suitable multiple of k1b1 ∈ Γ to the ci we may assume that

ci = kibi + lib1

for 0 ≤ li < k1 and for all i = 2, . . . , r. We can write ci similarly as a positive integral
multiple of some Λ-primitive vector in the form

ci = miai .

The two expressions for ci together imply either li = 0 or mi ≤ li < kr. However, the
latter is in contradiction to the minimality of kr, so li = 0.

Now assume that there is i such that k1 ̸ |ki, and let g be the greatest common divisor
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with factors p1, pi such that k1 = gp1 and ki = gpi. Then

c =
1

g
(k1b1 + kibi) = p1b1 + pibi

is a primitive lattice vector in Λ and gc ∈ Γ. But 0 < g < k1, which contradicts the
choice of k1.

The theorem can also be proved using coordinates in a similar way as for the Hermite
normal form. You may try this with Problem 2.23. We give the resulting matrix form
with the following theorem.

Theorem 2.30 (Smith normal form). Let A ∈ Zd×m be a matrix of full row rank.
Then there are unimodular matrices L ∈ Zd×d and R ∈ Zm×m such that S =
(sij)1≤i≤d,1≤j≤m := LAR satisfies

(i) sij = 0 for i ̸= j,
(ii) sii > 0 for 1 ≤ i ≤ d, and
(iii) si−1,i−1 divides sii for 2 ≤ i ≤ d.
The matrix S is unique, the companion matrices L and R are not.

Problem 2.23
The last statement about the non-uniqueness of L and R follows from the observation

that there are unimodular matrices that commute with S. When actually computing
smith normal forms with their companions, this fact can be used for an attempt to keep
entries in L and R small. This is in fact crucial if we want to compute the Smith normal
form in polynomial time. The proof of this is essentially the same as for the Hermite
normal form.

The standard form of an integral matrix obtained with the Smith normal form implies
Theorem 2.29, as you will prove in Problem 2.24.

Problem 2.24

2.5. The Dual

Definition 2.31. Let Λ ⊂ Rd be a lattice of full rank. The set

Λ⋆ := {α ∈ (Rd)
⋆ | α(a) ∈ Z for all a ∈ Λ}

is the dual lattice to Λ.
In the usual identification of (Rd)

⋆ with Rd via the scalar product we can write

α(a) = ⟨α,a ⟩ .

Given a basis b1, . . . ,bd of Λ we can define a corresponding dual basis α1, . . . , αd via

αi(bj) =

{︄
1 if i = j, and
0 otherwise .
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This is a linear basis of the dual vector space (Rd)
⋆ by Problem 2.25.

Problem 2.25
These vectors also span Λ⋆ as a lattice, which you prove in Problem 2.26. Hence, the

dual lattice is indeed a lattice. Further, dualizing twice gives us back the original lattice,
Λ⋆⋆ = Λ, as b1, . . . ,bd is a dual basis to α1, . . . , αd.Problem 2.26

The following proposition shows that determinant of the dual lattice Λ⋆ is determined
by that of Λ.

Proposition 2.32. det(Λ) det(Λ⋆) = 1 .

Proof. See Problem 2.27.

Problem 2.27
For a Λ-rational subspace L we can define the quotient space M := Rd/L with

projection π : Rd → M and the orthogonal complement M0 ⊆ Rd of L w.r.t. the
standard scalar product. We can naturally identify M and M0, as any element of M
has a unique representative in M0. This defines a volume on M , so we may define the
determinant of the lattice π(Λ) as the volume of a fundamental parallelepiped in M .

Further, let L⊥ ⊆ (Rd)
⋆ be the annihilator, i.e. the space of all functionals that vanish

on L. We obtain a lattice in L⊥ as Λ⋆ ∩ L⊥. You will prove the following relations with
Problem 2.29.

Problem 2.29

Proposition 2.33. (i) The projection Γ := π(Λ) of Λ onto M is a lattice in M of rank
d− k with

det Γ · det (Λ ∩ L) = det Λ .

(ii) For the dual lattice we have

Γ⋆ = Λ⋆ ∩ L⊥ .

and

det (Λ ∩ L) = det Λ · det Γ⋆ .

Proof. See Problem 2.29 .

2.6. Problems

2.1. By definition, a subset Λ ⊆ Rd is discrete if for all x ∈ Λ there is ε > 0 such that Bε(x)∩Λ = {x}.
Show that if Λ is a lattice, then we can choose the same ε for all x ∈ Λ.

2.2. Show that a discrete additive subgroup in Rd is closed (as a subset in the usual topology induced
by some norm ∥.∥).

2.3. Let Λ be a discrete closed subset ofRd (for instance, a discrete additive subgroup as in Problem 2.2)
and B a bounded subset of Rd.
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Show that Λ ∩B is a finite set. Give an example that shows that this is not correct for arbitrary
discrete subsets.

2.4. Find an example of a finite, but linearly dependent, set A of vectors such that ΛA is not a lattice.

2.5. Show that the collection A of the vectors ei − ei+1 for 1 ≤ i ≤ d− 1 is a basis of the lattice A and
that A ∪ { ed−1 + ed } is a basis of D.

2.6. In Example 2.2 we have shown that the root systemsA andD are lattices. Here we want to consider
the remaining root systems.
The root system B spans the lattice Zd, and that of the root system C coincides with the one of D.
The root system E7 spans the set

{︁
x ∈ R7 }︁ 2x ∈ Z7 and

d∑︂
i=1

xi is even .

Show that this is a lattice. For even d we define

D
1/2
d := Dd +

(︃
1

2
1+Dd

)︃
Show that this is a lattice. For d = 8 this is the root system E8. E7 is the sublattice of E8 of all
vectors perpendicular to one of the generators of E8.
There are 3 more root systems E6, F and G.

2.7. Let Λ ⊆ Rd be a lattice with fundamental parallelepiped Π. Show that the lattice translates of Π
cover Rd without overlap, i.e. ⋃︂

x∈Λ

(x+Π) = R
d

and (x+ Λ) ∩ (y + Λ) = ∅ for x, y ∈ Λ, x ̸= y.

2.8. Show that any full-dimensional Λ-rational cone contains a lattice basis.
Hint: Use induction over the dimension.

2.9. Let Λ ⊆ R2 be a 2-dimensional lattice. Show that a pair of vectors b1,b2 is a basis of Λ if and only
if

conv(0,b1,b2) ∩ Λ = { 0,b1,b2 } .

Can you extend this to higher dimensions?

2.10. A lattice triangle is a triangle ∆ ⊆ R2 whose vertices are in Z2.
Prove that any lattice triangle with only three lattice points has area 1/2.
This is the Theorem of Pick.

2.11. Let P be a lattice polygon, i.e. a convex polygon in R2 whose vertices are in Z2. Let a be its
volume, i the number of integral points in the interior of P and b the number of integral points on
the boundary (including the vertices). Prove that

a = i +
b

2
− 1

This is Pick’s Formula.
(i) Conclude that the number |k · P ∩Z2| of integral points in the k-th multiple of P is given by

a quadratic polynomial in k.
(ii) Show that the same is true for the number of interior integral points in k · P .
(iii) Is there a similar formula for polytopes in dimension 3?

2.12. Prove Proposition 2.13.
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Hint: For one direction consider
∑︁d

i=j λibi and use that you can divide the coefficients by
the greatest common divisor to obtain a point in the linear span of A.
For the other direction use the fact that lattice points in the linear span of A have two
representations and compare coefficients.

2.13. Let Λ = Z2 be the standard lattice.
Can you construct an equilateral lattice triangle, i.e. an equilateral triangle whose vertices are
points in Z2? Can you do it, if you are allowed to choose a different lattice?

2.14. Let ∆ be a lattice triangle, i.e. a triangle whose vertices are lattice points, with one lattice point in
the interior and no other lattice points on the boundary except the vertices.
Show that the interior lattice point is the centroid of the triangle.
Is a similar statement also true in higher dimensions?

2.15. Let A ∈ Qd×m of full row-rank.

▷ Show that there is a unimodular matrix U ∈ Zm×m such that AU is in Hermite normal form.
▷ Show that H is unique.

2.16. Show that the Hermite normal form can be computed in polynomial time.

2.17. Let A ∈ Zd×m and b ∈ Zd and consider the system Ax = b of linear Diophantine equations.

▷ Show that the system Ax = b has an integral solution if and only if ytb is an integer for all
yt such that ytA is integral.

▷ Show that, if the system Ax = b has an integral solution x0, then there are linearly
independent x1, . . . ,xk ∈ Zd for k = m− rank A such that

{︂
x ∈ Zd : Ax = b

}︂
=

{︄
x0 +

k∑︂
i=1

λixi : λi ∈ Z for 1 ≤ i ≤ k

}︄
. (2.2)

▷ Show that the representation of (2.2) can be found in polynomial time.

2.18. Show that there exist lattices bases b1, . . . ,bd of a lattice Λ, such that bi ∈ { 0,±1 }d for 1 ≤ i ≤ d,
but but all basis vectors in the Hermite normal form H = (hi)1≤i≤d have length

∥hi∥ ≥ 2Ω(d) ≫
√
d ≥ ∥vbj∥

Additionally, you may think about the following two questions.
▷ Can you make the Hermite normal form even longer?
▷ Can you also find a basis with bj ∈ { 0, 1 }d with this property?

Hint: You may start by finding a basis bj such that at least one of the hi has norm at least
2Ω(d).

2.19. Let Λ be a lattice of full rank and B linearly independent lattice vectors that minimize det B. Then
B is a lattice basis.

2.20. Let a1, . . . ,ak ∈
(︁
Zd
)︁⋆ and m1, . . . ,mk ∈ Z for some k > 0. We define

Λ :=
{︂
z ∈ Zd : ai(z) ≡ 0 (mod mi) for 1 ≤ i ≤ k

}︂
.

Show that Λ is a lattice and that det Λ <
∏︁k

i=1mi.

2.21. Let Λ be a lattice with basis B. Show that for any ε > 0 there is a radius r depending on ε, d, and
B, so that

(1− ε) · vol(Br(0)) ≤ |Br(0) ∩ Λ| det Λ ≤ (1 + ε) · vol(Br(0))
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2.22. Let Γ be a sublattice of Λ of index D := |Γ/Λ|. Then

DΛ ⊆ Γ ⊆ Λ ,

i.e. DΛ is a sublattice of Γ.

2.23. Prove Theorem 2.30

2.24. Prove Theorem 2.29 using the Smith normal form from Theorem 2.30.

2.25. Let b1, . . . ,bd be a basis of Rd. For x =
∑︁d

i=1 λibi ∈ Rd we define functionals b∗
i (x) = λi for

1 ≤ i ≤ d.
Show that b∗

1, . . . ,b
∗
d is a basis of (Rd)∗.

2.26. Let b1, . . . ,bd be a lattice basis of the lattice Λ in Rd. Then b∗
1, . . . ,b

∗
d is a lattice basis of the

lattice Λ∗ in (Rd)∗.

2.27. Prove Proposition 2.32.

2.28. Show that for arbitrary subspaces L ⊆ Rd the projection of a lattice in Rd onto L need not be a
lattice.

Hint: d = 2 suffices for an example.

2.29. Prove Proposition 2.33
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3. Geometry of Numbers

Geometry of numbers deals with the relation between convex bodies and lattices. The
basic question of this area asks for connections between the number of lattice points of
a convex body and its area.
Research on this started with the work of Hermann Minkowski, who used convex

geometric methods, in particular his fundamental theorem, which is now known as
Minkowski’s Theorem (see Corollary 3.3), in order to bound class numbers in algebraic
number theory. In the 20th century this new research field, the Geometry of Numbers,
has grown into an established field of research with connections into many branches of
mathematics.
The theory deals with general convex bodies. Our applications in later chapters for

the results that we discuss in this chapter are mostly to polyhedra. So we will narrow
our focus to polyhedra in the the presentation whenever it makes the statements or
proofs easier.

3.1. Minkowski’s Theorems

Minkowski’s two theorems are the basis of this whole branch of discrete mathematics.
Both essentially tell us something about generators of the lattice and prove that we
can find such generators with a bounded Euclidean length. Constructing such bases,
or at least finding one short direction in a lattice is the key ingredient to solve integer
programming in polynomial time in fixed dimension.
With the theory developed in this chapter we will obtain quite powerful bounds on

the lengths of short lattice vectors. However, most of the proofs are not constructive.
Thus, we cannot immediately use them in the context of algorithms. We will have to
reconsider some of the results in later chapters to come up with a construction of short
vectors. This will come at the price of much weaker bounds, which, nevertheless, will
still be sufficient to prove polynomiality.
Throughout this chapter Λ ⊂ Rd is a lattice of rank d (the reader may think of Zd).

3.1.1. Minkowski’s First Theorem

Definition 3.1. A subset K ⊆ Rd of Rd is centrally symmetric if −x ∈ K for all x ∈ K.
K is a convex body if it is bounded and convex.

The set of convex bodies in Rd is denoted by C, and the subset of centrally symmetric
convex bodies is C0.
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Note that the definition of the term convex body slightly varies in the literature.
With the following theorem we state a first fundamental correspondence between

lattice points in a centrally symmetric convex body and its volume.

Theorem 3.2 (van der Corput, 1935). Let K ⊂ Rd be a centrally symmetric convex set.
Then

vol(K) ≤ 2d |K ∩ Λ| det Λ .

The inequality is strict for compact K.

Minkowski’s First Theorem, that he proved almost forty years earlier, is now a direct
corollary of this. This result is the fundamental theorem in this area and it is considered
to be the starting point of the theory. We state it before we give a proof of van der
Corput’s Theorem (Theorem 3.2).

Corollary 3.3 (Minkowski’s First Theorem, 1898). Let K ⊆ Rd be convex and centrally-
symmetric with volK > 2d detΛ.
Then there exists a ̸= 0 in K ∩ Λ. If K is also compact, then it suffices to assume

volK ≥ 2d detΛ.

Equivalently we can also state that any centrally symmetric convex body K such that
int (K) ∩ Λ = {0} has volume bounded by 2d det Λ. So, intuitively, if we have a convex
body of volume exactly 2d det Λ, then all nonzero lattice points in K must lie on the
boundary. You will make this and similar observations more precise with Problem 3.1,
Problem 3.2, and Problem 3.3.

Problem 3.1
Problem 3.2
Problem 3.3

For the proof of van der Corput’s Theorem (Theorem 3.2) we will use the following
lemma. Its proof uses a nice pigeonhole-style argument to show that the intersection of
a sufficiently large set with some affine translate of the lattice is large.

Lemma 3.4 (Generalized Blichfeldt’s Theorem, 1914). Let S ⊆ Rd be a (Jordan measur-
able) set with vol(S) > m det(Λ) for a positive integer m.

Then there exist m+ 1 pairwise distinct points p1, . . . ,pm+1 ∈ S such that pi − pj ∈ Λ
for all i, j.

Proof. By considering a sufficiently large subset, we may assume that S is bounded.
Choose a closed fundamental parallelepiped (see Definition 2.5) Π := Π(Λ) of Λ. Note
that still detΛ = volΠ. For any x ∈ Λ let

Sx := {y ∈ Π | x+ y ∈ S} = Π ∩ (S− x)

Note that Sx ̸= ∅ if and only if x ∈ (S − Π) ∩ Λ. For an illustration of this and the
following argument see also Figure 3.1.
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(a) The set S and the fundamental par-
allelepiped Π

y

(b) And the shifted intersections with
the fundamental parallelepiped

x1

x2x3

(c) Translating the point y gives the
desired points xi

Figure 3.1.: Illustrating the proof of Generalized Blichfeldt’s Theorem (Lemma 3.4)

As S − Π is bounded, Problem 2.3 implies that there are only finitely many x ∈ Λ
with Sx ̸= ∅. This implies that the function

f :=
∑︂
x∈Λ

idx ,

where idx is the indicator function on Sx (i.e., it evaluates to 1 on Sx and 0 elsewhere),
is well-defined. Using that fundamental parallelepiped tile the space (Corollary 2.8) we
compute ∫︂

Π
f dx =

∑︂
x∈Λ

∫︂
Π
idx dx =

∑︂
x∈Λ

vol(Sx)

=
∑︂
x∈Λ

vol(Π ∩ (S− x)) =
∑︂
x∈Λ

vol(S ∩ (x+Π)) = vol(S)

> m det Λ =

∫︂
Π
m dx

Hence, there is y ∈ Π with f(y) > m. Since f only evaluates to integers, we get
f(y) ≥ m+1. In particular, there exist x1, . . . ,xm+1 ∈ Λ such that y ∈ Sx1∩· · ·∩Sxm+1 .
Therefore, defining

pi := y + xi ∈ S for i = 1, . . . ,m+ 1

yields m+ 1 points with the desired properties.

With this preparation we can prove van der Corput’s Theorem (Theorem 3.2) and
Minkowski’s First Theorem (Corollary 3.3).

Proof of van der Corput’s Theorem (Theorem 3.2). We will give an indirect proof. Let us
assume that

vol(K) > m2d det(Λ)

for a positive integer m. Our goal is to show that there exist m distinct non-zero lattice
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points x1, . . . ,xm in K. Together with the origin this will give m+1 lattice points in K.
Let T := 1

2K. Then volT = volK
2d

> m detΛ. Hence, by the Generalized Blichfeldt’s
Theorem (Lemma 3.4), there are m + 1 distinct points p1, . . . ,pm+1 ∈ T such that
pi − pj ∈ Λ for all i, j. Choose xi := pi − pm+1 for i = 1, . . . ,m as the desired lattice
points. Note that xi = pi + (−pm+1) ∈ T + T = K. This proves the main part of the
theorem.
For the second claim assume that K is compact and volK = 2d detΛ. Now, since

K is compact, we can find 0 < ϵx < 1 for each x ∈ 2K\K such that x ̸∈ (1 + ϵx)K.
Boundedness of 2K implies that 2K ∩ Λ is finite (Problem 2.3).
Let ϵ be the minimum over ϵx for all x ∈ (2K\K) ∩ Λ. This choice ensures that

(1 + ϵ)K and K have the same set of lattice points (note that αK ⊆ α′K for 0 < α < α′

as K is centrally-symmetric and convex). Since vol((1 + ϵ)K) > 2d detΛ, the result
follows.

Centrally-symmetric convex bodies with the origin as their only interior lattice point
which have maximal volume 2d det(Λ) are also called extremal bodies.

Problem 3.4
Minkowski’s theorem does not tell us how to find the integral point, it just tells us it

exists. However, finding a short lattice vector is a very important problem in integer
optimization and in cryptography. Good surveys are, e.g. in the book of Grötschel et.
al1 and the two books of Schrijver.2 There are in fact polynomial time algorithms to
explicitly find such a point (if the dimension is fixed), but only for a much larger volume
bound. We will address this problem in the next two chapters.

Although we cannot easily compute a shortest vector of a lattice, Minkowski’s Theorem
at least allows us to estimate the length of such a vector.

Proposition 3.5. Let Λ ⊂ Rd be a lattice. Then there is a vector v ∈ Λ \ {0} such that

∥v∥ ≤
√
d(detΛ)

1/d .

Note that the right hand side clearly has the correct exponent. If we scale the lattice
Λ by a factor of α, then also the length of a shortest vector scales with α, but the volume
scales with αd.

Proof. Let Vd be the volume of the d-dimensional unit ball Bd and choose

α := 2

(︃
detΛ

Vd

)︃1/d

. (3.1)

Then

vol(αBd) = αdVd ≥ 2d detΛ .

1Grötschel, László Lovász, and Alexander Schrijver, Geometric algorithms and combinatorial optimization.
2Alexander Schrijver, Combinatorial optimization. Polyhedra and efficiency (3 volumes). Alexander
Schrijver, Theory of linear and integer programming.
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λ2

λ1

Figure 3.2.: A triangle in the plane together with two scaled copies with scaling factors λ1 and
λ2.

By Minkowski’s First Theorem (Corollary 3.3) there is a non-zero lattice point v in αBd,
hence, of length at most α. We need to estimate the size of α.
The volume of the unit ball is

Vd :=
π⌊d/2⌋2⌈d/2⌉∏︁

0≤i<d/2(d− 2i)
≈
(︃
2πe

d

)︃d/2

≥
(︃
4

d

)︃d/2

,

see Problem 3.5. The first approximation follows from Stirling’s formula d! ≈
√
2πdd

e

d

and the second from 2πe ≥ 4. Inserting this into (3.1) proves the result.
Problem 3.5

Using a more careful analysis one can improve the bound to

(1 + o(1))
√︁

2d/eπ (det Λ)
1/d .

On the other hand, we know that there are lattices which essentially realize this bound,
i.e. there are lattices with shortest vector of length Ω(

√
d(detΛ)1/d).

The bound given by Proposition 3.5 can be arbitrarily bad already in dimension 2.
This can already be seen from the simple basis e1 and Me2 for some M ∈ Z>0. The
lattice contains a vector of length 1, while the determinant is M .

3.1.2. Successive Minima

Definition 3.6. Let K ∈ C0. For 1 ≤ k ≤ d we define the k-th successive minimum of K
to be the number

λk := λk(K) := inf
λ>0
{dim lin(λK ∩ Λ) ≥ k}.

For K = Bd(0) we call λk := λk(Bd) the k-th successive minimum of the lattice Λ.

Figure 3.2 shows an example for λ1 and λ2 in dimension 2. The successive minima
satisfy

0 < λ1 ≤ λ2 ≤ · · · ≤ λd ,
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where the first inequality follows as Λ is discrete. If v ∈ Λ \ {0} is a shortest non-zero
lattice vector in the norm defined by K, then

λ1(K) = ∥v∥K .

There is no similar simple relation for the higher successive minima. In the standard
Euclidean norm we obtain a bound for λ1 = λ1(Bd(0)) from Proposition 3.5.

Corollary 3.7. Let Λ ⊂ Rd be a lattice. Then

λ1 ≤
√
d(detΛ)

1/d .

The following corollary is equivalent to Minkowski’s First Theorem (Corollary 3.3).

Corollary 3.8. Let K ∈ C0. Then

λ1(K)d volK ≤ 2d detΛ .

All theorems above deal with centrally symmetric convex bodies, and the results are
wrong for more general sets. One reason for this is the connection of compact centrally
symmetric convex sets 3to metric geometry, which allows us to obtain bounds on the
norm. More specifically, any compact centrally symmetric convex body defines a norm
∥.∥K on Rd via

∥x∥K := max
µ

(µx ∈ K ) ,

and, conversely, any norm ∥.∥ is of this form, with

K := {x : ∥x∥ ≤ 1 } .

Proposition 3.9. Let K ∈ C0 be compact and Λ ⊆ Rd be a lattice with successive minima
λ1, . . . , λd with respect to K. Then there is a (vector space) basis v1, . . . ,vd ∈ Λ such that
∥vi∥K = λi for 1 ≤ i ≤ d.

Proof. Pick some index 1 ≤ j ≤ d. By definition of λj there is a sequence (wi)i≥1 ⊆ Λ of
lattice vectors such that limi→∞ ∥wi∥ = λj . For sufficiently large i we have wi ∈ 2K. K
is compact, so we can find a convergent sub-sequencewik , converging to some vectorw.
We need to prove thatw ∈ Λ. By definition, limk→∞ ∥w −wik∥K = 0, so for sufficiently
large k

∥w −wik∥K < λ1/2 .

The triangle inequality then implies for sufficiently large k, l

∥wik −wil∥K ≤ ∥w −wik∥K + ∥w −wil∥K < λ1 .
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Figure 3.3.: The lattice points determining the successive minima need not be a lattice basis.
In the polytope P := conv (±e2,±e3,±(e2 + e3 + 2e1)) the vertices in the
positive orthant determine the first linearly independent set of lattice points, but
they do not span Z3.

But wil −wil is a lattice vector, so wik = wil for sufficiently large k, l. Hence, wik = w
for sufficiently large k, and w is a lattice vector.

The vectors found in the previous proposition need not be a basis of the lattice Λ. For
an example, the lattice polytope

P := conv (±e2,±e3,±(e2 + e3 + 2e1))

in the lattice Z3 is centrally symmetric and its lattice points are the vertices and the
origin. See Figure 3.3.
Hence, the successive minima are λ1 = λ2 = λ3 = 1, but no subset of the vertices is

a lattice basis of Z3. You will see in Problem 3.6 that also a set of lattice vectors of
Problem 3.6length λ1, . . . , λd is not a lattice basis in general. However, Problem 3.8 shows that this

is true in dimensions up to 4.
Problem 3.7
Problem 3.8We can, however, achieve the following much weaker result on the connection of

successive minima and a lattice basis. You will prove this in Problem 3.9.

Proposition 3.10. There is a basis B = {b1, . . . ,bd } of Λ such that

Λ ∩ λi intK ⊆ lin (b1, . . . ,bi−1) ∩ Λ .

Problem 3.9
The following result is a cornerstone of the theory of successive minima. We will not

prove this much stronger theorem here.

Theorem 3.11 (Minkowski’s Second Theorem, 1896). Let K ∈ C0. Then

1

d!
· 2d detΛ ≤ λ1 · · ·λd volK ≤ 2d det Λ.
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The proof of the lower bound is simple, and you will do this in Problem 3.10, where
you also show that the bound is tight. A proof of the upper bound, which is much more
involved, can be found in the paper of Henk.3

Problem 3.10
Corollary 3.7 bounds the first successive minimum by d and the determinant. We can

use Minkowski’s Second Theorem (Theorem 3.11) to show that the same bound also
holds for the larger geometric average of all successive minima.

Corollary 3.12. Let Λ ⊂ Rd be a lattice. Then(︄
d∏︂

i=1

λi

)︄1/d

≤
√
d(detΛ)

1/d .

Proof. Recall that λi = λi(Bd(0)), so we want to use Minkowski’s Second Theorem
(Theorem 3.11) for K = Bd(0). We use the same lower bound for the volume of Bd(0)
as in Proposition 3.5,

Vd ≥
(︃
4

d

)︃d/2

= 2d
1
√
d

d
.

Thus,

λ1 · · ·λd · 2d
1
√
d

d
≤ λ1 · · ·λdVd ≤ 2d det Λ .

Rearranging the inequality and taking the d-th root gives the claim.

Historically, the length of a shortest lattice vector in the Euclidean length was studied
first in the context of quadratic forms. Hermite4 studied the quotient

γ(Λ) :=

(︄
λ1(Λ)

(det Λ)
1/d

)︄2

,

which is now known as the Hermite factor of the lattice. The Hermite constant is the
supremum

γd := sup
Λ

γ(Λ) .

It follows from Proposition 3.5 that

γd ≤ d .

The precise value is only known in a few cases for small d. See Table 3.1. γ2 =
√
3
2 is

realized by the hexagonal lattice, or, as historically first descovered, by the lattice of
3Henk, “Successive minima and lattice points”.
4Hermite, “Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des
nombres”.
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d 1 2 3 4 5 6 7 8 24

γdd 1 4
3 2 4 8 64

3 64 28 424

Table 3.1.: Known values of the Hermite constant. Note that the table gives γd
d instead of γd.

Eisenstein integers.
Problem 3.11

* 3.1.3. The Lattice Point Enumerator

Betke, Henk, and Wills5 conjectured a similar result as Minkowski’s Second Theorem
also for the lattice point count. As far as we know this conjecture is still open.

Conjecture 3.13 (Betke, Henk, Wills, 1993). Let K ∈ C0. Then

|K ∩Zn| ≤
d∏︂

i=1

⌊︃
2

λi
+ 1

⌋︃
.

Some evidence for the correctness of the conjecture is given by the observation that
the corresponding analogue for Minkowski’s First Theorem is true.

Theorem 3.14 (Betke, Henk, Wills, 19936). Let K ∈ C0. Then

|K ∩Zn| ≤
⌊︃
2

λ1
+ 1

⌋︃d

Proof. We follow the original proof. Let m :=
⌊︂

2
λ1

+ 1
⌋︂
. Suppose there are x,y ∈ K,

x ̸= y such that

xi ≡ yi (mod m) for 1 ≤ i ≤ d .

We consider the point

z :=
1

2

(︃
2

m
x

)︃
+

1

2

(︃
2

m
y

)︃
=

1

m
(x− y) .

By assumption, each entry of x− y is divisible by m, so z is a lattice point. By choice of
m we have 2

m < λ1, so z ∈ λ1 int K ∩Zd and non-zero. This contradicts the definition
of λ1, so there are no two points in K whose difference is m times a lattice vector.
The pigeonhole principle implies that there can be at most md different points in K

that are not congruent modulo m. This implies the theorem.
5Betke, Henk, and Wills, “Successive-minima-type inequalities”.
6Betke, Henk, and Wills, “Successive-minima-type inequalities”.
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Later, Henk7 verified the conjecture with a weaker bound using Proposition 3.10

Theorem 3.15 (Henk 2007).

|K ∩Zn| ≤ 2d−1
d∏︂

i=1

⌊︃
2

λi
+ 1

⌋︃
.

Proof. Set

αi :=

⌊︃
2

λi
+ 1

⌋︃
.

Then αi is the smallest integer such that

2

αi
> λi ,

and α1 ≥ α2 ≥ · · · ≥ αd. Choose a basis b1, . . . ,bd as in Proposition 3.10 and choose
numbers k1 ≥ . . . ≥ kd−1 ≤ kd := 1 such that ηi := 2kiαd satisfies

ηd := αd and αi ≤ ηi ≤ 2αi

for 1 ≤ i ≤ d− 1. The ηi satisfy

ηk|ηj for k ≥ j .

Now consider the lattice

Λ′ :=
⨁︂

Zηibi .

We want to show that Λ′ ∩ 2K = {0 }. Assume not, and let u ∈ Λ′ with ∥u∥K ≤ 2. We
can write u as

u :=

d∑︂
i=1

µiηibi

for some integers µ1, . . . , µd. Let i be the largest index with µi ̸= 0. As ηk divides
η1, . . . , ηi−1 we have 1

ηi
u ∈ Λ′, and so⃦⃦⃦⃦

1

ηi
u

⃦⃦⃦⃦
≤ 2

ηi
≤ 2

αi
≤ λi .

Hence, 1
ηi
u ∈ lin (b1, . . . ,bi−1), which is a contradiction to the choice of the basis.

Thus, the projection π : Rd −→ Rd/Λ′ is injective on K, so

|K ∩Zd| = |π(K ∩Zd)|

7Henk, “Successive minima and lattice points”, Thm 1.5.
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q

p1

2ε
Q−Q

p1 − qa1 ≤ ε

p1 − qa1 ≥ −ε

Figure 3.4.: The centrally symmetric convex body K. This is a cut off tube of width 2ε around
p− q · a = 0.

But π(K ∩Zd) ⊆ Λ/Λ′, so

|K ∩Zd| ≤ |Λ/Λ′| =
∏︂

ηi ≤ 2d−1
∏︂

αi .

3.1.4. Dirichlet’s Theorem

We want to discuss one application of Minkowski’s First Theorem (Corollary 3.3) in this
section. You can find another one in Problem 3.13.

Assume we are given a vector a ∈ [0, 1]d with entries ai ∈ R. We want to approximate
a with a rational vector a ∈ Qd with a denominator bounded by some given Q. This
is a common task in many applications, as computers cannot deal efficiently with non-
rational numbers (although we may represent some exactly using, e.g. field extensions).
On possible choice would be

a :=

⎡⎢⎣
⌈a1Q⌋

Q

...
⌈adQ⌋

Q

⎤⎥⎦ .

where ⌈x⌋ denotes rounding to the nearest integer. The rounding error with this choice
is at most 1

2Q . Can we do better? We may observe that we have not used the assumption
that the denominator should be at most Q. This, together with Minkowski’s First
Theorem (Corollary 3.3) sometimes allows a better approximation.

Theorem 3.16 (Dirichlet). For any a ∈ (0, 1]d and Q ∈ Z>0 there are p1, . . . , pd ∈ Z≥0

and q ∈ { 1, . . . , Q } such that

|pi
q
− ai| ≤

1

Q1/dq
for 1 ≤ i ≤ d .
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Proof. Let ε : − 1
Q1/d

and define

K :=
{︂
(p1, . . . , pd, q)

t ∈ Rd+1 : |pi − q · ai| ≤ ε for 1 ≤ i ≤ d and |q| ≤ Q
}︂
.

This set is defined by a finite set of linear inequalities, so it is a polyhedron. It is also
bounded and centrally symmetric, so a centrally symmetric convex body. See Figure 3.4
for an example. The volume is

vol K = 2Q · (2ε)d = 2Q

(︃
2

Q1/d

)︃d

= 2d+1 .

It follows from Minkowski’s First Theorem (Corollary 3.3) that K ∩Zd+1 \ {0} is not
empty. Pick any integral point (p1, . . . , pd, q) in this intersection. By symmetry, we may
assume that q ≥ 0. If q = 0, then |pi| ≤ ε < 1. This would imply pi = 0, which is not
possible. So q > 0 and

|pi − q · ai| ≤ ε .

Dividing both sides by q gives the desired approximation.

Problem 3.12
Problem 3.13

3.2. Coverings and Packings

For r > 0 and z ∈ Rd let

B◦
r(z) := {x ∈ Rd | ∥x− z∥ < r}

be the open ball of radius r around z. In this section we consider the configuration of all
translates of such a ball to all lattice points. We want to determine for which radii these
translates are pairwise disjoint or cover the whole space, and relations between these
two.
We start with the first and introduce the packing radius of a lattice, which, in plain

words, is the largest radius of a ball such that any two translates to a lattice point either
coincide or are disjoint.

Definition 3.17. Let Λ be a lattice in Rd. The packing radius is

ϱ(Λ) := sup
r>0

(︁
B◦

r(x) ∩B◦
r(y) = ∅ for all x,y ∈ Λ

)︁
,

i.e. the largest r > 0 such that the open balls of radius r around any two distinct lattice
points do not intersect.

Problem 3.14
See Figure 3.5 for some examples. You will prove the following connection between

the packing radius and the first successive minimum in Problem 3.14.
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(a) The standard lattice Z2 (b) The hexagonal lattice

Figure 3.5.: Examples of Packings in the square and hexagonal lattice

Proposition 3.18. Let Λ ⊆ Rd be a lattice. Then ϱ(Λ) = 1
2λ1.

Problem 3.16
Recall that in Definition 2.31 we have defined the dual of a lattice Λ to be the set of all

linear functionals that map lattice points to integers. This is itself a lattice Λ⋆ in
(︁
Rd
)︁⋆.

As with many other places where we have dual objects, transformations like scalings
induce the inverse operation on the dual, which connects invariants on the primal and
dual side. This is also true for the packing radius, as we prove with the next proposition.

Proposition 3.19. Let Λ be a lattice in Rd with dual lattice Λ⋆. Then

ϱ(Λ) · ϱ(Λ⋆) ≤ d/4 .

Proof. By Proposition 3.18 the packing radius is half the length of a shortest non-zero
lattice vector, and by Proposition 3.5 we can bound this length with

ϱ(Λ) ≤ 1

2

√
d(detΛ)

1/d ϱ(Λ⋆) ≤ 1

2

√
d(detΛ⋆)

1/d

both for Λ and its dual. The proposition now follows as detΛ · detΛ⋆ = 1.

Problem 3.17
The following statement is immediate from the previous two propositions.

Corollary 3.20. For any Λ we have λ1 · λ∗
1 ≤ d.

Banaszczyk has proved the much stronger result that we can replace one λ1 by λn.8
It follows from this corollary that if λ1 is large, say λ1 ≫ N for some N ≥ d, then the
corresponding value for the dual must be small, i.e. λ⋆

1 ≤ d/N. However, the converse is
not necessarily true, i.e. both λ1 and λ⋆

1 can be small, see Problem 3.18. Similarly, one
can show that λn and λ⋆

n cannot both be small at the same time, but they can both be
large, see Problem 3.19.

Problem 3.18
Problem 3.198W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal lattices in Rn. II. Application of

K-convexity”.
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Figure 3.6.: The covering radius of the standard lattice is
√
2/2.

Now we switch the view and want to find out how large we need to make the radius
of our balls so that the translates cover the whole space. This is captured with the next
definition.

Definition 3.21 (Covering Radius). Let Λ be a lattice in Rd of full rank. The covering
radius is

µ(Λ) := max
x∈Rd

d(x,Λ) ,

i.e. the largest possible distance between any point in Rd and its nearest lattice point.

See Figure 3.6 for an example. You should convince yourself that the covering radius
is indeed well-defined and finite. In particular, the maximum is attained for some point
x ∈ Rd (by a standard compactness argument).

Problem 3.20
Problem 3.21

Lemma 3.22. LetΛ be a lattice with successive minima λ1, . . . , λd and linearly independent
lattice vectors v1, . . . ,vd such that λi = ∥vi∥ for 1 ≤ i ≤ d. Then

µ(Λ) ≥ 1

2
∥vi∥ for 1 ≤ i ≤ d .

Proof. Let u = 1
2vd. Assume there is w ∈ Λ such that d(u,w) < 1

2 ∥vd∥. Then

∥w∥ ≤ ∥u∥ + d(u,w) < ∥vd∥ ,

so w cannot be linearly independent of v1, . . . ,vd−1 by the choice of vd. Hence, w is in
the span of v1, . . . ,vd−1. But then 2w − vd is linearly independent, and

∥2w − vd∥ = ∥2(w − u)∥ < ∥vd∥

again contradicting the choice of vd. Hence, d(u,Λ) = d(u,0) = 1
2 ∥vd∥. This implies

that

µ(Λ) ≥ 1

2
∥vd∥ ≥

1

2
∥vi∥

for 1 ≤ i ≤ d, where the latter follows from ∥vd∥ ≥ ∥vi∥ for all i.
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Corollary 3.23. The covering radius is bounded from below by half the last successive
minimum,

µ(Λ) ≥ 1

2
λd .

Problem 3.22
Problem 3.23
Problem 3.24Lemma 3.24. Let Λ be a lattice in Rd with dual lattice Λ⋆. Then

4µ(Λ) · ϱ(Λ⋆) ≥ 1

Proof. Let Λ be a lattice with successive minima λ1, . . . , λd and linearly independent
vectors v1, . . . ,vd ∈ Λ such that λi = ∥vd∥ for 1 ≤ i ≤ d. Let u be a shortest non-zero
lattice vector in Λ⋆. Proposition 3.18 and Lemma 3.22 imply for any 1 ≤ i ≤ d

4µ(Λ) · ϱ(Λ⋆) = 2µ(Λ) · ∥u∥ ≥ ∥vi∥ · ∥u∥ . (3.2)

The vectors v1, . . . ,vd are a basis, so for at least one i we have |vi(u)| ≥ 1. Hence, for
that i

∥vi∥ · ∥u∥ ≥ 1 ,

which, together with (3.2) implies the claim.

It follows from this lemma, that the product λ1 · λ⋆
d ≥ 1, see Problem 3.25. More

generally, one can also show that for any 1 ≤ k ≤ d

λk · λ⋆
d−k+1 ≥ 1 ,

see Problem 3.26.
Problem 3.25
Problem 3.26So if λd (or the covering radius µ ≥ λd/2) is small, then the dual minimum length

λ⋆
1 ≥ 1/λd must necessarily be large. Here, also the converse is true, as already noted

above, below Corollary 3.20. However, this result needs new methods for the proof.
The following theorem is the key ingredient for the flatness theorem that we will

prove in Section 3.3.

Theorem 3.25. Let Λ be a lattice in Rd with dual lattice Λ⋆. Then

1 ≤ 4µ(Λ) · ϱ(Λ⋆) ≤ d
3/2 .

Our proof of this theorem is based on an argument by Schnorr, Lagarias, and Lenstra.9

9J. C. Lagarias, H. W. Lenstra Jr., and C.-P. Schnorr, “Korkin-Zolotarev bases and successive minima of a
lattice and its reciprocal lattice”.
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Proof. The left inequality is Lemma 3.24.
We have to prove the right inequality. This is done by induction over d. For d = 1 we

have, for some λ > 0,

Λ = λZ and Λ⋆ = λ−1Z⋆ ∼= λ−1Z .

Thus, µ(Λ) = 1
2λ and ϱ(Λ⋆) = 1

2λ
−1, so that

µ(Λ) ϱ(Λ⋆) = 1
4 ≤

1
4 · 1

3/2 .

Now let d > 1. We choose a shortest non-zero lattice vector v ∈ Λ. Then ∥v∥ = 2 ϱ(Λ).
Let L be the orthogonal complement of v with projection π : Rd → L and Γ := π(Λ).
Then Γ is a lattice in L and Γ⋆ ⊆ Λ⋆ by Problem 2.29. Hence

ϱ(Γ⋆) ≥ ϱ(Λ⋆) . (3.3)

We now want to bound µ(Λ). For this, let x ∈ Rd, y = π(x) and u ∈ Γ a closest point
to y in L. Then

∥u− y∥ ≤ µ(Γ) .

Consider the line π−1(u). Any two neighboring lattice points of Λ on this line have
distance ∥v∥. Hence, we can pick a point w ∈ Λ ∩ π−1(u) such that

d(x,w + (y − u)) = ∥x− (w + (y − u))∥ ≤ 1

2
∥v∥ .

Using the right angled triangle x,w,w + (y − u) we compute

∥x−w∥2 ≤ ∥x− (w + (y − u))∥2 + ∥y − u∥2 .

Now x was chosen arbitrary, so we can assume it is a point with maximum distance to
the lattice and we can estimate (note that w need not be a lattice point closest to x)

µ(Λ)2 ≤ ∥x−w∥2 ≤ µ(Γ)2 +
1

4
∥v∥2 = µ(Γ)2 + ϱ(Λ)2 .

Hence, we obtain

µ(Λ)2 · ϱ(Λ⋆)2 ≤ µ(Γ)2 · ϱ(Λ⋆)2 + ϱ(Λ)2 · ϱ(Λ⋆)2

≤ µ(Γ)2 · ϱ(Γ⋆)2 + ϱ(Λ)2 · ϱ(Λ⋆)2

≤ 1

16
(d− 1)3 +

1

16
d2

≤ 1

16
d3 ,

where the second inequality follows from (3.3), the third from Proposition 3.19 and
induction. This proves the theorem.

Remark 3.26. We can refine the notion of the covering minima similarly to the sequence
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λ1, . . . , λd of successive minima and define the covering minimal µj of a convex body
K to be

µj(Λ,K) := inf
µ>0

((µK + Λ) ∩ T ̸= ∅ for any j-dimensional subspace T ) .

Then µ(Λ) = µd(Λ,Bd). For any convex body K we get a centrally symmetric convex
body K0 := K − K. let λ⋆

1 be the first successive minimum of Λ⋆ w.r.t. to the norm
defined by (K −K)⋆. Kannan and Lovasz10 show that

µ1(Λ,K) · λ⋆
1 = 1 .

3.3. Flatness Theorem

Playing around with two-dimensional convex sets the reader may get the impression
that a convex body without interior lattice points cannot be arbitrarily wide. Indeed
this is a fundamental fact in the geometry of numbers. The following considerations
are based on an argument given in Barvinok’s book.11

Definition 3.27. Let Λ ⊆ Rd be a lattice with dual lattice Λ⋆. Let K ⊂ Rd be a full-
dimensional convex body. The width of K with respect to a non-zero lattice vector a ∈ Λ⋆

is defined as

width(K; a) := max
x∈K

a(x)−min
x∈K

a(x).

We define the width of K with respect to Λ as

widthΛ(K) := inf(width(K; a) : a ∈ Λ⋆ \ {0}).

You will show in Problem 3.28 that for full-dimensional convex bodies the infimum
is actually a minimum, and in Problem 3.27 that the width of convex bodies with
dimension less than the ambient dimension is actually 0.

Problem 3.27
Problem 3.28
Problem 3.29

Recall that an ellipsoid is the image of a ball (in some norm) under an affine linear
map. See Definition A.7 for a full definition and for some properties that we need in
the following. Our approach to bound the lattice width of empty convex bodies will
proceed in three steps. We first prove it for balls, then extend to ellipsoids and finally
use Lemma A.11 to approximate an arbitrary convex body with ellipsoids from the
interior and the exterior. The following lemma does the first two steps.

Lemma 3.28. Let Λ be a lattice, v ∈ Λ⋆ a shortest non-zero lattice vector and E an
ellipsoid such that E ∩ Λ = ∅. Then widthv(E) ≤ d3/2.

10Ravi Kannan and László Lovász, “Covering minima and lattice-point-free convex bodies”, Lemma 2.3.
11A. Barvinok, Integer points in polyhedra.
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Proof. We prove this first for the case that E is a ball. In this case we know by Proposi-
tion 3.18 that ∥v∥ = 2 ϱ(Λ⋆). Let r be the radius of the ball. Then r ≤ µ(Λ). Now

width(E;v) = r ∥v∥ ≤ 2 ϱ(Λ⋆)µ(Λ) ,

and the latter is at most d3/2 by Theorem 3.25.
For the extension to ellipsoids we use that the bound d3/2 obtained is independent of

the lattice. Further, any ellipsoid is a linear image of a ball and the image of a lattice Λ
for a non-singular linear map T is a lattice.

More precisely, let x ↦→ Tx+ t be the affine map such that T (E) = B is a ball, and let
Λ′ := T (Λ). Then Λ′ is a lattice in Rd and B∩Λ′ = ∅. Hence, for a shortest non-zero
vector v′ ∈ (Λ′)⋆, its preimage Tv is a shortest non-zero vector w ∈ Λ⋆ we have

width(E;w) ≤ width(E;v′) = width(B;v′) ≤ d
3/2 .

We can extend our bound for the width of a convex body from balls and ellipsoids to
general convex bodies with empty interior, albeit only with a weaker right hand side.
The key observation for this is Lemma A.11, which tells us the we can estimate any
convex body from the interior and exterior with a suitably chosen ellipsoid.

Theorem 3.29 (Flatness Theorem). Let K ⊂ Rd be a convex body with K ∩Λ = ∅. Then

widthΛ(K) ≤ d
5
2 .

Note that also in this general theorem the upper bound only depends on the dimension
and not on the given lattice.

Proof. Let E be a maximum volume ellipsoid (see Definition A.9) in K with center
z. Then also E ∩ Λ = ∅. Let v be a shortest non-zero lattice vector in Λ such that
width(E;v) ≤ d3/2 by the previous Lemma 3.28.

Clearly, the width of K is translation invariant, so we can assume that z is the origin.
By Lemma A.11 we deduce K ⊆ dE, and thus

width(K;v) ≤ dwidth(E;v) ≤ d · d3/2 = d
5/2 .

The bound from the previous theorem is not optimal. If we look for a function f(d)
such that

widthΛ(K) ≤ f(d) .

for all convexK withK∩Λ = ∅, then we can ask how small we can make f(d). Consider
the polytope defined by the inequalities

xi ≥ µ x1 + · · · + xd ≤ d− µ

for some small µ ≥ 0. This is the unit simplex scaled by d(1− µ)− µ
d and then shifted

by µ1. It is lattice free, and its width approaches d for µ→ 0. So f(d) ≥ d.
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On the other hand, it follows from Remark 3.26 and Problem 3.29 that f(d) = O(d2).

Problem 3.30
In fact, the bound of the previous theorem can be strengthened to be of order d3/2, so

that

widthΛ(K) ≤ O
(︂
d

3
2

)︂
.

This is a result of Banaszczyk et al.12 The current best upper bound is O(d4/3 log ad) for
some integer a > 0.13 It is unknown and an active subject of current research, whether
the sharp bound is actually of the form O(d).
If K is centrally symmetric, then Banaszczyk proved that one can choose f(d) =
O(d log d).14 We get the same bound for simplices.15 For ellipsoids we have f(d) =
O(d).16

From the algorithmic point of view we should also ask whether we can actually
compute such a vector c that realizes the lattice width of a given convex body K. It
turns out that computing c, though possible, cannot be done in polynomial time. We
can, however, compute an approximation in polynomial time, albeit with much weaker
bounds on the width they realize. Here, the currently known best bound O(2d) that we
can achieve has been given by Grötschel et al.17

3.4. Lower Bounds on Flatness

There has been less work on lower bounds so far. The unit simplex shows that

widthΛ(K) ≥ d .

Sebő constructed empty simplices in dimension d of width d− 2.18 Here, a polytope P
is empty if the vertices are the only lattice points in P . For 3-dimensional empty lattice
polytopes (not just simplices) the width is 1. The maximal widths of empty simplices
and polytopes differ in higher dimensions.
The maximum width also differs for convex bodies and lattice polytopes (polytopes

whose vertices are lattice points) for dimensions d ≥ 2 (In dimension 1 both are 1). In
dimension 2 we have a maximum width of 2 for a lattice polytope (obtained by twice
the unit simplex) and 2 + 2/

√
3 obtained by a slightly rotated simplex.

In dimension 3 the maximum on lattice polytopes is 3,19 while the precise value is
12Wojciech Banaszczyk, Litvak, Pajor, and Szarek, “The flatness theorem for nonsymmetric convex bodies

via the local theory of Banach spaces”, Thm. 2.4.
13Rudelson, “Distances between non-symmetric convex bodies and theMM∗-estimate”, Cor. 2.
14W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal lattices in Rn. II. Application of
K-convexity”, Eq. (8).

15Wojciech Banaszczyk, Litvak, Pajor, and Szarek, “The flatness theorem for nonsymmetric convex bodies
via the local theory of Banach spaces”.

16W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal lattices in Rn. II. Application of
K-convexity”, Eq. (9).

17Grötschel, László Lovász, and Alexander Schrijver, Geometric algorithms and combinatorial optimization.
18Sebő, “An introduction to empty lattice simplices”.
19Averkov, Krümpelmann, and Weltge, Notions of maximality for integral lattice-free polyhedra: the case of
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not known for general convex bodies. We have a lower bound of 2 +
√
2, which was

proved by Codenotti and Santos.20 They conjecture that this is the true value. They also
show that the width of a lattice polytope without interior lattice points can be larger
than the dimension. More precisely, they construct a lattice polytope with no interior
lattice points of width 15 in dimension 14 and a simplex of with 408 in dimension 404.

3.5. Problems

3.1. Let K ⊆ Rd be a centrally symmetric convex body with int (K) ∩Zd = {0}.
▷ Assume K is a polytope. Show that at most 2(2d − 1) facets contain a lattice point in their

relative interior.
▷ Assume that vol(K) = 2d det Λ. Show that K is a polytope and each facet of K contains at

least one lattice point in its relative interior.

Hint: For the second part: For Any lattice point x choose a half space Hx containing both x
and K. Let Sx := Hx ∩ −Hx. Now consider the intersection of all Sx and prove that
this satisfies the assumptions of Minkowski’s First Theorem (Corollary 3.3).

3.2. Let K ⊆ Rd be a centrally symmetric polytope with int (K) ∩Zd = {0}. Show that K contains at
most 3d lattice points.
This is a result of Minkowski from 1910.

Hint: Choose lattice points in the interior of facets. Consider their coordinates module 3 (i.e.,
their image under Zd → (Z/3Z)d). Look at the difference of two points having the
same image and use the pigeon-hole principle.

3.3. Let K ⊆ Rd be a centrally symmetric polytope with int (K) ∩Zd = {0}. Assume that no lattice
point in the boundary is in the convex hull of some other lattice points in K.
Show that K has at most 2d+1 − 1 lattice points

3.4. Let K be a centrally symmetric convex body with vol K > k · 2d detΛ
Show that K contains at least 2k + 1 lattice points.
Can you get k linearly independent points?

Hint: You may start with finding just k + 1 points.

3.5. Prove that the unit ball in dimension d has volume

Vd :=
π⌊d/2⌋2⌈

d/2⌉∏︁
0≤2i≤d(d− 2i)

.

3.6. Let Λ be a lattice with successive minima λ1 ≤ . . . ≤ λd and b1, . . . ,bd linearly independent
lattice vectors with λi = ∥bi∥ for 1 ≤ i ≤ d. Show that these vectors are a lattice basis for d ≤ 2,
but not necessarily for d ≥ 5.

Hint: Consider the lattice Λ := {x : x1 ≡ x2 ≡ · · · ≡ xd mod 2 }.

3.7. Let Λ be a lattice generated by b1, . . . ,bn and µ > 0 such that

∥bi∥ ≤ µ for all 1 ≤ i ≤ d ,

Then we have, for any v ∈ Rd

min
u∈Λ

∥v − u∥ ≤
√
d

2
µ

dimension three.
20Codenotti and Santos, Hollow polytopes of large width.
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with equality if and only if b1, . . . ,bd are pairwise orthogonal, ∥bi∥ = µ for 1 ≤ i ≤ d and

v =

d∑︂
i=1

(︃
ηi +

1

2

)︃
bi for someηi ∈ Z , 1 ≤ i ≤ d .

3.8. Show that for d ≤ 4 any linearly independent set of lattice vectors bi, 1 ≤ i ≤ d with ∥bi∥ = λi is
a lattice basis.

Hint: Use induction and Problem 3.7.

3.9. Prove Proposition 3.10

3.10. Let Λ be a lattice with successive minima λ1, . . . , λd and v1, . . . ,vd linearly independent lattice
vectors such that ∥vi∥ = λi for 1 ≤ i ≤ d (This is possible by Proposition 3.9).
Let Γ be the lattice spanned by these vectors and consider the polyhedron

C :=

{︃
x =

∑︂
µivi :

∑︂⃓⃓⃓⃓
µi

λi

⃓⃓⃓⃓
≤ 1

}︃
Compute the volume of this polyhedron. Use this to prove the lower bound in Minkowski’s Second
Theorem (Theorem 3.11) and show that it cannot be improved.

3.11. Let Λ ⊆ Rd be a lattice such that γ(Λ) = γd. Show that the successive minima are all equal, i.e.
λ1 = λ2 = · · · = λd.

Hint: Use Corollary 3.12.

3.12. Let p be a prime with p ≡ 1 mod 4. Show that there are integers a, b ∈ Z such that p = a2 + b2.
Hint: You may want to use Euler’s criteron, which states that for a prime p and coprime a

there is q such that q2 ≡ a mod p if a
p−1
2 ≡ 1 mod p.

3.13. Show that every x ∈ Z≥0 can be written as a sum of four squares, i.e. for any such x there are
a, b, c, d ∈ Z≥0 such that

x = a2 + b2 + c2 + d2 .

This is the Theorem of Lagrange.
Hint: Reduce first to prime x by showing that the product of two sums of four squares can be

written as a sum of four squares.
Now show that you can findα, β ∈ Z such thatα2+β2 ≡ −1 mod x. For odd x consider
the sets Sα := {α2 mod x : 0 ≤ α < x

2
} and Sβ := {−1− β2 mod c : 0 ≤ β < x

2
}

and use the pigeon hole principle to show that their intersection is not empty.
Now consider

Λ := {a ∈ Z4 : a1 ≡ α · a3 + β · a4 mod x and a2 ≡ β · a3 − α · a4 mod x} .

Show that this is a lattice of index x2 in Z4 and apply Minkowski’s Theorem to the open
ball of radius

√
2x.

3.14. Show that the packing radius is finite and equals 1
2
λ1, which is half of the length of a shortest

non-zero lattice vector.

3.15. Show that for r > 0

|Λ ∩ r · Bd | ≤
(︃
2r

λ1
+ 1

)︃d

.

3.16. Let Λ be a lattice in Rd. Show that there is a non-zero x ∈ Λ such that

∥x∥∞ ≤ (det Λ)
1/d , .
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3.17. Let Λ0 ⊆ Λ ⊆ Rd be lattices. Show that

ϱ(Λ) ≤ ϱ(Λ0) ≤
⃓⃓
Λ/Λ0

⃓⃓
ϱ(Λ) .

3.18. Show that for d ≥ 2 and any ε > 0 there is a lattice Λ of rank d such that λ1 = λ⋆
1 ≤ ε.

3.19. Show that for d ≥ 2 and any c > 0 there is a lattice Λ of rank d such that λn = λ⋆
n ≥ c.

3.20. Show that the covering radius µ(Λ) is finite and attained for some x ∈ Rd.

3.21. Prove
(i) µ(Zd) =

√
d/2

(ii) µ(D3) = 1

(iii) µ(Dd) =
√
n/2 for d ≥ 4

3.22. Let Λ ⊆ Rd be a lattice. Show that

µ(Λ) ≤
√
d

2
λd .

Show that this bound is tight.
Hint: Choose appropriate linearly independent vectors and modify the fundamental paral-

lelepiped to a cube of appropiate side lengths (i.e. choose an orthogonal basis).

3.23. Show that there is v ∈ Rd with ∥v − u∥ ≥ 1
2
λd for any u ∈ Λ.

3.24. Show that there are lattices Λ such that µ(Λ) ≤ 2λ1(Λ). Deduce that the bound in Proposition 3.5
is essentially tight.

Hint: Assume you have a lattice with µ(Λ) ≤ 2λ1(Λ). Show that there is a lattice point
v ∈ Λ so that 1

2
v has distance at least λ1(Λ) from lattice. Consider the new lattice

Λ ∪
(︁
1
2
v + Λ

)︁
.

For the second claim note that the volume of a ball used in a covering must be at least
the volume of a parallelepiped.

3.25. Show that λ1 · λ∗
d ≥ 1.

3.26. Show that λk · λ∗
d−k+1 ≥ 1.

3.27. Show that the lattice width of a low dimensional convex body is 0.

3.28. Show that in the definition of lattice width we can replace the infimum with a minimum for a
full-dimensional convex body K. Thus, the width is strictly positive.

3.29. Any centrally symmetric convex body C defines a norm on Rd via ∥x∥C := r if 1
r
x ∈ ∂C for any

x ̸= 0.
Let K be a convex body. Then K −K := {x− y : x,y ∈ K } is a centrally symmetric convex
body, and so is its polar (K −K)⋆. We can define the successive minima λi(Λ,K −K⋆) w.r.t. to
this norm.
Show that widthΛ(K) = λ1(Λ,K −K⋆).

3.30. Let C1, . . . , Cm be convex bodies in Rdi with lattices Λi containing the origin and λ1, . . . , λm > 0.
Let

C :=

m⨁︂
i=1

λiCi = λ1C1 ⊕ · · · ⊕ λmCm .

be the scaled free sum. Show that C is a lattice polytope if all Ci are lattice polytopes and that

widthΛ(C) = min
i

(λi widthΛi(Ci)) .

Further, if intCi ∩ Λ = ∅ for all i and
∑︁

1
λi

≥ 1, then also intC ∩ Λ = ∅.
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4. The Shortest Vector Problem

We have seen in the previous chapter that, as a consequence of Minkowski’s First
Theorem (Corollary 3.3), any lattice Λ of rank d contains a vector v ∈ Λ with length
bounded by

∥v∥2 ≤
√
d (det Λ)

1/d ,

see Proposition 3.5. Note that this bound is only true for the Euclidean norm, and in
this and the following chapter we will always use this norm and just write ∥.∥ for ∥.∥2.

We have also seen that the proof of Minkowski’s Theorem is not constructive and so
far we do not have an algorithm to construct a short vector. However, constructing such
a vector, or at least an approximation, is one of the fundamental algorithmic problems
not only in integer optimization, but also in cryptography, number theory and other
fields. It has therefore gained a lot of attraction over recent years.1

4.1. Motivation

Here is the precise formulation of the task to find a short vector in a lattice as an
optimization problem.

(SVP). Let Λ ⊆ Rd be a lattice. The Shortest Vector Problem (SVP) is the task
to find a non-zero vector u ∈ Λ \ {0} of shortest possible length.

Observe that a shortest non-zero lattice vector has length λ1(Λ), the first successive
minimum introduced in Definition 3.6. An important relaxation of the shortest vector
problem is the approximate shortest Vector problem (SVP)γ .

(SVP)γ . Let γ ≥ 1 and Λ ⊆ Rd be a lattice. The Approximate Shortest Vector
Problem (SVP)γ is the task to find a non-zero vector u ∈ Λ \ {0} of
length bounded by

∥u∥ ≤ γλ1 .

Both the exact problem and its approximate version are NP-hard in general.2 If we
want to compute something in polynomial time we need to relax the problem further,
fix some parameters, allow γ to depend on the dimension, or restrict to special cases.
1Aardal, Lattice basis reduction and Integer programming; Hanrot, Pujol, and Stehlé, “Algorithms for the
shortest and closest lattice vector problems”; Nguyen and Vallée, The LLL Algorithm; Tateiwa, Shinano,
Yamamura, Yoshida, Kaji, Yasuda, and Fujisawa, CMAP-LAP: Configurable Massively Parallel Solverfor
Lattice Problems; Wübben, Seethaler, Jaldén, and Matz, “Lattice Reduction”.

2Khot, “Hardness of approximating the shortest vector problem in lattices”.
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The algorithm for (SVP) that we will discuss below is based on a solution for the
approximate problem using a reduced basis for the lattice. In such a basis the coefficients
of a shortest vector are bounded by a constant depending on the dimension only. Hence,
we can solve the shortest vector problem by enumerating over all possible coefficients,
at least in fixed dimension.
In this chapter we will introduce the LLL-reduced bases of Arjen Lenstra, Hendrik

Lenstra and László Lovász3 and look at the consequences for (SVP). We will construct
such bases in the next chapter and show how to compute them in polynomial time, at
least for sublattices of Zd.

Let us first discuss why the computation of a short vector, or a basis with short vectors is
more involved for lattice bases than for vector space bases. We know from Proposition 3.5
that there is a vector of length at most

√
d (detΛ)

1/d, but the proof was non-constructive.
This is not just an artefact of the proof, as in an arbitrary lattice basis the coefficients of
a shortest vector in this basis can be arbitrarily large. To see this, consider e.g. the basis

b1 :=

(︃
n
1

)︃
b2 :=

(︃
n2 − 1

n

)︃
of Z2 for any integer n ∈ Z. Then

±e1 = ±nb1 ± b2 ±e2 = ±(1− n2)b1 ± nb2 .

are representations of the shortest vectors in the lattice Z2. Hence, brute force enumer-
ation of coefficients is not sufficient to solve the problem without more information on
the basis. Note that one of the basis vectors is much longer than the other, and they are
far from orthogonal. We will later see that this is necessarily so for bad bases.

On the other hand, assume that we have a lattice basis b1, . . . ,bd of pairwise orthog-
onal vectors, and assume ∥b1∥ ≤ ∥bj∥ for 1 ≤ j ≤ d. Any non-zero shortest vector
x ∈ Λ has a representation in this basis with integral coefficients λ1, . . . , λd ∈ Z, and
not all can be 0. Let j be an index with λj > 0. Then

∥x∥2 =
⃦⃦⃦∑︂

λibi

⃦⃦⃦2
=
∑︂
|λi|2 ∥bi∥2 ≥ ∥bj∥2 ≥ ∥b1∥2 .

Hence, the shortest of the lattice basis vectors is already a non-zero lattice vector of
shortest length.

So it might be desirable to find a lattice basis with orthogonal vectors. From plain lin-
ear algebra we know how to find such a basis using the Gram-Schmidt orthogonalization.
This is a simple and efficient algorithm that runs in polynomial time. However, already
simple examples in dimension 2 show that it does not respect the lattice structure.

Furthermore, the hexagonal lattice of Figure 4.1 shows in fact that, in general, a basis
with pairwise orthogonal vectors does not exist. We have also seen bases with vectors
of necessarily different lengths.

If we do not want to discard the idea of orthogonal bases completely we should check
whether we can at least get close to an orthogonal basis (in a sense we still have to
define), and whether such an almost orthogonal basis is still good enough to solve

3A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, “Factoring polynomials with rational coefficients”.
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Figure 4.1.: The hexagonal lattice

(SVP). We also want a polynomial time algorithm for this, so we may also have to
discuss the relation between a better approximation and one that we can still compute
efficiently.

4.2. Reduced Bases

So in the following we want to revisit the Gram-Schmidt orthogonalization and see
what we can learn from it for lattice bases. Let Λ ⊆ Rd be a lattice with a basis
b1,b2, . . . ,bd ∈ Rd. The order of the basis vectors is relevant in the orthogonalization
process, and we will sometimes speak of ordered bases to emphasize this.
We consider the increasing chain of Λ-rational subspaces

V0 := {0} Vk := lin(b1, . . . ,bk) for 1 ≤ k ≤ d . (4.1)

together with the induced lattices Λk := Λ ∩ Vk on these spaces. For 0 ≤ k ≤ d let
πk : Rd → Vk be the orthogonal projection onto the subspace Vk. The Gram-Schmidt-
orthogonalization of the basis are the vectors w1, . . . ,wd defined via

wk := bk − πk−1(bk)

= bk −
k−1∑︂
j=1

λjkwj with λjk :=
⟨bk,wj ⟩
∥wj∥2

.

So in particular we have

⟨wi,wj ⟩ = 0 for 1 ≤ i < j ≤ d and d(bk, Vk−1) = ∥wk∥ . (4.2)

Example 4.1. Let b1 :=

(︃
2
1

)︃
,b2 :=

(︃
1
2

)︃
. This is a basis ofR2 with Gram-Schmidt-

orthogonalization

w1 = b1 and w2 =

(︃
−3/5

6/5

)︃
= −4/5b1 + b2 ,

see Figure 4.2.
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v2

v1 = w1
w2

Figure 4.2.: The lattice basis of Example 4.1

We can write the original lattice basis in terms of the Gram-Schmidt basis as

bk = wk +

k−1∑︂
j=1

λjkwj for 1 ≤ k ≤ d . (4.3)

The vectors w1, . . . ,wd are pairwise orthogonal, so

∥wk∥ ≤ ∥bk∥ ,

detΛ =

d∏︂
j=1

∥wj∥ . and detΛk =

k∏︂
j=1

∥wj∥ . (4.4)

We can use these equations to measure how far our given lattice basis is from orthog-
onality. We introduce the following invariant for this.

Definition 4.2. The orthogonality defect of the lattice basis b1,b2, . . . ,bd is

M(b1, . . . ,bd) :=
1

detΛ

d∏︂
j=1

∥bj∥ .

Observe that the basis vectors b1,b2, . . . ,bd are pairwise orthogonal if and only if
M(b1, . . . ,bd) = 1. In all other cases MΛ is strictly larger than 1.
It will follow from our considerations that there is in fact a universal bound Md

depending on the dimension only such that any lattice Λ has a basis b1, . . . ,bd with

M(b1, . . . ,bd) ≤ Md .

We say that a lattice basis is reduced if it satisfies this bound.
The Gram-Schmidt vectors give a lower bound for the length of a shortest vector of

the lattice.

Theorem 4.3. Let Λ be a d-dimensional lattice with basis b1,b2, . . . ,bd and Gram-
Schmidt-orthogonalization w1,w2, . . . ,wd. Then

∥u∥ ≥ min(∥w1∥ , . . . , ∥wd∥)

for all u ∈ Λ \ {0}.
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Using the first successive minimum λ1 we can rewrite this as

λ1 ≥ min(∥w1∥ , . . . , ∥wd∥)

Problem 4.2
Problem 4.3

Proof. We can write u as a linear combination

u =

d∑︂
j=1

ηjwj .

Let k be the highest index such that ηk ̸= 0. We can rewrite

u = ηkwk +

k−1∑︂
j=1

ηjwj

By orthogonality, all lattice points lie in lattice hyperplanes parallel to Vk−1 at distance
r ∥wk∥ apart, for some r ∈ Z. Hence, |ηk| ≥ 1, as ηk ̸= 0. So

∥u∥ ≥ |ηk| ∥wk∥ ≥ ∥wk∥ .

Problem 4.4In Corollary 3.12 we deduced that(︄
d∏︂

i=1

λi

)︄1/d

≤
√
d(detΛ)

1/d .

for the successive minima w.r.t. the Euclidean norm from Theorem 3.11 by specializing
the norm to the Euclidean norm. With Problem 4.5 you can use the Gram-Schmidt
orthogonalization and the inscribed ellipsoids that we already used for the Flatness
Theorem (Theorem 3.29) to give an independent proof of this bound.

Problem 4.5
The previous theorem suggests that a comparison of a lattice basis to its Gram-Schmidt

orthogonalization might be useful to obtain information on the length of short vectors.
We define a special version of a reduced bases.

In the following, let b1, . . . ,bd ⊆ Rd be any ordered lattice basis of our lattice Λ, with
Gram-Schmidt orthogonalization w1, . . . ,wd ∈ Rd and coefficients λjk for 1 ≤ k ≤ d,
1 ≤ j ≤ k − 1 as in (4.3).

Definition 4.4. The basis b1, . . . ,bd is LLL-reduced if

|λjk| ≤ 1
2 for all 1 ≤ j < k ≤ d (4.5)

3
4 ∥wk∥2 ≤ ∥λk,k+1wk +wk+1∥2 for all 1 ≤ k ≤ d− 1 . (4.6)

We say that a coefficient λjk is weakly reduced if it satisfies condition (4.5) of the
definition. A lattice basis is weakly reduced if all coefficients are weakly reduced.
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Vk−1

vk+1
vk

Figure 4.3.: The second condition for LLL

Using (4.2) we can rewrite the second condition equivalently form.

3

4
d(bk, Vk−1)

2 ≤ d(bk+1, Vk−1)
2 ,

for the subspaces Vj defined in (4.1). Geometrically, a basis is LLL-reduced if the vector
bk+1 is not much closer to the subspace spanned by the first k − 1 basis vectors than
the vector bk, see Figure 4.3.

More generally, we can define δ-reduced bases for some 1/4 < δ < 1 by replacing the
second condition with

δ ∥wk∥2 ≤ ∥λk,k+1wk +wk+1∥2 .

The construction of the basis, that we will do below, works also for this more general
definition, but the application to shortest vectors requires the specialization to δ = 3

4 , so
we do this right from the beginning.

Example 4.5. Here is an example of an LLL-reduced basis and one that is not. Both are
illustrated in Figure 4.4. Consider the three vectors

v1 :=

⎡⎣ 2
1
0

⎤⎦ v2 :=

⎡⎣ 0
1
1

⎤⎦ v3 :=

⎡⎣ 1
−1
3

⎤⎦
Their Gram-Schmidt-orthogonalization is

w1 :=

⎡⎣ 2
1
0

⎤⎦ w2 :=

⎡⎣ −2/5
4/5
1

⎤⎦ = v2 −
2

5
w1

w3 :=

⎡⎣ 1
−2
2

⎤⎦ = v3 −
1

5
w1 −w2

Then λ13 violates condition (4.5) of the definition, and v1 and v2 violate condition
(4.6), as d(v1, V0)

2 = 5 and d(v1, V0)
2 = 9/5 but 3/4 · 5 > 9/5.
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v1 = w1

v2

v3

w2

w3

(a) Not a reduced basis

v′
1 = w′

1

v′
2

v′
3 = w′

3

w′
2

(b) A reduced basis

Figure 4.4.: A lattice basis that is not 3/4-reduced and one for the same lattice that is reduced.

However, the basis

v′
1 :=

⎡⎣ 0
1
1

⎤⎦ v′
2 :=

⎡⎣ 2
1
0

⎤⎦ v′
3 :=

⎡⎣ 1
−2
2

⎤⎦ ,

that spans the same lattice, is LLL-reduced. It has Gram-Schmidt-orthogonalization

w′
1 :=

⎡⎣ 0
1
1

⎤⎦ w′
2 :=

⎡⎣ 2
1/2
−1/2

⎤⎦ = v′
2 −

1

2
w′

1 w′
3 :=

⎡⎣ 1
−2
2

⎤⎦ = v′
3 .

Using ⟨wk,wk+1 ⟩ = 0 we can expand the right hand side of (4.6) and rewrite this
condition as

∥wk+1∥2 ≥
(︃
3

4
− λ2

k,k+1

)︃
∥wk∥2 . (4.7)

This implies that 4

∥wk∥2 ≤ 2 ∥wk+1∥2 for all 1 ≤ k ≤ d− 1 . (4.8)

So, while it is allowed in the definition that the length of the wk may decrease with
increasing k, it may not drop by too much.

Proposition 4.6. Let b1, . . . ,bd be an LLL-reduced basis of Λ with Gram-Schmidt orthog-
onalization w1, . . . ,wd. Then

∥b1∥ ≤ 2
(d−1)/2λ1 (4.9)

∥b1∥ ≤ 2
(d−1)/4 (detΛ)

1/d (4.10)

Proof. By (4.8) we know ∥wj∥2 ≤ 2 ∥wj+1∥2, so by induction

∥wj∥2 ≤ 2k−j ∥wk∥2 for 1 ≤ j < k ≤ d . (4.11)

4We could also use this as the defining condition. It implies δ-reduced for for δ = 1
2
.
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Hence, we obtain for all 1 ≤ j ≤ d

∥b1∥2 = ∥w1∥2 ≤ 2j−1 ∥wj∥2 ≤ 2d−1 ∥wj∥2 , (4.12)

so

∥b1∥2 ≤ 2d−1min
j
∥wj∥2

and by Theorem 4.3

∥b1∥ ≤ 2
d−1
2 λ1 .

This proves the first bound. Taking the product of (4.12) for all j gives

∥b1∥2d ≤
d∏︂

i=1

2i−1 ∥wi∥2

= 2
d(d−1)

2 ∥w1∥2 · · · ∥wd∥2 = 2
d(d−1)

2 (detΛ)2 .

Problem 4.7

Corollary 4.7. Let Λ ⊂ Rd be a lattice with LLL-reduced basis b1, . . . ,bd. Then

det Λ ≤
d∏︂

i=1

∥bi∥ ≤ 2
1
2

(︁d
2

)︁
detΛ .

The lower bound in this corollary is also known as the Hadamard Inequality.

Proof. We have seen the lower bound already in the definition of the orthogonality
defect. For the upper we compute

∥bj∥2 ≤ ∥wj∥2 +
1

4

j−1∑︂
k=1

∥wk∥2 ≤ ∥wj∥2
(︄
1 +

1

4

j−1∑︂
k=1

2j−k

)︄
≤ 2j−1 ∥wj∥2

and

d∏︂
j=1

∥bj∥ ≤
d∏︂

j=1

2
1
2
(j−1) ∥wj∥ = 2

1
2

(︁d
2

)︁ d∏︂
j=1

∥wj∥ ≤ 2
1
2

(︁d
2

)︁
detΛ .

Corollary 4.8. The orthogonality defect M of an LLL-reduced basis is at most 2
1
2

(︁d
2

)︁
.

Problem 4.8
Problem 4.9

4.3. Short Vectors

The first successive minimum in the previous proposition is precisely the length of any
shortest nonzero vector x in the lattice. Hence, (4.9) in Proposition 4.6 shows that
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any LLL-reduced basis solves the approximate shortest vector problem (SVP)γ for the
constant γ = 2(d−1)/2. We just take the first basis vector in the reduced basis as our
approximate shortest vector.

Corollary 4.9. Let Λ be a lattice and λ1 be the length of a shortest nonzero vector in Λ
The first basis vector b1 in an ordered LLL-reduced lattice basis satisfies

∥b1∥ ≤ γλ1

for γ = 2(d−1)/2.

We have started our discussion of the shortest vector problem with the bound obtained
from Minkowski’s First Theorem (Corollary 3.3) in Proposition 3.5

∥v∥2 ≤
√
d (det Λ)

1/d ,

The solution of the approximate shortest vector problem (SVP)γ in Corollary 4.9 bounds
the norm of the first basis vector in terms of the shortest vector directly. So apparently
we have not used the bound via the determinant.

However, this is just hidden by our special choice of a reduced basis. Let bk be the
shortest vector in an LLL-reduced basis. Then

∥bk∥d ≤
d∏︂

i=1

∥bi∥ = det Λ · 1

det Λ

d∏︂
i=1

∥bi∥ = det Λ · M ≤ 2
1
2

(︁d
2

)︁
det Λ , (4.13)

where we have used the bound of Corollary 4.8. Given any approximation of the bound
from Minkowski’s Theorem in the form of a vector v that satisfies

∥v∥ ≤ f(d) (det Λ)
1/d (4.14)

for some constant f(d) depending only on the dimension we prove with the next theorem
that we can use this to solve (SVP)γ .
Note that a lattice point v bounded as in (4.14) will in general not be sufficient, as

the bound depends on the determinant, which may be large. The main idea in the
following proof will be that we can apply the same bound in the dual lattice. As the
product of the determinants is 1, at least one of the bounds must be small, and we can
exploit this to construct a short vector.

Problem 4.10

Theorem 4.10. Let f : Z>0 −→ Z>0 be a nondecreasing function and assume that we
have a polynomial time algorithm that finds v ∈ Λ \ { 0 } with

∥v∥ ≤ f(d) (det Λ)
1/d .

Then there is a polynomial time algorithm for (SVP)γ with γ = f(d)2.

Proof. Let v ∈ Λ \ {0} be a shortest vector in the lattice. With the algorithm given by
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assumption we can also find a lattice vector a ̸= 0 in the dual lattice Λ⋆ such that

∥a∥ ≤ f(d) (det Λ⋆)
1/d . (4.15)

By definition of the dual lattice we know that ⟨a,x ⟩ ∈ Z for all x ∈ Λ, and thus any
two hyperplanes

Hk := {x : ⟨a,x ⟩ = k }

for different k are at least 1
∥a∥ apart.

We distinguish two cases, depending on the unknown vector v and show, that in both
cases we obtain a nonzero lattice point whose norm is bounded by γλ1.

Assume first that ⟨a,v ⟩ = k ̸= 0, We can give a lower bound on the norm of v via

∥v∥ ≥ 1

∥a∥
≥ 1

f(d)
(det Λ⋆)−

1/d =⇒ f(d) (det Λ⋆)
1/d ∥v∥ ≥ 1 .

Now we use the assumed algorithm to find a lattice point v ∈ Λ \ {0} bounded as in
(4.14). Together with the lower bound on ∥v∥ we compute

∥v∥ ≤ f(d) (det Λ)
1/d ≤ f(d)2 (det Λ)

1/d (det Λ⋆)
1/d ∥v∥ = f(d)2 ∥v∥ ,

which proves the desired bound.
If ⟨a,v ⟩ = 0, then v is in the sublattice

Γ := {x ∈ Λ : ⟨a,x ⟩ = 0 } .

This lattice has rank d − 1. We restrict to this lattice and use induction. Note that
by Problem 4.9 we can find a lattice basis of Γ in polynomial time. However, the
determinant of Γ may be much larger than the one of Λ.
Further, if d = 1, then it is easy to find a short lattice vector (any basis vector is a

shortest vector).
By induction we can find v ∈ Γ \ {0} such that

∥v∥ ≤ f(d− 1)2λ1(Γ) ≤ f(d)2λ1(Λ) ,

where the last inequality follows from f(d − 1) ≤ f(d), as we assumed that f is
monotonously increasing. Hence, also in this case we have found a short vector.

As we don’t know v we don’t know in which case we are. So in our algorithm we just
compute the shortest vector in both cases and return the shorter one.

Note that by (4.13) we can use

f(d) :=
(︂
2

1
2

(︁d
2

)︁)︂1/d
= 2

1
2

d−1
2

which leads to the same γ = 2(d−1)/2 as before.
We can also use reduced bases to solve the exact shortest vector problem (SVP) in

polynomial time in fixed dimension. Namely, with the following theorem we will prove
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that we can bound the size of the coefficients of a short lattice vector in the representation
in a reduced basis. This then allows us to enumerate all possible candidates and pick
the shortest.

Theorem 4.11. Let Λ be a lattice with reduced basis b1, . . . ,bd and let u ∈ Λ\{0} be a
shortest non-zero lattice vector. Then

u =

d∑︂
j=1

λjbj with |λj | ≤
√
dM for 1 ≤ j ≤ d.

Proof. Let b1 be the shortest vector among b1, . . . ,bd, and let B = (b1, . . . ,bd). Then
u = Bλ for λ = (λ1, . . . , λd). Hence, λ = B−1 u.

By Cramer’s rule all entries of B−1 are determinants of (d− 1)× (d− 1)-minors of B,
divided by detB. So each entry of B−1 is bounded by

∥b2∥ · . . . · ∥bd∥ ·
1

detB
≤ M

∥b1∥
.

So

|λj | ≤
∑︂
|ui|

M

∥b1∥
≤
√
d ∥u∥ M

∥b1∥
≤
√
dM ,

where the second inequality uses the Cauchy-Schwartz inequality for the scalar product
⟨1, |u| ⟩, where |u| is the vector of absolute values of the entries of u, and the last
inequality uses ∥u∥ ≤ ∥b1∥.

This provides a simple enumeration algorithm to compute the shortest vector, once
we have a reduced basis. The next chapter will show that we can compute one in
polynomial time in the input size of the original basis an the dimension. This gives the
following corollary.

Corollary 4.12. Let Λ ⊆ Rd be a d-dimensional lattice. Then we can solve (SVP) in time
2O(d3).

However, this is a rather crude bound. With an improved enumeration scheme we
can do better. For this we use the fact that each subset b1, . . . ,bk for some 1 ≤ k ≤ d is
a reduced basis in Λk with corresponding Gram-Schmidt basis w1, . . . ,wk.
Now consider the sets

Sk(c, r) := Br(c) ∩ Λk ⊆ Λk

of lattice points inside the ball of radius r around c. We want to show that we can
enumerate Sk+1(c, r) for a given lattice point c and a radius r if we know how to
enumerate the sets Sk(c

′, r′) for parameters c′ and r′.
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Lemma 4.13. Let 2 ≤ k ≤ d, c ∈ Vk , and r > 0.
Let fk(r) be an upper bound on the number of steps needed to enumerate a set Sk−1(c

′, r)
for a given c′ ∈ Vk−1.

Then we can enumerate Sk(c, r) with at most 2r
∥wk∥ · fk(r) steps.

Proof. We will actually enumerate a set S̃k(c, r) ⊇ Sk(c, r). Let v ∈ Br(c) ∩ Λk. Then
v is a lattice point and ∥v − c∥ ≤ r. We can write

v − c :=
k∑︂

i=1

ηiwi and v := µbk + v′ (4.16)

for some ηi ∈ R, v′ ∈ Λk−1 and µ ∈ Z. We want to determine how large |µ| can be.
We compute

ηk ∥wk∥ =
1

∥wk∥
⟨v − c,wk ⟩ =

1

∥wk∥
⟨µbk + v′ − c,wk ⟩

=
1

∥wk∥
⟨µbk − c,wk ⟩

= µ ∥wk∥ +
1

∥wk∥
⟨ c,wk ⟩ .

Hence (︃
µ ∥wk∥+

⟨ c,wk ⟩
∥wk∥

)︃2

= η2k ∥wk∥2

≤
d∑︂

i=1

η2i ∥wi∥2 = ∥v − c∥2 (4.17)

≤ r2 ,

where the equation in (4.17) follows as the wj are pairwise orthogonal. Hence, we
need to consider µ for

− r

∥wk∥
− ⟨ c,wk ⟩
∥wk∥2

≤ µ ≤ r

∥wk∥
− ⟨ c,wk ⟩
∥wk∥2

(4.18)

There are at most 2r
∥wk∥ values for µ.

If we now show that v′ ∈ Sk−1(πk−1(c−µbk), r), then we obtain S̃k(c, r) by enumer-
ating v = v′ + µbk for v′ ∈ Sk−1(πk−1(c− µbk), r) and µ in the range (4.18).

We set

v′ − πk−1(c− µbk) =

k−1∑︂
i=1

ζiwi .
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Then

⟨v′ − πk−1(c− µbk),wi ⟩ = ⟨v − µbk,wi ⟩ − ⟨πk−1(c− µbk),wi ⟩
= ⟨v − µbk,wi ⟩ − ⟨ c− µbk,wi ⟩
= ⟨v − c,wi ⟩ ,

so we must have ζi = ηi for the coefficients ηi ,1 ≤ i ≤ k − 1, defined in (4.16). Hence,

⃦⃦
v′ − πk−1(c− µbk)

⃦⃦2
=

k−1∑︂
i=1

ζ2i ∥wi∥2 =
k∑︂

i=1

η2i ∥wi∥2 = ∥v − c∥2 ≤ r2 .

This implies v′ ∈ Br(πk−1(c− µbk)), so v′ ∈ Sk−1(πk−1(c− µbk), r).
By assumption, we need fk(r) steps to enumerate Sk−1(πk−1(c − µbk), r), and we

need to do this for all µ that satisfy (4.18), which are at most 2r
∥wk∥ . This proves the

bound on the number of steps.

We can now recursively apply this lemma to compute the Sk−1(πk−1(c−µbk), r). We
will actually compute supersets, but this does not affect the total bound. We obtain the
following corollary.

Corollary 4.14. Given an LLL-reduced basis b1, . . . ,bd we can solve (SVP) in timeO(2d2).

Proof. We use the notation from the statement and proof of Lemma 4.13. So in particular
we consider the sets

Sk(c, r) := Br(c) ∩ Λk ⊆ Λk

and the upper bound fk(r) for the enumeration of a superset S̃k(c, r) ⊇ Sk(c, r) of
Sk(c, r) for some x ∈ Rd (which need not be a lattice point) and some radius r > 0.
Clearly we can enumerate the set S1(c, r) with at most

2r

∥b1∥
= 2r

∥w1∥

steps. So, recursively applying Lemma 4.13, we obtain fk(r) =
∏︁k−1

i=1
2r

∥wi∥ . Doing this
up to k = d we get

d∏︂
i=1

2r

∥wi∥
=

2drd

det Λ

Now we plug in r = ∥b1∥, which is an upper bound for the length of a shortest vector.
So by enumerating all points in Sd(0, ∥b1∥) we necessarily also find the shortest nonzero
vector.

From (4.10) of Proposition 4.6 this is bounded by 2(d−1)/4 (det Λ)
1/d, which implies

the claim.
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This bound is still not optimal. Kannan5 has shown that one can solve (SVP) in time
2d log d, also using an enumeration over the coefficients in a basis, but using a different
basis reduction algorithm that yields a more suitable basis for this. Ajtai, Kumar and
Sivakumar provided a randomized sieve method, that computes the shortest vector
in time 2O(d).6 In 2015, Aggarwal, Dadush, Regev, and Stephens-Davidowitz gave an
algorithm, that runs in time 2d.7

While Kannan’s algorithm uses only polynomial space, all others require exponential
space during computation. It is open whether one can bring this down to polynomial
space.

4.4. Problems

4.1. Let Λ be a lattice and λ1 the first successive minimum (the length of the shortest vector). Show
that for any k ∈ Z≥0

|Λ ∩ Bkλ1(0)| ≤ (2k + 1)d .

4.2. Show that

(1) ∥wj∥2 ≤ ∥vj∥2 ≤ ∥wj∥2 +
1

4

j−1∑︂
i=1

∥wi∥2 for 1 ≤ j ≤ d

(2) ∥wj∥ ≤ ∥bj∥ ≤
(︂

1
2
+ 2i−2

)︂
∥wj∥ for 1 ≤ j ≤ d

(3) ∥bk∥ ≤ 2
(j−1)/2 ∥wj∥ for 1 ≤ k ≤ j ≤ d .

4.3. Let v1, . . . ,vd be lattice vectors such that ∥vi∥ = λi, where λ1, . . . , λd are the successive minima
of Λ. We can write them in the lattice basis b1, . . . ,bd as

vk =

d∑︂
i=1

µkibi .

For each 1 ≤ k ≤ d let jk be the largest index such that µk,jk ̸= 0. Show that

(1) ∥vj∥ ≥ ∥wjk∥

(2) ∥bj∥ ≤ 2
(d−1)/2 · λi for 1 ≤ j ≤ i ≤ d

(3) 2
(1−i)/2λi ≤ ∥bi∥ ≤ 2

(d−1)/2λi

4.4. Let Λ be a lattice of full rank with basis B, and b1, . . . ,bd ∈ Λ linearly independent. Let wd be
the last vector in the Gram-Schmidt orthogonalization process. Then

∥wd∥ ≤ max (∥b1∥ , . . . , ∥bd∥)

Hint: This should follow from the proof of Theorem 4.3.

4.5. Give a proof of Corollary 3.12 that is independent of Minkowski’s Second Theorem (Theorem 3.11).

5Ravi Kannan, “Improved Algorithms for Integer Programming and Related Lattice Problems”.
6Ajtai, Kumar, and Sivakumar, “A sieve algorithm for the shortest lattice vector problem”.
7Aggarwal, Dadush, and Stephens-Davidowitz, “Solving the Closest Vector Problem in 2n Time— The
Discrete Gaussian Strikes Again!”
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4.6. Let b1, . . . ,bd be a lattice basis of a lattice Λ with Gram-Schmidt vectors w1, . . . ,wd. Show that
the covering radius satisfies

µ(Λ) ≤ 1

2

⌜⃓⃓⎷ d∑︂
i=1

∥wi∥2 .

Find a lattice basis so that we have equality.

4.7. Check, which of the following bases represent an LLL-reduced basis for the lattice they span.

[ 1 0
0 4 ] [ 1 2

3 1 ] [ 1 0
0 2 ] [ 1 2

3 1 ] [ 5 0
0 4 ] [ 1 2

3 1 ] [ 10 0
0 9 ]

4.8. Λ with basis B. Then there is a basis B′ spanning a sublattice Λ′ of Λ with orthogonality defect
bounded by nO(n).

Hint: Use Corollary 3.12.
There is also a basis of Λ with this bound, the Khorkine-Zolotarav-basis. This is (much)
harder.

4.9. Let Λ ⊆ Rd be a lattice of full rank with lattice basis b1, . . . ,bd ∈ Λ, and a ∈ Λ⋆. Let

L := {v : ⟨a,v ⟩ = 0 }

be the Λ-rational subspace defined by a.
Show that one can compute a lattice basis of L in polynomial time.

4.10. Let b1, . . .bk ⊆ Rd be linearly independent, k ≤ d. Let Z be the zonotope of dimension k spanned
by these vectors and B the matrix, whose columns are the b1. Then

vol Z =
√︁

det(BtB) ,

where we use the relative volume in the subspace defined by b1, . . . ,bk.
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5. Reduced Bases

We have seen in the previous section that reduced bases allow the computation of a
shortest vector in polynomial time. Yet, so far we don’t even know that such bases
exist for our lattice Λ. We address this question in this chapter with a polynomial time
algorithm to compute an LLL-reduced lattice basis. This method was first described by
Arjen Lenstra, Hendrik Lenstra and László Lovász in 1982.1

More background and many more applications may be found in the books of Cohen,2
von zur Gathen and Gerhard,3 Grötschel, Lovász and Schrijver4 and the proceedings
by Nguyen and Vallée.5 Also the original paper by Lenstra, Lenstra, and Lovász1 from
1982 is a good source.

There is a similar notion of a reduced basis in dimension 2 due to Lagrange and Gauss,
and nowadays often referred to as Gauss’ Algorithm.6 As a good preparation for the rest
of this chapter you can study this with Problem 5.1.

Problem 5.1
We will show that LLL-reduced bases for a lattice Λ always exist for sublattices of Zd.

We will present the algorithm for any lattice, but we restrict to sublattices of Zd for the
proof that it can actually computed in polynomial time (in the dimension and the input
size). This extends to the general case, but the analysis is much more involved. You can
find a proof in the original paper.1

Here is the main theorem that we want to prove. The construction of the algorithm
claimed here will cover the rest of the chapter.

Theorem 5.1 (Lenstra, Lenstra, Lovász, 1982). Λ ⊂ Rd a lattice with an integral basis
b′
1, . . . ,b

′
d. Then there is a LLL-reduced basis b1, . . . ,bd of Λ such that

d∏︂
i=1

∥bi∥ ≤ 2
1
2

(︁d
2

)︁
det Λ

with orthogonality defect bounded by 2
1
2

(︁d
2

)︁
. We can compute this basis in time polynomial

in d and log ∥b′
i∥2.

This will fill the missing piece in the computation of a shortest lattice vector from the
previous chapter.
1A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, “Factoring polynomials with rational coefficients”.
2Cohen, A course in computational algebraic number theory.
3Gathen and Gerhard, Modern computer algebra.
4Grötschel, László Lovász, and Alexander Schrijver, Geometric algorithms and combinatorial optimization.
5Nguyen and Vallée, The LLL algorithm.
6Nguyen and Stehlé, “Low-dimensional lattice basis reduction revisited”.
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Note that we have restricted to sublattices of the integer lattice in the formulation
of the theorem. We will only prove this restricted case here, but the theorem actually
holds without this restriction, using the same method for the construction of a basis. We
will in fact also present the construction in full generality, and only use the restriction
to sublattices of Zd in the proof that that the algorithm runs with polynomially many
steps. A proof of the general case, which is more involved, but does not contain any
new ideas, can be found in the original paper of Lenstra, Lenstra, and Lovász.7

Also, in the same way as already in the definition of reduced bases, we have restricted
the formulation to the case δ = 3

4 . The theorem is true for all δ in the range 1
4 < δ < 1.

Also here, the proof essentially remains the same, but some computations get more
involved. It follows from the construction that we obtain better bases for larger δ, but
the running time increases. The algorithm itself also works for δ = 1, but then the
bound on the running time becomes exponential in this case.

The construction of the basis will have two parts. In the first part we will discuss how
we can obtain a weakly reduced basis. In the second part, we will show how we can
move closer to a reduced basis if some entries in the basis violate the condition. The
resulting basis may not be weakly reduced anymore after this step. We will, however,
prove that we can reapply the first step to make this basis weakly reduced again without
loosing the improvement made in the second step.
Finally, we will show that we do not need too many iterations of this process, i.e.

at most polynomially many. Together with a proof that we can do each step with
polynomially many operations this will give the result.

5.1. Weakly reduced bases

We need some preparations. Recall our definition in (4.1) of Λ-rational subspaces

V0 := {0} and Vk := lin(b1, . . . ,bk) for 1 ≤ k ≤ d .

together with orthogonal projections πk : Rd → Vk and induced lattices Λk := Λ ∩ Vk.
We are given some basis b1, . . . ,bd of the lattice, and compute the Gram-Schmidt
orthogonalization w1, . . . ,wd of it.

As seen in (4.3) we have a representation of our given basis in the form

wk := bk − πk−1(bk) (5.1)

= bk −
k−1∑︂
j=1

λjkwj with λjk :=
⟨bk,wj ⟩
∥wj∥2

. (5.2)

Assume that for some pair of indices i < k the absolute value of the coefficient λik is
larger than 1

2 . Then there are unique µik ∈ R and aik ∈ Z such that

|µik| ≤ 1
2 λik = aik + µik .

7A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, “Factoring polynomials with rational coefficients”.
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We set

b′
k := bk − aikbi and b′

j := bj for j ̸= k

and define new subspaces

V ′
0 := {0} V ′

k := lin(b′
1, . . . ,b

′
k) for 1 ≤ k ≤ d .

By construction,

Vj = V ′
j for 1 ≤ j ≤ d (5.3)

and b′
1, . . . ,b

′
j is still a basis of the lattice Λj for 1 ≤ j ≤ d. It follows from (5.1) that

(5.3) implies that the Gram-Schmidt orthogonalization w1, . . . ,wd does not change.
We want to compute the coefficients λ′

jk for the new basis in the representation (5.2).
For this, we consider a fixed k between 1 and d. As the Gram-Schmidt vectors do not
change, the formula in (5.2) shows that only coefficients that involve b′

k can change. So

λ′
jl = λjl for l ̸= k and j < l .

To compute the new coefficients for b′
k we consider

b′
k = bk − aikbi = wk +

k−1∑︂
j=1

λjkwj − aikbi

= wk +

k−1∑︂
j=1

λjkwj − aik

i∑︂
j=1

ηjwj

= wk +

i∑︂
j=1

(λjk − aikηj)wj +

k−1∑︂
j=i+1

λjkwj ,

for some ηj ∈ R, 1 ≤ j ≤ i. The second equation follows as bi ∈ Vi, which is spanned
by w1, . . . ,wi. Furthermore, bi −wi ∈ Vi−1 implies ηi = 1.
We can now bound the size of λ′

ik := λik − ηiaik with

|λik − ηiaik| = |λik − aik| = |µik| ≤ 1
2 .

So λ′
ik is weakly reduced, and the new coefficients for b′

k are

λ′
jk := λjk − aikηj for j ≤ i

λ′
jk := λjk for j > i

For fixed k, making λik weakly reduced only affects λjk for j < i. Hence, we can make
λik weakly reduced for all 1 ≤ i < k if we apply the reduction starting from j = k − 1
in decreasing order. Doing this for all 1 ≤ k ≤ d gives us a weakly reduced basis.
There are

(︁
d−1
2

)︁
coefficients, and reducing λik affects at most i− 1 ≤ d other coeffi-

cients, so this process terminates after at most O(d3) steps.
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5.2. Reduced bases

For an LLL-reduced basis we also need to satisfy the condition (4.6),

3

4
∥wk∥2 ≤ ∥λk,k+1wk +wk+1∥2 for 1 ≤ k ≤ d− 1 .

Now assume that this condition is violated for some j, i.e.

3

4
∥wj∥2 > ∥λj,j+1wj +wj+1∥2 .

Let b′
1, . . . ,b

′
d be the basis obtained by exchanging bj and bj+1, i.e.

b′
j+1 := bj b′

j := bj+1 b′
i := bi for i ̸= j, j + 1 .

Let V ′
i , Λ′

i be the new subspaces and lattices, for 1 ≤ i ≤ d. Then

V ′
i = Vi , Λ′

i = Λi , and det Λ′
i = det Λi for i ̸= j ,

while

V ′
j := lin(b′

1, . . . ,b
′
j−1,b

′
j) = lin(b1, . . . ,bj−1,bj+1) .

We want to compute det Λ′
j . we know that

det Λj =

j∏︂
i=1

∥wi∥ and det Λ′
j =

j∏︂
i=1

⃦⃦
w′

i

⃦⃦
,

so we need the Gram-Schmidt vectors w′
1, . . . ,w

′
j .

We conclude from (5.1) that

w′
i = wi for i < j and i > j + 1 ,

as neither bi nor πi−1 change for these i.
Again using (5.1) we compute

w′
j := bj+1 − πj−1(bj+1)

= bj+1 −
j−1∑︂
i=1

λi,j+1wi

= wj+1 + λj,j+1wj

So

detΛ′
j =

j∏︂
i=1

⃦⃦
w′

i

⃦⃦
=

(︄
j−1∏︂
i=1

⃦⃦
w′

i

⃦⃦)︄
· ∥λj,j+1wj +wj+1∥
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≤

(︄
j−1∏︂
i=1

⃦⃦
w′

i

⃦⃦)︄
·
√︃

3

4
∥wj∥

=

√︃
3

4
det Λj ,

i.e. the determinant of the j-th lattice drops by a constant factor, while all other
determinants do not change (Note that also wj+1 may change, but this effect must be
cancelled in the computation of the determinant of Λ′

k for k ≥ j + 1 by the change in
wj , as the lattice is spanned by the same set b1, . . . ,bk.).

In the new order of the basis vectors the basis may not be weakly reduced anymore.
We can fix this by repeating the above method. However, we see from (5.2) that only
λik for i, k ∈ { j, j + 1 } may change when we swap bj and bj+1. Making them weakly
reduced again may require us to change λik for k ∈ { j, j + 1 } and all i < k. In total,
we change at most 2d of the coefficients, and for each we may need to change at most d
other coefficients. Hence, we need at most O(d2) steps.
Note, that in this process that lattices Λi do not change, so also their determinants

do not change. Hence, if there are more pairs of basis vectors that violate (4.6), we can
continue to exchange such pairs of vectors and make the basis weakly reduced again.
With each swap, the determinant of one of the lattices Λj drops by a factor of at least√︂

3
4 , while all others do not change.

This is more conveniently captured with the following notion of a potential of a lattice
basis b1, . . . ,bd defined as

D(b1, . . . ,bd) :=

d∏︂
j=1

detΛj =

d∏︂
j=1

j∏︂
k=1

∥wk∥ . (5.4)

Note that D(b1, . . . ,bd) depends on the order of the basis vectors. This gives the
following lemma.

Lemma 5.2. In each iteration of the algorithm the potential drops by at least a factor of√︂
3
4 .

With this we can estimate the number of steps our method needs to produce an
LLL-reduced basis and prove that this is in fact polynomial in the input size, at least in
the case that all entries in the original basis where integral. So here is the one place
where we need to restrict to sublattices of Zd in our argument. The crucial fact following
from this is the observation that in this case

D(b1, . . . ,bd) ≥ 1 . (5.5)

Proposition 5.3. Let Λ ⊆ Rd be a lattice with a basis b1, . . . ,bd ∈ Zd of integral vectors
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(i.e. Λ is a sublattice of Zd). Let B be a bound on the Euclidean length of the bi, i.e.

B ≥ max
(︂
∥b1∥22 , . . . , ∥bd∥22

)︂
.

Then

1 ≤ D(b1, . . . ,bd) ≤ B
d(d−1)/2 .

Proof. The norm of the Gram-Schmidt vectors is bounded by that of the corresponding
basis vector, so

∥wi∥2 ≤ ∥bi∥2 ≤ B .

The upper bound now follows from (5.4).
For the lower bound we need that det Λi ∈ Z for all i. Let Bi be the (d× i)-matrix of

the first i basis vectors. It follows from Problem 4.10 that

det Λi = vol (Π(b1, . . . ,bi)) =
√︂
det Bt

iBi .

The latter is integral if all bi are integral, which proves the lower bound.

By Lemma 5.2, the value of D drops by at least a factor of
√︂

3
4 each time we swap a

pair of basis vectors that violate condition (4.5), so, using the bounds of the previous
proposition, we need at most

k =

⌈︄
2

log
(︁
4
3

)︁ · d(d− 1)

2
log B

⌉︄
(5.6)

such swaps. We summarize this with the next corollary.

Corollary 5.4. Let Λ ⊆ Rd be a sublattice of Zd with a basis B := {b1, . . . ,bd } ∈ Zd of
integral vectors. Then the LLL-algorithm applied to this basis uses at most

O(d2 · log B)

iterations.

After each swap we have to restore the property that our lattice basis is weakly
reduced. We have seen above that this takes at most O(d2) steps. So overall, the lattice
basis reduction needs at most

O
(︁
d4 log B

)︁
steps. Initially we have to compute a Gram-Schmidt orthogonalization once. From the
description we can easily see that this requires at most O(d3) steps. This is subsumed
in the number of steps we need to do for the LLL algorithm.
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Clearly, if Λ ⊂ Zd is a sublattice of the integer lattice, then LLL can be implemented
using exact arithmetic over the rationals, and hence exact integer arithmetic. But to
show that LLL actually runs in polynomial time we also have to show that all numbers
computed in intermediate steps of the algorithm have a binary encoding size bounded
by a polynomial in I.

Bounding the size of the numbers during the algorithm consists of several parts. Given
the basis b1, . . . ,bd with Euclidean norm bounded by B as above, we need to show that
also the Gram-Schmidt basis is bounded by this constant. This is true, and can either
be derived directly from the algorithm, or you can consult text books in linear algebra.
The size of intermediate results is bounded by d ·B.

We also have to bound the intermediate and final values of the basis vectors bi and the
coefficients λik. For this we refer to the original paper of Lenstra, Lenstra and Lovász8,
where they prove the following lemma.

Lemma 5.5. For a lattice Λ ⊆ Zd with a basis b1, . . . ,bd whose Euclidean length
is bounded by B the LLL algorithm requires arithmetic operations on integers of size
O(d log B).

In the form we have discussed the LLL algorithm needs at most O
(︁
d4 log B)

)︁
steps

with arithmetic operations on numbers of size O(d · log B). Using naïve arithmetic for
the the elementary operations we thus arrive at a total running time of

O
(︁
d6 log3 B)

)︁
. (5.7)

This corresponds to the original form of the algorithm given by Lenstra, Lenstra and
Lovász.8 There have been found several improvements that run significantly faster. Here
are some references. Schnorr9 has improved the bound to O(d3 log B) on integers of
size at mostO(d · log B). Storjohann10 has another algorithm for a reduced basis in time
O(d3(log B)) on integers of size at most O(d · log B). Using fast matrix multiplication
and an improvement of the LLL-algorithm by Schönhage will lead to a running time of
O(d2.381(log B)) with arithmetic operations on integers of the same size.

Problem 5.2
Problem 5.3
Problem 5.4

5.3. Further Notes

It is important to note that the notion of reduced bases and the algorithm we have
seen to compute these bases has many more important applications apart from the
computation of a shortest vector.11 Here are some further applications.

▷ In the next chapter we use the approximation of the shortest vector for a polynomial
algorithm to solve an integer linear program with a fixed number of variables.

8A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, “Factoring polynomials with rational coefficients”.
9Koy and C. P. Schnorr, “Segment LLL-reduction of lattice bases”; Claus-P. Schnorr, “A hierarchy of
polynomial time lattice basis reduction algorithms”.

10Storjohann, Faster Algorithms for Integer Lattice Basis Reduction.
11Nguyen and Vallée, The LLL algorithm.
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▷ We give an application to a knapsack problem arising from cryptography in Chap-
ter 7.

▷ We will use the LLL-algorithm in Chapter 8 for an approximation of the closest
vector problem.

▷ Lovász gave another possible attach on knapsack cryptosystems using lattice
reduction and Diophantine approximation.12

▷ We can use LLL to find the minimal polynomial of an algebraic number given by a
sufficiently good approximation, e.g. return x2 − 2 = 0 on the input 1.41421356.

▷ In the original paper of Lenstra, Lenstra, and Lovász13 the authors consider
an application to factoring polynomials, e.g. find the two factors of x2 − 1 =
(x+ 1)(x− 1). For this see also the work of Klüners.14

▷ Find integer relations on a set of numbers x1, . . . , xk ∈ Rd, i.e. find a1, . . . , ak ∈ Z
such that

a1x1 + · · · + akxk = 0

and not all ai are zero. An example of such an integer relation is Machin’s formula,

π

4
= 4 arctan

(︃
1

5

)︃
− arctan

(︃
1

239

)︃
.

5.4. Problems

5.1. Let Λ ⊆ R2 be a lattice. An ordered basis b1,b2 ⊆ R2 of Λ is Lagrange-reduced if

∥b1∥2 ≤ ∥b2∥2 ≤ ∥b2 + ab1∥

for all a ∈ Z.
(i) Let λ1 and λ2 be the successive minima of Λ. Show that a Lagrange-reduced basis of Λ

satisfies ∥b1∥2 = λ1 and ∥b2∥2 = λ2.
(ii) Show that the function

a ↦−→ ∥b2 + ab1∥2 = ∥b2∥2 + 2a⟨b1,b2 ⟩ + a2 ∥b1∥2

takes its minimum at a0 := ⟨b1,b2 ⟩
∥b1∥2

.

(iii) Show that an ordered basis is Lagrange reduced if and only if

∥b1∥2 ≤ ∥b2∥2 ≤ ∥b2 ± b1∥

(iv) Show that the following algorithm transforms any lattice basis b1,b2 of Λ into a Lagrange
reduced one.
a) replace b2 by b1 − ⌈a0⌋b2

b) if ∥b2∥ < ∥b1∥, then swap b1 and b2 and repeat.
c) otherwise return b1,b2.

12J. C. Lagarias, “Knapsack public key cryptosystems and Diophantine approximation (extended abstract)”.
13A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, “Factoring polynomials with rational coefficients”.
14Klüners, “The van Hoeij Algorithm for Factoring Polynomials”.
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This algorithm applied to a basis b1,b2 ⊆ Z2 runs in fact in polynomial time

O(log3(max(∥b1∥2 , ∥b2∥2)) .

You may attempt to prove this, but this is more difficult.

5.2. Assume that

∥b1∥ ≤ ∥wi∥ for all 1 ≤ i ≤ d .

Show that ∥b1∥ is a shortest non-zero vector.

5.3. Let b1, . . . bd be LLL-reduced and choose a permutation σ on { 1, . . . , d } such that⃦⃦
bσ(i)

⃦⃦
≤
⃦⃦
bσ(i+1)

⃦⃦
for 1 ≤ i ≤ d− 1 .

(i) Give an example with ∥b1∥ ̸=
⃦⃦
bσ(1)

⃦⃦
(ii) Show that ⃦⃦

bσ(i)

⃦⃦
≤ 2

1
4
d(d−1) · (det Λ)1/(n+1−i) .

5.4. Compute an LLL-reduced basis for some examples in dimensions 2 and 3.
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6. Integer Programming

The integer programming problem is the task to find an integral point in a polyhedron
defined by linear constraints that maximizes a linear functional, i.e. find, for A ∈ Zm×d,
b ∈ Zm and c ∈ Zd,

max ⟨ c,x ⟩
subject to Ax ≤ b

x ∈ Zd .

Different from the linear programming problem, where we drop the requirement that
x ∈ Zd, this problem is known to be in the class NP, but not known to be in P.1

However, integer programming appears at the core of many optimization problems,
and having efficient tools for its solution is vitally important in many cases. This has lead
to rich theory of methods to solve integer programs despite its theoretical complexity,
often in special cases where we know more about the algebraic or geometric structure
of the problem. In a second direction there have also been developed many ways to
obtain approximations of the exact solution. You may have met many such tools in the
class on Discrete Optimization.

Standard approaches to obtain exact solutions are the Branch&Bound or Branch&Cut
methods. Both methods start with the linear relaxation of the problem and are, broadly
speaking, recursive methods that lay out systematic ways either to split the feasible
set into smaller pieces and look at those separately, or to shrink the feasible region
by cutting off pieces that cannot contain an integer solution. In both cases we need
methods to measure or estimate which splits or cuts are most promising and should be
chosen next. You can find good introductions into this theory in various textbooks, e.g.
the one of Schrijver,2 or Nemhauser and Wolsey,3 or Bertsimas and Weismantel.4

We will look at one such approach in Chapter * 11, where we will look at cuts and
lattice free polytopes.
Many special cases allow polynomial solutions or, if not, at least more efficient

superpolynomial solutions. The additional structure may come from more information
on the origin of the problem, e.g. in combinatorial optimization, where one often deals
with problems whose underlying structure is a graph, or where the solution space

1Recall that the usually applied simplex algorithm for the computation of a solution to a linear program
is not known to be in P, although it is practically usually fast and efficient. The proof of polynomiality
is via the ellipsoid method of Khinchine. This is a theoretically polynomial, but practically not (yet)
efficient algorithm, so that many software tools implement variations of the simplex method

2Alexander Schrijver, Theory of linear and integer programming.
3Nemhauser and L. Wolsey, Integer and Combinatorial Optimization.
4Bertsimas and Weismantel, Optimization over integers.
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is restricted to vectors from {0, 1}d. This may allow to solve (subproblems of) the
problem with methods from other fields, e.g. graph algorithms.5. We may also have
more information on the constraint matrix or the whole system of constraints, e.g. the
matrix may be totally unimodular or the system may be TDI.6

Prominent examples for methods the retreat to approximations of the exact solution
are the Lagrange or Benders’ decomposition, that either split off some constraints or
some variables from the problem in the hope to obtain subproblems that are easier to
solve (preferably because we can then find additional structure that makes the problem
polynomially solvable). To solve the original problem one then has to find a way to
insert the neglected constraints or variables back into the problem without loosing (all
of) the advantage of the simpler problem structure.7

In all of the above we consider both the size of the constraint matrix and the number
of variables (i.e. the ambient dimension of the polyhedron defined by the constraints) as
input size. One may ask in which way these two different input parameters contribute
to the complexity of the problem, and whether fixing or restricting one of them may
lead to polynomial or, at least, more efficient, algorithms. Bounding the complexity
of the constraint matrix may indeed lead to more efficient algorithms, and fixing
some parameters even gives polynomial time algorithms, see e.g. the resent survey of
Eisenbrand at al.8

In this chapter we will discuss the integer programming problem for fixed dimension
or number of variables, and show that this problem is polynomial. The algorithm we
present is due to Hendrik Lenstra. It is based on flatness and its proof via ellipsoids,
together with the computation of reduced bases with the LLL-algorithm. The version
of flatness that we need here, is more general than the version we have seen in the
Flatness Theorem (Theorem 3.29), but the method of proof is just an extension of what
we have seen before.

In the second part of this chapter on integer programs we will look at the minimum
infeasible set problem. You may have discussed the corresponding linear version already
in a course on linear programming. If we are given an infeasible linear program

max (⟨ c,x ⟩ : Ax ≤ b) ,

i.e. a program where the feasible region P := {x : Ax ≤ b } is empty, then we can
ask which, and how many of the constraints we need such that already the polyhedron
defined by these inequalities is empty. In linear programming it can be shown that a
subset of at most d+ 1 of the constraints is sufficient.
This theorem has no direct extension to integer programming, as it is not anymore

true that infeasibility of the problem implies that the linear constraints have no common
solution. The polyhedron P may well be a proper full-dimensional set, but P ∩Λmay be
empty. We will see in Section 6.3 that we nevertheless can recover a similar statement,
but the bound of d+ 1 necessary inequalities increases significantly.

5Korte and Vygen, Combinatorial Optimization.
6Alexander Schrijver, Theory of linear and integer programming.
7Nemhauser and L. Wolsey, Integer and Combinatorial Optimization.
8Eisenbrand, Hunkenschröder, K.-M. Klein, Koutecký, Levin, and Onn, An Algorithmic Theory of Integer
Programming.
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6.1. Flatness Revisited

Let us look at the flatness theorem of Section 3.3 again. As before, our considerations
will have three steps, and we first consider balls, almost trivially extend the result to
ellipsoids, and then we use the John ellipsoids again to squeeze a polytope P between
two ellipsoids and use the method for ellipsoids to find a feasible integer point in P or
assert that there is none.

The refined version of flatness is necessary to not only consider convex bodies without
interior lattice points, but to slice a polytope with a polynomial number of integral
translates of a lattice hyperplane and descend in dimension if we cannot yet decide
whether P has an integral point.

Let us make this precise with the following theorem. We follow ideas from Grötschel
at al.9 in this proof.

Theorem 6.1. Let Λ ⊆ Rd be a lattice of full rank and P = {x : Ax ≤ b } ⊆ Rd

with A ∈ Rd×m and b ∈ Rm a polyhedron. Then we can find, in polynomial time in d,
log ∥A∥∞ and log ∥b∥∞,
(i) either a point u ∈ P ∩ Λ

(ii) or a direction c ∈ Λ⋆ with

width(P ; c) ≤ f(d)

for some function f(d) ≤ 2O(d2 log2 d).

Wewill discuss the complexity a bite more later, but we will not work this out precisely.
This is technical, and we will not discuss all ingredients in enough detail to obtain a
precise bound.

Observe the large gap in the constants in the above theorem, compared to the Flatness
Theorem (Theorem 3.29). In the latter, we have a constant of d5/2 that implies that P is
lattice point free, while in the above we can only construct a direction with a flatness
constant of 2d2 log d. However, reducing this to polynomial would imply a polynomial
algorithm for integer programming, so this may be too much to ask for.

As explained above, the proof has three steps, for balls, for ellipsoids, and finally the
extension to a proof of the above theorem. In this process, only the first step, proving the
result for balls, will need substantial effort. Here is the proposition that solves flatness
for balls.

Proposition 6.2. Let Λ be a lattice with basis b1, . . . ,bd and Bd := Bd(z) be the unit
ball with center z. Then we can find, in polynomial time,
(i) either a lattice point u ∈ Bd ∩Λ, or

9Grötschel, László Lovász, and Alexander Schrijver, Geometric algorithms and combinatorial optimization.

85



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

(ii) a lattice functional c ∈ Λ⋆ with ∥c∥ ≤ 2O(d2) such that Bd ∩Λ is covered by at most
2O(d2 log d) hyperplanes of the form

{x : ⟨ c,x ⟩ = β} .

for some β ∈ Z.

Proof. Assume that b1, . . . ,bd is a LLL-reduced basis with orthogonality defect bounded
by

M ≤
d∏︂

j=1

∥bi∥
∥wi∥

≤ 2
1
2

(︁d
2

)︁
,

where w1, . . . ,wd is the associated Gram-Schmidt basis. Reorder the basis such that

∥b1∥ ≤ ∥b2∥ ≤ . . . ≤ ∥bd∥ .

This may destroy reducedness of the basis, but does not affect the orthogonality defect.
We distinguish two cases.

If ∥bd∥ ≤ 1
d , then we consider the representation

z =

d∑︂
i=1

λibi

of the center in our basis. The point

u =

d∑︂
i=1

⌊λi⌋bi

is a lattice point and

∥u− z∥ ≤
d∑︂

i=1

∥bi∥ ≤ d ∥bd∥ ≤ 1 .

Hence u ∈ Bd ∩Λ.
Otherwise we have ∥bd∥ > 1

d . Let

L := lin(b1, . . . ,bd−1).

Then L+ bd = L+wd, so

Λ ⊆
⋃︂
β∈Z

L+ βbd =
⋃︂
β∈Z

L+ βwd .
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Now

∥bd∥
∥wd∥

≤ M ≤ 2
1
2

(︁d
2

)︁
,

so

∥wd∥ ≥ 2−
1
2

(︁d
2

)︁
∥bd∥ ≥

1

d
2−

1
2

(︁d
2

)︁
.

Hence, translates of L are at least 1
d2

− 1
2

(︁d
2

)︁
apart. On the other hand, we can bound the

distance in which we need to search trivially by

max
β∈Z

(L+ βbd ∩Bd ̸= ∅) − max
β∈Z

(L+ βbd ∩Bd ̸= ∅) ≤ 2 .

Combining this with the minimum distance of two translates of L we conclude that
L+ βbd ∩ Λ ̸= ∅ for at most 2d2

1
2

(︁d
2

)︁
different β’s.

Let c := wd

∥wd∥2
. Then L+ βwd = {x : ⟨ c,x ⟩ = β }, and any u ∈ Λ can be written

as u = µwd + h for h ∈ L and µ ∈ Z. This implies

⟨ c,u ⟩ = µ ∈ Z .

so that c ∈ Λ⋆ and ∥c∥ ≤ 1
∥wd∥ ≤ 2O(d2).

Geometrically, this proposition tells us that either we can find a reduced basis with
only short vectors, or there must be a short dual vector, albeit with a very different
bound. Namely, all basis vectors of our LLL-reduced basis have length at most 1

d , or
there is a dual vector of length at most 1

∥wd∥ ≤ 2O(d2).
Problem 6.1

Corollary 6.3. The proposition is also true if we replace the ball by an ellipsoid E =
T Bd+a for an invertible linear transformation T .

Proof. This follows in the same way as for the previous flatness theorem. Just pull back
the ellipsoids to a ball with the linear map T−1 and consider the lattice T−1Λ.

By Lemma A.11 we know that for a convex body K there is an ellipsoid E centered
at the origin such that

a + E ⊆ K ⊆ a + d · E .

Unfortunately, the proof of this theorem is not constructive, and so far, also no polynomial
time algorithm is known that allows to compute E. However, the precise scaling factor
is not really important, as long as it depends polynomially on d, and we may use the
approximation of Theorem A.34 instead. It guarantees the computation of an ellipsoid
E with center a such that

a + E ⊆ P ⊆ a + d
3/2 · E . (6.1)
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The algorithm is essentially the same as for the ellipsoid method of linear programming,
but needs more general cuts than the central cuts used in this method. However, the
ideas used and the proofs are otherwise the same.

With this result we can finally prove Theorem 6.1.

Proof of Theorem 6.1. Let us first assume that P is bounded. Let E an ellipsoid with
center a that satisfies (6.1). After translation we may assume that

E ⊆ P ⊆ d
3/2(E) .

Then Corollary 6.3 implies that we can either find an integral point in E, and hence in
P , or there is a direction c ∈ Λ⋆ such that at most 2O(d2 log d) hyperplanes defined by c
intersect E. So at most d3/22O(d2 log d) = 2O(d2log2 d) hyperplanes can intersect P .
Finally, we want to reduce the unbounded to the bounded case. Let ϕ be an upper

bound on the size of an inequality in the description ofP . We know from Proposition A.30
that the size ν of the generators in a representation

P = conv(v1, . . . ,vn) + cone(r1, . . . , rm)

for some points v1, . . . ,vn and rays r1, . . . , rm is bounded by ν ≤ 4d2ϕ.
Let C > 0 be the constant hidden in the 2O(d2 log d) above. We add one additional

inequality

∥x∥ ≤ C · 2ν+k+1d
3/22d

2 (6.2)

to the system. Then we have a bounded problem and we can apply the above result.
We are done if we are in the first option and find a lattice point. This is also a lattice
point in P .

Otherwise, we obtain a vector c such that there is δ with

δ ≤ ⟨ c,x ⟩ ≤ δ + C · d3/22d
2

for all x ∈ P that satisfy (6.2). Every x ∈ P can be written as

x =
∑︂

λivi +
∑︂

µjrj

for λi, µj ≥ 0,
∑︁

λi = 1 and the points and rays defined above of size at most ν. Then
∥vi∥ ≤ 2ν , so

y :=
∑︂

λivi

is in P and satisfies (6.2). Hence, we are done if we can show that ⟨ c, rj ⟩ = 0.
Suppose not, then |⟨ c, rj ⟩| > 2−ν , and, changing the sign if necessary, we may assume

that ⟨ c, rj ⟩ > 2−ν . Consider

z := y + 2νd
3/2 · C · 2d2rj .
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Then

⟨ c, z ⟩ ≥ δ + C · d3/22d
2
.

This is a contradiction, as z is in P and satisfies (6.2).
So any lattice point in P is already on one of the hyperplanes returned by the above

method if we add (6.2).

It follows from work of Babai10 and Lenstra11 that we can reduce the number of
hyperplanes to cd for some constant c.

6.2. Integer Programming in Fixed Dimension

With these preparations we finally arrive at Lenstra’s algorithm11 for integer program-
ming with a fixed number of variables.

Theorem 6.4 (Lenstra). For a polytope P = {x : Ax ≤ b } we can decide, in time
2O(d3 log d) times a polynomial in the encoding length of A and b, whether P contains an
integer point.

Proof. We use Theorem 6.1. We are done, if we find an integral point. Otherwise, we
obtain the short direction c. We then consider the problem in each of the slices

P ∩ {x : ⟨ c,x ⟩ = β } (6.3)

for all β ∈ Z where this intersection is not empty. For this, we have to compute a lattice
basis in the subspace {x : ⟨ c,x ⟩ = 0 }, extend this to a lattice basis of the whole
lattice, and use the transformation from the original basis (usually the Zd-basis) to
transform the problem (6.3), which is a (d− 1)-dimensional problem in d-dimensional
space, into one in (d− 1)-dimensional space. This can be done, e.g. with the Hermite
normal form algorithm.

It remains to check the running time. For this, let T (d) denote the number of recursive
calls in dimension d. Then the total running time is T (d) times a polynomial in d and
the encoding length of A and b.
By the Theorem 6.1 we know that

T (d) ≤ T (d− 1) · 2O(d2 log2 d) ,

This implies

T (d) ≤
d∏︂

k=1

2O(d2 log2 d) ≤ 2O(d3 log2 d) .

10Babai, “On Lovász’ lattice reduction and the nearest lattice point problem”.
11Hendrik W. Lenstra, “Integer Programming with a fixed number of variables”.
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Note that we omitted one detail in the proof. In the transformation of the (d − 1)-
dimensional problems in Rd into problems in Rd−1 we have to check that the size of the
new constraints is still bounded in the input size. This is, however, not hard to check,
not very instructive, and rather technical. So we refrain from doing this.

The above theorem only solves the feasibility problem. However, using binary search,
we can easily solve the optimization problem in polynomial time.

Corollary 6.5. For any fixed d ≥ 1 we can solve the integer programming problem

max
(︂
⟨ c,x ⟩ : Ax ≤ b , x ∈ Zd

)︂
in polynomial time.

The currently best known algorithm for integer programming in fixed dimension
is due to Kannan 12. It takes time dO(d) times a polynomial in the size of A and b.
The main new idea here is that he applies the LLL-algorithm again in each iteration to
improve the lattice basis. This brings down the number of parallel planes needed to
check to a polynomial in d. It is still open whether we can bring the running time down
to single exponential, i.e. whether we can replace dO(d) to 2O(d).

6.3. Minimal infeasible subsets

We consider the feasible region P of a linear program in the form

P := {x : Ax ≤ b }

for some A ∈ Qm×n and b ∈ Qd. A well known theorem in linear optimization states
that , if the program is infeasible, i.e. if P = ∅, then we can find a subset A′x ≤ b′

containing at most d+ 1 of the original constraints, such that already{︁
x : A′x ≤ b′ }︁ = ∅ .

In other words, if a system of linear inequalities has no solution, then there is a subset
of at most d + 1 of the inequalities that is already infeasible. yet in other words, we
know that there is a short proof of infeasibility. The proof of this result is not difficult,
you may attempt this with Problem 6.2.

Problem 6.2
We may ask if the theorem is still true if we ask for integer solutions instead of any

solution. It is, however, not hard to see that the claim already fails in dimension 2. To
see this we can look at the polytope

P :=

{︃(︃
x1
x2

)︃
: ±

(︃
x1 −

1

2

)︃
±
(︃
x2 −

1

2

)︃
≤ 3

4

}︃
This is a square with four facets, and P ∩Z2 = ∅. See also Figure 6.1. However, if we
12Ravi Kannan, “Improved Algorithms for Integer Programming and Related Lattice Problems”.
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Figure 6.1.: A set of 4 = 22 inequalities that are integer infeasible, but each subset is feasible.

remove any facet, then we obtain an unbounded polyhedron that contains points from
Z2.
So a direct translation does not work. If you experiment further in dimension 2 you

may get the impression that with more inequalities you can always discard one. Hence,
we may ask if the claim holds if we replace d + 1 by a larger number. Indeed, this is
possible, and this is a theorem of Doignon13 from 1973.

Theorem 6.6. Let Ax ≤ b be a linear system Ax ≤ b of inequalities that is integer
infeasible, i.e. {x : Ax ≤ b } ∩Zd = ∅. Then there is a subsystem A′x ≤ b of at most
2n rows, such that already A′x ≤ b′ is integer infeasible.

This has also been proved by Bell14 and by Scarf.15
Problem 6.3

Proof. Let atix ≤ βi for ≤ i ≤ m be a set of linear inequalities in Rd that has no integer
solution, but any subset has an integral solution. This implies that we can find, for each
i, an integer point xi such that

atixi > βi and atjxi ≤ βj for i ̸= j .

In particular, all xi are distinct. We set

S := conv(x1 . . . ,xm) ∩ Zd .

Now look at the set D of all tuples (δ1, . . . , δm) such that

δi ≥ min(atix : atix > βi and x ∈ S) (6.4)

while the system

atjx < δj for 1 ≤ j ≤ m (6.5)

13Doignon, “Convexity in cristallographical lattices”.
14Bell, “A theorem concerning the integer lattice”.
15Scarf, “An observation on the structure of production sets with indivisibilities”.
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atix = δi

atix = δ′i

(a) If all lattice points are on the boundary of the
facet for ai, then we can increase δi to δ′i

atix = δi

(b) If we cannot push out, then there is a lattice
point in the relative interior.

Figure 6.2.: Finding lattice points in the relative interior.

has no solution in S. The latter condition means that the polyhedron{︁
x : atjx ≤ δj for 1 ≤ j ≤ m

}︁
contains no point of S in its interior. We know that we have at least one such tuple
(δ1, . . . , δm) as we can certainly choose

δi = min(atix : atix > βi and x ∈ S) for all i .

So D is not empty. It is also bounded, as δi > atjxj would imply that xj is a solution of
(6.5). The set of all δi that satisfy (6.4) and the condition that there is s ∈ S such that

atjs < βj for 1 ≤ j ≤ m

is an open set, so D is also closed. This implies that the sum δ1 + · · ·+ δm assumes its
maximum in D. Let δ1, · · · , δm be such a choice of parameters.

We claim that there are yi ∈ S such that

atiyi = δi and atjyi < δj for i ̸= j .

Assume that this is not the case. Then there is some i such that all y ∈ S with atiy = δi
satisfy at least one other inequality of our system with equality. So all point of S that
are on the hyperplane {︁

x : atiy = δi
}︁

are on the boundary of the facet defined by this inequality. Hence, we can increase δi
slightly to some δ′i > δi without violating (6.5), see Figure 6.2. Hence, our choice was
not maximal, a contradiction.

If now m > 2d, then there is a pair yj ,yk for j ̸= k such that

yj ≡ yk mod 2 .

Hence, y := 1
2(yj + yk) ∈ S and satisfies (6.5). This is a contradiction, so m ≤ 2d.

Problem 6.4
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6.4. Problems

6.1. Show that for any lattice λd(Λ)λ1(Λ
⋆) ≤ 2O(d2).

6.2. Let Ax ≤ b be a system of linear inequalities in Rd. Show that, if this system is
infeasible, then there is a subsystem A′x ≤ b′ of at most d+1 rows that is already
infeasible.

6.3. Prove that the bound of Doignon’s Theorem is tight by constructing a polytope
with 2d facets that contains no integral point, but removing any facet produces a
polyhedron with interior lattice points.

6.4. Let K1, . . . ,Km ⊆ Rd be convex and bounded with(︄
m⋂︂
i=1

Ki

)︄
∩ Zd = ∅ .

Show that there is a subset I ⊆ { 1, . . . ,m } of size at most 2d such that(︄⋂︂
i∈I

Ki

)︄
∩ Zd = ∅ .
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7. The Subset Sum Problem

This chapter introduces another application of the LLL algorithm. We will consider the
subset sum or knapsack problem. The general case of this problem is hard (NP-complete)
to solve. However, we will see that a special case can be solved in polynomial time
using a reduced basis. This has also a nice application in cryptography, which we will
explain in the next section, before we discuss an algorithm using LLL to break certain
encryption schemes based on knapsacks. .
Let us first formalize the general problem.

(SubsetSum). Let a := (a1, . . . , ad) be positive integer weights, and s ∈ Z>0

such that there is x = (x1, . . . , xd) ∈ {0, 1}d with s =
∑︁

xiai.
The Subset Sum Problem is the task to find x given a and s.

In this general formulation the problem is NP-complete. But this applies to the worst
case. It might still be that some or most instances can be solved efficiently. We will see
below that some structured instances can be solved easily, and if the bit length of all ai is
large compared to n, then we can use the LLL-algorithm to find x with high probability.

7.1. A knapsack cryptosystem

Many NP-hard problems attract researches in the field of cryptography, as they may
serve as a basis for a strong public key encryption schemes (as long as P ̸= NP).
In our case we want to look at knapsack problems, and the scheme would consist

of a choice of weights a := (a1, . . . , ad) somehow chosen from a specified distribution.
Given some data x := (x1, . . . , xd) ∈ {0, 1}d, the encryption computes the sum

s :=

d∑︂
i=1

aixi

This process of encryption is pretty simple, which is a major advantage over other
public key encryption schemes, which use modular exponentiation or elliptic curves. As
recovering the encrypted text requires us to solve the subset sum instance with input
data a and s, which is a NP-complete problem, it is also secure.
However, in this form it is not yet useful. For the true receiver of the message, who

generated the set of weights a, it should be possible to recover the original message
without solving an NP-hard problem. To make this feasible, we have to find an instance
of a subset sum problem, which is easy to solve with some additional information on
the system, but which is hard to solve without. In particular, it should not be possible to
deduce the required additional information from the publicly known weights.
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Hence, we need an instance of the subset sum problem which is easy to solve, together
with a method to hide this. Here is one option of an easily solvable subset sum instance.
We say that a sequence a1, a2, . . . , ad of weights is superincreasing if

aj >

j−1∑︂
i=1

ai for 1 ≤ j ≤ n .

Given such a sequence we can easily solve any subset sum instance. Namely, if we
have the total weight s, then we check if s ≥ ad. If it is, then necessarily xd = 1, and
otherwise xd = 0. We can now replace s with s− xdad. The remaining weights are still
superincreasing, so we can repeat the same process with an−1 to find xn−1. We can
continue in this way until we arrive at a1. At this point we must have recovered the
original message x.

Now we have an easily solvable instance. However, if we now publish these weights,
then also any attacker can solve the problem. We must somehow disguise this special
property of our weights. The following method to do this was proposed by Merkle and
Hellman.1

(i) Choose a superincreasing sequence b1, . . . , bd.
(ii) Choose a number N >

∑︁
bi and a nonzero number m ∈ ZN .

(iii) Choose a permutation π of (1, . . . , n).
Now we set

ai := m · bπ(i) mod N for 1 ≤ j ≤ n .

Then our public key is a = (a1, . . . , ad) and the required data to obtain a simple solution
is (N,m, π).

Given a message x = (x1, . . . , xd) we receive

s :=
∑︂

xiai = m ·
∑︂

xibπ(i) .

To decrypt this message using our additional data we first compute t := s/m. By the
choice of N we know that t < N , so this the true sum for the weights b1, . . . , bd. Now
we can solve the problem using this permuted superincreasing sequence.

At first sight this might be a good encryption scheme, if we choose our superincreasing
sequence suitably. In particular, it should certainly not follow any pattern, like setting
bi = 2i or similar. However, we will see in the next section that this scheme is in fact
inherently insecure.

7.2. Solving Sparse Knapsack Instances in Polynomial Time

We now want to show that in certain cases we can use the computation of a short vector
to solve the knapsack instance (SubsetSum) in polynomial time. The systems we want
to look at are the sparse knapsack systems, where we call a system sparse if its density,

1Merkle and Hellman, “Hiding information and signatures in trapdoor knapsacks”.
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which is defined as

d

max1≤i≤d(log ai)

is bounded by O(1d) and we choose the ai uniformly at random from

ai ∈ { 1, . . . , N } .

for N := 2d
2( 1

2
+ε) and small ε > 0.

Let x ∈ { 0, 1 }d be the plain message, and s :=
∑︁

aixi be the knapsack sum. We may
assume that s > 1

2

∑︁d
i=1 ai, otherwise we replace s by

∑︁d
i=1 ai − s and flip zeros and

ones in the solution that we compute. This implies in particular, that x ̸= 0. For such
systems, Lagarias and Odlydzko,2 with later simplifications by Frieze3 have shown that
we can solve them efficiently with high probability.

Theorem 7.1. There is a polynomial time algorithm that, with high probability, on input
(a, s) recovers x.

The key idea for the proof is to define a lattice Λ of rank d+ 1 in which the desired
solution x is a shortest nonzero lattice vector and, moreover, all lattice vectors not
parallel to this x have length at least 2d/2 ∥x∥. Now we can efficiently solve (SVP)γ for
γ = 2d/2 (see Corollary 4.9 and recall that our lattice will have rank d+ 1). Hence, by
construction, the approximation we compute with this algorithm must actually be x.

Proof. Let M := ⌈
√
d · 2d/2 + 1⌉ and define the lattice Λ as the integral span of the

columns of

B :=

⎡⎢⎢⎢⎢⎢⎣
1

1
. . .

1
−Ma1 −Ma2 · · · −Mad Ms

⎤⎥⎥⎥⎥⎥⎦ ,

where all entries in the matrix that are not specified are 0.
For the coefficient vector u := [ x1 ], where x ∈ {0, 1}d is the solution we search for,

we have Bu = [ x0 ] ̸= 0 (recall that s =
∑︁

aixi) and this vector has norm at most
√
d.

Now we use the LLL-algorithm to compute an approximate shortest vector v as in
Corollary 4.9. This vector satisfies

∥v∥ ≤ 2
d/2λ1(Λ) , (7.1)

We want to show that the last coordinate vd+1 of such a vector is necessarily 0. Assume
this is not the case. By our choice of a basis the last coordinate wd+1 of any lattice vector

2J. C. Lagarias and Odlyzko, “Solving low-density subset sum problems”.
3Frieze, “On the Lagarias-Odlyzko algorithm for the subset sum problem”.
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w ∈ Λ is divisible by M . Thus, if vd+1 ̸= 0, then

∥v∥ ≥ M > 2
d/2 ∥x∥ ≥ 2

d/2λ1(Λ) ,

which is a contradiction to (7.1). Hence, we know that vd+1 = 0.
We will now show that with high probability the vector v must be a multiple of

x′ := [ x0 ], but let us first discuss why this will prove the claim. For this we first recall
that the construction of the approximation of a shortest vector in (SVP)γ applies the
LLL-algorithm and then returns the first vector of the computed basis. So the vector v
that we have computed is part of a basis. As such, v must be primitive, i.e. v cannot be
a multiple λw of a lattice vector for some λ ∈ Z with |λ| ≥ 2. This implies

v = ± [ x0 ] ,

so we know x up to sign. But x ∈ {0, 1}d, so we just multiply by −1 if x ≤ 0.
Now to prove that v is a multiple of x′, we show that with high probability, multiples

of [ x0 ] are the only lattice vectors that have a length bounded by 2d/2
√
d < M .

So let [ z0 ] ∈ Zd+1 be any nonzero lattice vector with ∥z∥ < 2d/2
√
d that is not a

multiple of [ x0 ]. We have to bound the probability that[︃
z
0

]︃
= B

[︃
µ
η

]︃
is a vector in Λ for some µ ∈ Zd and η ∈ Z. Note that, by our choice of the basis, the

first d coefficients must coincide with the entries of the vector, i.e.

µi = zi for 1 ≤ i ≤ d and ∥z∥ = ∥µ∥ . (7.2)

In this case we have

s · |η| = |s · η| = |
d∑︂

i=1

µiai| ≤ ∥µ∥
d∑︂

i=1

ai .

By assumption, s > 1
2

∑︁d
i=1 ai, so we get

|η| ≤ 2 ∥µ∥ . (7.3)

If [ z0 ] is in Λ, then

d∑︂
i=1

µiai = η · s = η

d∑︂
i=1

xiai ,

so, for ξ := µi − ηxi

d∑︂
i=1

ξiai = 0 .
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By assumption, [ z0 ] is not a multiple of [ x0 ], so not all ξi can be zero. Thus, up to
reordering we may assume that ξ1 ̸= 0. This implies

a1 = − 1

ξ1

d∑︂
i=2

ξiai .

Hence, for any fixed (µ, η) satisfying the constraints, the probability that [ z0 ] is in Λ is
bounded by

Pr
ai∈{ 1,... N }

[︄
d∑︂

i=1

ξiai = 0

]︄
= Pr

a1∈{ 1,... N }

[︄
a1 = − 1

ξ1

d∑︂
i=2

ξiai

]︄
≤ 1

N
,

as the ai are chosen uniformly at random in { 1, . . . , N }, for N = 2d
2( 1

2
+o(1)).

Now there are at most

(2M + 1)d · (4M + 1) ≤ (5M)d+1 ≤ 2d
2( 1

2
+o(1))

possible choices for (µ, η). This rather crude bound follows from ∥z∥ ≤M , so |zi| ≤M ,
and the observations in (7.2) and (7.3).
This shows that also the total probability that there exists any[ z0 ] ∈ Λ satisfying the

above constraints is at most 2−Ω(d2), which is small.
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8. The Closest Vector Problem

In Chapter 4 we discussed how we may compute the short vector that is guaranteed by
Minkowski’s First Theorem (Corollary 3.3). We showed that we can approximate the
vector up to some constant with a reduced basis, and then find the true shortest vector
with a simple enumeration.

In this chapter we want to consider a seemingly similar problem, the Closest Vector
Problem (CVP) and some variants. Here, we are given a lattice Λ ⊆ Rd and some point
t ∈ Rd and we want to find a lattice point v ∈ Λ that minimizes ∥v − t∥.

Yet, despite its similarity, we need a new technique. Fortunately, our algorithms will
still use the same tools that we developed in Chapter 3 and Chapter 5. In particular, we
will uses reduced bases and their properties again.

Let us first give a formal definition of the problem.

(CVP). Let Λ ⊆ Rd be a lattice and t ∈ Rd. The Closest Vector Problem (CVP)
is the task to find a vector u ∈ Λ that minimizes ∥u− t∥.

As for the shortest vector problem it proves to be much harder to find the exact
solution compared to an approximate solution. We may consider two variants for the
approximation. Either, we want to find a vector u whose distance from t is at most
some factor γ longer than the optimal distance, or we provide a bound r > 0 and ask
for a point u at distance at most r from t. Let us make this precise. Here is version to
find a relative approximation.

(CVP)γ . Let γ ≥ 1, Λ ⊆ Rd a lattice and t ∈ Rd. The (Relative) Approximate
Closest Vector Problem (CVP)γ is the task to find u ∈ Λ\{0} at distance
at most

∥u− t∥ ≤ γ ·min
v∈Λ
∥t− v∥ .

In some problems it may be more interesting to have an absolute bound and consider
the following problem

(AbsCVP)r. Let r > 0, Λ ⊆ Rd a lattice and t ∈ Rd. The Approximate Absolute
Closest Vector Problem (AbsCVP)r is the task to find u ∈ Λ \ {0} at
distance at most

∥u− t∥ ≤ r .

Clearly, if r is too small, then this problem will not have a solution.
We will discuss two methods below. The first one, the nearest plain algorithm by
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Babai1 only solves (CVP)γ , with γ = 2d/2. However, it runs in polynomial time.
The second algorithm expands the idea of this algorithm and refines the method

where in Babai’s algorithm we may miss the exact solution. Thus, the algorithm solves
the exact problem (CVP). The main drawback is, that we need a similar technique as in
Section 6.2 and use recursion in lower dimension on a bounded number of hyperplanes.
Here, we need to searchO(2d) hyperplanes, which makes the algorithm only polynomial
if the dimension is not part of the input. Its total running time is O(2d2).

Micciancio and Voulgaris2 have shown that one can solve the problem in O(2d) using
Voronoi cells around lattice points, which is, as far as I know, the fastest known algorithm
for this problem.
There a more methods known, but nothing that runs in polynomial time if the

dimension is part of the input. In fact, the exact complexity class is not known. In
particular it is not known whether the closest vector problem is NP-hard. On the other
hand we do know that it is not more difficult than the shortest vector problem.3

8.1. Babai’s Nearest Plane Algorithm

Recall the discussion at the beginning of Chapter 4. There we observed that solving
(SVP) is simple if all basis vectors of the lattice are pairwise orthogonal. The same is
true for (CVP).

Assume that b1, . . . ,bd is a lattice basis of pairwise orthogonal vectors, and we want
to determine the closest lattice vector to some t ∈ Rd. We can write

t =
d∑︂

i=1

µibi

for some µi ∈ Rd. If u is any lattice vector, then we can write u as

u =

d∑︂
i=0

λibi

for λi ∈ Z. Thus,

∥u− t∥2 =

d∑︂
i=1

(µi − λi)
2 ∥bi∥2 . (8.1)

This sum is minimal, when each of the (µi − λi)
2 is minimal. As λi ∈ Z, this is the case

if λi = ⌈µi⌋, i.e. the rounding of µi to the nearest integer.
We want to apply the same idea, rounding coefficients to the nearest integer, also

for general lattice bases. These are usually not orthogonal, not even if we apply the
1Babai, “On Lovász’ lattice reduction and the nearest lattice point problem”.
2Daniele Micciancio and Voulgaris, “A deterministic single exponential time algorithm for most lattice
problems based on Voronoi cell computations [extended abstract]”.

3Goldreich, D. Micciancio, Safra, and Seifert, “Approximating shortest lattice vectors is not harder than
approximating closest lattice vectors”.
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L

bd + L

2bd + L = v + L

bdwd

x

x′

x′′

Figure 8.1.: The nearest plane algorithm

LLL-algorithm. We cannot expect to find the exact closest vector with such a method,
but we will find a 2d/2-approximation to a vector x, i.e. a vector v ∈ Λ such that

∥x− v∥ ≤ 2
d/2 · ∥x− u∥

where u ∈ Λ is a closest vector to x in Λ. This goes back to work of Babai.4

So we want to round the coefficients of some representation of x successively to their
nearest integer. In this process, being orthogonal will turn out more important than
being a lattice basis, so we will not do this for the coefficients in the lattice basis, but
for the coefficients in the associated Gram-Schmidt basis.
Let us first consider this geometrically, before we compute our approximation alge-

braically. We are given a lattice Λ with basis b1, . . . ,bd and some point x ∈ Rd. The
method will use recursion over the dimension. For this, we define

L := lin(b1, . . . ,bd−1) and Λ′ := L ∩ Λ .

The lattice Λ′ is spanned by b1, . . . ,bd−1. As before, we denote by w1, . . . ,wd the
Gram-Schmidt orthogonalization of the lattice basis. Let µ1, . . . , µd be the coefficients
of x in the basis w1, . . . ,wd, i.e.

x :=
d∑︂

i=1

µiwi .

All lattice points of Λ are contained in one of the hyperplanes

k · bd + L = k ·wd + L

for some k ∈ Z. The idea of the algorithm is to find k such that the distance from x
to kbd + L is minimal, see Figure 8.1. Let x′ be the orthogonal projection of x onto

4Babai, “On Lovász’ lattice reduction and the nearest lattice point problem”.

103



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

L

bd + L
bdwd

v

x

x′

Figure 8.2.: The closest lattice point need not be on the closest lattice hyperplane

kb+ L, and set

x′′ := x′ − kbd .

Now we recursively find an approximate solution v′′ to the closest vector problem for
the point x′′ in the lower dimensional space L. Then

v := v′′ + kbd

is the solution to the original problem. Note that k = ⌊µd⌉, so we use the same rounding
for the coefficients as we needed in (8.1).
However, we cannot expect to obtain the true closest vector with this procedure.

Figure 8.2 shows an example where the closest vector v to x is not on the nearest
hyperplane. As we are recursing to find the closest lattice point to a projection on the
nearest plane we will never find a closest point in this example.

The orthogonal projection of x onto kbd + L is

x′ :=

d−1∑︂
i=1

µiwi + ⌊µd⌉wd .

By construction, this point has minimal distance from x among all points in kb + L.
Recall from (4.3) that

bd = wd +

d−1∑︂
i=1

λidwi (8.2)

We compute the representation of x′′,

x′′ = x′ − kbd

=

d−1∑︂
i=1

µiwi + ⌊µd⌉wd − ⌊µd⌉

(︄
wd +

d−1∑︂
i=1

λidwi

)︄

=

d−1∑︂
i=1

(µi − ⌊µd⌉λid)wi . (8.3)
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We now have a full description of the algorithm. With (8.3) we have a representation
of x′′ in the Gram-Schmidt orthogonalization of the basis b1, . . . ,bd−1 of the lattice
Λ′. We continue by rounding the last coefficient µi − ⌊µd⌉λid to the nearest integer.
We discuss below that we can simplify this slightly. There we show that we omit the
projection of x onto kbd + L and use x− kbd instead of x′′.
We have not yet discussed how close we get to an exact closest vector. For this we

have to assume that our basis b1, . . . ,bd is LLL-reduced. The following lemma bounds
the approximation by the lengths of the Gram-Schmidt vectors. We use this in the next
theorem to compute the approximation factor of the algorithm.

Lemma 8.1. Let b1, . . . ,bd be an LLL-reduced lattice basis of Λ with Gram-Schmidt vectors
w1, . . . ,wd and x ∈ Rd. Let further v be the lattice point returned by Babai’s algorithm
for the input x. Then

∥x− v∥2 ≤
(︃
2d−2 − 1

4

)︃
∥wd∥2

Proof. We use induction. For d = 1 the closest vector to x = µw1 is v = ⌊µ⌉b1, as
w1 = b1. The claim follows, as (µ− ⌊µ⌉)2 ≤ 1

4 .
Let v = v′ + ⌊µd⌉bd be the result of the algorithm, where v′ is the closest vector

computed in the lattice Λ′. By induction

⃦⃦
v′ − x′′⃦⃦2 ≤ (︃2d−3 − 1

4

)︃
∥wd−1∥2 .

Hence, ⃦⃦
x− (v′ + ⌊µd⌉bd)

⃦⃦2
=
⃦⃦
x− x′ + x′ − (v′ + ⌊µd⌉bd)

⃦⃦2
=
⃦⃦
x− x′⃦⃦2 +

⃦⃦
x′′ − v′⃦⃦2

≤ 1

4
∥wd∥2 +

(︃
2d−3 − 1

4

)︃
∥wd−1∥2

=

(︃
1

4
+ 2 ·

(︃
2d−3 − 1

4

)︃)︃
∥wd∥2

=

(︃
2d−2 − 1

4

)︃
∥wd∥2

where we have used (4.8) in the second but last equation.

Problem 8.1
Problem 8.2
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Theorem 8.2. Let b1, . . . ,bd be an LLL-reduced basis of Λ and x ∈ Rd. Let further v be
the lattice point returned by Babai’s algorithm. Then

∥x− v∥ ≤ 2
d/2 ∥x− u∥ for any u ∈ Λ .

Proof. We use induction again. For d = 1 the nearest plane algorithm returns the exact
closest vector, so the bound holds.
Let d ≥ 2 and let u be a closest vector to x. Recall from Figure 8.2 that u need not

be on the hyperplane kbd + L that we choose in the algorithm. We discuss the case
u ∈ kbd + L and u ̸∈ kbd + L separately. Let x′ be the orthogonal projection of x onto
kbd + L.

In the first case the vector u− kbd is a closest vector to x′′ = x′ − kbd, and we know
by induction that ⃦⃦

x′′ − v′⃦⃦ ≤ 2
(d−1)/2

⃦⃦
(u− kbd)− x′′⃦⃦ ,

where v′ is the vector returned by the algorithm applied to x′′ in L. Using

x′′ − v′ = (x′ − kbd)− v′ = x′ − (v′ + kbd) = x′ − v

and

(u− kbd)− x′′ = u− (x′′ + kbd) = u− x′

we obtain ⃦⃦
x′ − v

⃦⃦
≤ 2

(d−1)/2
⃦⃦
u− x′⃦⃦ .

The Theorem of Pythagoras now implies

∥x− v∥2 =
⃦⃦
x− x′⃦⃦2 +

⃦⃦
x′ − v

⃦⃦2
≤
⃦⃦
x− x′⃦⃦2 + 2d−1

⃦⃦
u− x′⃦⃦2

≤ ∥x− u∥2 + 2d−1 ∥u− x∥2

≤ 2d ∥x− u∥2 ,

where the second inequality follows from the triangle inequality.
Now assume that u ̸∈ kbd + L. The hyperplanes µbd + L for different µ ∈ Z are at

least 1
2 ∥wd∥ apart, so

∥x− u∥2 ≥ 1

4
∥wd∥2 .

The previous Lemma 8.1 implies

∥x− v∥2 ≤ 1

4
(2d − 1) ∥wd∥2 ≤ (2d − 1) ∥x− u∥2 ≤ 2d ∥x− u∥2 .
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This theorem proves that Babai’s nearest plane algorithms returns a 2d/2-approximation
of the closest vector. In other words, it solves (CVP)γ for γ = 2d/2.
Computing the running time of this algorithm is rather simple. Let Λ ⊆ Zd be a

lattice with an LLL-reduced basis b1, . . . ,bd, whose Euclidean length is bounded by B.
This is the same setting as we used for the LLL-algorithm in Chapter 5 for our running
time estimates, e.g. in Proposition 5.3, Corollary 5.4, and (5.7). You will prove in
Problem 8.4 that the nearest plane algorithm on this input runs in time

O
(︁
d5 log2 B)

)︁
.

Problem 8.4
We know from (5.7) that the LLL-algorithms requires time

O
(︁
d6 log3 B)

)︁
.

This dominates the running time of the nearest plane algorithm on a reduced basis.
We can simplify the computations in the algorithm slightly. For this we observe that

x−x′ = µwd for some µ ∈ R. Hence, any lattice point in L that is a closest lattice point
to x′′ = x′ − kbd ∈ L is also a closest lattice point to x− kbd. This point does not lie in
L anymore, but this does not affect the algorithm. Recall that from the representation
of x in the Gram-Schmidt basis as

x =

d∑︂
i=1

µiwi

we obtain k as the nearest integer ⌊µd⌉ of µd.
Instead of computing x′′, and in particular the coefficients of x′′ in the Gram-Schmidt

basis, we can set y := x−⌊µd⌉bd and compute the closest vector v′ to y in L and return
v′ + ⌊µd⌉bd.

Now in the k-th iteration we need the highest coefficient of the current y in the
Gram-Schmidt basis to compute y − ⌊µk⌉bk and then round this to the nearest integer.
We can obtain this via

µk =
⟨y,wk ⟩
∥wk∥2

.

To show that this indeed is the same coefficient as used in (8.3) we compute, using
(8.2),

⟨x− ⌊µd⌉bd,wd−1 ⟩
∥wd−1∥2

=
(µd−1 − ⌊µd⌉λd−1,d) ∥wd−1∥2

∥wd−1∥2
= µd−1 − ⌊µd⌉λd−1,d .

To summarize, on an LLL-reduced basis we initiate the result v with 0 and compute,
starting with j = d the coefficient

k :=

⌊︄
⟨x,wj ⟩
∥wj∥2

⌉︄
,
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replace v with v+ kbj , x with x− kbd, and j with j − 1, and continue until j = 0. The
approximate closest vector is now the vector v.

Some variants or improvements to this algorithm are known, but none is significantly
better. The example in Figure 8.2 suggests that the choice of the order of the basis may
influence the result. Klein5 used randomization in this choice to solve the exact (CVP)
if the input vector is close to a lattice point.
With these arguments we can also solve the absolute closest vector approximation

problem (AbsCVP)r for some γ ≥ 1
2

√︂∑︁d
i=1 ∥wi∥2. You will prove this in Problem 8.5.

Problem 8.5

* 8.2. Fundamental Domains revisited

The bound of Lemma 8.1 has a nice geometric interpretation, that we want to explore
in this section.
We define a new fundamental parallelepiped for the lattice. This will use the Gram-

Schmidt vectors instead of the lattice basis, so it will in fact be a fundamental rectangle.
Let Λ ⊆ Rd be a lattice in Rd with basis b1, . . . ,bd and Gram-Schmidt orthogonaliza-

tion w1, . . . ,wd. We define

FGS(b1, . . . ,bd) :=

{︄
d∑︂

i=1

µiwi : 0 ≤ µi < 1 for 1 ≤ i ≤ d

}︄
.

More generally, we say that a set F is a fundamental domain for a lattice Λ, if

u + F ∩ u′ + F = ∅ for u ̸= u′ and Rd =
⋃︂
u∈Λ

u+ F .

It follows from (4.4) that

volΠ(b1, . . . ,bd) = det Λ =

d∏︂
j=1

∥wj∥ = vol FGS(b1, . . . ,bd), ,

so intuitively, if translates of FGS(b1, . . . ,bd) by different lattice points are disjoint,
then these translates should cover Rd. This is in fact true, as we have the following
proposition.

Proposition 8.3. The set F(b1, . . . ,bd) is a fundamental domain.

The proof requires a lemma, which you will prove in Problem 8.6.

5P. Klein, “Finding the closest lattice vector when it’s unusually close”.
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Lemma 8.4. Let Λ be a lattice with basis b1, . . . ,bd, L the orthogonal complement of b1

with projection π : Rd → L and Γ := π(Λ).
If FΓ is a fundamental domain of Γ in L, then

F := {x+ µb1 : x ∈ FΓ and 0 ≤ µ < 1 } = FΓ + {µb1 : 0 ≤ µ < 1 }

is a fundamental domain for Λ.

Problem 8.6
The proof of Proposition 8.3 follows almost immediately from this lemma.

Proof of Proposition 8.3. We prove the claim by induction. For d = 1 we have b1 = w1,
so the claim follows.
Now assume that d > 1. We consider the orthogonal complement L of b1 with the

projection π : Rd → L and the projected lattice Γ := π(Λ).
The vectors b′

j := π(bj) for 2 ≤ j ≤ d are a basis for Γ, with Gram-Schmidt
orthogonalization w2, . . . ,wd.6

By assumption, FΓ := F(b′
2, . . . ,b

′
d) is a fundamental domain of Γ, and thus, by

the previous lemma, FΓ+ {µb1 : 0 ≤ µ < 1 } is one of Λ. As b1 = w1 the claim
follows.

A simple consideration now shows that v + F(b1, . . . ,bd) for v ∈ Λ contains a single
lattice point (this is also true for x+F(b1, . . . ,bd) for any x ∈ Rd, and the lattice point
will be in the interior if x ̸∈ Λ). We can use this fundamental domain to give a new
proof of Theorem 4.3, see Problem 8.7.

Problem 8.7

8.3. A O(2d2)-algorithm for the closest vector problem

We now want to address (CVP). So let t ∈ Rd, and we want to find u ∈ Λ that
minimizes ∥t− v∥ over all v ∈ Λ.

Recall the sublattice Λd−1 :=
{︂∑︁d−1

i=1 λibi : λi ∈ Z
}︂
with linear subspace Vd−1 =

lin Λd−1. The translates

µwd + Vd−1 for µ ∈ Z

cover the lattice Λ with layers Lµ := µwd + Vd−1. As discussed in the previous section,
we can project t onto one of the layers Lµ and use recursion to find u ∈ Lµ to solve
the exact problem, if we would know which of the layers Lµ contains the closest lattice
point u.

However, we don’t know how to find this layer. The example of Figure 8.2 shows that it
needs not be the layer closest to x. Using this nonetheless leads to Babai’s approximation
algorithm.
6here we slightly abuse the notation, as the wj for j ≥ 2 are in Rd, but as they are orthogonal to b1, they
are in the subspace L, and wj = π(wj).
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We aim for the exact solution, so our strategy will be to find a subset of the layers
that can possibly contain u, compute the closest vector to the projection in each of these
layers, and finally choose the one that is closest to x. So we need to determine at which
layers we have to look at.
Here we can use Lemma 8.1 which bounds the distance between input and result

in Babai’s algorithm in terms of the last Gram-Schmidt vector. This also bounds the
distance to the true closest vector.

Corollary 8.5. Let Λ be a lattice with an LLL-reduced basis b1, . . . ,bd and Gram-Schmidt
vectors w1, . . . ,wd. Let x ∈ Rd and u ∈ Λ a closest vector to x. Then

∥u− x∥ ≤ 2
(d−2)/2 ∥wd∥ .

Hence, we need to search at most the 2 · 2(d−2)/2 = 2d/2 closest layers around t to find
the right layer. So if f(k) is the number of iterations to solve (CVP) in dimension k,
then

f(k + 1) = 2
(k+1)/2f(k) .

Hence, f(d) ∈ O(2d2). In each step the number of computations is bounded by a
polynomial in max log ∥bi∥∞. To summarize, we obtain the following theorem.

Theorem 8.6. (CVP) can be solved in time O(2d2) times a polynomial inmax log ∥bi∥∞.

Looking back at this algorithm we may realize that in each iteration we solve O(2k)
closest vector problems in the same lattice independently. So if we find a way to reuse
information in these computations we may be able to gain in the running time. That
this is possible is the key idea in the algorithm of Micciancio and Voulgaris7. The show
that we can speed up significantly if we, in each iteration, compute a Voronoi cell of the
lattice and use this in each of the O(2k) closest vector problems.
A Voronoi cell Vv around a lattice vector v of the lattice is the set of all points that

are closer to v than to any other lattice point,

Vv :=
{︂
x ∈ Rd : ∥x− v∥ < ∥x− u∥ for all u ∈ Λ \ {v }

}︂
.

Clearly, Voronoi cells to different lattice points are just translates of each other. In the
definition we have not included the boundary, which is the set of points that have the
same shortest distance to more than one lattice point. One can show that the closure of
a Voronoi cell is a polytope with at most 2d+1 facets.8

7Daniele Micciancio and Voulgaris, “A deterministic single exponential time algorithm for most lattice
problems based on Voronoi cell computations [extended abstract]”.

8In other applications one defines more generally the Voronoi diagram of a discrete set X of points as
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Once the Voronoi cell V0 around 0 is known, one just needs to find the translate
v + V0 that contains the target x. Then v is the closest vector. While the idea of the
algorithm is pretty simple, working out how to compute the Voronoi cell efficiently and
then analyzing the running time requires some work. If done right, the algorithm will
solve (CVP) in time O(2d).

8.4. Problems

8.1. Let b1, . . . ,bd be an LLL-reduced lattice basis of a lattice Λ. Let x ∈ Rd and assume that there is
v ∈ Λ such that

∥x− v∥ ≤ 1

2
∥wi∥

for all i. Show that Babai’s nearest plane algorithm returns v.

8.2. Let b1, . . . ,bd be a lattice basis of a lattice Λ. Let x ∈ Rd. If Babai’s nearest plane algorithm
returns v, then

∥x− v∥2 ≤
d∑︂

i=1

1

4
∥wi∥2 .

8.3. Let Λ ⊆ Rd be a lattice with basis b1, . . . ,bd and Gram-Schmidt orthogonalization w1, . . . ,wd.
Let v be the vector returned by the Nearest-Plane-Algorithm for t. Define

F :=

{︄
x +

d∑︂
i=1

µiwi :
1

2
≤ µi ≤ 1

2

}︄
.

Show that v ∈ F . If t is not a lattice point, then v is the only lattice point in F .

8.4. Let Λ ⊆ Zd be a lattice with an LLL-reduced basis b1, . . . ,bd, whose Euclidean length is bounded
by B. Prove that the nearest plane algorithm runs in time

O
(︁
d5 log2 B)

)︁
.

8.5. Show that Babai’s nearest plane algorithm solves (AbsCVP)r for any γ ≥ 1
2

√︂∑︁d
i=1 ∥wi∥2.

8.6. Prove Lemma 8.4.

8.7. Prove Theorem 4.3 using the fundamental domain F(b1, . . . ,bd).

the polyhedral complex of all cells around points in the set. If X is not a lattice, then the cells around
different points may differ. Computing such cells, or the dual Delaunay triangulations are an important
problem in many applications.
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9. Counting Lattice Points

In this chapter we want to take a different approach to integer optimization and see
how we can encode and count all integer points in a polyhedron efficiently. This requires
us to solve two separate tasks.
If we want to encode all integer points efficiently, then we cannot just enumerate

the points, as a polyhedron may contain an exponential number w.r.t. to the input size,
even if it is bounded. If the polyhedron is not bounded, then enumerating the points is
not even feasible. So we need a better way to write down all integer points.
Further, if we want to count the points efficiently, then we must also be able to

compute our encoding of the points efficiently, i.e. in polynomial time, and we must
also be able to obtain the size of the set in polynomial time.

We address both questions in the next sections. We start with the first and discuss a
method to encode all integer points efficiently. We motivate the idea in the next section,
before we work out the details.

9.1. Motivation

Let P be a polyhedron and S the set of integer points in P , i.e. the set S := P ∩Zd. All
of the following also works for general lattices, but as only one lattice is involved and we
can reduce to this case by picking a basis of the lattice and writing all our coordinates
in this basis, we will stick to Zd.

To count the integer points in a polyhedron P , i.e. to compute the size of S, we have
to find a way to distinguish integer points in a polyhedron P from all others, i.e. a way
to encode them, preferably in an efficient and explicit way, that we can easily write down
in a short and concise form. It should be simple from our notation to decide whether a
point is in our list or not.

In principle we already know at least two options to decide whether an integer point
is in the polyhedron or not. Namely, an integer point x is in our polyhedron P if it is
either a convex combination of the vertices of P or satisfies all defining inequalities of
P . Both methods are certainly fine if we need to check a particular point. But they do
not tell us much about the whole set of points, nor about the structure of the set.
For this, we need to find a way to make our description of the set S more explicit.

In a first, rather naïve approach, we could now be tempted to explicitly list all lattice
points in our polytope (this clearly only works well for bounded objects). To make a
simple example, look at the polytope P3 := [0, 3]. This is the simple segment shown in
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Figure 9.1.: The polytope P3.

Figure 9.1. The naïve approach gives us the list

0, 1, 2, 3 .

This works well in this small example, but consider the structurally similar example
P10002 := [0, 10002]. Here, our list,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, . . . ,

if written out completely, easily exceeds the line, and also this page, and if we replace
10002 by 100022, then also the length of these lecture notes. To get a compact encoding
of the points we need a better idea.

Here is the key idea. This approach may look really strange at first, but will prove to
be very powerful. We can replace each point k ∈ P3 with its monomial tk. With this we
define a polynomial that contains precisely the monomials corresponding to points in
our polytope and write

1 + t + t2 + t3 =

3∑︂
i=0

ti .

The option to write our polynomial as a sum already shows a quite compact way to
encode the lattice points. Observe, that the representation is not really more complicated
for P10002. However, it is pretty obvious that this particular compact notation as a sum
is only possible in very special cases, so we need to look further.
If you look at the polynomial you may recall from your calculus class that there is

another option to write this sum in a more condensed form using the geometric series

GP3(t) :=
1− t4

1− t
.

whose expansion is again our polynomial. Doing the same for P10002 gives

G[0,10002](t) :=
1− t10003

1− t
,

so it does not really make this notation more complicated.
We will see that this idea of using a geometric series to specify the lattice points in a

polyhedron is both sufficiently flexible to work for all polyhedra, and efficient enough
that we can use it to really study the structure of the set of lattice points.
Here comes another surprising and powerful property of our last observation. If we

try to do write down the lattice points of the unbounded polyhedron P∞ := [0,∞),
then our first two approaches obviously become infeasible. However, the third works
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and turns out to be even shorter and more appealing!1 As a geometric series we can
concisely describe all lattice points in P∞ via the monomials in

G[0,∞)(t) :=
1

1− t
.

As this extended example suggests, the generating function we use here to encode
the lattice points will indeed provide a powerful bookkeeping tool for counting and
enumerating lattice points in polytopes.
It will soon become apparent that it is indeed quite useful and natural to encode

lattice points not only in polytopes, but more generally in any bounded or unbounded
subset of Rd, as in the last example of a ray in R1. You should keep this in mind for the
following considerations.

9.2. Generating Functions

In the previous section we have seen that we can use rational functions in one variable t
to describe the infinite series of all monomials corresponding to the lattice points for
the one-dimensional cone

C := {x : x ≥ 0 } ⊆ R .

In this section we want to formalize this idea, and directly generalize it to arbitrary
dimensions.
Let k be some ground field (you can just think of k = C, if you like). We assign the

monomial

ta := ta11 ta22 · · · t
ad
d

in d variables to an integral point a = (a1, . . . , ad) ∈ Zd. In the initial example of
the nonnegative axis all integral points were non-negative and thus lead to ordinary
monomials as you know them from multidimensional calculus or algebra. In general,
the coordinates of a are allowed to be negative, so this is a Laurent polynomial living in
the Laurent polyonmial ring

L = k[t±1
1 , . . . , t±1

d ] .

Moreover, note that the sum of monomials for the cone x ≥ 0 is infinite. Since we do not
care about convergence, we will actually consider our sums not as Laurent polynomials,
but as series in a subset of the L-module

ˆ︁L := kJt±1
1 , . . . , t±1

d K

of formal Laurent series. We associate a series in this module to any convex set in Rd.

1You may wander about what happens at t = 1. However, this is not an issue for us, as we will not deal
with any analytic convergence issues and usually will not evaluate at certain values. We will do this
once later for one specific value, and postpone the discussion until then.
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Figure 9.2.: The polygon of Example 9.2.

Definition 9.1. For S ⊂ Rd the integer point series ĜS is the formal Laurent series

ĜS(t) :=
∑︂

a∈S∩Zd

ta ∈ ˆ︁L .

Here is an example of such a series.

Example 9.2. Let P be the polygon

P := conv
[︃
0 2 2 3
1 −1 2 0

]︃
(see Figure 9.2). Recall that the convex hull of a matrix is defined to be the convex
hull of the column vectors of the matrix. We list the lattice points as monomials in the
Laurent polynomial

t21t
2
2

+ t2 + t1t2 + t21t2

+ t1 + t21 + t31

+ t21t
−1
2 .

Translating a set S ⊆ Rd by some integral vector a ∈ Zd amounts to multiplication of
its generating series with ta,

Ĝa+S(t) = taĜS(t) .

You will realize (or you have seen this already in some other course) that dealing with
formal power series is more subtle than computations with polynomials. Seemingly
simple operations may not work as expected, as the following example with formal
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Laurent series shows.

ĜR(t) · (1− t) = (· · ·+ t−2+ t−1 + 1 + t+ t2 + · · · ) · (1− t)

= (· · ·+ t−2+ t−1 + 1 + t+ t2 + · · · )
− (· · ·+ t−1 + 1 + t+ t2 + t3 · · · )

= 0 .

We might be tempted to divide by (1− t) and deduce

ĜR(t) = · · ·+ t−2 + t−1 + 1 + t+ t2 + · · · = 0

1− t
= 0 . (9.1)

However, the left side of the equation is definitely not zero as a Laurent series, and the
operation is not allowed, at least not in this simple form. We will meet one option to fix
this later.
Actually, not all Laurent series appear as a generating series for lattice points in

polyhedra. The ones we will encounter have a nice additional structure that we will
work out with the next definitions and theorems.

Definition 9.3. A Laurent series Ĝ ∈ ˆ︁L is summable if there is a Laurent polynomial
g ∈ L such that the series gĜ is a Laurent polynomial.

Clearly all Laurent polynomials are summable. On the other hand, the series

1 + t2 + t3 + t5 + t7 + t11 + t13 + t17 + . . . = 1 +
∑︂

k prime
tk

cannot be summable. We will denote the set of all summable Laurent series by Lsum.
We leave the proof of the following proposition to the reader as Problem 9.1.

Proposition 9.4. Lsum is a L-submodule of ˆ︁L.
Problem 9.1

In fact, the summable series we are interested in will be constructed from summable
series of cones. We will derive those in the next paragraphs, starting with some simple
cones, until we obtain the series of a general polyhedral cone spanned by a finite set of
generators in Proposition 9.7.

We begin with the polyhedron P∞ = [0,∞) that we introduced in the previous section.
The integer point series is

ĜP∞(t) =
∑︂

a∈Z≥0

ta = 1 + t+ t2 + t3 + · · · .

Using the polynomial g(t) := (1−t)we obtain g(t)GP∞(t) = 1, so ĜP∞(t) is a summable
series.
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Now let us consider the 2-dimensional cone C := cone(e1, e2), where e1, e2 ∈ R2 are
the standard unit vectors. Then

ĜC(t, s) =
∑︂

a,b∈Z≥0

tasb

=

(︄∑︂
a

ta

)︄(︄∑︂
b

sb

)︄
= 1 + t+ s+ t2 + s2 + ts+ t3 + · · · .

Here we can use the polynomial

g(t, s) := (1− t)(1− s)

to obtain

g(t, s) · ĜC(t, s) = (1− t) ·

⎛⎝ ∑︂
a∈Z≥0

ta

⎞⎠ · (1− s) ·

⎛⎝ ∑︂
b∈Z≥0

sb

⎞⎠ = 1.

Hence, ĜC(t, s) is a summable series. Having seen these two cases you probably already
see the pattern. And indeed, if consider the cone C := cone(e1, . . . , ed) spanned by the
d unit vectors in Rd, then

d∏︂
i=1

(1− tei) · ĜC(t) =

d∏︂
i=1

(1− tei) ·
∑︂

a∈Zd
≥0

ta

=

d∏︂
i=1

(1− tei) ·
∑︂

a∈Zd
≥0

(te1)a1 · · · (ted)ad = 1

(9.2)

Hence, ĜC(t) is summable. In all three cases it is tempting to divide both sides by the
function

g(t) =
d∏︂

i=1

(1− tei)

to solve the equation for ĜC(t). However, it is not immediately clear that this is an
allowed operation. The next proposition solves this for us. We leave the proof for
Problem 9.2.

Proposition 9.5. There is a natural homomorphism

Φ : Lsum −→ R := k(t1, . . . , td) ,

from summable series to rational functions that maps Ĝ to f/g if gĜ = f in ˆ︁L.
Problem 9.2

With this definition we can give a correct version of the computation in (9.1). If we
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replace the series with its image under Φ, then we obtain

Φ(ĜR(t)) = Φ(· · ·+ t−2 + t−1 + 1 + t+ t2 + · · · )

=
0

1− t
= 0.

In other words, not the Laurent series is zero but only its associated rational function.
While it is often very convenient identify summable Laurent series with rational function
in equations instead of using a cumbersome and non-standard notation such as Φ, one
cannot stress enough that one must be aware that such an equality only holds on the
level of rational functions and not on the level of Laurent series.
In particular, we see from the previous example that Φ is not an injective map.

However, it clearly is for Laurent polynomials (you should check this). In other words,
L is a submodule of Lsum, and Φ|L is the identity map. A more general criterion on
injectivity is proven in Problem 9.3.

Problem 9.3

Definition 9.6. Let S ⊆ Rd and assume that ĜS(t) is summable. The integer point
generating function of S is

GS(t) := Φ(ĜS(t)) .

If S ⊆ Rd is bounded, then we are allowed to identify (see also Problem 9.3)

GS(t) =
∑︂

a∈S∩Zd

ta .

In the one-dimensional example P∞ = [0,∞) we have already computed the image
of the generating series in R,

GP∞(t) =
1

1− t
.

We can generalize this observation to rational simplicial cones. Let C be a simplicial
rational cone in Rd with primitive ray generators R := {r1, . . . , rd}. We recall the
fundamental parallelepiped of V from Definition 2.5

Π(R) :=

{︄
d∑︂

i=1

µiri : µi ∈ [0, 1) for 1 ≤ i ≤ d

}︄

We know from Corollary 2.8 that the fundamental parallelepipeds tile the space without
overlap (strictly, there we talked about lattice bases, however, the same argument works
for the generating set R). We define

F := Π(R) ∩ Zd ,

the set of all integral points in the fundamental parallelepiped of R. Note that F is a
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finite set, so its integer point generating function GΠ(R)(t) is a polynomial. We write

σC(t) := GΠ(R)(t)

for this.

Proposition 9.7. In this notation, ĜC(t) is summable with

GC(t) =
σC(t)∏︁d

i=1(1− tri)

Proof. Let S be the set of all nonnegative integer linear combinations of R,

S :=
{︂
z =

∑︂
λiri : λi ∈ Z≥0

}︂
.

By replacing the Laurent monomial tei by tri in (9.2), we get

d∏︂
i=1

(1− tri) ·
∑︂
z∈S

tz =

d∏︂
i=1

(1− tri) ·
∑︂

a∈Zd
≥0

(tr1)a1 · · · (trd)ad = 1.

By Corollary 2.8 we get

d∏︂
i=1

(1− tri) ·
∑︂

x∈C ∩Zd

tx =
d∏︂

i=1

(1− tri) ·
∑︂
y∈F

∑︂
z∈S

ty+z

=

d∏︂
i=1

(1− tri) ·
∑︂
z∈S

tz ·
∑︂
y∈F

ty

=
∑︂
y∈F

ty = σC(t) .

Dividing by
∏︁d

i=1(1− tri) gives the claim.

Our integer point generating series ĜS(t) contains a monomial for every integral
point in a set S. Now assume we have a second set S′. If we want to obtain the series
for the union S ∪ S′, then we have to list each monomial of a lattice point in the union
precisely once. Hence, we cannot just add the two series if the intersection of the sets is
not empty.
However, we can obtain the series by first adding the two series of S and S′, and

then subtracting the series of S ∩ S′. This principle clearly extends to the union of any
finite number of sets. We can compute the generating series from the generating series
of the sets and all partial intersections if we keep track of the multiplicities a partial
intersection appears in the total sum. This is called the principle of inclusion-exclusion.
You will study this in more detail in Problem 9.4.

Problem 9.4
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P1

P2

Q

Figure 9.3.: Let Q be the dotted chord of the polygon and P1, P2 the two polygons obtained
by cutting P along Q. Then |P ∩Z2| = |P1 ∩Z2|+ |P2 ∩Z2| − |Q ∩Z2|.

Now let us come back to the special case of integer points in polyhedra. Triangulating
a rational polyhedral cone into rational simplicial cones (see Section A.8)) and using
inclusion-exclusion (see also Figure 9.3) yields the following general result.

Corollary 9.8. The integer point generating series of a rational polyhedral cone is
summable.

9.3. The Theorem of Brion

With the last Corollary 9.8 in the previous section we have found a way to express the
lattice points in a polyhedral cone as a rational function. However, we set out for a way
to encode and count the integer points in a polytope. So in order to make the results we
have obtained so far useful we need a method to express the integer point generating
function of a polytope via the integer point generating functions of some cones.
We will show in this section that this is indeed possible. With Brion’s Theorem

(Theorem 9.14) we prove that the integer point generating function of a polytope can
be computed from the integer point generating functions of all vertex cones of P .

We need some preparations for this. Let P be a rational d-dimensional polytope and
F a face of P . Recall the tangent cone of F in P from Definition A.42, which is defined
by

TFP :=
{︂
v ∈ Rd : there is w ∈ F, ε > 0 with w + ε(v −w) ∈ P

}︂
.

We know from Problem A.14 that the tangent cone is the common intersection of all
supporting halfspaces at F , and we know from Proposition A.44 that the shifted cone
TFP − v for some v ∈ F is dual to the normal cone of F .

The following theorem makes a connection between the generating series of the
tangent cones of all faces of the polytope and the generating series of the polytope.
This is the first step towards our final result. To obtain the generating functions we
afterwards apply our map Φ on both sides and use linearity of this map.

In the final step we will then argue that the tangent cones of faces of dimension d ≥ 1
doe not contribute anymore to the sum after we have applied Φ. So it will suffice to
consider only the vertices to obtain the generating functions.
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v

Figure 9.4.: v ̸∈ P . The complex G ∈ visibleP (v) is drawn in red.

Theorem 9.9 (Theorem of Brianchon-Gram). Let P be a rational polytope. Then

ĜP (t) =
∑︂
F⪯P

(−1)dimF ĜTFP (t) ,

where the sum is over all non-empty faces of P . This equation is the Brianchon-Gram
identity.

The Brianchon-Gram identity is already valid on the level of indicator functions for
lattice points. For its proof we introduce the complex of visible faces.

Definition 9.10. Let v ̸∈ P . A face F of a polytope P is visible from v if for some
(equivalently every) w ∈ relintF the segment conv(v,w) intersects P only in w.

The collection visibleP (v) of all visible faces of P w.r.t. v is the complex of visible faces.

We prove some some properties for visible faces, before we turn to the proof of the
Theorem of Brianchon-Gram (Theorem 9.9). See Figure 9.4 for an illustration. The
next lemma characterizes the visible faces in terms of the tangent cones.

Lemma 9.11. F is visible from v if and only if v ̸∈ TFP .

Proof. Let w be a point in relint F . As TFP is the intersection of all valid half spaces of
P we know that aff F is the minimal face of TFP . In particular,

⟨a,w ⟩ ≤ ⟨a,x ⟩

for all valid functionals a and x ∈ TFP .
If v ̸∈ TFP , there is a linear functional a ∈

(︁
Rd
)︁⋆ that separates v from the tangent

cone and the polyhedron, so

⟨a,v ⟩ < min (⟨a,x ⟩ : x ∈ TFP ) .
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H

v

Figure 9.5.: The hyperplane H is drawn in blue, and the polytopal subdivision in H is drawn
in yellow.

We compute, for 0 ≤ λ < 1,

⟨a, (1− λ)v + λw ⟩ = (1− λ)⟨a,v ⟩ + λ⟨a,w ⟩
< (1− λ)⟨a,w ⟩ + λ⟨a,w ⟩
= ⟨a,w ⟩
≤ min (⟨a,x ⟩ : x ∈ TFP )

≤ min (⟨a,x ⟩ : x ∈ P ) .

Hence, (1− λ)v + λw ̸∈ P for all 0 ≤ λ < 1. In other words, F is visible from v.
If, conversely, v ∈ TFP , then we know that there are w′ ∈ F and an ε0 > 0 so that

v′ := w′ + ε(v −w′) ∈ P

for all 0 < ε ≤ ε0. As w ∈ relintF we can choose 0 < ε ≤ ε0 such that

w′′ := w + ε(w −w′) ∈ F .

But then

(1− ε)w′′ + εv′ = (1− ε)w + (1− ε)ε(w −w′) + εw′ + ε2(v −w′)

=
(︁
(1− ε)(1 + ε)w − (1− ε)εw′)︁ +

(︁
ε(1− ε)w′ + ε2v

)︁
= (1− ε2)w + ε2v

belongs to both conv(v,w) and to P , and F is not visible from v.

Corollary 9.12. Let P be a polytope and v ̸∈ P .
Then visibleP (v) is a polyhedral complex that is isomorphic to subdivision of a polytope.

Proof. The definition of visibility implies G ∈ visibleP (v) if G ⪯ F ∈ visibleP (v). So
visibleP (v) is a subcomplex of the boundary of P .

Let H be a hyperplane separating v from P , and consider the polytope Q := H ∩
conv(P ∪ {v}), see Figure 9.5. Then{︁

H ∩ conv(F ∪ {v}) : F ∈ visibleP (v)
}︁
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is a subdivision of Q which is combinatorially isomorphic to visibleP (v).

Now we have all ingredients to prove the Theorem of Brianchon-Gram (Theorem 9.9).

Proof of the Theorem of Brianchon-Gram (Theorem 9.9). We think of the Laurent poly-
nomial on the left hand side as an infinite Laurent series that contains all possible
monomials, but most coefficients are 0.

We compare coefficients of an arbitrary monomial tu for u ∈ Λ on both sides to prove
the identity. For this, we deal with the two cases u ∈ P and u ̸∈ P separately.
If u ∈ P , then u ∈ TFP for every non-empty face F of P . Hence, the coefficient of

tu on the right hand side is∑︂
∅̸=F⪯P

(−1)dimF = f0 − f1 + · · ·+ (−1)dfd .

This sum is the Euler characteristic of the polytope, which is always 1 by Euler’s relation
(see (A.13) and Proposition A.46). Note that we have included the polytope itself in the
sum.

On the other hand, if u ̸∈ P , then we obtain from Lemma 9.11 that the coefficient of
tu on the right hand side is∑︂

∅≠F⪯P

(−1)dimF −
∑︂

∅̸=F∈visibleP (u)

(−1)dimF = 1− 1 = 0 ,

using the fact that the Euler characteristic of visibleP (u) is 1 by Corollary 9.12 and
Proposition A.46. See also Figure 9.5.

In the previous section we have applied Φ : ˆ︁L −→ R only to pointed polyhedral cones.
We now want to study this map also in the case of cones that have a nontrivial lineality
space, which is defined as

lineal(C) := C ∩ (−C) .

It is the maximal linear subspace contained in C.
Let us first look at an example for what we want to prove. Consider the sets

C+ := [0,∞) ⊆ R and C− := 3− C+ = (−∞, 3] ⊆ R .

C+ is a one-dimensional cone, C− is an affine cone with apex in 3. Let P be the
intersection of the cones, i.e.

P := C+ ∩ C− = [0, 3].

Then P is a one-dimensional polytope. We compute the integer point generating function
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and the image under Φ for C+ and C−. The series are

ĜC+(t) =
∑︂
k≥0

tk

ĜC−(t) =
∑︂
k≤3

tk = t3
∑︂
k≤0

tk = t3
∑︂
k≥0

t−k ,

so we obtain the functions

GC+(t) = Φ(ĜC+(t)) =
1

1− t

GC−(t) = Φ(ĜC−(t)) = t3
1

1− 1
t

=
−t4

1− t

The integer point generating function of P is the finite geometric series

ĜP (t) = GP (t) =
1− t4

1− t
= 1 + t+ t2 + t3 .

We observe that

GP (t) = GC+(t) +GC−(t) .

Using the map Φ we can make the following symbolic calculation

GP (t) = Φ(ĜC+(t)) + Φ(ĜC−(t)) = Φ(ĜC+(t) + ĜC−(t))

= Φ(ĜR+P (t)) = Φ(ĜR(t)) + Φ(ĜP (t))

This can only hold if Φ(ĜRt) = 0, i.e. if Φ maps the infinite series
∑︁

k∈Z tk to 0. The
following proposition shows that this indeed holds in general for cones with nontrivial
lineality space.

Proposition 9.13. Let C ⊆ Rd be a polyhedral cone with linealC ̸= {0}.
Then Φ(ĜC(t)) = 0.

Proof. Let v ∈ lineal(C) \ {0} and L := {λv : λ ∈ R }. Then L ⊆ C, so that

tvĜC(t) = ĜC(t) .

Applying the map Φ gives

tvΦ(ĜC(t)) = Φ(ĜC(t)) ⇐⇒ (1− tv)Φ(ĜC(t)) = 0 .

v ̸= 0 implies Φ(ĜC(t)) = 0.

Now we can finally deduce a connection between the generating function of cones
and the generating function of the polytope.
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Theorem 9.14 (Brion’s Theorem). Let P be a polytope. Then

GP (t) =
∑︂

v vertex of P
GTvP (t) .

Proof. Apply the map Φ to both sides of the equation in the Theorem of Brianchon-Gram
(Theorem 9.9). The only non-pointed tangent cones are those originating from a vertex
of P , so by Proposition 9.13 only the contributions of the vertices are non-zero on the
right hand side.

Problem 9.5
Here is one example for the equation of this theorem.

Example 9.15. Let P be the unit square in R2, i.e. the convex hull of 0, e1, e2 and
e1 + e2. Then

GP (x, y) =
1

(1− x)(1− y)
+

x

(1− 1
x)(1− y)

+
y

(1− x)(1− 1
y )

+
xy

(1− 1
x)(1−

1
y )

=
1

(1− x)(1− y)
+

−x2

(1− x)(1− y)

+
−y2

(1− x)(1− y)
+

x2y2

(1− x)(1− y)

=
(1− x2)(1− y2)

(1− x)(1− y)

= 1 + x+ y + xy

So GP (1, 1) = 1 + 1 + 1 + 1 = 4.

The theorem provides us with a general method to compute the function GP (t) for
polytopes by computing the generating functions for the tangent cones at vertices (which
are dual to the normal cones at vertices) and adding them up.

However, recall from the previous section that we need a triangulation of the cones for
this, in each cone we have to enumerate the lattice points in the fundamental domain,
and then use inclusion-exclusion with all lower dimensional faces of the cone to compute
the generating function of the cone. This is still an expensive operation. We will see
in the next section how we can avoid this and compute generating functions for cones
efficiently.

9.4. Barvinok’s Algorithm

In Section 9.2 we have seen that we can express the lattice points in a cone as a rational
function. The proof is somehow constructive, as it tells us the exact from of the numerator
of the rational function for simplicial cones, see Corollary 9.8 and the remarks above this
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Figure 9.6.: The cone spanned by e2 and ke1 + e2 needs k unimodular cones in its
decomposition

corollary. We have to enumerate the lattice points in the fundamental parallelepiped and
combine the corresponding monomials into a polynomial. The denominator always has
a canonical form depending only on the generators of the cone, with a factor of (1− tr)
for each generator r. For more general cones we use the fact that we can triangulate
cones into simplicial ones, and that counting lattice points in such subdivisions can be
done with inclusion-exclusion on the intersections.

Yet, as we will see below, this is in general not a task that can be done in polynomial
time in the size of input and dimension. There are two related problems with this
approach. In general, it is difficult to enumerate the lattice points in the fundamental
parallelepiped (and this is also the task we actually want to solve with the generating
functions that we develop) of a cone. On the other hand, this is easy, if the generators
of the cone are a lattice basis. Such cones are called unimodular. As we know that any
lattice point can be written as the sum of a lattice point in the fundamental parallelepiped
and an integral linear combination of the cone generators we conclude in this case that
0 is the only lattice point. So in subdividing a cone into simplicial ones we should aim
for a subdivision in which each such cone is generated by a lattice basis. However, as
we will see, this leads to an exponential number of cones in the subdivision (relative to
the size of the input, which is the number of generators of the input cone).
Here is an example that illustrates this problem. Consider the cone

C := cone (e2, k · e1 + e2) (9.3)

for some k ∈ Z>0. We need k monomials in the numerator or k cones in a unimodular
triangulation. This is not polynomial in the input, as the input is given just by the two
generators of the cone. See also Figure 9.6
If we want to use the simplicity of unimodular cones to compute the generating

function of some cone efficiently, then we need a new idea. In this section we will develop
such an approach using signed decompositions of a cone to compute the multivariate
rational generating function G(t) of a simplicial cone in polynomial time, at least for
fixed dimension.
This extends to all cones by using a triangulation of the input cone without new

vertices. See Theorem A.48 for the construction of such triangulations in the case of
polytopes. The same construction works for cones. Note that this construction of a
triangulation is polynomial in the size of the input.
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(a) A cone (b) The positive summand in the
decomposition

(c) The negative summand in the
decomposition

Figure 9.7.: A cone and its signed decomposition. The cone on the left is the difference of the
cones on the right.

We may count lattice points in a polytope via the generating functions of the vertex
cones specialized at x = 1, using Brion’s Theorem (Theorem 9.14). However, these
values are (removable) poles of the generating functions. We will discuss a possible
approach to evaluate the functions efficiently in Section 9.4.2.

9.4.1. Computing a Generating Function

The initial idea for the algorithm presented in this section is due to Barvinok2 and
Barvinok and Pommersheim.3 For fixed dimension d the algorithm is polynomial in the
input size.
As we cannot influence the number of monomials from lattice points in the funda-

mental domain in a given cone we need a better way to do the subdivision, if we want
to arrive at a polynomial time algorithm.

The key idea for this is to use signed decompositions, which are decompositions where
we may take new rays outside of the original cone and use addition and subtraction of
rational generating functions to obtain the desired rational generating function of the
original cone.
Here is an example that should explain the idea and also suggest why this may

make the computation simpler. Consider again the cone of (9.3) for k = 3 shown in
Figure 9.7(a). Its fundamental domain contains three lattice points (of which one is the
origin). However, up to lattice points in the intersection, we can obtain all lattice points
in this cone from the lattice points in the cone in Figure 9.7(b), and then subtract the
lattice points in Figure 9.7(c). Both cones have a fundamental parallelepiped which
contains only the origin. Note that this means that the numerator of the integer point
generating series of these cones is 1. We can detect whether we have such a cone by
computing the determinant. It is 1 if and only if the origin is the only lattice point.
Equivalently, the generators of the cone are a lattice basis. We fix a name for such cones
with the next definition.

2A. I. Barvinok, “Computing the Ehrhart polynomial of a convex lattice polytope”.
3A. Barvinok and Pommersheim, “An algorithmic theory of lattice points in polyhedra”.
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Definition 9.16. Let Λ ⊆ Rd be a lattice. A cone C spanned by d rays r1, . . . , rd ∈ Λ is
unimodular if its generators are a lattice basis.

You will prove with Problem 9.6 that any two unimodular cones differ by a unimodular
transformation.

Problem 9.6
It was the achievement of Barvinok in the paper mentioned above to show that with

this method you can get away with a polynomial number of (even unimodular) cones.
To make this precise, let C be a d-dimensional cone spanned by primitive rays

r1, . . . , rd. We associate an index with such a cone.

Definition 9.17. The index of C is

index(C) :=
⃓⃓⃓
Π(v1, . . . ,vd) ∩Zd

⃓⃓⃓

Note that equivalently

index(C) = |det(v1, . . . ,vd)| = volΠ(v1, . . . ,vd)

By our definitions the cone C is unimodular if and only if index(C) = 1.
In a triangulation T of our cone C we will record the index of each cone in T (note

that, for the generating series we also need to take lower dimensional cones into account
to account for overcounting in intersections via inclusion-exclusion). This collection of
indices is both a measure of how far we are still from a unimodular triangulation and it
gives an indicator whether we are already done or which cones we need to subdivide
further.
Observe that the index of a face F of a cone C is bounded by the index of C, i.e.

index(F ) ≤ index(C) ,

so we actually only need to track indices of maximal cones and subdivide those if
the index is still larger than one. This is, of course, only useful if we can provide a
method that subdivides a cone into cones of smaller index. Here the idea of signed
decompositions is needed to make this efficiently.

The basic tool in the construction is Minkowski’s First Theorem (Corollary 3.3), which
tells us that for any compact, convex, and centrally symmetric K ⊆ Rd with volK ≥ 2d

there exists a ̸= 0 inK∩Zd, which provides us with a short nonzero vector in the lattice.
We need the algorithm developed in Chapter 4 to compute this shortest vector using
the LLL-algorithm, as Minkowski’s First Theorem (Corollary 3.3) is not constructive.
We use this theorem (or, more precisely, the algorithm for (SVP)) in the following

way. If, for a cone C, the index index(C) is still larger than 1, then

K :=

{︄
1

(indexC)
1/d

∑︂
λivi : −1 ≤ λi ≤ 1

}︄
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is a compact, convex, and centrally symmetric body with volume

vol(K) = 2d .

Hence, we can conclude that there is w ∈ K ∩Zd different from 0. We can write w as
a linear combination of the cone generators and, as w is contained in K, we obtain a
bound on the size of the coefficients, that is, we know that

w = λ1r1 + λ2r2 + · · · + λdrd for 0 ≤ |λi| ≤ (index(C))−
1/d . (9.4)

Instead of the exact solution of (SVP) we may use an approximation, as this is easier to
compute.
Consider the vector w obtained in (9.4). By replacing w with −w if necessary we

can assume that w, r1, . . . , rd lie in a common half-space. Additionally we may clearly
assume that w is primitive. By construction, |λi| ≤ (indexC)−

1
d . We define d new cones

Cj := cone(r1, . . . , rj−1,w, rj+1, . . . , rd) for 1 ≤ j ≤ d

by replacing rj by w in the j-th new cone. This is the star subdivision of the cone with
apex w.

We compute the index of these new cones.

indexCj = |det(r1, . . . , rj−1,w, rj+1, . . . , rd)|

=

d∑︂
k=1

|λk| · | det(r1, . . . , rj−1, rk, rj+1, . . . , rd)|

= |λj | · | det(r1, . . . , rd)|

= |λj |(indexC)

≤ (indexC)−
1
d (indexC)

= (indexC)
d−1
d .

The last term strictly less than indexC if indexC ≥ 2. As the index is an integral number
we see that the index actually drops by at least one. In particular, if it is less than 2,
then it must already be 1.

We define a corresponding sign function to make a signed subdivision of C with the
cones Cj . For 1 ≤ j ≤ d let

εj :=

⎧⎪⎨⎪⎩
0 if dimCj < d

1 if det(v1, . . . ,vd) · det(v1, . . . ,vj−1,w,vj+1, . . . ,vd) > 0

−1 otherwise.

With this decomposition and the corresponding sign function the integer point generat-
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ing series takes the following form.

ĜC(t) =
d∑︂

j=1

εjĜCj (t) + contributions from lower dimensional cones.

This decomposition of a single cone creates at most d new d-dimensional cones in
our list. Note that the number may be smaller than d, as the new generator may lie
in a facet of the original cone. Also note that the collection of new cones obtained by
subdividing all cones doe not form a subdivision in the classical sense as defined in
Definition A.45. This is only the case if all εj for all cones are nonnegative. Otherwise,
cones obtained from subdividing different cones may overlap.
As we have to use inclusion-exclusion over all lower dimensional faces to get rid of

overcounting in the common boundaries of the cones it is, however, not enough to keep
track of the number of d-dimensional cones. We need to count the number of all cones
in the signed subdivision. But subdividing a fulldimensional cone into d new cones
produces at most 2dd cones of any dimension.

We repeat this decomposition for each cone of index ≥ 2 in our triangulation succes-
sively until there is no cone of index greater than one left. If we want a polynomial time
algorithm we need to control the total number of cones we produce. So let us obtain an
upper bound for this.
After n decomposition steps, a cone D in the decomposition has index at most

indexD ≤ (indexC)

(︂
d−1
d

)︂n

. (9.5)

The algorithm stops if this this number drops below 2 (recall that the index is integral,
so it must be 1). To obtain a bound we take the logarithm twice in (9.5) to solve this
expression for n.

log

(︃
log

(︃
(indexC)

(︂
d−1
d

)︂n)︃)︃
= log

(︃(︃
d− 1

d

)︃n

log(indexC)

)︃
= n log

(︃
d− 1

d

)︃
+ log log(indexC) (9.6)

= −n log

(︃
d

d− 1

)︃
+ log log(indexC) .

Hence, for

n >
log log(indexC)

log
(︂

d
d−1

)︂ = O(d log log indexC)

the last term of (9.6) is negative, so that

indexD ≤
⌊︃
(indexC)

(︂
d−1
d

)︂n⌋︃
≤ (indexC)

(︂
d−1
d

)︂n

< 2 .

So after at most n steps all indices are 1. This shows that the number of iterations until
we reach unimodular cones is indeed polynomial.
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However, we also need to check that the number of cones we produce is polynomial.
In n steps we produce at most

(d2d)n = 2nd log d ≤ 2Md2 log d log log indexC

= (log indexC)Md2 log d

= (log indexC)O(d2 log d).

cones. Hence, we conclude that with this approach indeed, in fixed dimension, the
number of cones is bounded by a polynomial in log indexC. This is in the order of the
input size of our cone in binary encoding. We summarize the algorithm the following
theorem.

Theorem 9.18. Let d ∈ Z>0 be fixed. Then there is a polynomial time algorithm that
computes the integer point generating function G(t) in the form

GC(t) :=
∑︂
i∈I

εi
tai

(1− tvi1) · · · (1− tvisi )
,

where εi ∈ {−1, 1}, a ∈ Zd, vij ∈ Zd \ {0} for all i, j and si ≤ d, for any d-dimensional
polyhedral cone C given in its exterior description.

Note that, in this theorem, the index set I runs over all cones, including lower
dimensional ones, in the subdivision.

Remark 9.19. You can useGP (t) also to solve linear programs. If you want to maximize
over a functional c ∈ Zd, then you can just substitute t = (zc1 , zc2 , . . . , zcd). The highest
degree of a monomial in the result is the optimal solution.

9.4.2. Polynomial Time Evaluation

We can use Theorem 9.18 and Brion’s Theorem (Theorem 9.14) to count lattice points
in a polytope P by computing the rational generating functions of all vertex cones.
However, this requires us to evaluate the generating function at t = 1. Although we
know from the theory that these are regular points of the rational functions, they are
poles in the representation we obtain. We use tools from analysis to evaluate them (Note
again, that expansion into a Taylor series, though theoretically a method to remove the
pole, is not an option if we want evaluate this in polynomial time.).
One possible approach is to define a curve γ(s) for a real parameter s ≥ 0 such that

γ(0) is 1 and the only pole of our generating function on that curve occurs for s = 0.
Then we take the limit s→ 0. We need the following lemma.

Lemma 9.20. Let v1, . . . ,vk ∈ Rd. Then there is m ∈ Rd such that ⟨m,vj ⟩ ̸= 0 for
1 ≤ j ≤ k.
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Proof. We use the moment curve

m(λ) :=
(︂
1, λ, λ2, . . . , λd−1

)︂
.

The map

λ ↦−→
d∏︂

j=1

⟨m(λ),vj ⟩

is a nonzero polynomial of degree (d− 1)k. Hence, it has at most (d− 1)k zeros and we
can try a polynomial number of values to find a λ such that m(λ) gives the claim.

Using this lemma we can find m = (m1, . . . ,md) ∈ Rd such that, in the notation of
Theorem 9.18,

⟨m,ai ⟩ ̸= 0 ⟨m,vij ⟩ ̸= 0 for i ∈ I and 1 ≤ j ≤ si .

Now consider

γ(r) := (erm1 , . . . , ermd) .

We get the desired evaluation as

lim
r→0

GP (γ(r)) .

Let

αi := ⟨m,ai ⟩ νij := ⟨m,vij ⟩ .

Then

GP (γ(r)) =
∑︂
i∈I

εi
eαir∏︁si

j=1(1− eνijr)
,

and the summands are all rational functions in one variable r which are defined for all
r > 0. We want to compute the constant term of the Laurent expansion of all summands
at r = 0. Now consider a single such fraction. We can transform it to obtain

eαir∏︁si
j=1(1− eνijr)

=
1

rsi
eαir

si∏︂
j=1

r

1− eνijr
. (9.7)

Now each factor
r

1− euijr

is defined for all r and we can compute the Laurent expansion up to degree si + 1:

r

(1− eνijr)
= Tij(r) + Rij(r

si+1) ,

133



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

and similarly we get

eαir = Si(r) + R′
ij(r

si+1) .

We compute the product up to degree si + 1:

Pi(r) := Si(r)

si∏︂
j=1

Tij(r) + R′′
i (r

si+1) .

Let ci be the coefficient of rsi (note that (9.7) has an additional factor of 1
rsi , so for this

product ci is the constant coefficient). We sum them up with the given signs to obtain

c :=
∑︂
i∈I

εici .

This is the desired limit and thus the evaluation at 1.

Remark 9.21. Using the Todd-polynomials tdm(ξ1, . . . , ξd) defined by

k∏︂
i=1

xξi
1− e−xξi

=
∞∑︂

m=0

tdm(ξ1, . . . , ξd)x
m

one may obtain a closed formula for the evaluation of GC(1).4 However, this requires
us to evaluate the Todd polynomials.

9.5. Half-open Decompositions

In computing the generating function of a cone we have to keep track of all contributions
of lower dimensional cones to adjust overcounting from the intersection of cones,
together with the multiplicity of overcounting. This is a huge computational effort,
as we have seen above that this increases the number of newly created cones in each
step of the algorithm potentially by 2d · d instead of just d. While we will not improve
asymptotically it should be clear that we can reduce the computational effort considerably
if we find a way to avoid all or most of the computations for lower dimensional cones
and do not have to store the generating functions for those.

This is indeed possible, and various ways have been proposed to do so. The first idea
employs the observation that cones with nontrivial lineality are mapped to 0 by Φ and
that the dual of a low dimensional cone has such a nontrivial lineality space. The second
modifies the subdivision in a way that each lattice point is contained in a unique cone
of the subdivision, so no overcounting occurs in intersections. We briefly sketch the
first approach and then turn to the second, which has the benefit that we can reuse the
results in the next chapter.

For the first approach we observe that dualizing the (signed) decomposition of a cone
is a (signed) decomposition of the original cone. Dualizing translates unimodular cones
4Thm. 7.2.1 De Loera, Hemmecke, and Köppe, Algebraic and geometric ideas in the theory of discrete
optimization.
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(a) A cone (b) Its dual

(c) A signed decomposition of the dual cone. The left and right cone have positive sign, the middle one negative
sign.

(d) The corresponding signed decomposition of the primal cone. Again, the left and right are taken with a positive
sign, and the middle one with negative sign. The right one does not contribute to the rational function, as it is not
pointed.

Figure 9.8.: A cone and a signed decomposition obtained from a signed decomposition of the
dual cone.
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into unimodular cones, and cones of dimension less than d into cones with a nontrivial
lineality space. We can thus obtain a decomposition of a cone C in the following way. We
first dualize the cone to obtain a coneD := C⋆. Now we apply the signed decomposition
of Section 9.4.1 to D to obtain a collection D := (D1, . . . , Dm) of cones in dimensions
0 ≤ k ≤ d and signs (ε1, . . . , εm) (or signs with multiplicities, if we only keep one copy
of each cone appearing). Then C := (D⋆

1, . . . , D
⋆
m) is a signed decomposition with the

same signs (and multiplicies) as D. See Figure 9.8 for an example.
However, we can shorten this considerably. As the dual of a cone Dj with dim Dj < d

is not pointed, ⋆Dj is mapped to 0 by the map Φ. So in the decomposition of D we can
disregard all lower dimensional cones and only store the full dimensional cones. Hence,
in each subdivision step of the algorithm we obtain at most d new cones instead of all
2d · d coming from low dimensional intersections. Also, we do not have cones with a
multiplicity other than 1. So in the example of Figure 9.8 we can disregard the right
cone of Figure 9.8(c), and correspondingly the right cone of Figure 9.8(d). The rational
generating function of

C := cone
(︁[︁−1

3

]︁
, [ 10 ]

)︁
is therefore

GC(s, t) =
1

(1− s)(1− t)
− 1

(1− t)(1− st−3)

=
1

(1− s)(1− t)
+

s−1t3

(1− t)(1− s−1t3)

=
1− t3

(1− t)(1− s)(1− s−1t3)

=
1 + t+ t2

(1− s)(1− s−1t3)
,

where for computations we would stop with the first equation. The transformation in
the form of the last line is only done to show the equivalence of the rational function in
the first line with the one obtained from a naïve application of Corollary 9.8.

Also observe that a signed decomposition of the original cone would use [ 01 ] to produce
the decomposition

cone
(︁[︁−1

3

]︁
, [ 10 ]

)︁
= cone

(︁[︁−1
3

]︁
, [ 01 ]

)︁
+ cone ([ 01 ] , [

1
0 ]) − cone ([ 01 ])

to obtain the generating function in the form

GC(s, t) =
1

(1− s−1t3)(1− t)
+

1

(1− t)(1− s)
− 1

1− t

=
1− t3

(1− t)(1− s)(1− s−1t3)

=
1 + t+ t2

(1− s)(1− s−1t3)
,

where again we would stop with the first line for computations. The following lines
show that also this generating function coincides with the ones above.
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ξ

Figure 9.9.: Making a cone half open. The right face and the origin are not part of the half
open cone.

Now we turn to the second approach to avoid overcounting in intersections. It has the
advantage that is remains in primal space, so it avoids the expensive computation of dual
cones. The general idea of the approach the following. For each lattice point u in the
intersection of fulldimensional cones C1, . . . , Ck we want to assign a unique cone among
those that u should belong to, and we only count its contribution for that particular
cone. There are two main ideas how we can do such a unique assignment. We discuss
in the following the approach via half-open decompositions. I such a decomposition,
we remove part of the boundary from some cells, so that each such boundary cell is
contained in a unique fulldimensional one. We then argue that the whole process of
computing generating functions also works for such half-open cones (with a modified
fundamental domain).
The following definitions should make this precise.

Definition 9.22. Given a vector ξ ∈ Rd, we define the half-open cone Cξ with respect
to ξ ∈ Rd

Cξ := {y ∈ C : y + εξ ∈ C for all ε > 0 small enough} .

We say ξ ∈ Rd is generic with respect to C (respectively, a triangulation T of C) if ξ is
not in the linear hull of a (d − 1)-dimensional face of C (respectively, any simplicial
(d− 1)-cone in T).

Cξ can also be described as precisely the set of elements in C that are not visible
from ξ (Problem 9.7). See Figure 9.9 for an example.

Problem 9.7
If ξ ∈ C, then Cξ = C, and if ξ is generic with respect to C, then we can replace C

with intC in the definition, so

Cξ = {y ∈ C : y + εξ ∈ intC for all ε > 0 small enough} ,

Problem 9.8
If ξ ∈ C is generic with respect to a triangulation T of C, then it is also generic with

respect to C. In this case, ξ ∈ intD ⊂ intC for a unique D ∈ T[d]. Our first goal is to
show that making cones half-open is compatible with decompositions.
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x

(a) A triangulation

x

(b) and a half open triangu-
lation of it

Figure 9.10.: A triangulation and its half open decomposition.

Proposition 9.23. Let T be a triangulation of the cone C, and let ξ ∈ Rd be generic with
respect to T. Then

Cξ =
⨆︂

D∈T[d]

Dξ .

where T[d] is the set of d-dimensional faces of the triangulation (see Definition A.35) is a
disjoint union of half-open cones. If additionally ξ ∈ C, then

C =
⨆︂

D∈T[d]

Dξ .

A half-open decomposition in this way is illustrated in Figure 9.10, where this shows
a slice through C containing ξ.

Proof. Let y ∈ Dξ. Then for any ε > 0 small enough y + εξ ∈ int (D) ⊂ int (C), so
y ∈ Cξ. Conversely, let y ∈ Cξ, so y + εξ ∈ int (C) for any ε > 0 small enough. This
implies that there exists a unique D ∈ T[d] so that y + εξ ∈ intD for small enough
ε > 0. The uniqueness argument implies disjointness of the union on the right hand
side.

Problem 9.9
Let us now focus on simplicial d-cones D ⊂ Rd. So let D be a simplicial d-cone in

Rd and V = {v1, . . . ,vd} ⊂ Rd the primitive ray generators. A point ξ ∈ Rd is generic
with respect to D if and only if all coefficients λi in the unique representation

ξ =

d∑︂
i=1

λivi

are non-zero.

Definition 9.24. In the setting above we define the sets

I+(ξ) := {i : λi > 0} and I−(ξ) := {i : λi < 0} .
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0

v1

v2

ξ’

ξ

Πξ(D) = Π−ξ′(D)

Figure 9.11.: Half open cone and fundamental parallelepiped for ξ and −ξ′. The dashed lines
and the vertices with withe points are not part of the cone or fundamental
parallelepiped.

With this notation we obtain an alternative description of a half-open simplicial cone.
You will prove this result in Problem 9.10.

Lemma 9.25. Let ξ ∈ Rd be generic with respect to a simplicial d-cone D with primitive
ray generators v1, . . . ,vd. Then

Dξ =

{︄
d∑︂

i=1

µivi :
µi ≥ 0 for i ∈ I+(ξ) and
µi > 0 for i ∈ I−(ξ)

}︄
.

Problem 9.10
We have seen in Corollary 2.8 that the lattice translates of the fundamental paral-

lelepiped cover Rd. We want to extend this to the half-open setting. With the next
definition we propose the suitable generalization, and with the lemma below we will
prove that the translates indeed cover Rd.

Definition 9.26. Let D be a simplicial d-cone with primitive ray generators V and
ξ ∈ Rd generic for D. We define the half-open parallelepiped Πξ(D) with respect to ξ as

Πξ(D) :=

{︄
d∑︂

i−1

µivi :
µi ∈ [0, 1) for i ∈ I+(ξ) and
µi ∈ (0, 1] for i ∈ I−(ξ)

}︄

Note that Πξ(D) ⊂ Dξ. See Figure 9.11 for an illustration.
For x strictly in the interior of D we recover the usual half-open fundamental paral-

lelepiped of D with generating set V . The following result generalizes Corollary 2.8.
For a proof see Problem 9.11.

Lemma 9.27. Let V = {v1, . . . ,vd } ⊂ Rd be linearly independent, and suppose ξ ∈ Rd

is generic with respect to the simplicial coneD := coneV . Denote by Λ the lattice generated
by V .

139



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

Then any point w ∈ Rd has a unique representation w = y + z with y ∈ Λ and
z ∈ Πξ(D).

Problem 9.11
We can further decompose each of the half-open simplicial cones into half-open boxes.

Proposition 9.28. Let D ⊂ Rd be a simplicial cone with primitive ray generators
v1, . . . ,vd and ξ ∈ Rd be generic with respect to D. We define

S :=

{︄
d∑︂

i=1

λivi : λi ∈ Z≥0

}︄
,

Then we have the following disjoint union:

Dξ =
⨆︂

w∈ S

w +Πξ(D)

Proof. The fact that the translates by Λ-vectors are pairwise disjoint follows from the
uniqueness in Lemma 9.27. From the existence part we see that Rd is covered by all
Λ-translates of Πξ(D). It remains to observe that for w ∈ Λ

Dξ ∩
(︂
w +Πξ(D)

)︂
=

{︄
w +Πξ(D) for w ∈ S

∅ else,

We leave the verification of this identity to the reader (Problem 9.12).
Problem 9.12
Problem 9.13
Problem 9.14

Finally, with all these preparations we can now compute the rational generating
function of a simplicial half-open cone.

Corollary 9.29. Let D be a simplicial cone with primitive ray generators {v1, . . . ,vd } ⊆
Zd and let ξ ∈ Rd be generic with respect to D.

Then the integer point generating function of the half-open cone Dξ is summable, and

GDξ(t) =
GΠξ(D)(t)

(1− tv1)(1− tv2) · · · (1− tvd)
. (9.8)

Using Proposition 9.28 the proof follows precisely along the lines of the proof of Propo-
sition 9.7 (just replace Corollary 2.8 by Lemma 9.27). Together with Proposition 9.23
we get the following nice formula.

Corollary 9.30. Let C be a rational cone in Rd, let T be a triangulation of C into rational
simplicial cones, and let ξ ∈ C be generic. Then

ĜC(t) =
∑︂

S∈T[d]

ĜSξ(t) (9.9)
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In particular the series is summable and (9.9) also holds on the level of rational functions.

Proof. Equation (9.9) is a translation of Proposition 9.23 into generating functions. By
Corollary 9.29, all the summands are summable Laurent series.

9.6. Problems

9.1. The goal of this exercise is to give a proof of Proposition 9.4. Show that the set Lsum of summable
Laurent series is an L-submodule of ˆ︁L, i.e. show that for f ∈ L and g, h ∈ Lsum also f · g and g+ h
are summable.

9.2. Prove that there is a natural homomorphism from summable series to rational functions

Φ : ˆ︁L −→ R := k(x1, . . . , xd) ,

mapping Ĝ to f/g if gĜ = f in ˆ︁L.
9.3. Let S, S′ be subsets of the a (possibly translated) pointed cone inRd. Then ĜS(t) = ĜS′(t) implies

ĜS(t) = ĜS′(t).

9.4. Let subsets S1, . . . , Sm of Rd be given. Then

Ĝ⋃︁
i∈[m] Si

=
∑︂

∅≠I⊆[m]

(−1)|I|+1Ĝ⋂︁
i∈I Si

.

Remark: This is just the usual inclusion-exclusion formula for sets.

9.5. Apply Brion’s identity to

P := conv
[︃

0 2 2 3
1 −1 2 0

]︃
and verify that both rational functions coincide (you may want to use a computer for this).

9.6. Let C be a unimodular cone spanned by r1, . . . , rd. Show that | det(r1, . . . , rd)| is 1 and that 0 is
the only lattice point in the fundamental parallelepiped.
Show that any two unimodular cones are lattice equivalent, meaning that for any two unimodular
cones C1 and C2 there is a linear map ϕ that maps Rd onto Rd and induced a bijection on the
lattice such that ϕ(C1) = C2.
Those maps are the unimodular maps of Definition 2.14.

9.7. Let ξ ∈ Rd and C a d-cone. Then

Cξ = {y ∈ C : yε ∈ C for all ε > 0 small enough} ,

where yε := (1− ε)y + εξ.

9.8. Let C be a cone and ξ generic for C. Show that

C−ξ = intC .
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9.9. Let T be a triangulation of the cone C, and let ξ ∈ Rd be generic with respect to T. Recall the
disjoint union

Cξ =
⨆︂

D∈T[d]

Dξ

obtained in Proposition 9.23, where T[d] is the set of d-dimensional faces of the triangulation. In
this problem we want to obtain a disjoint subdivision of the interior of C.
For this, show that we can use the negative of our generic ξ to obtain

intC =
⨆︂

D∈T[d]

D−ξ .

Hint: You may want to solve Problem 9.8 first.

9.10. Prove Lemma 9.25.

9.11. Prove Lemma 9.27.

9.12. Check carefully and rigorously the last identity in the proof of Proposition 9.28.

9.13. Show directly that C\C[x) is a union of faces of C.

9.14. Let T be a triangulation of a full-dimensional cone C. Show that there is always a generic element
ξ ∈ int (C).

9.15. Prove that, in the setting of Corollary 9.30

ĜintC(t) =
∑︂

S∈T[d]

ĜS−ξ (t).

Hint: You may want to solve Problem 9.9 first.
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* 10. Counting Lattice Points in Dilates

In this chapter we want to look into the geometry of integral or lattice polytopes. We
can use the generating functions developed in Chapter 9 to prove a classical result in
the theory of lattice polytopes, the Theorem of Ehrhart. Its original version by Ehrhart1
states that the number of lattice points in positive integral dilates of a d-dimensional
lattice polytope are given by the evaluation of a polynomial, the Ehrhart polynomial, of
degree d at integral values.
This theorem has since seen many generalizations, some already by Ehrhart. Many

more appeared in later years, for example by MacDonald2 on reciprocity, by Stanley3
on the numerator of the generating function, the h⋆-polynomial, Hibi4 on bounds of its
coefficients, or the counting algorithm of Barvinok that we have seen in the previous
Chapter 9. For surveys on the known results you can look at the books of Beck and
Robins5 or Barvinok.6

* 10.1. Some examples

We will start this chapter with a definition of the Ehrhart counting function ehrP (k) and
some simple examples of ehrP (k) of a polytope P that we can compute directly. This
will give some observations we will prove afterward.

Let S ⊆ Rd, and k ∈ Z>0. The k-th dilation of a set of S is the set

k · S := { kx : x ∈ S } .

We introduce the following counting function.

Definition * 10.1. The Ehrhart counting function of a bounded subset S ⊆ Rd is the
function

ehrS(k) : Z>0 −→ Z>0

k ↦−→
⃓⃓⃓
k · S ∩Zd

⃓⃓⃓
.

Problem * 10.1
1Ehrhart, Polynômes arithmétiques et méthode des polyèdres en combinatoire; Ehrhart, “Sur un problème
de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires”.

2Macdonald, “Polynomials associated with finite cell-complexes”.
3Stanley, “Decompositions of rational convex polytopes”.
4Hibi, “A lower bound theorem for Ehrhart polynomials of convex polytopes”.
5Beck and Robins, Computing the continuous discretely.
6A. Barvinok, A course in convexity.
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L

2L

3L

(a) Lattice points in an inter-
val

(b) Lattice points in a stan-
dard simplex.

Figure * 10.1.: Some examples of Ehrhart polynomials

For a, b ∈ R we define the interval

L := [a, b] ⊆ R

on the real line. Counting lattice points in dilates is relatively simple here. The k-th
dilate of L is [ka, kb], and it contains ⌊kb⌋ − ⌈ka⌉+ 1 integral points, so

ehrL(k) = ⌊kb⌋ − ⌈ka⌉+ 1 .

Figure * 10.1(a) shows the interval I = [0, 32 ] and its second and third dilation.
If the boundary points a and b are integral and a ≤ b, then we can simplify the

formula. In this case also all multiples of a and b are integral, and we can omit the floor
and ceiling operations to obtain

ehrL(k) = k(b− a) + 1 .

We observe that this is a polynomial of degree 1 in k.
Let us consider some more examples in general dimension d ≥ 1. The standard

simplex

∆d := conv(0, e1, . . . , ed) ,

see Figure * 10.1(b) for the lattice points in a multiple of this simplex. The following
proposition gives the number of lattice points in its dilates.

Proposition * 10.2. Let ∆d be the d-dimensional standard simplex. Then

ehr∆d
(k) =

(︃
d+ k

d

)︃
=

(d+ k) · (d+ k − 1) · . . . · (k + 1)

d!
.

Observe that this is a polynomial in the variable k of degree d with leading coefficient
1/d! .

Problem * 10.2

Proof. There is a bijection between the lattice points in k∆d and sequences of k dots
and d bars: to each such sequence, assign the vector x ∈ Rd whose i-th coordinate
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equals the number of dots between the i-th bar and the (i+ 1)st bar for 1 ≤ i ≤ d− 1
(we don’t write down the number of dots after the last bar, it is determined by the rest):

· · | · · · | | · ←→ x = (2, 3, 0)

This yields a bijection between the sequences and lattice points with non-negative
coordinates and with

∑︁
xi ≤ k.

Another simple, but very important example is the unit cube defined in Exam-
ple A.19(i). The k-th dilate of the cube is kCd = k · [0, 1]d = [0, k]d. Hence, the
Ehrhart counting function is given by

ehrCd
(k) = (k + 1)d .

Note again that this is a polynomial in k of degree d.
Problem * 10.3

* 10.2. The Ehrhart Polynomial

Now we turn to the proof that the number of lattice points in dilates is given by a
polynomial. We aim for the following theorem.

Theorem * 10.3 (Ehrhart’s Theorem). The Ehrhart counting function given by k ↦→
ehrP (k) for k ∈ Z≥1 extends to a polynomial function t ↦→ ehrP (t) of degree d.

With the following definition we assign a name to the function in this theorem. The
proof needs some more preparations.

Definition * 10.4 (Ehrhart polynomial). For a polytope P the polynomial ehrP (t) as in
the previous theorem is the Ehrhart polynomial of P .

Let us first argue why we should expect that the polynomial has degree d if it exists.
For this we look at the volume of the polytope, or, more generally, any convex body.
Computing the volume generally is a difficult task, and we will argue that counting
lattice points in dilates is related.
Let K ⊆ Rd be a convex body. We can approximate the volume of K by counting

the volume of little cubes with vertices at lattice points of the refined lattice
(︁
1
kZ
)︁d.

This approximates the volume for k →∞, see Proposition A.4. Figure * 10.2 shows an
illustration of the approach. With this idea we can make the following computation.

vol(K) =

∫︂
P
dx = lim

k→∞

1

kd

⃓⃓⃓⃓
K ∩ 1

k
Zd

⃓⃓⃓⃓
= lim

k→∞

1

kd

⃓⃓⃓
k ·K ∩Zd

⃓⃓⃓
= lim

k→∞

1

kd
ehrK(k)

(* 10.1)
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Figure * 10.2.: Approximating a convex body by smaller and smaller cubes

Hence, we can compute the limit if we can compute ehrK(k) for all k. Further, if we know
that ehrK(k) is a polynomial function for some K, then it necessarily is a polynomial of
degree d, as otherwise the limit would be 0 or∞.
In particular, the Ehrhart polynomial would be determined by knowing d+ 1 many

values of it. It can be shown (and you can deduce this by following the inclusion-
exclusion for the computation of generating functions carefully) that the constant term
will always be 1. Hence, in this case, vol(K) can be explicitly computed from |k ·K∩Zd|
for k = 1, . . . , d. This may remind you of Problem 2.11, where you proved that the
integer points in dilates of a polygon are given by a polynomial of degree 2. You may
want to extend this to dimension 3 with Problem * 10.4.

Problem * 10.4
Problem * 10.5
Problem * 10.6
Problem * 10.7

Let us now turn to the proof of Ehrhart’s Theorem (Theorem * 10.3). For this, we
homogenize our polytopes and work with the cone over P instead of P . Recall that we
have defined C(P ) in (A.10) via

C(P ) := cone ({1} × P ) ⊆ Rd+1 ,

We usually write a vector x ∈ Rd+1 with indices starting from 0 and use x0 for the
special coordinate. The homogenization is convenient in our setting as we can recover
all dilates of P from C(P ). More precisely, for any k ≥ 0 we get the k-th dilate of
P by intersecting C(P ) with the hyperplane x0 = k, and the lattice points in kP by
intersecting with {k} ×Zd.

Hence,

ĜC(P )(t, 1, . . . , 1) =
∑︂
k≥0

⃓⃓⃓
kP ∩Zd

⃓⃓⃓
tk = 1 +

∑︂
k≥1

ehrP (t)t
k.

As substituting variables clearly keeps summability, by Corollary 9.8 the following
definitions make sense.

Definition * 10.5. Let P be a lattice d-polytope. The Ehrhart series of P is the summable
formal Laurent series

ˆ︁EhrP (t) := 1 +
∑︂
k≥1

ehrP (t)t
k ∈ kJtK
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in one variable t. The corresponding rational function will be denoted by

EhrP (t) := Φ(ˆ︁EhrP (t)) ∈ k(t) .

To proceed we consider some well-known results on generating functions.

Lemma * 10.6. For j ∈ Z≥0,

Φ

⎛⎝∑︂
Z≥0

(︃
k + d− j

d

)︃
zk

⎞⎠ =
zj

(1− z)d+1
.

The proof will be given in Problem * 10.8.
Problem * 10.8

Proposition * 10.7. Let f, g : R→ R be such that

Φ

(︄ ∞∑︂
t=0

f(t )zt

)︄
=

g(z)

(1− z)d+1
.

Then f(t) is a polynomial of degree at most d if and only if g(z) =
∑︁

k∈Z≥0
gkz

k is a
polynomial of degree at most d. In this case we can write f in terms of g via

f(t) = g0

(︃
t+ d

d

)︃
+ g1

(︃
t+ d− 1

d

)︃
+ . . .+ gd

(︃
t

d

)︃
.

and the leading coefficient of f is g(1)
d! . In particular, f has degree d if and only if g(1) ̸= 0.

Problem * 10.9

Proof. We define the polynomials fj(t) :=
(︁
t+d−j

d

)︁
for 0 ≤ j ≤ d. By Problem * 10.9 the

set {fo, . . . , fd} is a basis of R[t]≤d.
Let f be a polynomial of degree at most d. Then there are g0, . . . , gd such that

f(t) =
d∑︂

j=0

gjfj(t) =
d∑︂

j=0

gj

(︃
t+ d− j

d

)︃
.

The coefficient of td is 1
d!

∑︁
gj . We compute

∑︂
t≥0

d∑︂
j=0

gj

(︃
t+ d− j

d

)︃
zk =

d∑︂
j=0

gj
∑︂
t≥0

(︃
t+ d− j

d

)︃
zk .

Using Lemma * 10.6 we obtain

Φ

⎛⎝∑︂
t≥0

d∑︂
j=0

gj

(︃
t+ d− j

d

)︃
zk

⎞⎠ =

∑︁d
j=0 gjz

j

(1− z)d+1
=

g(z)

(1− z)d+1
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(a) The boundary
complex of a trian-
gle

+ +

− − −

(b) Inclusion-Exclusion on the boundary
complex

Figure * 10.3.: Decomposing a triangle

For the converse direction, injectivity ofΦ on polynomials implies f(t) =
∑︁d

j=0 gj
(︁
t+d−j

d

)︁
.

Again using Problem * 10.9, which tells us that the polynomials on the right are a basis,
we obtain the claim.

Now, let us compute the Ehrhart generating function for lattice simplices.

Proposition * 10.8. Let S be a d-simplex. Then

EhrS(t) =
h⋆(t)

(1− t)d+1

where h⋆ is a polynomial of degree ≤ d. Further, for h⋆(t) =
∑︁d

k=0 h
⋆
kt

k, we have

h⋆k =
⃓⃓⃓
Π(C(S)) ∩ Zd+1 ∩ {x | x0 = k}

⃓⃓⃓
∈ Z≥0.

In particular, h⋆0 = 1 and h⋆(1) ̸= 0.

Proof. Let {a0,a1, . . . ,ad} be the vertex set of {1}×S, with ai = (1,vi) for i = 0, . . . , d.
Applying the substitution (t0, t1, . . . , td) by (t0, 1, . . . , 1) to Proposition 9.7 we obtain
that

EhrS =
h⋆(t0)

(1− t0)d+1

for the polynomial h⋆(t0) =
∑︁

(y0,y)∈Π(C(S))∩Zd+1 t
y0
0 .

Let (y0,y) =
∑︁d

i=0 λi(1,vi) ∈ Π(C(S)) ∩ Zd+1, so 0 ≤ λi < 1 for i = 0, 1, . . . , d. In
particular, y0 < d + 1, so y0 ≤ d. Moreover, y0 ≥ 0 with equality if and only if also
y = (0, 0, . . . , 0).

We have now collected all necessary tools and definitions to prove Ehrhart’s Theorem
(Theorem * 10.3).

Proof of Ehrhart’s Theorem (Theorem * 10.3). Combining Proposition * 10.8 with Propo-
sition * 10.7 we get that the Ehrhart counting function of an n-dimensional lattice
simplex in Rd uniquely extends to a polynomial function of degree at most n.
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For a general polytope P we triangulate it into maximal-dimensional simplices Fi

and consider the triangulation of C(P ) into the associated simplicial cones C(Fi). Then
we apply inclusion-exclusion using Problem 9.4.

Problem * 10.10
Problem * 10.11From this theorem and (* 10.1) we deduce the following corollary.

Corollary * 10.9. The leading coefficient of ehrP (t) is vol(P ).

With this corollary we have determined the highest coefficient in the polynomial. So
far, we do not know anything about the other coefficients. In particular, we do not know
the constant coefficient. From our considerations so far you may come to the conclusion
that

ehrP (0) =
⃓⃓⃓
0P ∩Zd

⃓⃓⃓
= 1 .

This is indeed the case if P is a polytope, but it hides the true meaning of this coefficient,
which has a different geometric interpretation.

Namely, instead of counting in a single polytope, we can count lattice points in dila-
tions of complexes of lattice polytopes. The entire chain of arguments given carries over
to this setting. We obtain a counting function which is the evaluation of a polynomial.
Consider, for example, C to be the boundary of a standard triangle, see Figure * 10.3(a).
Then our counting polynomial turns out to be ehrC(k) = 3k. This polynomial has
constant coefficient zero See Figure * 10.3(b).
You may now guess that the constant coefficient is the Euler characteristic of the

complex, which we have already met in the proof of the Theorem of Brianchon-Gram
(Theorem 9.9), see also (A.13). This is in fact true, and the 1 for polytopes comes
from the fact that balls have Euler characteristic 1. If you recall how we computed
the generating function of a cone via the principle of inclusion-exclusion, then you
may deduce this fact by following the count of the origin in this. You will see that this
amounts exactly to the computation of the Euler characteristic of a complex from its
cells (or you know this already from a course on Algebraic Topology).

In Problem * 10.12 you will discover a geometric interpretation of the second highest
coefficient of the Ehrhart polynomial.

Problem * 10.12
Problem * 10.13

* 10.3. Problems

* 10.1. Compute the Ehrhart generating function of P = [0, 1]2 using the Brion’s Theorem (Theorem 9.14).

* 10.2. Show

∞∑︂
k=0

(︄
k + d

d

)︄
xk =

1

(1− x)d+1
.

(Why is the equality sign justified here?)

* 10.3. Compute the Ehrhart counting function of the cross polytope.
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* 10.4. Determine a formula for the volume of a 3-dimensional lattice polytope using the number of lattice
points in the k-multiple for k = 1, 2 and 3.

* 10.5. Determine the Ehrhart polynomial of the Reeve simplices defined by

Rd(m) := conv (0, e1, e2, e1 + e2 +me3) (* 10.2)

for m ∈ Z≥1.
What do you observe for m = 20?

* 10.6. Let P be a lattice polytope with Ehrhart polynomial ehrP (t). Compute the Ehrhart polynomial of
the bipyramid over P .

* 10.7. For integers p,q with gcd(p, q) = 1 define the tetrahedron

∆pq = conv
[︂
0 1 0 1
0 0 1 p
0 0 0 q

]︂
.

(i) Show that its vertices are its only lattice points.
(ii) Compute the Ehrhart polynomial of ∆pq.
(iii) Determine for which parameters ∆pq and ∆p′q′ are unimodularly equivalent.
White7 proved a converse of the first claim. He showed that every lattice tetrahedron with only
four lattice points is unimodularly equivalent to a ∆pq.

* 10.8. Prove Lemma * 10.6.
Hint: do j = 0 first

* 10.9. Show that
(︁
t+d−j

d

)︁
for j = 0, . . . , d is a basis of the polynomials of degree at most d.

* 10.10. Prove that the coefficients of the Ehrhart polynomial of a d-dimensional lattice polytope are in
Z/d!.

* 10.11. Show that
∑︁d

i=0 k
2 =

(︁
d+2
3

)︁
+
(︁
d+1
3

)︁
Hint: You should try to do this via Ehrhart Theory. Consider a (d− 1)-fold pyramid over a

square.

* 10.12. Let P be a d-dimensional lattice polytope with Ehrhart polynomial
∑︁d

k=0 ckt
k. Show that

cd−1 =
1

2
vol(∂P ).

Here, vol(∂P ) denotes the surface area of P , namely,

vol(∂P ) :=
∑︂

F∈F(P )

vol(F ),

where F(P ) is the set of facets of P and vol(F ) denotes the (non-normalized) volume with respect
to the lattice aff(F ) ∩ Zd. For instance, note that vol(conv((1, 0), (0, 1))) equals 1 and not

√
2.

Hence,

vol(∂ conv((1, 0), (0, 1), (−1, 0), (0,−1))) = 4 .

* 10.13. A simplex which is unimodularly equivalent to the standard simplex is called unimodular. A
triangulation is unimodular if all its simplices are.
(i) For a k-dimensional unimodular simplex ∆ and t ∈ Z≥1 show that

|Zk ∩ relint(t∆)| =

(︄
t− 1

k

)︄
.

7White, “Lattice tetrahedra”.
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(ii) Suppose P admits a unimodular triangulation T with f0(T) vertices, f1(T) edges, . . . , fd(T)
d-simplices. Show that

ehrP (t) =

d∑︂
k=0

fk(T)

(︄
t− 1

k

)︄
.

(iii) Conclude that any two unimodular triangulations have the same f -vector (f0, . . . , fd) .
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* 11. Cuts and Lattice Free Polytopes

In this chapter we consider mixed integer linear programs (MILP) of the form

Ax ≤ b

xi ∈ Z for i ∈ I
(* 11.1)

for some A ∈ Rm×d, b ∈ Rd, and some index set I ⊆ { 1, . . . , d }. To simplify the
notation we usually assume that I = { 1, . . . , k } for some 0 ≤ k ≤ d, so that we can
replace the second line with

x ∈ Zk × Rd−k .

We have an associated polyhedron

P :=
{︂
x ∈ Rd : Ax ≤ b

}︂
.

The set of feasible solutions is this polyhedron intersected with Zk × Rd−k. The mixed
integer hull is the polyhedron

PI := conv
(︂
P ∩ Zk × Rd−k

)︂
.

We will only consider the task to decide feasibility of the mixed integer program. In
general solving this problem is NP-hard, so there is no direct efficient algorithm known.
As this is nevertheless a important problem for many real world applications, much
effort has been put into methods to solve or approximate the solution efficiently for
instances that appear in applications. We have discussed some methods in the beginning
of Chapter 6.

Here we want to focus on the approach via cutting planes or cuts. Basically, a cutting
plane is a hyperplane

H := {x : ⟨a,x ⟩ = δ }

in Rd that induces a valid inequality for the feasible solutions of (* 11.1), i.e.

⟨a,x ⟩ ≤ δ

for all x that satisfy Ax ≤ b and xi ∈ Z for i ∈ I, but which is not valid for the linear
relaxation, where we drop all integrality constraints, i.e. there is y ∈ Rd such that

⟨a,y ⟩ > δ .
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Then necessarily yi ̸∈ Z for some i ∈ I.
Various ways have been devised to come up with cutting planes for a mixed integer

program. Algorithmic methods usually start with a solution to the linear relaxation of
the program. If this is not a feasible solution of the mixed integer program, then they
search for a cutting plane that is violated by this solution.
On the more theoretical side one can ask for families C of pairs (ai, δi) defining

cutting planes, such that

PI = {x : x ∈ P and ⟨ai,x ⟩ ≤ δi for all i } ,

or for families of such hyperplanes that approximate PI in the sense that

P ⊊ Q ⊆ PI (* 11.2)

for the polyhedron Q obtained by adding all inequalities in the family. Most interesting
in this contex are families of cuts that produce PI after a finite number of steps.

An example for the first approach are the Gomory (mixed) integer cuts that you have
discussed in Discrete Optimization. An example for the second are the Chvátal cuts for
integer programs also discussed in Discrete Optimization, together with the associated
elementary closures. The elementary closure P (1) of a polyhedron P is the intersection of
P with all halfspaces of the form

{x : ⟨a,x ⟩ ≤ ⌊δ⌋ } (* 11.3)

where a ∈ Zd, δ ∈ R, ⟨a,x ⟩ ≤ δ is a valid inequality for P , but ⟨a,x ⟩ ≤ ⌊δ⌋ is not.
The polyhedron P (1) (which corresponds to Q in (* 11.2)) contains PI , but they usually
differ.

It can be shown that after a finite iteration of elementary closures

P (t) :=
(︂
P (t−1)

)︂(1)
we arrive at some t such that P (t) = PI . Any Gomory cut is a Chvátal cut, so that the
former can be seen as an algorithmic version of the latter. Both can also be seen as
split cuts, which arise in the following way. Given a polyhedron P , some functional
c ∈

(︁
Rd
)︁⋆, and π ∈ R a split cut for P is any inequality ⟨a,x ⟩ ≤ δ that is simultaneously

valid for

{x ∈ P : ⟨ c,x ⟩ ≤ ⌊π⌋ } and {x ∈ P : ⟨ c,x ⟩ ≥ ⌊π⌋+ 1 } (* 11.4)

In the integer case adding this inequality to the system does not change the feasible set.
In the mixed integer case we take such an inequality in the first k variables and extend
with a linear space in the remaining (nonintegral) ones.

The disjunction of (* 11.4) can be seen as intersecting P with the a polyhedron

Q := S ×Rd−1 = {x : ⌊π⌋ ≤ ⟨ c,x ⟩ ≤ ⌊π⌋+ 1 }
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for an interval

S := {λr : ⌊π⌋ ≤ ⟨ c, λr ⟩ ≤ ⌊π⌋+ 1 }

and some r not in the nullspace of c. So S is a onedimensional polyhedron whose facets
are given by the two inequalities ⌊π⌋ ≤ ⟨ c,x ⟩ and ⟨ c,x ⟩ ≤ ⌊π⌋+ 1 and that has one
vertex in each of the two hyperplanes. Note that there is no integral point in the interior
of S, but its two vertices may be integral. Such sets are called lattice free.
In the following we want to discuss a generalization of this, where we replace the

interval S by any lattice free polyhedron, i.e. by a polyhedron that has no lattice points
in its interior (but maybe some on the boundary).
In the next section we will first derive this idea from an algorithmic point of view

that follows the approach for Gomory cuts, but uses more than one row of the simplex
tableaux. We will see that we need lattice free polyhedra to describe the cuts obtained
in this way, and the maximal cuts come from maximal lattice free polyhedra, which
are those lattice free polyhedra, that are not contained in a strictly larger lattice free
polyhedron.

In the second section we will give a characterization of maximal lattice free polyhedra
due to Lovasz1, with proofs by Basu et al.2 and Averkov.3 It can then be shown that
it suffices to look at the integral maximal lattice free polyhedra (those with integral
vertices),4 to obtain a sequence of cuts that produce PI after a finite number of itera-
tions. Further, in each dimension we only have a finite number of maximal lattice free
polyhedra.5

In the last section we give a brief outlook on further results on lattice free sets. In
particular we sketch the proof that there are only finitely many lattice free polyhedra
in each dimension, up to lattice equivalence. The polytopes have been classified up to
dimension 3, and we conclude the chapter with the complete list of such polytopes.

* 11.1. Corner Polyhedra

In this section we want to give an algorithmic motivation for the study of lattice free
polyhedra. For this we introduce the corner polyhedron of a mixed integer program

Ax = b

x ≥ 0 (* 11.5)
xi ∈ Z for i ∈ I

in in standard form for some I ⊆ { 1, . . . , k } (and we will again mostly assume that
I = { 1 . . . , k } for some 0 ≤ k ≤ d). This is the form used for the simplex algorithm in
linear programming, and thus the usual form if one solves a relaxation of the mixed
1Lovász, “Geometry of numbers and integer programming”.
2Basu, Conforti, Cornuéjols, and Zambelli, “Maximal lattice-free convex sets in linear subspaces”.
3Averkov, A proof of Lovász’s theorem on maximal lattice-free sets.
4Del Pia and Weismantel, “On convergence in mixed integer programming”.
5Averkov, Wagner, and Weismantel, “Maximal lattice-free polyhedra: finiteness and an explicit description
in dimension three”.
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integer program and then tries to find new inequalities that separate a non-integral
solution from the set of feasible solutions.
These corner polyhedra were already introduced by Gomory6 as a generalization of

cutting planes. and subsequently studied by Gomory and Johnson.7 In our discussion
we will follow an approach to generate new cuts introduced by Anderson et al.8. A good
survey on this an many related results and extensions is given by Basu et al.9

We recall some notation for such a linear program. A basis B is a maximal minor of
linearly independent columns of A, so det B ̸= 0. The associated basic solution is

xB :=

[︃
B−1b

0

]︃
We collect the remaining columns not in B into a matrix N , the nonbasic variables.
By slight abuse of notation we denote by xB also the subset of the entries of x that
correspond to the basis variables, and by xN the remaining entries.

We can no give a formal definition of a corner polyhedron.

Definition * 11.1. For a mixed integer linear program as in (* 11.5) and a basis B the
corner polyhedron associated to B is

Corner(B) := conv

⎛⎝⎧⎨⎩x ∈ Rd :
xB = B−1b − B−1NxN

xN ≥ 0
xi ∈ Z for i ∈ I

⎫⎬⎭
⎞⎠

Note that in this formulation we have dropped the nonnegativity constraints on the
basic variables. In the following we only look at one specific corner polyhedron.

If (xB,xN ) = (B−1b, 0) is a feasible solution then we have found the solution to the
mixed integer program (assuming that the simplex tableaux corresponded to a final
solution of the relaxation). Otherwise, note that xN are the independent variables in the
current formulation, and we aim for an inequality, that separates the solution xN = 0
obtained from the relaxation from the set of feasible solutions, which are all contained
in Corner(B).

Let us introduce new variables to make the formulation simpler. We set

(c, s) := xN

where c collects the integer variables among the nonbasic variables and s the continuous
ones. We can then split B−1N accordingly into

(C,R) := B−1N ,

set f := B−1b and replace xB by a variable y to write the corner polyhedron as the
6Gomory, “Some polyhedra related to combinatorial problems”.
7Gomory and Johnson, “Some continuous functions related to corner polyhedra”; Gomory and Johnson,
“Some continuous functions related to corner polyhedra. II”.

8Andersen, Louveaux, Weismantel, and L. A. Wolsey, “Inequalities from two rows of a simplex tableau”.
9Basu, Conforti, and Summa, “A geometric approach to cut-generating functions”.
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convex hull of

y = f − Cc − Rs

u ,v ≥ 0 (* 11.6)
u ∈ Zk

Note that y may still combine integer and continuous variables, as we have only split
xN in two parts. However, for the solutions to (* 11.6) the continuous variables among
y are just given by the equation in the first line, and are not subject to any further
constraint, so we can drop these variables in our considerations and assume that y ∈ Zd.
Following Anderson et al.10 we now also drop the integrality constraints on the

nonbasic variables. So all nonbasic variables are in s. Then (* 11.6) describes an affine
cone, which we can write in the form

y = f +
k∑︂

i=1

siri

y ∈ Zm (* 11.7)
si ≥ 0 for all i .

where ri are the rays of the cone given by the columns of R.
We denote the set of all solutions of (* 11.7) by Sf (r1, . . . , rk), and the convex hull of

this by

Rf (r1, . . . , rk) := conv(Sf (r1, . . . , rk) .

We assume that f is a fractional solution, i.e. at least one fi is not integral (otherwise its
a feasible solution of the mixed integer program). We aim for inequalities that cut of
the solution, i.e. the apex, from the cone.

For this recall that any centrally symmetric convex body K ⊆ Rd defines a norm ∥.∥K
via

∥x∥K := inf(t > 0 : x ∈ t ·K) . (* 11.8)

We can obtain K from its norm via

K = {x : ∥x∥K ≤ 1 } (* 11.9)

and the norm is linear and satisfies the triangle inequality, i.e. for all x,y ∈ Rd and
λ ∈ R

∥λx∥K = |λ| ∥x∥K ∥x+ y∥K ≤ ∥x∥K + ∥y∥K . (* 11.10)

If K is not centrally symmetric, but still contains the origin in its strict interior, then K
does not define a norm anymore, but the conditions (* 11.9) and (* 11.10) still hold.
We will use σK instead of ∥.∥K for the function defined in (* 11.8) in this case. This is
the Minkowski functional or gauge functional defined by K.
10Andersen, Louveaux, Weismantel, and L. A. Wolsey, “Inequalities from two rows of a simplex tableau”.

157



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

σ is also monotonic w.r.t. the set is defined for. If K ′ ⊆ K are convex sets and K ′

contains the origin in its interior, then

σK(y) ≤ σK′(y) . (* 11.11)

You will give a proof for this in Problem * 11.1.
Problem * 11.1

With this we can introduce a new inequality for the corner polyhedron.

Theorem * 11.2. Let K be a closed convex set that contains f in its interior, but no lattice
point in its interior, and let K := K − f . Then

k∑︂
i=1

σK(ri)si ≥ 1

is a valid inequality for Rf (r1, . . . , rk).

Proof. Let s satisfy (* 11.7) and y := f +
∑︁

risi. Then y is not in the interior of K, as
y is integral. Sp y − f is not in the interior of K. So

σK(y − f) ≥ 1

by (* 11.9). This implies∑︂
σK(ri)si ≥

∑︂
σK(risi) ≥ σK

(︂∑︂
risi

)︂
≥ σK(y − f) ≥ 1 .

where we have used the inequalities of (* 11.10).

Now observe that, if for two inequalities of the form

k∑︂
i=1

λisi ≥ 1
k∑︂

i=1

λ′
isi ≥ 1

for s ∈ Rk
≥0 we have λi ≤ λ′

i, then any solution s to the first also satisfies the second
inequality. Hence, the second inequality is redundant. Now recall, that for Minkowski
functionals we have (* 11.11). Hence, if, for the inequalities derived from convex sets
K,K ′ with 0 in its relative interior as in Theorem * 11.2 we have K ′ ⊆ K, then the
inequality from K ′ is redundant.
It follows that it suffices to look at those sets in Theorem * 11.2 that have f in its

interior, no lattice point in its interior, and which are not properly contained in another
set with the same properties. The following definition formalizes this.

Definition * 11.3. Let K ⊆ Rd be a convex set. Then K is lattice free if K contains
no lattice point in its interior, K is maximal lattice free if it is not contained in another
lattice free set.
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Note that any affine L ⊆ Rd with dim L < d is lattice free, as int L = ∅. It is,
however, not necessarily maximally lattice free, as we will see in Lemma * 11.8.
With this definition, we obtain the strongest new inequalities from Theorem * 11.2

if K is a maximally lattice free convex set. Furthermore, it can be shown that all
inequalities for the corner polyhedron are dominated by a cut from a lattice free set.11
Hence, a characterization of maximal lattice free sets is sufficient to completely describe
the corner polyhedron.
This suggests that we should understand these lattice free sets to apply the cuts

efficiently. We will see in the next section that maximal lattice free sets are in fact
polyhedra. This result by Lovász is also interesting in the theory of lattice polytopes and
geometry of numbers. Averkov et al.12 have shown that there is only a finite number of
such polyhedra in each dimension (up to lattice isomorphism). Hence, we may also aim
for a full classification of such, which is known so far only up to dimension 3.

* 11.2. Maximal lattice free sets

To use Theorem * 11.2 for new cuts, which, by the remarks at the end of the last section,
would suffice to obtain all possible cuts, we need a classification of maximal lattice free
convex sets. The following characterization of such sets is due to Lovasz.13.

Theorem * 11.4. Let Λ ⊆ Rd be a lattice. A set S is maximally lattice free if and only if
one of the following two conditions is satisfied.
(i) S is a polyhedron and can be written as

S = P + L

for a polytope P and a Λ-rational linear subspace L with

dim S = dim P + dim L = d

such that S contains no point of Λ in its interior, but each facet of S contains a point
of Λ in its relative interior.

(ii) S is an affine subspace of Rd of the form S = v + L for a linear subspace L that is
not Λ-rational. In particular, dim S < d.

We follow ideas of Basu et al.14 using Theorem 3.16 to find lattice points close to hyper-
planes. A different proof by Averkov15 uses Minkowski’s First Theorem (Corollary 3.3)
for this. We need some preparations before we can give the proof.

11Thm. 4.1 Basu, Conforti, and Summa, “A geometric approach to cut-generating functions”.
12Averkov, Wagner, and Weismantel, “Maximal lattice-free polyhedra: finiteness and an explicit description

in dimension three”.
13Lovász, “Geometry of numbers and integer programming”.
14Basu, Conforti, Cornuéjols, and Zambelli, “Maximal lattice-free convex sets in linear subspaces”.
15Averkov, A proof of Lovász’s theorem on maximal lattice-free sets.
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Lemma * 11.5. Let Λ ⊆ Rd be a lattice, L ⊆ Rd a linear subspace, and ε > 0. If L is not
Λ-rational, then there is y ∈ Λ \ L with d(y, L) < ε.

Proof. We use induction over k := dim L. Let k = 1 and L := lin r for some r ∈ Rd.
We know from Problem * 11.2 that we can find v ∈ Λ with distance at most ε from
{λr : λ ≥ 0 }. If v ∈ L, then L would be Λ-rational, so v ∈ Λ \ L.
So consider k ≥ 2. We assume first, that there is u ∈ L ∩ Λ. Let π : Rd → U be the

projection onto the orthogonal complement U of u and define

L′ := π(L) Λ′ := π(Λ) .

Then Λ′ is a lattice in U . If L′ is a Λ′-rational subspace of U , then there are

b′
1, . . . ,b

′
k ∈ Λ′

that span L′ (linearly). By construction, there are preimages bi ∈ π−1(b′
i) ∩ Λ for

1 ≤ i ≤ k. But then, r,b1, . . . ,bk would be a basis of L, so L is Λ-rational. This is a
contradiction, so L′ is not Λ′-rational.

By induction we can find v′ ∈ Λ′ at distance at most ε from L′. By construction, there
is v ∈ π−1(v′) ∩ Λ, and this point has distance at most ε from L. Because v′ ̸∈ L′ also
v ̸∈ L, so v ∈ Λ \ L, as required.

If now L ∩ Λ = { 0 }, then we use Problem * 11.2 again to obtain v ∈ Λ \ { 0 } at
distance at most ε from L. Then also v ̸∈ L, so v ∈ Λ \ L.

Problem * 11.2

Proposition * 11.6. Let S ⊆ Rd be a d-dimensional maximally lattice free set. Then

rec S = lineal S .

Proof. Assume not, and let C := rec S be the recession cone. We will show that also

S − C := { s− c : s ∈ S and c ∈ C }

is lattice free. As this contains S and strictly contains S if C ̸= lineal S this would
contradict maximality.

So let u ∈ int(S − C) ∩ Λ. Then u ∈ int(S)− C by Problem * 11.3. Let r ∈ C. Then
there is λ ∈ R≥0 such that v := u+ λr ∈ int S. As u ∈ Λ and int S ∩ Λ = ∅ we must
have λ > 0.

Choose ε > 0 such that Bv(ε) ⊆ S. As r ∈ C = rec S we know that

Bv(ε) + {µr : µ ≥ 0 } ⊆ S . (* 11.12)

We know from Problem * 11.2 that there is a lattice point w at distance at most ε from
the affine ray {u+ µr : µ ≥ λ }. But then w ∈ Bv(ε) + {µr : µ ≥ 0 }. By (* 11.12)
we have w ∈ int S. This is a contradiction, so S − C is lattice free.
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Problem * 11.3

Proposition * 11.7. Let Λ ⊆ Rd be a lattice and S be a bounded maximally lattice free
convex set with dim S = d.
Then S is a polytope and each facet of S contains a lattice point in its relative interior.

Proof. S is bounded, so we can find a cubeC :=
{︁
x ∈ Rd : ai ≤ xi ≤ bi for 1 ≤ i ≤ d

}︁
for some ai, bi ∈ R such that S ⊆ C.
Let u ∈ C ∩ Λ. As S is lattice free we can find a hyperplane

Hu := {x : ⟨au,x ⟩ = δu }

for some au ∈ Rd⋆ and δu ∈ R such that

S ⊆ H≤
u and ⟨au,u ⟩ ≥ 0 .

The set C ∩ Λ is finite, as C is bounded, so

P :=
⋂︂

u∈C∩Λ
H≤

u

is a polytope and contains S. It is also lattice free, so S = P as S is maximal lattice free
by assumption.

It remains to show that P contains a lattice point in the relative interior of each facet.
However, if there is some facet F without a lattice point in the relative interior, then all
lattice points on F lie on at least one other facet, and we can push out F slightly without
picking up interior lattice points. This contradicts maximality, so F must contain a
lattice point in its relative interior.

Lemma * 11.8. Let Λ ⊆ Rd be a lattice, L ⊆ Rd be a linear subspace with dim L = d− 1
and y ∈ Rd \ Λ.
Then A := y + L is maximal lattice free if and only if L is not a Λ-rational subspace.

Proof. Assume that L is Λ-rational, choose a lattice basis b1, . . . ,bd−1 of Λ∩L and pick
any bd ∈ Λ such that b1, . . . ,bd is a lattice basis of Λ.

Then A =
{︂
µbd +

∑︁d−1
i=1 λibi : λi ∈ R

}︂
for some µ ∈ R. But then

R :=

{︄
ηbd +

d−1∑︂
i=1

λibi : λi ∈ R : ⌈µ− 1⌉ ≤ η ≤ ⌈µ⌉

}︄

is lattice free and strictly contains S, so S is not maximal lattice free.
Conversely, assume that L is not Λ-rational. dim L < d, so int L = ∅. In particular

int(A) ∩ Λ = ∅, so the space is lattice free. We need to show that it is maximal with
this property.
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Assume that there is maximal lattice free S ⊆ Rd with int(S) ∩ Λ = ∅ and A ⊊ S.
Let u ∈ S \A. As S is closed and convex we know that

conv(y,u) + L ⊆ S .

Let δ := d(y + L,u + L). By Lemma * 11.5 we can find v ∈ Λ at distance α < δ
from L. By taking −v if necessary we may assume that v is between L and y + L. Let
β := min(d(0,y + L), d(0,u+ L)) and set

w :=

(︃⌊︃
β

α

⌋︃
+ 1

)︃
v .

Then w ∈ Λ and strictly between y + L and u + L, so w ∈ int(K) ∩ Λ. This is a
contradiction.

We can now prove Theorem * 11.4.

Proof of Theorem * 11.4. Let us first show that in both cases S is maximal lattice free.
If S satisfies (ii) then S is a maximal lattice free set by the previous Lemma * 11.8.
If S satisfies (i), then by assumption S is lattice free, so we only have to show that S

is maximal with this property.
Assume not, and let R be a maximal lattice free set strictly containing S. For any

y ∈ R \ S there is a facet F of S such that the hyperplane aff F separates y from S.
Further, by convexity, conv(S ∪ {y }) ⊆ K, and as dim S = d the relative interior of F
is contained in the interior of K. But the relative interior of F contains a lattice point u
by assumption, so u int K. This is a contradiction.
For the converse direction assume that S is maximal lattice free. If dim S < d, then

S is contained in some affine hyperplane H of Rd. By maximality of S we know that
H = S. So there is a linear space L of dimension d− 1 and u ∈ Rd such that S = u+L.
It follows from the previous Lemma * 11.8 that S satisfies (ii).
Now assume that dim S = d. If S is bounded, then the claim follows from Proposi-

tion * 11.7. Hence, in the following we assume that S is unbounded. We know from
Proposition * 11.6 that

L := rec S = lineal S .

We want to show that L is Λ-rational. Assume it is not. We pick any y ∈ int S and some
ε > 0 such that By(ε) ⊆ S. Then also

T := By(ε) + L ⊆ S .

Let L′ be the maximal Λ-rational subspace of L and pick any u ∈ L \ L′. By Problem *
11.2 we find v ∈ Λ at distance at most ε from the line spanned by u. But then either
v ∈ T or −v ∈ T . Hence, int S ∩ Λ ̸= ∅, which contradicts the assumption. So L is
Λ-rational.

Hence, we may project onto the orthogonal complement of L. Let π : Rd → L⊥ be
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the projection and define

R := π(S) and Λ′ := π(Λ) .

As L is Λ-rational the set Λ′ is a lattice. Further,

S = R + L

is bounded,

dim S = dim R + dim L and dim R = d − dim L .

and

int S = relint R + L ,

so relint R = ∅. If R is not maximal lattice free in the space L⊥ with the lattice Λ′,
then R is strictly contained in a lattice free set R′. But then S ⊊ R′ +L and the latter is
lattice free in the lattice Λ. This contradicts maximality of S.
Now we use Proposition * 11.7 for R in the space L⊥ with the lattice Λ′ and obtain

that P is a polytope with a lattice point of Λ′ in the relative interior of each of its facets.
We can lift the facets of R to facets of S and the lattice points in Λ′ to lattice points in
Λ. Hence, S satisfies (i).

This theorem shows that the sets we need to generate cuts for the corner polyhedron
are polyhedra with a simple structure. The situation is even nicer, as we will briefly
summarize in the next section.

* 11.3. Convergence

In this section we want to sketch some further results on cuts from lattice free polytopes.
At the beginning of this chapter we have already discussed Chvátal cuts and elementary

closures of rational polyhedra P . The elementary closure will in most cases differ from
the integer hull PI := conv(P ∩ Zd). However, it follows from results of Schrijver and
Chvátal, that a finite number of iterations of this process produces PI . The same is true
for the split cuts also introduced above. From the point of view of linear programming,
these results apply to the pure integer case of a linear program. In this setting, the
results state that we arrive at the integer solution of the program after a finite number
of cuts for a linear relaxation.
However, this is not true anymore in the mixed integer case. Cook et al.16 showed

that in this case a finite number of iterations of taking split closures may not suffice.
Although it is still true that the split closure of a polyhedron P is strictly contained in
P unless P is its own mixed integer hull, it may happen that the difference between
successive steps in this process becomes arbitrarily small.

16Cook, R. Kannan, and A. Schrijver, “Chvátal closures for mixed integer programming problems”.
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It is a result of Del Pia and Weismantel17 that in the mixed integer case successively
applying cuts derived from maximal lattice free sets produces the mixed integer hull in
a finite number of steps. For this, it even suffices to consider only those maximal lattice
free sets, which are polyhedra by the result of the last section, that are also integral, i.e.
whose minimal faces contain a lattice point.

Hence, to apply such cuts efficiently in applications we would like to understand the
set of integral maximal lattice free polyhedra. The set of such polytopes is contained
in the setM of all integral lattice free polyhedra, that are maximal within the class of
integral polyhedra (whereas in the previous section we have taken the maximum over
all rational polyhedra). These sets differ in dimensions d ≥ 4.18

However, Averkov et al.19 have shown that the setM is finite up to affine lattice
transformations. Hence, also the set of lattice free polyhedra needed for the finite
convergence of mixed integer programs is finite.
This result allows us to classify such polyhedra for small dimension d, and such a

classification allows to obtain cuts for mixed integer programs for up to d rows of the
simplex tableaux. The classification is known up to d = 3.19 In dimension 1, there is, up
to affine lattice transformations, just one such polytope, the segment [0, 1] (note that
any other interval [, a+ 1] for a ∈ Z is obtained by a lattice transformation from this
interval). In dimension 2 there is also just one such polytope, the simplex

∆2 := conv(0, 2e1, 2e2) .

In dimension 3 there are 12 maximal lattice free integral polytopes. Those are the three
simplices

conv(0, ae1, be2, ce3)

for

(a, b, c) ∈ { (2, 3, 6), (2, 4, 4), (3, 3, 3) } ,

the four simplices

conv(0, ae1, be1 + ce2, de1 + ee3)

for

(a, b, c, d, e) ∈ { (1, 2, 4, 3, 4), (1, 2, 5, 3, 5), (3, 1, 3, 2, 3), (4, 1, 2, 2, 4) } ,

two pyramids

conv (±2e1,±2e2, e1 + e2 + 2e3)

conv (−e1,−e2, 2e1, 2e2, e1 + e2 + 3e3) ,

17Del Pia and Weismantel, “On convergence in mixed integer programming”.
18Nill and Ziegler, “Projecting lattice polytopes without interior lattice points”.
19Averkov, Wagner, and Weismantel, “Maximal lattice-free polyhedra: finiteness and an explicit description

in dimension three”.
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two prisms

conv (e1 + εu, e2 + εu,−e1 − e2 + εu : ε ∈ {0, 1},u := e1 + 2e2 + 3e3)

conv (±e1 + εu, 2e2 + εu : ε ∈ {0, 1},u := e1 + 2e3) ,

and one parallelepiped

conv

(︄
3∑︂

i=1

εiui : εi ∈ {0, 1},u1 := −e1 + e2,u2 := e1 + e2,u3 := u2 + 2e3

)︄
.

The classification for d ≥ 4 is still open. The proof of finiteness is based on the classical
finiteness result about the volume of lattice polytopes with a fixed nonzero number of
lattice points in the interior, which is due to Hensley20 and Lagarias and Ziegler21.

Theorem * 11.9. Let d, s, k ∈ Z>0, Λ := sZd and Pk the family of d-dimensional integer
polytopes P (so with vertices in Zd) such that

1 ≤ | int P ∩ Λ| ≤ k .

Then there is V = V (d, s, k) > 0 such that

volP ≤ V for all P in Pk .

As a consequence of this theorem, Lagarias and Ziegler21 show that each equivalence
class w.r.t. affine lattice transformations of an integer polytope that satisfies the condi-
tions of the previous theorem has a representative that is contained in a cube with side
lengths at most d · d!V .

Theorem * 11.10. Le Pk be as in the previous theorem. Then any P ∈ Pk is, up to an
affine lattice isomorphism, contained in a cube with side lengths d · d!V .
In particular, the family Pk is finite, up to affine lattice isomorphisms.

The proof of this theorem is pretty similar to the proof of the Flatness Theorem
(Theorem 3.29), but with simplices instead of ellipsoids. They first show that simplices
in Pk are contained in a cube of sidelength d! · V for a suitable lattice transformation,
and then show that any other polytope in P ∈ Pk contains a simplex S such that

a + S ⊆ P ⊆ a + d · S .

The proof for simplices essentially follows by moving one vertex into the origin, consid-
ering the primitive edge directions of edges at this vertex as a lattice basis of a sublattice
of Zd and applying the Hermite normal form to obtain a normalized version of the
20Thm. 3.6 Hensley, “Lattice vertex polytopes with interior lattice points”.
21Thm. 1 Jeffrey C. Lagarias and Ziegler, “Bounds for lattice polytopes containing a fixed number of

interior points in a sublattice”.
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simplex. The bound on the side lengths of an enclosing cube follows by considering the
entries of the Hermite normal form. Finally, the finiteness of the family Pk up to lattice
isomorphisms follows, as a cube of fixed side length contains a finite number of lattice
points.

Obtaining the finiteness of the family of lattice free integer polyhedra (which may be
unbounded) up to lattice isomorphism from this requires some more steps. As a first
simple observation we can reduce to polytopes, as for each polyhedron in this family
the recession cone coincides with the lineality space, so it is the product of a polytope
with a linear space.

In a second step one considers the lattice diameter of the polytope P , i.e. the largest
number of lattice points on a line segment contained in P , and shows that this diameter
must be bounded. This in turn shows that |P ∩Λ|, i.e. the number of lattice points on the
boundary of P (as there is none in the interior by assumption), is bounded. Using the
above results of Hensley and Lagarias and Ziegler now implies a bound on the volume,
and subsequently the finiteness of the family of polyhedra. For the full proof see Section
3 in the paper of Averkov et al.22

There are many more results on cuts from lattice free sets and the classification of
various subsets of such and variations thereof. A survey on cuts and cut generating
functions is in the paper of Basu et al.23 The lattice width of lattice free polyhedra is
studied by Henk et al.24 Averkov25 studies the difference between maximizing integer
lattice free polyhedra within the class of integer polyhedra and the class of general
convex sets.

* 11.4. Problems

* 11.1. Prove the monotonicity of gauge functionals for convex sets K′ ⊆ K as in (* 11.11).

* 11.2. Let Λ be a lattice, u ∈ Λ and r ∈ Rd. We define the affine ray R := {u+ λr : λ ≥ λ0 }.
Show that for any ε > 0 and λ0 ∈ R there is v ∈ Λ with distance at most ε from R.

Hint: Note that this is easy if r is rational. For the other case you may want to use Dirichlet’s
Theorem (Theorem 3.16).

* 11.3. Let K be a d-dimensional convex body and C := rec K. Show that

int(K − C) ⊆ int(K) − C .

22Averkov, Wagner, and Weismantel, “Maximal lattice-free polyhedra: finiteness and an explicit description
in dimension three”.

23Basu, Conforti, and Summa, “A geometric approach to cut-generating functions”.
24Henk, Kuhlmann, and Weismantel, On lattice width of lattice-free polyhedra and height of Hilbert bases.
25Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes.
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A. Convexity

In this chapter we will briefly collect some basic definitions and results from convex
geometry.

A.1. Basics

We use Z,Q and R to denote the integer, rational, and real numbers, and we use Rd

for the d-dimensional Euclidean space equipped with the standard inner product

⟨x,y ⟩ =
d∑︂

i=1

xiyi

for any x,y ∈ Rd. This scalar product can be restricted to one in Qd and Zd. For
X ∈ {Z,Q,R} we use

X>0 := {x ∈ X | x > 0} X≥0 := {x ∈ X | x ≥ 0}

and similarly X<0 and X≤0.
In the following we restrict to X ∈ {Q,R}. The dual space (Xd)

⋆ of X is the space
of all linear functionals ϕ : Xd → X. Given a scalar product we can write any such
functional in the form

ϕ : Xd −→ X
x ↦−→ ⟨a,x ⟩

for some a ∈ Xd, ans this gives a bijection between Xd and (Xd)
⋆.

We are mostly concerned with objects that can be defined from a, usually finite, subset
X ⊆ Rd. We can study spaces generated by such a set. The most commonly studied
notion here is the linear span of X. Let X ⊆ Rd. A linear combination of X is a sum

v :=
∑︂
x∈X

λxx

where λx = 0 for all but finitely x ∈ X. The linear hull or linear span lin(X) of X is the
set of all linear combinations of elements ofX. The set X is a linear space if X equals its
linear span. A linear combination is an affine combination if additionally the sum of the
coefficients λx is 1. The affine hull aff(X) of X is the set of all affine combinations, and
a space is affine if it coincides with its affine hull. We set lin(X) = {0} and aff(X) := ∅
for X = ∅.
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Figure A.1.: The orange polygon is the Minkowski sum of the red and blue polygons

The linear span of X is the smallest linear space containing Xor, equally, the common
intersection of all linear spaces containing X. Similarly, the affine hull of X is the
smallest affine space containing X or the intersection of all affine spaces containing X.
For a matrix A ∈ Rd×n with column vectors a1, . . . ,an we also write

lin(A) := lin ({a1, . . . ,an}) and aff(A) := aff ({a1, . . . ,an})

A set of points X is linearly or affinely independent if no point of X can be written as a
linear or affine combination of the other points.
Linear spaces can always be spanned by a finite subset of X. All minimal such sets,

the bases of linX, have the same size, which is the dimension of linX. The translation
of a subset Y ⊆ Rd by a vector t ∈ Rd is

Y − t := {y − t : y ∈ Y }

For any affine space A = aff X we can consider its translation by a vector x ∈ A. This
is a linear space. The dimension of A is the dimension of A−x. Hence, any point in the
affine hull of X can be written as an affine combination of at most d+ 1 points in X.

The Minkowski sum of two subsets X,Y ⊆ Xd is

X + Y := {x+ y : x ∈ X, y ∈ Y } .

See Figure A.1 for an example of the sum of two polygons. We similarly define the
multiplication with a scalar λ ∈ X as

λX := {λx : x ∈ X }

and write −X for (−1) ·X, X−Y forX+(−1) ·Y and x+Y as shorthand for {x}+Y .

A.2. Convex Bodies

A subset C ⊆ Rd is convex if and only if for all x,y ∈ C and all 0 ≤ λ ≤ 1 also
λx+ (1− λ)y ∈ C. See Figure A.2 for some examples.

Definition A.1 (Convex Body). A convex body is a compact convex set K ⊆ Rd such
that int K ̸= ∅. It is centrally symmetric if for any x ∈ K also −x ∈ K.
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x

y

(a) A convex set

x

y

(b) A nonconvex set

x

y

(c) Another nonconvex set

Figure A.2.: A convex and two nonconvex sets

We denote the set of convex bodies in Rd by C and the subset of centrally symmetric
convex bodies by C0.

See Figure A.2(a) for an example. Any d-dimensional centrally symmetric convex
body K defines a norm in Rd via

∥.∥K : Rd −→ R≥0

x ↦−→ min
λ∈R≥0

(x ∈ λK) .

Conversely, any norm ∥.∥ on Rd obviously defines a d-dimensional centrally symmetric
body via

B1(0) :=
{︂
x ∈ Rd : ∥x∥ ≤ 1

}︂
,

the unit ball in this norm. This defines a bijection between norms and d-dimensional
centrally symmetric convex bodies.

Definition A.2. For a linear functional given by some a ∈ Rd and δ ∈ R we define the
affine hyperplane

H := H(a, δ) := {x : ⟨a,x ⟩ = δ }

and the two closed halfspaces

H≤ := H≤(a, δ) := {x : ⟨a,x ⟩ ≤ δ } H≥ := H≥(a, δ) := {x : ⟨a,x ⟩ ≥ δ } .

Their intersection is H(a, δ).

We can use hyperplanes to separate disjoint convex bodies.
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Theorem A.3. Let K1,K2 be convex with K1 ∩ K2 = ∅. Then there is a hyperplane
H := H(a, δ) such that K1 ⊆ H≤ and K2 ⊆ H≥.
If K1 is additionally compact, then we can find a strictly separating hyperplane, i.e. a

separating hyperplane H such that K1 ⊊ H≤ and K1 ∩H = K2 ∩H = ∅.

We define the volume of a convex body K via the Jordan measure, i.e. we define the
volume as the Riemann integral

vol(K) :=

∫︂
Rd

χK(x)dx

for the indicator function χK of K (i.e. the function that is 1 on K and 0 elsewhere).
We say that a set is Jordan measurable if this integral exists.

We can compute the volume of K by approximating K with a collection S of small
d-dimensional boxes si := [ai1, b

i
1]× · · · × [ad1, b

d
1] for aik, bik ∈ R, and

vol(si) :=

d∏︂
k=1

(bik − aik) .

All sets of dimension k < d thus have volume 0. A particularly useful approximation is
given by the following proposition.

Proposition A.4. Let K be Jordan measurable. Then

vol(K) := lim
k→∞

1

kd
|K ∩

(︁
1
kZ
)︁d | .

Definition A.5. Let X ⊆ Rd be a convex set. The polar or dual of X is the set

X∨ :=
{︂
a ∈ (Rd)

⋆
: ⟨a,x ⟩ ≤ 1 for all x ∈ X

}︂
.

The polar body is a closed an convex set that contains the origin. It is bounded if and
only if the origin is an interior point of X. The next proposition collects some more
properties, whose proof is left as Problem A.1.

Proposition A.6. Let X ⊆ Rd be a convex set.
(i) Let M be an invertible linear transformation on Rd. Then (M ·X)∨ = M−tX∨.
(ii) (X∨)∨ = X with equality if X is closed and 0 ∈ X.
(iii) If X is a centrally symmetric convex body, then so is X∨.

Problem A.1
Problem A.2
Problem A.3
Problem A.4170
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Figure A.3.: The ellipsoid for T =

[︃
2 0
0 1

]︃
and t = 0

A.3. Ellipsoids

Let Bd := {x ∈ Rd | ∥x∥ = 1} be the unit ball.

Definition A.7 (Ellipsoid). Let T : Rd → Rd be an invertible linear transformation and
t ∈ Rd. The set

E := E(T, t) := T (B) + t

is the ellipsoid with center t.

See Figure A.3 for an example. We can write the ellipsoid explicitly as

E =
{︂
x ∈ Rd | ⟨T−1(x− t), T−1(x− t) ⟩ ≤ 1

}︂
=
{︂
x ∈ Rd | ⟨Q(x− t),x− t ⟩ ≤ 1

}︂
for the positive semidefinite matrix Q = (TT t)−1. We can also assume that T is positive
definite, as any linear transformation T decomposes into a product T = US for an
orthogonal matrix U and a positive definite matrix S, and U(Bd) = Bd.
In a basis of eigenvectors u1, . . . ,ud with eigenvalues λ1, . . . , λd for Q this takes the

form

E =
{︂
x ∈ Rd | λ1(x1 − t1)

2 + · · ·+ λd(xd − td) ≤ 1
}︂
.

The volume of the ellipsoid is

vol E = | det T | vol Bd =
vol Bd√
det Q

.

Theorem A.8. Let K ⊆ Rd be a convex body. Then there is a unique ellipsoid E ⊆ K
with center c such that

E ⊆ K ⊆ c + d(E − c) .
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Definition A.9. The ellipsoid from the previous theorem is the maximum volume, John-
or Löwner-John-Ellipsoid of K.

We prove this with the following three lemmas. With the first, we show that there is
an ellipsoid in a convex body K that attains

η := sup(vol E : E ⊆ K ellipsoid) . (A.1)

We then show that K ⊆ c + d(E − c) for this ellipsoid and finally, that E is unique
with this property.

Lemma A.10. Let K ⊆ Rd be a convex body. Then the supremum of (A.1) is attained, i.e.
there is an ellipsoid E ⊆ K such that vol E = η.

Proof. Let Bd be the unit ball. We define the set

S :=
{︂
(T,a) ∈ Gl(d)×Rd : T (Bd) + a ⊆ K

}︂
.

Any ellipsoid E ⊆ K is of the form R = T (Bd) + a and

vol(E) = | det T | · vol(Bd) . (A.2)

K is compact, so there is r > 0 such that ∥x∥ ≤ r for all x ∈ K. Hence,

∥a∥ ≤ r and ∥T∥ ≤ 2r for all (T,a) ∈ S . (A.3)

Hence, S is a closed and bounded subset of Gl(d)×Rd , and the map

(T,a) ↦−→ | det T |

attains its maximum at some (T0,a0) ∈ S. As K is non-empty, we have | det T | > 0 and
E0 := T0(Bd) + a0 is an ellipsoid of maximum volume.

We can use the maximum volume ellipsoid of a convex body K to approximate K up
to a factor depending on the dimension alone. The inequality of the following lemma is
the key result used in the flatness theorem (see Lemma 3.28).

Lemma A.11. Let K ⊆ Rd be a convex body and E a maximum volume ellipsoid in K. If
the center of E is the origin, then K ⊆ d · E.

Using a translation we can of course always assume the the center of E is the origin.

Proof. By definition there is an invertible linear transformation T such that E = T (Bd).
We can apply T−1 to bothK and E, so that in the following we can assume that E = Bd.
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Figure A.4.: A sketch of the setting for the proof of Lemma A.11.

We then need to show that there is no point z ∈ K with ∥z∥ ≥ d. Assume on the
contrary that there is such a point z ∈ K with ∥z∥ > d and let

L := conv(Bd ∪{z}) ⊆ K .

We construct an ellipsoid inside L of volume larger than vol Bd.
Using a linear transformation we can assume that z = me1. For parameters a, b and

ε we consider the ellipsoid

Fd :=

{︄
x ∈ Rd | 1

a2
(x1 − ε)2 +

1

b2

d∑︂
i=2

x2i ≤ 1

}︄
.

This is symmetric in the last d− 1 coordinates. Hence, it suffices to consider the case
d = 2, i.e.

F :=

{︃
x ∈ Rd | 1

a2
(x1 − ε)2 +

x22
b2
≤ 1

}︃
.

See Figure A.4 for a sketch of the setting. Now clearly an ellipsoid of maximum volume
in F will touch at the point (−1, 0). Plugging this into the defining equation we obtain

a = ε+ 1 . (A.4)

The tangent to F at a point (u, v) is given by the equation

u− ε

a2
(x1 − ε) +

v

b2
x2 = 1 . (A.5)

and, as (u, v) is on the boundary of F ,

1 =
(u− ε)2

a2
+

v2

b2
(A.6)

Now we want to determine the particular tangent to the ellipsoid that also passes
through me1 and touches the unit ball, i.e. the boundary segment of L added in the
convex hull of Bd with me1. This line touches the unit ball in a point (p, q) and can
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thus also be written as

px1 + qx2 = 1 . (A.7)

It passes through me1 and p2 + q2 = 1, so

u− ε

a2
=

1

m− ε
p =

1

m
q =

√
m2 − 1

m
. (A.8)

From (A.7) we deduce that the slope of the tangent is −1/
√
m2−1. Computing the slope

from (A.5) we obtain

− 1√
m2 − 1

= −u− ε

a2
b2

v
.

Squaring and first using (A.6) and then the first equation of (A.8) we obtain

1

m2 − 1
=

(u− ε)2

a4
b2
(︃
1− (u− ε)2

a2

)︃−1

=
1

(m− ε)2
b2
(︃
1− a2

(m− ε)2

)︃−1

Using (A.4) and solving for b2 gives

b2 =
(m− ε)2 − (1 + ε)2

m2 − 1
.

Now let us return to the ellipsoid Fd in dimension d. Its volume is

vol Fd = abd−1 vol Bd .

Now

abd−1 = (1 + ε)

(︃
(m− ε)2 − (1 + ε)2

m2 − 1

)︃(d−1)/2

As a function in ε its derivative at 0 is

1− d− 1

2

2

m− 1
=

m− d

m− 1
.

Hence, for m > d and small ε the volume of Fd is larger than that of Bd.

We have shown that an ellipsoid satisfying the inclusions of Theorem A.8 exists. To
complete the proof of the theorem we need to show that E is unique.

Lemma A.12. Let K be a convex body. Then K contains a unique ellipsoid of maximal
volume.

Proof. Any ellipsoid has the form E = ABd+t for a linear map A and a vector t. We
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have seen above that we can assume that A is positive definite. Let P be the set of pairs
(A, t) of a positive definite matrix A and a translation t.

We set S := { (A, t) ∈ P : ABd+t ⊆ K }. As K is convex also S is convex. Assume
that we have two ellipsoids of maximal volume, corresponding to the pairs (A1, t1)
and (A2, t2). The volume the ellipsoids is det A1 vol Bd = det A2 vol Bd, so det A1 =
det A2, as both are maximal.
Let A := 1/2(A1 + A2) and t := 1/2(t1 + t2). Then (A, t) ∈ S by convexity. By

Minkowski’s determinant inequality (Problem A.5) we obtain

(det A)
1/n =

1

2
(det A1 + det A2)

1/n

≥ 1

2

(︂
(det A1)

1/n + (det A2)
1/n
)︂

= (det A1)
1/n .

As det A1 is maximal, we must have equality throughout in this chain, and det A =
det A1 = det A2. Minkowski’s determinant inequality states that equality implies that
A1 = A2.
So the two ellipsoids are at most translations of each other. Hence, we can find an

affine transformation T that maps both ellipsoids to unit ball Bd1 and Bd2 contained in
the transformed convex body TK. We can further assume that the centers of the balls are
at −µe1 and µe1 for some µ ≥ 0. A simple calculation then shows that conv(Bd1 ∪Bd2)
contains the ellipsoid

E :=

{︃
x :

x21
(µ+ 1)2

+ x22 + · · ·+ x2d ≤ 1

}︃
of volume (µ+ 1) vol Bd. As E ⊆ conv(Bd1 ∪Bd2) ⊆ TK we get, by maximality of the
the volume of Bd1 inside K, that µ = 0. Hence, t1 = t2 and the claim follows.

Problem A.5
Problem A.6
Problem A.7

Clearly, uniqueness implies that the ellipsoid E has at least the symmetries of K.
Hence, ifK is centrally symmetric, then also E is centrally symmetric, and has its center
at the origin. We can strengthen the bound in this case.
From the proof of Theorem A.13 it becomes pretty obvious that we can get a larger

ellipsoid inside L if K is centrally symmetric and we use the knowledge that also −z is
in K and we can thus replace L by L := conv(Bd ∪{±z}). With essentially the same
proof this leads to the following approximation of a centrally symmetric convex body K
by an ellipsoid, which you prove in Problem A.8.

Theorem A.13. Let K ⊆ Rd be a centrally symmetric convex body and E a maximum
volume ellipsoid in K. If the center of E is the origin, then K ⊆

√
d · E.

Problem A.8

A.4. Polyhedra

As before, we consider X ∈ {Q,R }. Polyhedral cones are the intersection of a finite set
of linear half spaces in X. Generalizing to intersections of affine half spaces leads to
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Figure A.5.: Cone (blue) and convex hull (green) of the red points.

polyhedra. We are mainly interested in the subset of bounded polyhedra, the polytopes.

Definition A.14. A linear combination is conic if all coefficients are nonnegative, and it
is convex if it is conic and affine.
The set of all conic combinations of a set X ⊆ Z is the cone over X, denoted by

cone(X). The set of all convex combinations of X is the convex hull conv(X). X is a
cone if X = cone(X) and X is a convex set if X = conv(X).
The dimension of a cone is the dimension of its linear span. The dimension of a

polytope is the dimension of the affine space it spans.

See Figure A.5 for an example. We sometimes write cone(A) and conv(A) for the
conic or convex hull of the set of column vectors of a matrix A ∈ Xd×n. We are mostly
interested in cones and convex sets defined by a finite set X ⊆ Xd.

Definition A.15. A finitely generated cone C is the cone of a finite subset X ⊆ Xd, and
a polytope P is the convex hull of finitely many points in Xd.

A cone or polytope is full dimensional if its dimension coincides with the dimension d
of the space.

Polytopes of dimension 2 are polygons.

Definition A.16. Let K be a convex set. A point x ∈ K is an interior point of K if there
is some ε > 0 such that Bx(ε) ⊆ K. Otherwise x is a boundary point.

x ∈ K is a relative interior point of K if it is an interior point of K if considered as a
subset of aff K. See also Figure A.7.

We need at least d+ 1 affinely independent points in Rd to affinely span Rd, so any
full-dimensional polytope has at least d + 1 points in its defining set. Any polytope
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Figure A.6.: Simplex, Cube, Cross Polytope, Dodecahedron, Icosahedron

defined by precisely d+1 affinely independent points is called simplex. Any two simplices
can be identified via a bijective affine map (if you translate both simplices such that one
point is in the origin this a just a change of basis).

Clearly, if the dimension of a polytope is less than the dimension of the ambient space,
then we can restrict to that affine space. Hence, we may assume that the dimension of
our polytopes coincides with the dimension of the space (we will see later that it will
be useful to also consider lower dimensional polytopes, though).
In dimension 3 there are the famous regular polytopes, which are the cube, the

tetrahedron, the octahedron, the dodecahedron, and the icosahedron, see Figure A.6.
Three of them can be generalized to higher dimensions. We have seen the simplex
above, which is a tetrahedron in dimension 3. The unit cube Cd is the convex hull of
the set X := {0, 1}d. The octahedron can be realized as the special case d = 3 of the
polytope defined as the convex hull of ±ei for 1 ≤ i ≤ d, where ej is the j-th unit vector
in Rd. In general, those polytopes are called cross polytopes.
Let us also look at a slightly more complicated, but highly interesting group of

polytopes, the hypersimplices. The hypersimplex h(d, k) ⊂ Rd for 1 ≤ k ≤ d − 1 is
most easily defined as a polytope of one dimension less than its ambient space. It is the
convex hull of all vertices of the unit cube whose coordinates sum up to k:

h(d, k) := conv

(︄
x ∈ {0, 1}d :

d∑︂
i=1

xi = k

)︄

= Cd ∩

{︄
x ∈ Rd :

d∑︂
i=1

xi = k

}︄
.

For k = 1 and k = d− 1 we obtain a (d− 1)-dimensional simplex. You can of course
extend the definition to k = 0 and k = d, but these are just single points in Rd.

Similar to the linear and affine spaces above any point x in a cone can be written as
the conic generation of at most d elements of X, and a point in the convex hull as the
convex combination of at most d+ 1 elements of X. Differently from above, however,
the choice of these points depends on x. The following theorem makes this precise.
We leave the proof to the reader as Problem A.9.

Theorem A.17 (Carathéodory’s Theorem). Let X ⊆ Rd, C = cone(X), and y ∈ C.
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Bε(b)
Bε(i)

Figure A.7.: An interior point i and a
boundary point b.

v1

v3

v5

x

v2

v4

v6

Figure A.8.: x can be written as a convex
combination of v1, v3 and v5.

Then there are x1,x2, . . . ,xd ∈ X and λ1, λ2, . . . , λd ≥ 0 such that

y =
d∑︂

i=1

λixi .

Similarly, for P = conv(X) and z ∈ P there are x0,x1, . . . ,xd ∈ X and
λ0, λ1, . . . , λd ≥ 0 such that

z =

d∑︂
i=0

λixi and
d∑︂

i=0

λi = 1 .

See also Figure A.8

Problem A.9
Recall the definition of an affine hyperplane from Definition A.2,

H := H(a, δ) := {x : ⟨a,x ⟩ = δ }

for some a ∈
(︁
Xd
)︁⋆ and δ ∈ X together with the two associated halfspaces H≤(a, δ)

and H≥(a, δ) of points x with ⟨a,x ⟩ ≤ δ and ⟨a,x ⟩ ≥ δ respectively. We say that a
point y ∈ Xd is beneath H if ⟨a,y ⟩ < δ and beyond H if ⟨a,y ⟩ > δ. Note that λa, λβ
for any λ ̸= 0 defines the same hyperplane as a, β, and the same affine half space if
λ > 0. Hence, the defining functional for a hyperplane or half space is unique only up
to a non-zero and positive factor, respectively.

Definition A.18. A polyhedron P is the intersection of finitely many affine half spaces,

P =
⋂︂
{x | ⟨ai,x ⟩ ≤ βi} = {x | ⟨a1,x ⟩ ≤ β1, . . . , ⟨am,x ⟩ ≤ βm}

for ai ∈ Xd and βi ∈ X and 1 ≤ i ≤ k. This is often written in the more concise form

P = {x | Ax ≤ b }
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x1 ≥ 0

x1 − x2 ≤ 2

x1 + 3x2 ≤ 10

3x1 − x2 ≥ 0

Figure A.9.: The polygon of Example A.19(ii)

where A ∈ Xk×d whose rows are the functionals a1,a2, . . . ,ak and b is the vector with
entries β1, β2, . . . , βk.

Example A.19. We look at some simple examples.
(i) The unit cube Cd is defined by the inequalities

xi ≥ 0 xi ≤ 1 for 1 ≤ i ≤ d .

(ii) The inequalities

x1 ≥ 0 x1 − x2 ≤ 2 x1 + 3x2 ≤ 10 3x1 − x2 ≥ 0

define a polygon with vertices[︃
0
0

]︃ [︃
2
0

]︃ [︃
4
2

]︃ [︃
1
3

]︃
.

see Figure A.9.

Definition A.20. A polyhedron P is a (polyhedral) cone if all defining inequalities are
linear, that is,

P =
⋂︂

H−
ai,0

(A.9)

for some a1,a2, . . . ,ak ∈ (Xd)⋆.

We have already defined a cone over a set X as the set of all conic combinations in
the previous section. We will see below that this and the newly defined notion of a
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polyhedral cone coincide if X is a finite set, i.e. any polyhedral cone can equally be
described as the cone over some suitably chosen finite set X, and any cone over a finite
set is polyhedral.

We will not encounter non-polyhedral cones, that is, cones defined as the set of conic
combinations over an infinite set X, in this book. Therefore, we will often omit the
word polyhedral and just speak of cones in the text, and only stress this restriction in
definitions and theorems.
The dimension of such a polyhedron defined by half spaces is again defined as the

dimension of its affine hull. We sometimes use the notion d-polytope for a d-dimensional
polyhedron. A polyhedron is full dimensional if dimP = d.

Definition A.21. Let P =
⋂︁
H−

ai,βi
be a polyhedron. The recession cone and lineality

space of P are

recP =
⋂︂

H−
ai,0

and linealP =
⋂︂

Hai,0 .

A polytope is pointed if linealP = ∅.

We can associate a cone to each polyhedron P ⊆ Xd that essentially has the same
combinatorial and geometric properties. This is the homogenization of P or just the
cone over P defined by

C(P ) := cone({1} × P ) ⊆ Xd+1 , (A.10)

so if P := {x | ⟨a1,x ⟩ ≤ β1, . . . , ⟨am,x ⟩ ≤ βm} ⊆ Xd with ai ∈ (Xd)⋆, βi ∈ X for
i ∈ [m] then

C(P ) = {(x0,x) | −β1x0 + ⟨a1,x ⟩ ≤ 0, . . . ,−βmx0 + ⟨am,x ⟩ ≤ 0} .

It is often convenient to look at the homogenization of the polyhedron instead of the
polyhedron itself as it is defined by linear instead of affine inequalities. We can recover
the polyhedron by intersecting the cone with the hyperplane x0 ≡ 1 (and projecting).

A hyperplane H := H(a, δ) for some a ∈ (Rd)⋆ and β ∈ R defines a valid hyperplane
if P is contained in the negative half space H≤(a, δ). A valid hyperplane is supporting if
P ∩H is non-empty.

Definition A.22. Let P be a polytope. A face F of P is either P itself or the intersection
of P with a valid linear hyperplane. If F ̸= P then F is a proper face.

Observe that the empty set is also a face of P . For any face F we have

F ∩ P = aff F ∩ P ,

so faces of polyhedra are again polyhedra and a face of a face of the polyhedron is a
face of the polyhedron. The dimension of a face of a polyhedron P is its dimension as a
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polyhedron,

dimF := dimaff F .

A k-face of P is a k-dimensional face of P . If

β := max{⟨a,x ⟩ | x ∈ P}

is finite then H(a, β) is a supporting hyperplane of P and P ∩H is a face of P , the face
defined by a. The functionals defining a face are exactly those in the negative dual of
the recession cone.

Problem A.10
Problem A.11
Problem A.12

A 0-dimensional face is a vertex of P , a 1-dimensional face is an edge and a face of
dimension dim P −1 is a facet. For full-dimensional polyhedra the facets have dimension
d− 1. The set of vertices of P is denoted by V(P ).
A set X is finitely generated if it can be written as a Minkowski sum of a polytope, a

cone, and a linear space, that is, there are vi ∈ Xd, i = 1, . . . , r, rj ∈ Xd, j = 1, . . . , s,
vbk ∈ Xd, k = 1, . . . , t such that

X =

⎧⎨⎩
r∑︂

i=1

λivi +

s∑︂
j=1

µiri +

r∑︂
k=1

νibi :
λi, µj , νk ∈ R,

λi, µj ≥ 0,
∑︁r

i=1 λi = 1

⎫⎬⎭ . (A.11)

Theorem A.23 (Weyl-Minkowski Theorem). Let P ⊆ Xd. Then P is a polyhedron if and
only if it is finitely generated.

A proof of this theorem can be found in the book of Schrijver 1 (and in many other
books). Projections of polyhedra are again polyhedra, finitely generated by the projec-
tions of the generators.

Example A.24. In the notation of Weyl-Minkowski Theorem (Theorem A.23) we can
define a polyhedron with

v1 :=

[︃
1
3

]︃
v2 :=

[︃
1
2

]︃
v3 :=

[︃
2
1

]︃
r1 :=

[︃
1
3

]︃
r2 :=

[︃
3
1

]︃
,

see Figure A.10. It is defined by the inequalities

3x1 − x2 ≥ 3 x1 ≥ 1 x1 + x2 ≥ 3 x1 − 3x2 ≤ −1 .

The Minkowski sum of a polytope with a cone C or a linear space L is unbounded if C
or L have positive dimension. Hence, we can deduce the following duality for polytopes
from the Weyl-Minkowski Theorem.

Corollary A.25 (Weyl-Minkowski-Duality). A bounded set P ⊆ Xd is a polytope if and
only if it is the bounded intersection of a finite number of affine half spaces.

1Alexander Schrijver, Theory of linear and integer programming.
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r1

r2

v1

v2

v3

Figure A.10.: The polyhedron of example Example A.24

From this theorem we obtain two equivalent descriptions of a polytope:
(i) as the convex hull of a finite set of points in Xd,
(ii) as the bounded intersection of a finite set of affine half spaces.

The first is called the interior or V-description, The second is the exterior orH-description.
Both are important in polytope theory, as some things are easy to describe in one and
may be difficult to define in the other.

A.5. Integer Hulls

Definition A.26. Let Λ ⊆ Rd be a lattice in Rd. A polytope is a lattice polytope if all its
vertices are in Λ.

In the case Λ = Zd one often also calls them integral polytopes.

Definition A.27. Let Λ ⊆ Rd be a lattice in Rd and P ⊆ Rd a polytope. The integer
hull of P is the convex hull of all lattice points in P ,

PI := conv(P ∩ Λ) .

Computing the integer hull is an NP-complete problem (note that integer programming
would be in P if we can compute the integer hull in polynomial time). Still, there are
many methods to compute the inter hull, e.g. via Chvatal closures. See the book of
Schrijver 2 for details.

2Alexander Schrijver, Theory of linear and integer programming.
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A.6. Complexity of Polyhedra

In this section we want to collect some results on the complexity of representations of
polyhedra. Let P ∈ Rd be any rational polyhedron. Recall that P can be written in the
form

P := {x | Ax ≤ b } = conv(v1, . . . ,vn) + cone(r1, . . . , rm) .

for some matrix A and right hand side b, or vertices v1, . . . ,vn and ray generators
r1, . . . , rm.

Definition A.28. The facet complexity of P is the smallest ϕ > d such that there exists a
system of linear inequalities Ax ≤ b such that P = {x : Ax ≤ b } and each inequality
in this system has size at most ϕ.

Definition A.29. The vertex complexity of P is the smallest ν > d such that we can find
points v1, . . . ,vn and rays r1, . . . , rm of size at most ν such that

P = conv(v1, . . . ,vn) + cone(r1, . . . , rm) .

The following proposition bounds the facet complexity in terms of the vertex com-
plexity and vice versa. You have seen a proof in Discrete Optimization. You can also find
this as Theorem 10.2 in the book of Schrijver3.

Proposition A.30. Let P be a rational polyhedron with facet complexity ϕ and vertex
complexity ν. Then

ν ≤ 4d2ϕ and ϕ ≤ 4dnu .

We can also bound the complexity of an integral point in the polyhedron.

Proposition A.31. Let P = {x : Ax ≤ b } be a rational polyhedron, and assume that
the size of any inequality is bounded by ϕ.
If PI ̸= ∅, then P contains an integral point of size at most 6n3ϕ.

A.7. Computing Ellipsoids

Unfortunately, the proof of Theorem A.8 is not constructive, and so far, also no polyno-
mial time algorithm is known that allows to compute E. However, the precise scaling
3Alexander Schrijver, Theory of linear and integer programming.

183



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

factor is not really important in most applications, e.g. in Lenstra (Theorem 6.4), as
long as it depends polynomially on d. So we may content ourselves with a worse bound,
if this allows a polynomial computation of the ellipsoid E. Various authors 4 have shown
that this is indeed possible, and we can even find an iterative method, that in the limit
converges to the precise E.
We present a method that follows the book of Grötschel, Lovász and, Schrijver5.

This is essentially the same approach that was proposed for the ellipsoid method of
linear programming. There, it was used to solve the feasibility problem by iteratively
constructing smaller enclosing ellipsoids. This was repeated until we found one ellipsoid
whose center was contained in the polytope. At this point the algorithm stopped and
returned the point.
We will need an ellipsoid that satisfies a weakened version of the bounds of Theo-

rem A.8, so we will have to modify the process at this point and continue constructing
new ellipsoids until our bounds are satisfied. Depending on assumptions and approxi-
mations, there are various similar bounds in the literature. In the following we want to
show that, for a given polytope P ⊆ Rd in dimension d, we can find an ellipsoid E such
that

E ⊆ P ⊆ (d+ 1)
√
d+ 1E .

As with the ellipsoid method, the initial step is the computation of an ellipsoid that
contains the portion of a ball cut out by some affine halfspace intersecting the ball.
More precisely, let Bd be the unit ball in Rd (with origin 0). We consider halfspaces of
the form H≤(a, δ) as defined in Definition A.2. Using a linear transformation we may
assume that a = ed, the last unit vector, in the following. Then we look at

S := B ∩ H≤(ed, δ) .

This is certainly only interesting if |δ| ≤ 1, but we have to restrict δ further in the theorem
below. We now aim for ellipsoids that contains S, and want to find one of minimal
volume. For δ = 1 this is the unit ball itself, and it will follow from our consideration
that this will still be true for all δ larger than a threshold t > 0. It will turn out that we
need to make δ smaller than 1

d before the minimal volume ellipsoid is not anymore the
original ball.

With the next theorem, we make this precise, and we also compute the volume of the
minimal ellipsoid. Note that in our setting the problem is essentially 2-dimensional, as
the resulting ellipsoid will be symmetric around the ed-axis. We will only give the main
steps in the proof and leave all intermediate computations to the reader.

Theorem A.32. Let Bd ⊆ Rd be the unit ball in Rd and ed be the last unit vector. For a
parameter −1 ≤ δ ≤ 1

d we consider the set

S := B ∩ H≤(ed, δ)

4Goffin, “Variable metric relaxation methods. II. The ellipsoid method”; Todd and Yıldırım, “On
Khachiyan’s algorithm for the computation of minimum-volume enclosing ellipsoids”.

5Grötschel, László Lovász, and Alexander Schrijver, Geometric algorithms and combinatorial optimization.
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for the half space H≤(ed, δ) := {x : ⟨a,x ⟩ ≤ δ }. The ellipsoid E of minimal volume
containing S is given by

E :=

{︄
(x, y) ∈ Rd−1 ×R :

∥x∥2

a2
+

(y − c)2

b2
≤ 1

}︄

for

a :=

√︃
d2

d2 − 1

√︁
1− δ2 b :=

d

d+ 1
(δ + 1) c := 1− b =

1

d+ 1
− d

d+ 1
δ .

Its volume is

vol E = f(d) · vol Bd .

for a function

f(d, δ) :=

(︃
d

d+ 1

)︃d(︃d+ 1

d− 1

)︃d−1/2√︁
1− δ2(δ + 1) < 1

only depending on d and δ.

Proof. We only sketch the relevant steps. All computations are left as Problem A.13.
Any ellipsoid E that has the (d− 2)-sphere S := ∂Bd ∩H(ed, δ) and the point −ed in

its boundary is of the form

E :=

{︄
(x, y) ∈ Rd−1 ×R :

∥x∥2

a2
+

(y − c)2

b2
≤ 1

}︄

with

a :=

√
1− δ2 · b√︁

b2 − (δ + 1− b)2
c := b− 1 .

Now the volume of E is

vol E = ad−1b · vol Bd =

(︃
(1− δ2) · b2

b2 − (δ + 1− b)2

)︃d−1//2

· b · vol Bd .

This takes its minimum for

a :=

√︃
d2

d2 − 1

√︁
1− δ2 b :=

d

d+ 1
(δ + 1) c := 1− b =

1

d+ 1
− d

d+ 1
δ .

The corresponding volume is

vol E = f(d, δ) · vol Bd .
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for

f(d, δ) :=

(︃
d2

d2 − 1
(1− δ2)

)︃d−1/2
d

d+ 1
(δ + 1) .

The factor is less than 1 and only depends on d and δ.
E may not contain Bd (we only required it to contain the intersection with H(ed, δ)

and the point −ed), but it certainly does if a ≥ 1, which implies δ ≤ 1
d . This explains

the condition on δ in the theorem.

Observe that f(d, 1d) = 1. For this δ = 1
d the ellipsoid containing the sphere S and

−ed is the original unit ball, and for larger δ the ellipsoid E that we computed will no
longer contain Bd. Hence, for lager δ we would nee to choose E = Bd, i.e. we would
not obtain an enclosing ellipsoid of strictly smaller volume.

Problem A.13
We will in the following only use the theorem for

δ := d−
3/2 <

1

d
,

so we define f(d) := f(d, d−3/2). Note that this choice of δ is covered by the above
theorem, so intersections of the ball with an halfspace whose defining right hand side
is at most δ will lead to a decrease in the volume of the enclosing ellipsoid.

The following lemma is easy to prove and left as an exercise.

Lemma A.33. Let P := {x : Ax ≤ b} ⊆ Rd be a polytope contained in the unit ball Bd.
If bi ≥ δ = d−3/2 for all elements bi of the right hand side b, then

δ ·Bd = d−
3/2 Bd ⊆ P

The general idea is now the following. We first find a ball centered at 0 that contains
our polytope. By scaling we can assume that the ball is the unit ball Bd. Then we search
for an inequality that violates the condition in Lemma A.33, i.e. an inequality where
bi < δ.

If we do not find such an inequality, then we have found our approximation. Otherwise,
we apply Theorem A.32 and obtain an ellipsoid E of smaller volume that contains P .
We normalize with an affine linear map so that E is again the unit ball with center at
the origin, and repeat the process.

Note that affine linear maps preserve containment and relative scaling factors, i.e. if
for the scaled and translated polytope P ′ we have

λ ·Bd ⊆ P ′ ⊆ Bd ,

then if ϕ is an affine map that sends P ′ to P , we have

λ · ϕ(Bd) ⊆ P ⊆ ϕ(Bd) ,

and ϕ(Bd) is an ellipsoid.
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Now we need to estimate the size of P . We need to bound its volume from below
and above, to obtain a ball that contains P , and to show that the iteration with smaller
and smaller ellipsoids stops sufficiently fast.
By Proposition A.30, the facet complexity, which is part of our input, polynomially

bounds the vertex complexity. Further, our polytope P is clearly contained in the ball
with center at the origin and radius equal to the largest distance to a vertex. This is
bounded by 2ν , so we may choose the ball B2ν (0) as the initial ellipsoid in our process.

Let x0, . . . ,xd be any affinely independent points in P (which must exist, as P is full
dimensional). Then

vol P ≥ vol conv (x0, . . . ,xd)

≥ 1

d!
det

[︃
1 · · · 1

x0 · · · xd

]︃
≥ 1

dd
2−dν ≥ 2−2dν .

where the lower bound on the determinant follows from the fact that each of x0, . . . ,xd

has size at most ν. Hence the determinant has denominator at most 2dν .
Recall that we only continue as long as we find inequalities whose right hand side

(after normalization) is less than δ. We initially start with a ball of volume 2dν vol Bd

and reduce the volume by a factor of f(d) in each iteration.
Hence, if the process would not stop, then after some number N of iterations the

volume of the enclosing ellipsoid would be smaller than the volume of the polytope it
encloses. This is clearly a contradiction, so the process in fact stops. We can compute
an upper bound on the number N of iterations via

f(d)n2dν vol Bd ≤ 2−2dν ⇐⇒ n ≥ 1

| log2 f(d)|
· (3dν − log2 vol Bd) .

Hence, if we set

N :=
1

| log2 f(d)|
· (3dν − log2 vol Bd)

then our process does at most N iterations before we have found the required ellipsoid.
We summarize this in the following theorem.

Theorem A.34. Let P := {x : Ax ≤ b }. Then we can find, in time polynomial in the
size of A, b and the dimension d, an ellipsoid E with center c such that

c+ d−
3/2(E − c) ⊆ P ⊆ E .

By scaling E we can equally state that we can find an ellipsoid E, such that

E ⊆ P ⊆ c + d
3/2(E − c) . (A.12)
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Note that our arguments above do not yet comprise a full proof of the theorem, and
we also will not attempt to give one here. Besides the missing pieces in the derivation
of the statement of the theorem above, there is a more serious issue that one needs
to address if one wants to give a rigorous proof. We have seen in Theorem A.32 that
the parameters for the new ellipsoid contain square roots. These will usually be not
rational, so that we have to round them appropriately to represent them in a computer.
But the ellipsoid E′ with rounded data need not contain P anymore, even if the exact
ellipsoid E does. We need to control the error. For this, we want to show that there is
some ε such that

P ⊆ E ⊆
{︁
x : ∃y ∈ E′ with ∥x− y∥ ≤ ε

}︁
,

i.e. E is contained in E′ together with a boundary of size ε around E. One can now
show that we can bound the size of the necessary ε in terms of the smallest and largest
eigenvalue of the defining matrix Q of E, and that we can bound the eigenvalues of
E′ in terms of those of E. You can find a proof of this in Section 13.2 of the book of
Schrijver.6 A proof of Theorem A.34 that takes this into account and also computes the
precise bounds and the running time can be fond in Section 15.6 of this book.

A.8. Decompositions of Polyhedra

In this section we look at ways to subdivide a polyhedron into smaller pieces, or cells.
All pieces should be polyhedra themselves, and the subdivision should be a partition, i.e.
any two pieces intersect at most in their boundary, and the union of all pieces should
cover the polyhedron. We will also require that the pieces intersect nicely, which should
mean that any intersection is again a polyhedron (the empty polyhedron in many cases).
This will lead us to polyhedral complexes and to two special cases. First we will

look at fans, which are polyhedral complexes in which all cells are cones. Secondly,
we will consider complexes in which all cells are simplices. If the union of all cells is a
polyhedron, polytope, or cone P , then the complex is a triangulation of P .

A.8.1. Polyhedral Complexes

Let us start with a definition of a polyhedral complex. For this recall the definition of a
face F of a polyhedron P , which is the intersection of P with a valid hyperplane H, i.e.
a hyperplane such that P is completely contained in one of the half spaces defined by
H. So

F := P ∩H .

We see that F is again a polyhedron (which is empty, unlessH is a supporting hyperplane
of P ).

6Alexander Schrijver, Theory of linear and integer programming.
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(a) A polyhedral complex (b) A pure polyhedral complex (c) Not a polyhedral complex

Figure A.11.: Examples of collections of polyhedra, of which two are polyhedral complexes,
and one is not.

Definition A.35. A polyhedral complex C is a finite family of polyhedra (the cells of the
complex) such that for all P,Q ∈ C

(i) if P ∈ C and F is a face of P then F ∈ C, and
(ii) F := P ∩Q is a face of both P and Q.
A cell P is maximal if there is no Q ∈ C strictly containing it.
All cells are polyhedra itself and the dimension of a cell is its dimension as a polyhedron.

C[k] is the set of all k-dimensional faces of C.
The dimension of C is the maximal dimension of a cell of the complex. A complex is

pure if all maximal cells have the same dimension. In this case the maximal cells are
the facets of the complex.
A polyhedral complex S is a subcomplex of C if its cells are a subset of the cells of C.

Example A.36. Figure A.11 shows two examples of polyhedral complexes, and one
collection of two polyhedra that is not a polyhedral complex. Note that the union (as
point sets) of all cells need not be a polyhedron. Figure A.11(b) shows an example.
See Figure A.11(a) for a non-pure polyhedral complex. It has three 2-dimensional

maximal cells and one 1-dimensional maximal cell.
Any polytope or cone can be viewed as a polyhedral complex. This complex has one

maximal cell, the cone or polytope itself. This is also called the trivial subdivision of the
cone or polytope. In general, subdivisions are defined with the next definition below.

Also the boundary complex of a d-dimensional polytope naturally has the structure of
a pure polyhedral complex. The maximal cells are the facets of the polytope, and its
dimension is d− 1, the dimension of the facets of the polytope.

Definition A.37. The face vector of a pure d-dimensional polyhedral complex C is the
vector

f(C) = (f0, f1, . . . , fd)
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where fk counts the number of k-dimensional faces of C.

We will see later that the entries of the face vector satisfy a linear relation, the Euler
equation. The Euler characteristic of the complex C is

χ(C) := f0 − f1 + . . . + (−1)dfd . (A.13)

This satisfies some addition formula. Let C and C′ be two polyhedral complexes such
that C ∩ C′ is a subcomplex of both. Then there union is also a polyhedral complex and

χ(C) + χ(C′) = χ(C ∪ C′)− χ(C ∩ C′) . (A.14)

A.8.2. Fans

Now we turn to our first special case of polyhedral complexes, the fans. Here is the
definition.

Definition A.38. A fan is a pure connected polyhedral complex such that all cells of
the complex are cones.

We can naturally associate a fan in dual space to each polyhedron. Its cones correspond
to the faces of the polyhedron, where each cone collects all functionals c that are
maximized on a particular face of the polyhedron.

Definition A.39. The normal cone NP (F ) of a face F of a polytope P is the set of linear
functionals c such that there is some β with

⟨ c, F ⟩ = β and ⟨ c, P ⟩ ≤ β .

Proposition A.40. The normal cone is a polyhedral cone whose ray generators are the
facet normals defining the face F .

Normal cones of faces of a polyhedron are important in Discrete Optimization, where
they appear in the construction of TDI systems. A system of affine inequalities Ax ≤ b is
TDI (totally dual integral) if, for any integral linear objective function c the dual optimal
solution is integral. This is the case if and only if the subset of rows of A that are tight
on a face F are a Hilbert basis of the cone spanned by these rows. Here, a finite set H
of vectors is a Hilbert basis of a cone if any integral point in the cone can be written as a
conic combination of vectors in H with integral coefficients.
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Definition A.41. The normal fan of a polytope P is the collection of all normal cones
of proper faces of P .

Fans naturally have the structure of a polyhedral complex. In this case all cells are
cones. Note that we have an inclusion reversing bijection between the cells in the normal
fan and the faces of the polyhedron. If R is the intersection of two faces F and F ′ of
the polyhedron, then the normal cones of F and F ′ are faces of the normal cone of R,
and vice versa.

Definition A.42. Let P be a d-polytope and F a face of P . The tangent cone TFP of F
is the cone

TFP := {p+ v ∈ Rd : p ∈ F, p+ εv ∈ P for some ε > 0} .

The tangent cone is the common intersection of all supporting half-spaces at F , see
Problem A.14. Note that the tangent cones are not cones in the usual sense, as their
apex is not in the origin. We call them affine cone if we want to emphasize this.

Definition A.43. LetC be a polyhedral cone. The dual coneC⋆ is the set of all functionals
that are maximized at the minimal face of the cone (the apex if C is pointed), i.e.

C⋆ :=
{︂
a ∈

(︂
Rd
)︂⋆

: ⟨a,x ⟩ ≤ 0 for all x ∈ C
}︂

.

We can use a pointw ∈ F to shift the cone into the origin. You will prove the following
proposition in Problem A.15.

Proposition A.44. The shifted cone TFP −w is dual to the normal cone of F .

Problem A.14
Problem A.15

A.8.3. Regular Subdivisions and Triangulations

Often it is useful to subdivide a polytope into smaller pieces and look at the pieces
separately. It will turn out that the most useful subdivisions are those where all pieces
are simplices. Such subdivisions are called triangulations of the polytope. Here is the
formal definition.

Definition A.45. A subdivision of a polytope P is a pure polyhedral complex S such
that P =

⋃︁
C∈SC.

A subdivision is a triangulation of P if all cells are simplices.
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Recall the definition of the Euler characteristic from (A.13). For polytopes and
subdivisions of polytopes we can compute this value. You can find a proof of this
theorem in the book of Ziegler.7

Proposition A.46. The Euler characteristic of a d-dimensional polytope P is χ(P ) =
1− (−1)d, and the Euler characteristic of a subdivision S of a polytope is χ(S) = 1.

A subdivision or triangulation is without new vertices, if V(∆d) ⊆ V(P ) for any
∆d ∈ T. We will use the basic fact that for every finite V ⊂ Rd the polytope convV has
a triangulation with vertex set V . Similarly, the cone posV has a triangulation with
rays {R≥0v : v ∈ V }.8 We need a new definition for this.

Definition A.47. A subdivision S of a polytope with vertices {v1, . . . ,vm} (of the subdi-
vision) is regular if there is a weight vector w such that S is the projection of the lower
hull of

conv((wi,vi) | 1 ≤ i ≤ m) ,

where the lower hull is the polyhedral complex of those facets whose normal has negative
first coordinate.
Given a set of points V := {v1, . . . ,vm} and a weight vector w ∈ Rm we denote by

Sw(V ) the regular subdivision obtained as the lower hull of

lift(w) := conv((wi,vi) | 1 ≤ i ≤ m) .

A regular triangulation is a regular subdivision that is a triangulation.

This notion is important far beyond the following theorem, with many, also surprising
consequences. You will show in Problem A.16 that all subdivisions of a polygon using
only the vertices of the polygon are regular.

Problem A.16
The main fact about subdivisions that we need in these lecture notes is the following

theorem, which guarantees that we can always find a triangulation of a polytope.

Theorem A.48. Every d-polytope P has a regular triangulation using only the vertices of
the polytope.

Proof. Let V := V(P ) be the vertices of the polytope. We can assume that P is full
dimensional. We claim that any sufficiently generic vector w induces a regular triangu-
lation.
The subdivision induced by w is a triangulation if and only if for each facet of the

lower hull of lift(w) is a d-simplex, i.e. if at most d+ 1 of the points

(w1,v1), . . . , (wd,vd)

7Sec. 8.2 Ziegler, Lectures on polytopes.
8De Loera, Rambau, and Santos, Triangulations. Structures for algorithms and applications.
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Figure A.12.: A non-regular subdivision

lie on a common hyperplane. For any (d+ 2)-tuple

(wi1 ,vi1), . . . , (wid+2
,vid+2

)

being on a common hyperplane means that the determinant

det

⎛⎝ 1 1 · · · 1
wi1 wi2 · · · wid+2

vi1 vi2 · · · vid+2

⎞⎠
vanishes. We can view this determinant as a linear functional in the entries of w.
There are

(︁
m
d+2

)︁
different such functionals, hence, the complement Zc of the union

of the zero sets of these functionals is not empty. Choosing any w ∈ Zc satisfies our
requirements.

It is important to realize that not all triangulations of a polytope are regular. See
e.g. Figure A.12 for a simple example. You will prove that it is indeed not regular in
Problem A.17

Problem A.17

Corollary A.49. Every pointed cone C can be triangulated into simplicial cones without
introducing new generators.

Proof. If C is pointed, then there is a functional u such that

utx > 0 for all x ∈ C .

Then P := C ∩ {x | utx = 1} is a polytope, and C is the cone over P . By the previous
Theorem A.48 P has a regular triangulation T without new vertices. The cones over
the cells in this triangulation give a triangulation of the cone C without using new
generators.

Let V ⊆ Rd be a finite set of points. If the points are not in convex position, then not
all points in V must be vertices of Sw(V ). For example, if V = { 0, 1, 2 } ⊆ R and we
lift them to height 0, 1, and 0 in that order, then S(0,1,0)(V ) is the interval [0, 2]. In most
settings one nevertheless distinguishes between this and the subdivision of V ′ := { 0, 2 }
obtained by lifting both points to height 0. Thus, we want to preserve the information
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from which set V of points our subdivision was defined, even if not all points in V are a
vertex of some cell in the subdivision.

It follows immediately from the definition that we can subdivide any finite set V of
points into some regular subdivision by randomly choosing heights for the points. We
have also seen that we can always find a regular triangulation of a set of points, if the
points are the vertices of a polytope.
Theorem A.48 shows that we can also find a regular triangulation for an arbitrary

finite set of points (in most applications we will consider P ∩ Λ for a polytope P and a
lattice Λ) if we don’t require that all points of the set are vertices of the triangulation.
More generally, we obtain a triangulation if the heights are sufficiently generic. This is
the case if no d+ 1 points

(wi1 ,vi1), . . . , (wid+2
,vid+2

)

lie on a common hyperplane. This is an open condition, so we can always choose
weights that satisfy this. However, also this does not guarantee that all points are
actually vertices of the subdivision.

We can fix this with the following operation. Assume thatw := (wi,vi) is not a vertex
in the subdivision. This means that w is not a vertex of the lower hull (it may still be
on a higher dimensional face of it). Hence, there is w′

i ≤ wi such that w′ := (w′
i,vi) is

on the lower hull, and contained in some facets F1, . . . , Fk of it. We can decrease w′
i

further, so that w = (w′
i,vi) is beyond the facets F1, . . . , Fk, but still beneath all others.

With this choice the set of heights remains generic, and w is now a vertex of the lower
hull. So vi is a vertex of the subdivision. We can repeat this process with any other
point that is not yet a vertex in the subdivision. This proves that we can find a regular
triangulation that uses all points.

Corollary A.50. Let V ⊆ Rd be a finite set of points. Then there is a regular triangulation
of V such that all points in V are vertices of the subdivision.

This idea also leads to a standard method to triangulate a finite set of points V , the
pulling triangulations. This is obtained with the following procedure. We order the
points in V arbitrarily as v1,v2, . . . ,vk. We lift them all to the same height, say 0. Now
we pick the first point and use the above process. So we lower the point slightly and
obtain a subdivision. We remember the subdivision and put the point back to height 0.
v1 is a vertex in this subdivision (among others). Now we pick the next point v2 and do
the same separately in each cell it is contained in. It is not hard to see that this induces
the same subdivision on the intersection of cells, so collecting all cells together gives a
new subdivision of the original point set. Now also v2 is a vertex. We can repeat this
process until vk. This gives a regular subdivision in which all points are vertices.
Pulling triangulations also prove that we can triangulate any finite point set in

polynomial time, as each iteration above is a polynomial operation. You will show in
Problem A.18 that one can construct a height function for this triangulation.

Problem A.18
We can use our process also for another common task. Suppose we are given regular

subdivision S := Sw(V ) of a point set V = {v1, . . . ,vk } and some u ̸∈ V . Then S is
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also a subdivision of V ∪ {u }. To see this, we just fix some height wu > wi for all
1 ≤ i ≤ k of u. If we want u to be a vertex in this subdivision, then we lower the height
as above. The new subdivision is called a refinement of S. We can of course refine a
subdivision also with a finite point set, by adding one point after the other.
Subdivisions of the same point set V are partially ordered by inclusion of the cells.

Let S1, S2 be two subdivisions of V . We say that S1 ≼ S2 if for any cell σ ∈ S1 there is a
cell τ ∈ S2 such that σ ⊆ τ .

Definition A.51. Let V be a finite point set and S1, S2 two subdivisions of V . The
common refinement of S1 and S2 is the set

{σi ∩ σ2 : σ1 ∈ S1, σ2 ∈ S2 } .

You will prove in Problem A.19 that the common refinement is indeed a subdivision,
and it is regular if both S1 and S2 are regular.

Problem A.19

A.9. Problems

A.1. Prove Proposition A.6.

A.2. Let X1 ⊆ X2 ⊆ Rd.
Show that X∨

2 ⊆ X∨
1 .

A.3. Let Xi ⊆ Rd for i ∈ I.
Show that

(︁⋃︁
i∈I Xi

)︁∨
=
⋂︁

i∈I X
∨
i .

A.4. Let X ⊆ Rd and t ∈ Rd such that 0 ∈ int (X) ∩ int (t+X). Show that

(t+X)∨ =

{︃
1

1 + ⟨a, t ⟩a : a ∈ X∨
}︃
.

A.5. Prove Minkowski’s determinant inequality for positive definite matrices, i.e. prove that for any two
positive definite square matrices A1, A2 with d rows and columns we have

(det A1 +A2)
1/n ≥

(︂
(det A1)

1/n + (det A2)
1/n
)︂

with equality if and only if there is µ > 0 such that A1 = µA2.
If also det A1 = det A2 in the equality case, then A1 = A2.

A.6. Let Cd be the cube defined by |xi| ≤ 1. Prove that the maximum volume ellipsoid is the unit ball.

A.7. Let ∆d ⊆ Rd+1 be the d-dimensional simplex defined as the convex hull of the unit vectors. Prove
that a maximum volume ellipsoid is the ball in the affine hull of ∆d with center 1/(d+1)1.
Deduce that the bound of Theorem A.13 is best possible.

A.8. Prove Theorem A.13.

A.9. Prove Carathéodory’s Theorem (Theorem A.17).

A.10. Show that the preimage of the projection of a face F is again a face (but not necessarily the original
one).
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A.11. If some x ∈ Rd is in the relative interior of two faces of a convex set, then the two faces coincide.

A.12. Let π : Rd → Rm be a projection that maps a d-dimensional polytope P onto a m-dimensional
polytope Q. Then, if x is a point in the interior of Q, relint(π−1(x) ∩ P ) ⊆ int (P ).

A.13. Fill in the missing computations in the proof of Theorem A.32.

A.14. Prove that the tangent cone of a face of a polytope is precisely the intersection of the half spaces
defining F .

A.15. Prove Proposition A.44.

A.16. Show that any subdivision S of a polygon P such that V(S) = V(P ) is regular.

A.17. Prove that the subdivision in Figure A.12 is not regular.

A.18. Let v1, . . . ,vk be a finite set of points with pulling triangulation T. Show how one can obtain a
height function for this triangulation.

A.19. Show that the common refinement is a subdivision.
Show that the common refinement of two regular subdivisions is regular.

196



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

B. Solutions to some Exercises

B.1. Solutions for The Geometry of Lattices (Chapter 2)

2.1. We can move any element x into the origin by a translation of Rd that maps Λ into Λ. The inverse
maps balls around the origin into balls around the x. If a ball around the origin contains no other
point of Λ, then so does its translate into x.

2.2. Let (xn)n∈Z≥0
be a convergent sequence in Λ and x = limn→∞ xn its limit. We want to show that

x ∈ Λ. Let ε > 0 be such that B2ε(x0) ∩ Λ = {x }. By Problem 2.1 we know that we can use the
same radius of a ball for any point in the lattice, i.e. B2ε(xn) ∩ Λ = {x } for all n ∈ Z≥0.
As the sequence converges there is some n0 ∈ Z≥0 such that for n ≥ n0

∥xn − xn+1∥ ≤ ε .

This implies xn+1 ∈ B2ε(xn), so xn+1 = xn for n ≥ n0. Hence, the sequence becomes stationary
and x = xn for any n ≥ n0. So x ∈ Λ.

2.3. For a closed subset this follows from the Theorem of Bolzano-Weierstrass. A counterexample among
non-closed sets is, e.g., the set { 1

n
: n ∈ Z>0} ⊆ [0, 1]

2.4. Consider, e.g. the set A := {1,
√
2} ⊆ R. Then ΛA is

ΛA =
{︂
a+ b

√
2
}︂
a, b ∈ Z

Now 0 <
√
2−1 < 1/2, so for any ε > 0 there is n such that (

√
2−1)n < ε. The binomial expansion

of the left hand side shows that (
√
2− 1)n is an element in ΛA, so any open neighborhood of 0

contains a nonzero element of ΛA.
This is, of course, also true for any other A := {1,√q} unless q is a prime, but the proof is slightly
more involved. For this, consider λ := inf(x | x ∈ ΛA) and show that λ ∈ ΛA (otherwise, there
are y1, y2 ∈ ΛA such that λ < y1 < y2 < 3/2λ, but then y2 − y1 is a positive element of ΛA that is
smaller than λ) and that λ is a basis of ΛA (for any x ∈ ΛA let y be the largest integer less than
x/λ, so that 0 < x− yλ < λ and thus x = yλ). This implies that √q is a rational multiple of 1.

2.5. Direct computation.

2.6. Direct computation.

2.7. Use Lemma 2.6.

2.8. We use induction over the dimension d of the cone C. If d = 1, then C is either R≥0 or R≤0. We
may assume C = R≥0. Let v ∈ R be any generator of the lattice. Then also −v generates the
lattice, so we may assume v > 0 and thus v ∈ C.
Now let d ≥ 2. Choose any facet F of C defined by the inequality ⟨ f ,x ⟩ ≤ 0 and consider the
(d − 1)-dimensional subspace L := lin F . Let Λ′ := Λ ∩ L. The generators of the cone F are
Λ-rational, so some multiple of the generators is in Λ. Hence, Λ′ has rank d− 1.
By our induction hypothesis we can find a basis B′ := {b1, . . . ,bd−1 } of Λ′ such that bi ∈ F for
1 ≤ i ≤ d− 1. Let c := b1 + · · ·bd−1. Then c is a relative interior point of F .
Let bd be any lattice vector that extends B′ to a basis of Λ. Such a vector exists by Proposition 2.10.
We may assume ⟨ f ,bd ⟩ < 0 (otherwise take −bd). Clearly, also B′ ∪{bd + λc } generates Λ for
any λ ∈ Z. Let a be any facet (outer) normal of C such that ]proabd > 0, i.e. bd is beyond the
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facet defined by a. As c ∈ F also c ∈ C, so ⟨a, c ⟩ < 0 (the inequality is strict as c cannot be in
the facet defined by a). Hence

⟨a,bd + λc ⟩ < 0 for λ > −⟨a,bd ⟩
⟨a, c ⟩ .

Observe that the right hand side of the second inequality is positive as ⟨a,bd ⟩ < 0 by assumption.
Hence, by replacing bd by bd +

⌈︂
− ⟨ a,b ⟩

⟨ a,c ⟩

⌉︂
we obtain ⟨a,bd ⟩ < 0. C has only finitely many facets,

so we can replace bd by a generator in the interior of C.
Note that the results is also true without the requirement that C is Λ-rational. For this we need to
show that we can find a full-dimensional Λ-rational cone inside C.

2.9. The convex hull is

conv(0,b1, vb2) = {µ1b1 + µ2b2 : 0 ≤ µ1, µ2 ≤ 1 and µ1 + µ2 ≤ 1 } .

Hence, conv(0,b1, vb2) \ {b1,b2 } ⊆ Π(b1,b2). If conv(0,b1, vb2) contains a nonzero lattice
point a ̸= b1,b2, then a ∈ Π(b1,b2), so a ̸∈ Λ.
Conversely, if b1,b2 are not a lattice basis, then there is a ∈ Π(b1,b2), so there are 0 ≤ µ1, µ2 < 1
such that

a = µ1b1 + µ2b2 .

If µ1 + µ2 ≤ 1, then a ∈ conv(0,b1,b2). Otherwise,

a′ := b1 + b2 − a = (1− µ1)b1 + (1− µ2)b2

is a lattice point with 0 < µ1, µ2 ≤ 1 and µ1 + µ2 < 1. Hence a′ ∈ conv(0,b1,b2).
The last argument fails in higher dimensions and indeed the whole claim fails, as we can see from
the Reeve tetrahedra

∆ := conv (0, e1, e2, e1 + e2 +me3)

for some integral m > 0. We have

∆ ∩ Z
3 = { 0, e1, e2, e1 + e2 +me3 } .

but e1, e3, e1 + e2 +me3 is not a lattice basis for m ≥ 2.

2.10. There are various options to prove this theorem. We give two of them, one using the previous
exercise, and one independent one.
In both proofs we first translate the triangle with a lattice vector such that one vertex is the origin.
Hence, we may assume that the vertices are

v0 := [ 00 ] v1 := [ ab ] v2 :=
[︂
p′

q′

]︂
. (B.1)

For the first proof observe that

conv(0,v1,v2) ∩ Z
2 = { 0,v1,v2 } .

By Problem 2.9v1 andv2 are a basis ofZ2, so det(v1,v2) = 1. This is the volume of conv(0,v1,v2,v1+
v2). The map ϕ : x ↦→ v1 + v2 − x is a bijection from conv(0,v1,v2) to conv(v1,v2,v1 + v2), as
any

x = µ0 · 0 + µ1v1 + µ2v2 with 0 ≤ µ0, µ1, µ2 ≤ 1, µ0 + µ1 + µ2 = 1
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is mapped to

v1 + v2 − x = (1− µ1)v1 + (1− µ2)v2 − µ0 · 0
= µ2v1 + µ1v2 + (1− µ1 − µ2)(v1 + v2) = µ2v1 + µ1v2 + µ0(v1 + v2) .

So the area of ∆ ∼= conv(0,v1,v2) is 1
2
.

We can also prove this without referring to lattices. For this, consider again the vertices as in (B.1).
These are the only lattice points in the triangle, so we also know gcd(a, b) = gcd(p′, q′) = 1. We
can find x, y ∈ Z with 1 = xa+ by. We apply the unimodular transformation

A :=
[︁ x y
−b a

]︁
that maps v2 onto e1 and v2 onto a point

v : = [ pq ] .

Using a reflection if necessary we may assume q > 0, and by applying

B := [ 1 1
0 1 ]

or its inverse we can assume that 0 ≤ p < q. If p = 0, then q = 1, otherwise e2 is an additional
lattice point. In this case ∆ has area 1

2
.

So assume p > 0. Then q > 1, as p < q, and

w := [ 11 ] = α [ 10 ] + β [ pq ]

for

α :=

(︃
1− p

q

)︃
β :=

1

q
.

But 0 < α, β < 1 and 0 < α + β ≤ 1, so w is an additional lattice point. Hence, the case p > 0
cannot occur.

2.11. We look at the following three cases.
(i) b+ i = 3

(ii) b = 3 and i > 0.
(iii) b > 3.
In the first case the claim follows from Problem 2.10. In the other cases we use induction on b+ i.
In the second case we can split P into three triangles with less lattice points using an interior
lattice point. In the third case we use two nonadjacent points on the boundary to split P into two
pieces with less lattice points each.
The volume of P is in both cases the sum of the volumes of the pieces, and we can now verify the
formula by direct computation using the induction assumption (express the number of interior and
boundary points of P in the numbers of interior points and boundary points of the pieces. Observe
that some boundary points of the pieces are interior points of P and my aappear in two different
pieces).

2.12. If the greatest common divisor is 0, then λj = · · · = λd = 0 and A is linearly dependent. So
assume gcd(λj , . . . , λd) = g ≥ 2. Then A is linearly indepenendent. Let

v :=

d∑︂
i=j

λibi = a −
j−1∑︂
i=1

λibi .

The coefficients of the second term are all divisible by g, so

1

g
v :=

d∑︂
i=j

λi

g
bi =

1

g
a −

j−1∑︂
i=1

λi

g
bi .
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is a lattice vector. But the coefficient of a in the unique representation of 1
g
v in the set A is not

integral, so A is not primitive.
Conversely, let v ∈ lin A ∩ Λ. Then v can be repesented in two ways as

v =

j−1∑︂
i=1

µibi + µja =

d∑︂
k=1

νkbk

for µi ∈ R, 1 ≤ i ≤ j and νi ∈ Z for 1 ≤ k ≤ d. Using a :=
∑︁d

i=1 λibi we obtain

v =

j−1∑︂
i=1

(µi + µjλi)bi +

d∑︂
k=j

µjλkbk =

d∑︂
k=1

νkbk .

Comparing coefficients we obtain µjλk = νk for 1 ≤ k ≤ d and gcd(λj , . . . , λd) = 1 implies
µj ∈ Z. Comparing the remaining coefficients gives µi ∈ Z for 1 ≤ i ≤ j − 1.

2.13. ▷ The area A of a regular triangle with side length a is
√
3

2
a2, and a2 is integral. So A is of the

form k
2

√
3 for an integer k.

Yet, by Pick’s Theorem, or, if we move one vertex into the origin, as the determinant of the
two other vertices is integral, the area is integral.

▷ The hexagonal lattice allows a regular triangle.
Observe that lattice preserving maps are not angle preserving.

2.14. There are various options to prove this.
Here is a direct one. Let v be the interior lattice point, v1,v2 vv3 be the vertices and λ1, λ2, λ3 > 0
such that

v =
∑︂

λivi

Assume that λ3 ≥ λ2 ≥ λ3, i.e. λ3 is the largest of the three coefficients. We move v3 into the
origin and look at the lattice spanned by v1 and v2. v is a point in the fundamental parallelepiped
F and

v = λ1v1 + λ2v2

By assumption λ1 ≤ λ2 <
1
2
, so also 2v ∈ F . Hence, also v′ := (v1 + v2)− 2v ∈ F .

By assumption, 2v ̸ in∆. But then v′ ∈ ∆ and thus v′ = v, so

(v1 + v2)− 2v = v ⇐⇒ v =
1

3
(v1 + v2) .

Another proof uses the Theorem of Pick. ∆ can be triangulated into three triangles of volume 1
2
. If

we move v into the origin, then the volume of the triangles equals half the determinant of the two
other vertices, i.e.

det (v1,v2) = det (v1,v3) = det (v2,v3) = 1

Further, after a unimodular transformation we can assume that v1 = e1 and v2 = e2. It is easy to
see that then v3 = −(v1 + v2).
There is no similar statement in higher dimensions, as

P k := conv
(︂[︂

1
0
0

]︂
,
[︂
0
1
0

]︂
,
[︂
0
0
1

]︂
,
[︂ −1

−1
−k

]︂)︂
for k ∈ {1, 2} is a lattice simplex with exactly one interior point and only the vertices on the
boundary.

2.15. Let g be the common denominator of all entries of A. Then gA is an integral matrix, and if H is in
Hermite normal form with a unimodular transformation U such that gA = HU , then also 1

g
H
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is in Hermite normal form and A = 1
g
HU . Hence, in the following we can replace A by gA and

assume that A is an integral matrix.
Now observe that the following three transformations on the columns of a matrix A can be realized
by a multiplication with suitably chosen unimodular matrix T from the right:
(i) Exchanging two columns, and
(ii) multiplying a column by −1, and
(iii) adding an integral multiple of one column to another column.
These operations are called elementary transformations for a matrix. Any succession of such
operations is then realized by the product of the corresponding transformation matrices, which is
again unimodular. In the following, we will show that we can transform A into its Hermite normal
form using only such elementary transformations. The unimodular matrix U in the theorem is
then given by the product of the corresponding transformation matrices.
We show that we can transform A into its Hermite normal form by induction on the rows of A. So
assume that A already has the form

A =

[︃
B 0
M C

]︃
(B.2)

for matrices B,C,M where B ∈ Zk×k is in Hermite normal form and k ≥ 0. Consider the first
row (c11, . . . , c1,m−k) of the matrix C. Using elementary column operations we can transform C
such that
(i) c11 ≥ c12 ≥ . . . , c1,m−k ≥ 0 and
(ii) c := c11 + c12 + · · ·+ c1,m−k is as small as possible.

Then c11 > 0 as A has full row rank. Further, if c12 ̸= 0, then we can subtract the second from
the first column and reorder the columns if necessary to obtain a smaller total sum c. Hence,
c12 = c13 = . . . = c1,m−k = 0. The column operations on C clearly extend to A without affecting
B andM , so we can apply them to A to obtain a matrix

A =

⎡⎣ B 0 0
m c11 0
M ′ c′1 C′

⎤⎦ ,

where m′ is a row vector of length k, the first row of the matrix M . By adding or subtracting
multiples of the (k + 1)st column (the one containing c11) to the first k columns of A we can
assume that all entries of m are non-negative and smaller than c11.
In this way we have again reached amatrix of the form (B.2), but this timeB has size (k+1)×(k+1).
After d steps A is in Hermite normal form using only elementary operations.
We still need to prove that the Hermite normal form is unique. Assume that there are two
different Hermite normal forms H1 = (h

(1)
ij )ij and H2 = (h

(2)
ij )ij with unimodular transforms

A = H1U1 = H2U2. The product of unimodular matrices is unimodular, so H1 = H2U for some
unimodular U .
We first look at the diagonal. Assume they differ and let i be the smallest index, where this happens.
We may assume h(1)

jj < h
(2)
jj , otherwise we swap H1 and H2 and use U−1. Let u = (uk)k be the

j-th column of U . Then uk = 0 for k < i and thus h(2)
jj ui = h

(1)
jj . So 0 < uj < 1, but U is integral.

Now assume h(1)
ij < h

(2)
ij and choose iminimal with this property. Then j < i. Let u = (uk)k be the

j-th column of U . Then uk = 0 for k < j, uj = 1 and uk = 0 for j < k < i. But h(1)
ij = h

(2)
ij +h

(2)
ii ui

is less than h(2)
ij and 0 ≤ h

(2)
ij < h

(2)
ii , so −1 < ui < 0. However, U is integral.

2.16. The construction of the unimodular matrix in Problem 2.15 is not necessarily polynomial, as we
▷ cannot control the number of elementary operations necessary to turn the first row of C into

one that has all zeros except for the first entry, and
▷ cannot control the size of the entries in the result and in all intermediate steps.

Hence, we need a couple of new observations to fix this. We first look for an improvement of the
algorithm that lets us bound the number of steps necessary to obtain the Hermite normal form by
a polynomial in the input size, before we look at the size of the result and finally the size of all
intermediate steps.
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Given any integers a and b with greatest common divisor g we can find, in polynomial time
O(log(a) · log(b) in the size of a and b, two integers x and y such that g = x · a+ y · b. This can be
done with the extended Euclidean algorithm.
In our computation we now use at most one elementary operation to make the first entry of the first
row of C positive. Then we replace, for all j, the first column c1 of C by xc1 + ycj and the column
cj by 1

g
(c1jc1 − c11cj). Note that in the second linear combination the coefficients 1

g
c1j and 1

g
c11

are both integral. A simple consideration shows that the transformation matrix corresponding to
the transformation used in the second step has determinant ±1 and thus is unimodular.
We need at most d of these operations in each iteration of the original construction of H, which
can all be done in polynomial time, so we obtain the Hermite normal form in polynomially many
steps in the size of the input matrix A.
We also need to control the size of the output and all intermediate steps of this algorithm to prove
that it runs in polynomial time. We look first at the size of the output, i.e. at the Hermite normal
form H.
Observe that in each step we transform the first row of C so that only the first entry is nonzero. A
simple consideration shows that this is the greatest common divisor of all the entries in the first
row of C.
We obtain all transformations by swapping columns, multiplying a column with −1 and adding (a
multiple of) a column to another. Linearity of the determinant in the columns of a matrix shows
that these operations preserve the greatest common divisor of all subdeterminants of size d of A.
This is clear for the first two operations.
For the last, let Q be a square submatrix of A with first column q, r any other column of A, Q′ the
matrix obtained from Q by replacing q with q + λr for some λ ∈ Z and R the matrix obtained
from Q by replacing q with r. Observe that R is also a submatrix of A. By linearity we get

det Q′ = det Q + λ det R

gcd(det Q′, det R) = gcd(det Q+ λdet R, det R) = gcd(det Q,det R) .

Hence, the determinant of H is the greatest common divisor of all (d× d)-subdeterminants of A,
which bounds the size of the diagonal entries of H by a polynomial in the size of the entries of A.
All entries outside the diagonal in H are at most the size of the diagonal entry in the same row, so
those are bounded as well.
It remains to control the intermediate entries in the matrices in each step. For this we observe
first the following.Let H = AU be some matrix A with Hermite normal form H and a unimodular
transformation U . Let v be an element in the integral span of the columns, i.e. there is an integral
vector p such that Ap = v. Then

[H 0 ] = [A v ] ·
[︁
U p
0 1

]︁
.

So the Hermite normal form of [A v ] is [H 0 ]. Let g be the greatest common divisor of all (d× d)-
submatrices of A as above. This is the product of the diagonal entries of H, so it follows from the
representation H = AU that the multiples gei of the unit vectors are in the integral span of the
columns of A. We obtain the same Hermite normal form (up to some zero columns) if we replace
A by [A g I ]. As above we can now use the columns of g I to reduce all entries in intermediate
matrices that exceed g. This finally bounds the size of all intermediate results and proves the
polynomiality of our algorithms for the Hermite normal form.

2.17. We start with the first claim. If the system has an integral solution x+ 0, then ytb = ytAx+ 0 is
an integer whenever ytA is integral.
Now assume that ytb is an integer whenever ytA is integral. Then Ax = b has a fractional
solution, as otherwise we can find yt with ytA = 0, but ytb ̸= 0. By discarding redundant rows
we can assume that A has full row rank.
Let H = AU be the Hermite normal form of A. As U−1 is integral the integral solutions x0 of
Ax = b correspond to integral solutions U−1x0 of AUx = b. Thus, we can assume that A = [B, 0]
is in Hermite normal form. Then B−1b is integral (the i-th coordinate of B−1b is ytb if we choose
the i-th row of B−1 for yt). Hence,

(︁
B−1b

0

)︁
is an integral solution of Ax = b.

For the second claim we may assume that A is in Hermite normal form A = [B, 0] with full row
rank. Then any solution of Ax = b is of the form x0 +y, where y is an integral solution of Ax = 0.
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But those are the vectors y ∈ {0}d ×Zm−d.
Finally, for the last claim we observe that by Problem 2.16 we can compute the Hermite normal
form in polynomial time.

2.19. Assume it is not a lattice basis of Λ but spans a sublattice Γ. Then there is a lattice point v ∈ Λ \ Γ,
and B∪{v} spans a lattice Γ′ with

Γ ⊆ Γ′ ⊆ Λ .

and we can find integral matrices A and A′ representing the basis of Γ in that of Γ′, and that of Γ′

in Λ. The determinant is independent of the chosen basis, so we obtain

det B = det A · det B′ = det A′ det C

for bases B′ of Γ′ and C of Λ. This contradicts minimality of det B.

2.20. If x,y ∈ Λ, then ⟨ai,x ⟩ = kxmi and ⟨ai,u ⟩ = kymi for some kx, ky ∈ Z so

⟨ai,x+ y ⟩ = ⟨ai,x ⟩ + ⟨ai,x ⟩ = kxmikymi = (kx + ky)mi .

so x+ y ∈ Λ. Similarly, also −x ∈ Λ and also 0 ∈ Λ, so Λ is a lattice.
By construction, it is a sublattice of Zd. Further, m1ei ∈ Λ for 1 ≤ i ≤ k, so the lattice spanned by
A := m1e1, . . . ,mkek is a sublattice of Λ. The latter has determinant m1 · · ·mk, so

1 ≤ det Λ ≤ m1 · · ·mk .

2.21. We only prove this in the case Λ = Zd. In this case the fundamental parallelepiped F of Λ is the
(half open) unit cube [0, 1)d. The longest vector in F has length

√
d and vol F = 1.

Let B± := Br±
√
d(0). For any x,y ∈ Br(0) ∩ Λ we have x+ F ⊆ B+, and x+ F ∩ y + F = ∅

for x ̸= y. Hence,

|Br(0) ∩ Λ| =
∑︂

x∈Br(0)∩Λ

1 =
∑︂

x∈Br(0)∩Λ

vol(F )

=
∑︂

x∈Br(0)∩Λ

vol(x+ F ) ≤ vol B+ .

Similarly, B− is completely covered by the translates x+ F for x ∈ Br(0) ∩ Λ, so

vol B− ≤ |Br(0) ∩ Λ| .

Now, for some chosen ε > 0,

volB+

|Br(0)|
=

(r +
√
d)d

rd
≤ (1 + ε) (B.3)

for r large enough. Similarly

volB−

|Br(0)|
=

(r −
√
d)d

rd
≥ (1− ε) (B.4)

for some r large enough. Note that this also depends on the basis (which we have chosen to be
Zd).
For a general lattice the volume of F may change, and the length of a longest vector in F . The
first is accounted for by the additional factor det Λ in the general formula, the latter changes the
constant

√
d that appears in the numerator of (B.3) and (B.4), and thus the r we need to choose.
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2.22. Let B be a basis of Λ and B0 a basis of Γ (given as matrices of column vectors). Then

|Γ/Λ| =
det B0

det B
.

Further, there is an integral matrix T such that B0 = BT , so B = B0T
−1. Now (det T )T−1 is

integral, det T is the index, and (det T )B is a basis of (det T )Λ.

2.23. As in the proof of the Hermite normal form it suffices to show that we can transform A into its
Smith normal form using elementary row and column operations. The existence of the companions
then follows.
We again use induction. Suppose that after some elementary transformations A has the form

A =

[︃
S 0
0 C

]︃
(B.5)

where S is a diagonal matrix with positive entries s11, . . . , skk for k ≥ 0 on the diagonal such that
sj−1,j−1 divides sjj for 2 ≤ j ≤ k, and skk divides all entries of C.
Among all transformations of C that we can reach with elementary row and column operations we
pick one such that

min(|cij | | 1 ≤ i ≤ d, 1 ≤ j ≤ m and cij ̸= 0)

is minimal. We can also assume that this minimum is attained by c11. Then clearly c11 is the only
non-zero element in the first row and column, as otherwise we can obtain a smaller entry by a
suitable row of column operation. Further, a similar consideration shows that c11 must divide all
other entries of C. We have extended our induction form (B.5) from k to k + 1.
Uniqueness of S follows from the observation that in each step the element c11 that we construct is
the greatest common divisor of the elements in C.

2.24. We choose the any basis of Λ as a basis of the subspace linΛ. Then a basis of Λ′ can be written in
this basis with only integral coefficients. We apply Smith normal form to this matrix.

2.25. This is a classical fact from linear algebra. Let ϕ be any element of (Rd)∗, i.e. any linear functional
on Rd and define ηi := ϕ(bi) for 1 ≤ i ≤ d. For any x =

∑︁d
i=1 λibi we get

ϕ(x) =
∑︂

λiϕ(bi) =
∑︂

λiηi =
∑︂

b∗
i (x)ηi =

(︂∑︂
ηib

∗
i

)︂
(x)

by linearity. Hence, any linear functional is in the span of the b∗
i .

2.26. If ϕ is a lattice functional, then the ηi in Problem 2.25 are integral.

2.27. Let b1, . . . , vbd be a basis of Λ with dual basis b∗
1, . . . ,b

∗
d. If B is the matrix whose columns are

the bi and B∗ the one with columns b∗
i . Then

det Λ = det B det Λ⋆ = det B∗

and

det(Λ) · det(Λ⋆) = det(B) · det(B∗) = det(Bt) · det(B∗) = det(BtB∗) = det(I) = 1

as bt
ibj is 1 if i = j and 0 otherwise.

2.29.

B.2. Solutions for Geometry of Numbers (Chapter 3)

3.1. ▷ Let F be the set of a choice of a lattice point in the relative interior of a facet, if there is one
in the facet. Note that we take at most one form each relative interior.
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We assign to each the parity vector (e.g. the vector (1, 1, 0) for the lattice point (7, 5, 4)). If
we have more than 2d vectors in F , then there are x,y ∈ F with x ̸= y that have the same
parity. Then also 1/2(x+ y) is a lattice point, and in the interior of S.
This is a contradiction, so we have at most 2d elements in F . In fact, as {0} is in the interior of
K there cannot be a lattice point in the boundary with only even coordinates, so |F | ≤ 2d−1.
Hence, we have at most 2(2d − 1) facets for K.

▷ For any lattice point x we choose a halfspace Hx containing x ∪K. Let Sx := Hx ∩ −Hx.
Then K ⊆ Sx. Let

S :=
⋂︂

x∈Λ\{0}

Sx .

Then S is a centrally symmetric set of volume nvolZd(S) ≥ nvolZd(K) = 2d. Also intS∩Λ =
{0}, as all x ∈ Λ \ {0} are on one of the hyperplanes defining S.
If S ̸= K, then there is y ∈ S \K, and thus also −vy ∈ S \K. Let K′ := conv(K ∪ {±y})
So K′ ⊆ S, K′ ∩ Λ = {0} and nvolZd(K′) > nvolZd(K) = 2d. Hence, by Minkowski’s First
Theorem (Corollary 3.3) K′ contains a nonzero lattice point. This is a contradiction, so
S = K.
We need to show that a finite number of the pairs of inequalities Hx and −Hx suffice. Let
F ⊆ Λ be the set of those x such that the hyperplane defined by Hx is irredundant for S.
Let Hy be any hyperplane for y ∈ F such that Hy ∩K does not contain a lattice point in its
relative interior. Then S is a strict subset of

S′ :=
⋂︂

x∈F\{y}

Sx

and intS′ ∩ Λ = {0}. But nvolZd(intS′) > 2n det Λ, so intS′ contains a nonzero lattice
point by Minkowski’s First Theorem (Corollary 3.3). This is a contradiction, so each of the
hyperplanes given by Hx and −Hx for x ∈ F contain a lattice point in its relative interior.
The number of lattice points in the relative interiors is finite by the same argument as in the
first part. So K is a polytope.

3.2. Consider the map π : Zd → (Z/3Z)d given by assigning each coordinate its congruence class
modulo 3. This is a homomorphism, so that π(x± y) = π(x)± π(y).
If, for lattice points x,y ∈ K the images satisfy π(x) = π(y), then π(x−y) = 0, so z := 1

3
(x−y) ∈

Zd and z is in the interior of the triangle spanned by 0, x and −y. As K is centrally symmetric we
know that −y ∈ K, so z is contained in 2

3
K.

So, by assumption, z = 0 and x = y. Hence, π is injective and we have at most 3d lattice points in
K.
In fact, up to unimodular transformations the standard cube [−1, 1]d is the only centrally-symmetric
lattice polytope with int (K) ∩ Λ = {0} and |K ∩ Λ| = 3d.1

3.3. Consider the map π : Zd → (Z/2Z)d. Assume that there is a boundary lattice point x in the
boundary of K with π(x) = 0. Then 1

2
v ∈ Zd. Hence, we would have a nonzero lattice point in

the interior, which is a contradiction. So 0 is not in the image of π.
Let p ∈ (Z/2Z)d \ {0}. Assume that there are lattice points x,y ∈ K with y ̸= ±x (note that
−x ∈ K) such that π(x) = π(y) = p. Then π(x− y)) =, so 1

2
(x− y) ∈ Zd. As −x ∈ K the point

z is in the interior of K, a contradiction, as π(x) ̸= 0. So at most 2 points map to p, and the bound
follows.

3.4. We may assume that Λ = Zd and vol K > k ·2d. By Generalized Blichfeldt’s Theorem (Lemma 3.4)
we can find k + 1 pairwise different points x0, . . . ,xk ∈ 1

2
K such that xi − xj is a lattice point for

all i, j.
Assume that ∥x0∥ ≤ ∥xi∥ for all i and let yi := x0 − xi for 1 ≤ i ≤ k. Then yi ̸= yj for i ̸= j and

1Draisma, McAllister, and Nill, Lattice width directions and Minkowski’s 3d-theorem.
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yi ∈ K ∩Zd \ {0}. By our choice of x1 we also know that

⟨xi,yi ⟩ = ⟨xi,x0 − xi ⟩ = −∥xi∥2 + ⟨xi,x0 ⟩ ≤ −∥xi∥2 + ∥xi∥ ∥x0∥ ≤ 0

with equality in the second but last inequality if and only if xi is a scalar multiple of x0. The last
inequality follows from our choice of x0. If x0 and xi are linearly independent, then they cannot
have the same length, so in fact we can conclude

⟨xi,yi ⟩ < 0 .

Hence, all points ±yi are different, and together with 0 we obtain the required number of points.
They need not be linearly independent. For this, consider e.g. the rectangle with vertices (±12,±2k)
with volume 4k = k · 22.

3.5. Let ωd be the area of the (d− 1)-dimensional unit sphere Sd−1 := {x : ∥x∥ = 1 }, and Vd the
volume of the unit ball.
Consider any 1-dimensional function f : (0,∞) → R defined on the positive axis. We consider this
as a radially symmetric function on Rn, and we want to integrate f(|x|) over Rd. Writing this in
spherical coordinates we obtain∫︂

Rd

f(∥x∥) dx = ωd ·
∫︂ ∞

0

f(r)rd−1dr , (B.6)

where ωd is the area of the unit sphere, as long as the integrals are well defined. Integrating the
function f that is 1 for r ∈ (0, 1) and 0 for r ≥ 1 we obtain

Vd = dωd

Hence, it would suffice to compute ωd in order to obtain Vd. We can obtain ωd if we can find a
function f for which we can compute both integrals in (B.6) explicitely.
A good candidate for this is certainly a function f for the computation of the right hand side is
certainly one that splits into a product of functions that each depend on one coordinate only,

f(∥x∥) =

d∏︂
i=1

ϕi(xi) .

Radial symmetry of f implies that all ϕi are the same. A good choice for such a function is the
Gaussian ϕ(x) = e−x2

, because we know the Guassian integral∫︂ ∞

−∞
e−x2

dx =
√
π .

This gives

∫︂
Rd

f(|x|) dx =

∫︂
Rd

e−∥x∥2 dx =

∫︂
Rd

d∏︂
i=1

e|xi|2 dx = π
d/2

Using the substritution t = r2 we compute the right hand side of (B.6) as∫︂ ∞

0

e−r2rd−1dr =
1

2

∫︂ ∞

0

td−22e−tdt =
1

2
Γ

(︃
d

2

)︃
,

where Γ is the Γ-function. From this we compute

ωd :=
2π

d/2

Γ
(︁
d
2

)︁ .
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and thus, using d
2
· Γ
(︁
d
2

)︁
= Γ

(︁
d
2
+ 1
)︁
,

Vd =
ωd

d
=

2π
d/2

d · Γ
(︁
d
2

)︁ =
π

d/2

Γ
(︁
d
2
+ 1
)︁

We need the following two relations for the Γ-function. For each integer n

Γ(n) = (n− 1)! Γ

(︃
n+

1

2

)︃
=

√
π

2n

∏︂
0≤2i≤d

(d− 2i) .

Using these we obtain

Vd =
π⌊d/2⌋2⌈

d/2⌉∏︁
0≤2i≤d(d− 2i)

.

3.6. (i) This is clear in dimension 1.
(ii) In dimension 2 let b1, b2 be linearly independent lattice vectors that realize λ1 and λ2. They

span a sublattice Γ of Λ. Assume they differ, then there is a lattice point x contained in
the fundamental parallepiped spanned by b1 and b2, i.e. there are 0 ≤ µ1, µ2 < 1 with
x = µ1b1 + µ2b2. If µ1 + µ2 > 1, then

y := b1 + b2 − x = (1− µ1)b1 + (1− µ2)b2

is another lattice point. We set η1 := 1 − µ1 and η2 := 1 − µ2. Then 0 ≤ η1, η2 and
η1 + η2 ≤ 1. So either x or y is contained in the triangle spanned by 0 and b1,b2, say x.
Thus, x is shorter than at least one of b1 and b2. This must be b2 as b1 is a shortest lattice
vector. But then ∥x∥ < λ2 and b1, x are linearly independent. This is a contradiction to the
coice of b2.

(iii) Let bi := 2ei for 1 ≤ i ≤ d−1 and bd := e1+· · ·+ed. Then y = 2bd−bd−1−· · ·−b1 = 2ed.
For d ≥ 5 the vector b1 is a shortest lattice vector (consider any integer linear combination
of the bi and show that it can have length at most 2 if and only if one of the coefficients of
bj for j ≤ d− 1 is 1 and all others are 0). Hence, λ1 = 2 and thus λi ≥ 2 for 1 ≤ i ≤ d. But
bj for j ≤ d− 1 and y have length 2 and are linearly independent, so λi = 2 for all i.
But the lattice spanned by b1, . . . ,bd−1,y is (2Z)d and Λ is a sublattice of index 2 in this
lattice.

3.7. We prove this by induction. The claim is trivial for d = 1, so we assume we know the result for
dimensions up to d− 1.
The bi are a basis, so we can write v as

v =
d∑︂

i=1

ξibi

for some ξi ∈ R. Choose integers ai such that ai − ξi| ≤ 1/2 for 1− ≤ i ≤ d. Let L :=
lin(b1, . . . ,bd−1) be the subspace spanned by the first d− 1 basis vectors, Λ′ the lattice spanned
by b1, . . . ,bd−1 and let v′, b′

d be the orthogonal projections of v and bd onto L. Then

v′ =

d−1∑︂
i=1

ξibi + ξdb
′
d

and v − v′ = ξd(bd − b′
d.

Note that v′ − adb
′
d ∈ L. By assumption, there is some u′ ∈ Λ′ such that

⃦⃦
(v′ − adb

′
d)− u′⃦⃦ − min

w′∈Λ′

⃦⃦
(v′ − adb

′
d)−w′⃦⃦ ≤

√
d− 1

2
µ .
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Now b′
d and (bd − b′

d) are orthogonal by construction, so⃦⃦
b′
d

⃦⃦2
+
⃦⃦
bd − b′

d

⃦⃦2
= ∥bd∥2

and thus ⃦⃦
bd − b′

d

⃦⃦2
= ∥bd∥2 −

⃦⃦
b′
d

⃦⃦2 ≤ ∥bd∥2 ≤ µ2 .

So ⃦⃦
v − v′ − ad(bd − b′

d)
⃦⃦

= |ad − ξd|
⃦⃦
bd − b′

d

⃦⃦
≤ 1

2
µ . (B.7)

Further, (v′ − adb
′
d)− u′ ∈ L and thus orthognal to v − v′ − ad(bd − b′

d), so⃦⃦
v − adbd − u′⃦⃦2 =

⃦⃦
v − v′ − ad(bd − b′

d)
⃦⃦2

+
⃦⃦
(v′ − adb

′
d)− u′⃦⃦2

≤ 1

4
µ2 +

d− 1

4
µ2 =

d

4
µ2 . (B.8)

Taking the square root gives the desired inequality for the lattice point ū := adbd + u′

In case of equality we must have ∥ū− v∥ = minu ∈ Λ ∥u− v∥ and equality in (B.8), hence also

⃦⃦
v − v′ − ad(bd − b′

d)
⃦⃦2

=
1

4
µ

⃦⃦
(v′ − adb

′
d)− u′⃦⃦2 =

d− 1

4
µ .

By assumption the vectors b1, . . . , vbd−1 are pairwise orthogonal and ∥bi∥ = µ for 1 ≤ i ≤ d− 1.
We conclude ∥bd∥ = µ and ∥b′

d∥ = 0, so vbd is orthogonal to all other bi. Again by assumption,
the coefficients ξi for 1 ≤ i ≤ d− 1 are half-integers, and from the equality in (B.7) we conclude
that also ξd is a half-integer.
Conversely, with these conditions we clearly have equality.

3.8. We use induction. This is clear for d = 1, so assume we know the result for dimension d− 1 ≥ 1.
Let b1, . . . ,bd be linearly independent lattice vectors with ∥bi∥ = λi. Let L := lin(b1, . . . ,bd−1).
This is a (d− 1)-dimensional space and Λ′ := L∩Λ is a lattice of rank d− 1 in L (since it contains
b1, . . .

′ bd−1). By assumption, Λ′ has a basis c1, . . . , cd−1 of lattices vectors such that ∥ci∥ = λi.
With cd = bd we have another (vector space) basis c1, . . . , cd of lattice vectors. Let Γ be the lattice
spanned by these vectors.
If the claim fails, then there is v ∈ Λ \ Γ. By Problem 3.7 we can find u ∈ Γ such that

∥vv − u∥ ≤
√
d

2
λd .

Then v−u ∈ Λ\Γ, and, asΛ′ is contained in Γ, also v−u ̸∈ L. This implies that c1, . . . , cd−1,v−u
are linearly independent lattice vectors, and

λn ≤ ∥v − u∥ ≤
√
d

2
,

where the first inequality follows as otherwise v− u would have been part of the original selection
of vectors.
This implies d ≥ 4, so for d = 2, 3 we have proved the claim. For d = 4 we have equality in
Problem 3.7. Hence, the ci are pairwise orthogonal, λ1 = · · · = λd, and any v ∈ Λ \ Γ has a
representation

v =
∑︂

(ai +
1

2
)ci

for some integers a1, . . . , ad. This shows that Λ is generated by c1, c2, c3,
1
2
(c1 + c2 + c3 + c4)

and the latter has length λ4. This proves the claim.
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3.9. Let vi, 1 ≤ i ≤ d be the vectors of Proposition 3.9. Then

λi = min (∥v∥ : v ∈ Λ \ lin (v1, . . . ,vi−1)) ,

with lin(∅) = {0}. We can thus take any lattice basis b1, . . . ,bd with

vi ∈ Zb1 + · · · + Zbi .

for 1 ≤ i ≤ d.

3.10. C is a skew cross polytope with vertices

± 1

λ 1
v1, . . . ,±

1

λ d
vd .

Consider the simplex

S := conv
(︃

1

λ1
v1, . . . ,

1

λd
vd

)︃
.

The volume of S is

vol S =
1

d!λ1 · · ·λd
det Γ

Hence, the volume of C is

vol C =
2d

d!λ1 · · ·λd
det Γ .

Now consider the lower bound in Minkowski’s Second Theorem (Theorem 3.11). By construction,
C ⊆ K. The lattice Γ is a sublattice of Λ, so det Λ ≤ det Γ and we obtain

λ1 · · ·λd vol K ≥ λ1 · · ·λd vol C

≥ λ1 · · ·λd · 2d 1

d!

det Γ

λ1 · · ·λd

≥ 2d
1

d!
det B ≥ 2d

1

d!
det Λ .

The right and left hand side of this chain of inequalities are the lower bound in the theorem.

3.12. Choose q < p such that q2 ≡ 1 mod p using Euler’s criterion for −1 and (−1)
1
2
((4k+1)−1) =

(−1)2k = 1 ≡ 1 mod p.
Now consider the lattice Λ spanned by

b1 :=
[︁
1
q

]︁
b2 :=

[︁
0
p

]︁
.

with determinant det Λ = p.
Let Bd r0 be the open ball around the origin with radius r =

√
2p. Then K is centrally symmetric,

convex, and

vol K = π · r2 > 4 · p = 22 det Λ ,

so by Minkowski’s First Theorem (Corollary 3.3) there exists a lattice point

x := [ ab ] = µ1b1 + µ2b2 ̸= 0 .
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We compute

a2 + b2 = µ2
1 + (µ1q + µ2p)

2

≡ µ2 + µ2q2 mod p

≡ µ2(q2 + 1) mod p

≡ µ2(11) mod p

≡ 0 mod p .

Thus, p divides a2 + b2. Further, x ∈ K implies a2 + b2 < 2p, so the only choice left is a2 + b2 = p.

3.14. The open balls in the definition of the packing radius contain exactly one lattice point, their
center v, and they are centrally symmetric around v. Translating v into the origin results in a
centrally symmetric convex body containing only 0 in the interior. By Minkowski’s First Theorem
(Corollary 3.3) the volume is bounded. Hence, the radius must be finite.
Now let v be a shortest lattice vector of length λ1. Then ϱ(Λ) ≤ 1/2λ1 as otherwise the balls around
0 and v intersect.
On the other hand, if ϱ(Λ) < λ1, then there are u,v ∈ Λ with u ̸= v such that the open balls of
radius 1/2λ1 around u and v intersect. We can assume that u is the origin, so vv ∈ Λ \ {0}. Then
v ∈ B◦

λ1
(0), so ∥v∥ < λ1. This is a contradiction.

3.16. The centrally symmetric cube C with sidelength 2(det Λ)
1/d is compact and has volume 2n det Λ.

Minkowski’s First Theorem (Corollary 3.3) implies that there is a nonzero lattice point x in C. All
its coordinates are bounded by (det Λ)

1/d.

3.17. The lattice points of Λ0 are a subset of the lattice points of Λ. Hence, if balls of radius r around
points of Λ do not intersect, then they also do not intersect if we only consider those around the
points of Λ0. This proves the first inequality.
For the second inequality observe that the packing radius of µΛ is µϱ(Λ) for any lattice, and that
|Λ/Λ0|Λ is a sublattice of Λ0 by Problem 2.22. Hence, we can use the first inequality.

3.20. Let b1, . . . ,bd be a lattice basis and x ∈ Rn. Then there are η1, . . . , ηd such that

x =

d∑︂
i=1

ηibi

We set y :=
∑︁d

i=1{ηi}bi. Then x − y is a lattice point and d(x,Λ) = d(y,Λ). The point y is
contained in the fundamental parallelpiped. This is a bounded set, so there is a finite ν > 0 such
that ∥u∥ < ν for any point in this set. So in particular d(x,Λ) = d(y,Λ) < ν.
The argument also shows that it suffices to consider d(x,Λ) for points in the closure of the
fundamental parallelpiped. This is a compact set, so the maximum is attained.

3.23. The packing radius is at least 1
2
λd by Lemma 3.22, so there must be a point in Rd that has at least

distance 1
2
λd from any lattice point.

3.25. We know λ1 = 2ϱ and 2µ∗ ≥ λd∗, so λ1λ
∗
d ≥ 4ϱµd ≥ 1.

3.28. As K is full dimensional there is some interior point x ∈ K. Let ε > 0 so that Bε(x) ⊆ K. Then
the width of K w.r.t. any lattice vector a ∈ Λ⋆ is at least 2ε ∥a∥.
Choosing any nonzero a ∈ Λ⋆ we obtain an upper bound W for the lattice width. Hence, any
lattice vector such that width(K;a) ≤ W has length at most W

2ε
. This is a compact set. So the

infimum exists and is actually a minimum attained by some a ∈ Λ⋆.

3.29. Let v ∈ Λ⋆ be a vector of length λ1 in the norm defined by (K −K)⋆. Then

v(x) ≤ λ1 for all x ∈ K −K

Now

widthΛ(K) = min
a∈Λ⋆

(︃
max
x∈K

a(x)− min
y∈K

a(y)

)︃
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Let x0,y0 ∈ K be the vectors realising max and min for v. Then x0 − y0 ∈ K −K and

λ1 ≥ v(x0 − y0) = v(x0) − v(y0) = max
x∈K

(v(x))− min
y∈K

(v(y)) .

Hence, the width is bounded by λ1. Conversely, if w produces a smaller width, then w is a vector
in Λ⋆ with length smaller than λ1 in the norm of (K −K)⋆.

3.30. The claim about lattice polytopes is obvious.
For the second claim observe that widthλ(()iCi) = λi widthC(()i), so we can assume λi = 1 for
all i.
Let vi Λi be a lattice direction for which widthC(()i) is obtained. Then

widthΛ(C) ≤ width(0,...,0,vi,0,′ldots,0)(C) = widthvi(Ci) = widthΛi(Ci) ,

so

widthΛi(C) ≤ min
i

(widthΛi(Ci)) .

For the opposite direction we take and lattice functional

w = (w1, . . . ,wm) ∈ Λ \ {0} =
⨁︂
i

Λi \ {0} .

We want to show that widthw(C) ≥ widthΛi(Ci) for some i. For this, let us choose any i with
wi ̸= 0. We compute

widthw(C) = max
x,y∈C

(|⟨w,x ⟩ ⟨w,y ⟩|)

≥ max
xi,yi∈Ci

(|⟨w, (0, . . . , 0,xi, 0, . . . , 0) ⟩ ⟨w, (0, . . . , 0,yi, 0, ..., 0) ⟩|)

= widthwi(Ci) ≥ widthΛ(Ci) ≥ min widthΛ(Ci) .

For the last part assume that intC ∩Λ ̸= ∅ and let x be a lattice point in the interior of C. We can
write x as

x = (µ1x1, . . . , µmxm) for µi ≥ 0, xi ∈ intCi and
∑︂
i

µi = 1 .

As x ∈ Λ we have λiµixi ∈ Λi. As intCi does not contain a lattice point we see that λiµi > 1. But
this implies ∑︂

i

1
λi

>
∑︂
i

µi = 1 .

which contradicts our assumption.

B.3. Solutions for The Shortest Vector Problem (Chapter 4)

4.2. By the definition of a weakly reduced basis we have

bk = wk +

j−1∑︂
k=1

λjkwj
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for coefficients |λjk| ≤ 1/2. The wj are pairwise orthogonal, so taking the norm implies

∥bk∥2 = ∥wk∥2 +
k−1∑︂
j=1

λ2
jk ∥wj∥2 ≤ ∥wk∥2 +

1

4

k−1∑︂
j=1

∥wj∥2 .

This proves the first inequality.
For the second note that using (4.8) we get

∥wk∥2 +
1

4

k−1∑︂
j=1

∥wj∥2 ≤ ∥wk∥

(︄
1 +

1

4

k−1∑︂
j=1

2k−j

)︄

= ∥wk∥2
(︃
1 +

1

4
· 2k−2

)︃
= ∥wk∥2

(︃
1

2
+ 2k−2

)︃
.

For the last we observe that
(︁
1
2
+ 2k−2

)︁
≤ 2k−1. So the previous inequality implies

∥bk∥2 ≤ 2k−1 ∥wk∥2 .

Again using (4.8) and taking square roots gives the result.

4.3. Let x =
∑︁d

i=1 µibi for integer coefficients µi ∈ Z. Let m be the largest index so that µi ̸= 0.
By construction, ⟨bi,wm ⟩ = 0 for all i < m, so

∥wm∥2 ≤ |µm| ∥wm∥2 = |µm||⟨bm,wm ⟩| = |⟨
d∑︂

i=1

µibi,wm ⟩|

≤

⃦⃦⃦⃦
⃦

d∑︂
i=1

µibi

⃦⃦⃦⃦
⃦ · ∥wm∥ = ∥x∥ ∥wm∥ .

We can devide by ∥wk∥ to get ∥wk∥ ≤ ∥x∥. Using this for x = vj andm = jk gives the first claim.
For the second claim note that k ≤ jk, as otherwise v1, . . . ,vk ∈ lin(b1, . . . ,bk−1), contrary to
the assuption that these vectors are linearly independent.
Now we use Problem 4.2 to bound

∥bj∥ ≤ 2
(jk−1)/2 ∥wjk∥ ≤ 2

(d−1)/2 ∥vj∥ ≤ 2
(d−1)/2λi .

The upper bound of the third claim follows from the second. For the lower bound observe that
λi ≤ max1≤j≤i ∥bj∥ as b1, . . . ,bi are linearly independent. Further ∥bj∥ ≤ 2

(i−1)/2 ∥wi∥ by
Problem 4.2 and with ∥wi∥ ≤ ∥bi∥ we obtain the lower bound.

4.5. Recall again that an ellipsoid is the image of a ball under some linear map ψ. We can find an
orthonormal basis u1, . . . ,ud of eigenvectors of the matrix AAT corresponding to ψ (in some basis)
with eigenvectors a21, . . . , a2d, such that

E := E(a1, . . . ad) := ψ (B1(0)) =

{︄
x ∈ Rd :

d∑︂
i=1

1

a2i
⟨x,ui ⟩2 ≤ 1

}︄
.

Here we have assumed that ψ is a bijection. The eigenvalues of AAT are positive as the matrix is
symmetric and positive semidefinite. If v1, . . . ,vd are the eigenvetors of ATA, then this has the
same eigenvalues a21, . . . , a2d and ui =

1
ai
Avi. Hence, for x =

∑︁d
i=1 xivi with xi = ⟨x,vi ⟩ we

have y = Ax =
∑︁d

i=1 yiaiui and

x21 + · · ·+ x2d ≤ 1 iff 1

a21
y21 + · · ·+ 1

a2d
y2d ≤ 1 .

212



Ve
rs
io
n
of

Se
pt
em

be
r2

,2
02

2

Its volume is

vol E = vol Bd ·
d∏︂

i=1

ai

Let b1, . . . ,bd ∈ Λ \ {0} be vectors such that λi = ∥bi∥ and let b∗
1, . . . ,b

∗
d be the Gram-Schmidt

orthgonalization. We keep the order of the vectors.
We consider the ellipsoid

E :=

{︄
x ∈ Rd :

d∑︂
i=1

1

λ2
i

⟨x,b∗
i ⟩2

∥b∗
i ∥

2 ≤ 1

}︄
.

We want to show that the interior of E contains only one lattice point, namely the origin. Let
x ∈ Λ \ {0}, and let j be such that

λj ≤ ∥x∥ ≤ λj+1

if such a j exists, and j = d otherwise. Then clearly x ∈ lin(b1, . . . ,bj) = lin(b∗
1, . . . ,b

∗
j ), as

otherwise we would have chosen x instead of bj+1 if j < d. Now

d∑︂
i=1

1

λ2
i

⟨x,b∗
i ⟩2

∥b∗
i ∥

2 ≥ 1

λ2
j

j∑︂
i=1

⟨x,b∗
i ⟩2

∥b∗
i ∥

2 =
1

λ2
j

∥x∥2 ≥ 1 .

Hence, x ̸∈ E . Now E is a centrally symmetric convex body, so from Minkowski’s First Theorem
(Corollary 3.3) we conclude

2d det Λ ≥ vol E = vol Bd ·
d∏︂

i=1

λi ≥
(︃

2√
d

)︃d d∏︂
i=1

λi ,

where we have approximated the volume of the ball with the cube [−1/
√
d, 1/

√
d]d contained in Bd.

4.8. We can choose linearly indepenent lattice vectors v1, . . . ,vd ∈ Λ such that ∥vi∥ = λi for the
successive minima λ1, . . . , λd of Λ. This may not be a lattice basis, but as the vectors are linearly
independent they span a sublattice Γ of Λ. We clearly have that

det Λ ≤ det Γ .

The orthogonality defect is defined via

MΓ :=
1

det Γ

d∏︂
j=1

∥vj∥ .

and Minkowski’s Second Theorem (Theorem 3.11) states that

λ1 · · ·λd ≤ 2d detΛ

Combining this gives the desired result.

4.9. We may assume that a is primitive.
We consider the dual basis b∗

i in Λ⋆, set L∗ := lin{a}, and project the basis into a generating
set b∗

1, . . . ,b
∗
d of the lattice Λ⋆/L inside U :=

(︁
Rd)

)︁⋆
/L. We can use the Hermite normal form

algorithm to compute a basis c2, . . . , cd of U . Let c2, . . . , . . . , cd be preimages of this basis, via

ci =
∑︂

µijb
∗
i if ci =

∑︂
µijb

∗
i

for some µij ∈ Z. Then a, c2, . . . , cd is a basis of Λ⋆, The dual basis a∗, c∗2, . . . , c
∗
d is a lattice basis

of Λ. By construction, c∗2, . . . , c∗d must span L.
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4.10. Here is one option to prove this.
We can extend the set of vectors b1, . . . , vbk to a basis of Rd with vectors ek+1, . . . , ed. We may
assume that the latter are orthogonal to any bi and have unit length. Let Z be the zonotope
spanned by b1, . . . ,bk, ek+1, . . . , ed. It has Z as a k-dimensional face and

vol Z = vol Z .

If B is the matrix with columns b1, . . . ,bk, ek+1, . . . , ed, then B
t
B has BtB as a minor in the

upper left corner, 1 on the remaining diagonal and 0 in all other entries. Hence

det B
t
B = det BtB .

But detBt
B = (det B)2 = vol Z, and the claim follows.

B.4. Solutions for Reduced Bases (Chapter 5)

B.5. Solutions for Integer Programming (Chapter 6)

6.3. One example is the system of inequalities∑︂
i∈I

xi −
∑︂
i̸∈I

xi ≤ |I| − 1 for I ⊆ { 1, . . . , d }

of 2d inequalities.

B.6. Solutions for The Closest Vector Problem (Chapter 8)

8.6. We show first that the translates of F cover the space. Let v ∈ Rd. We want to show that v−u ∈ F
for some u ∈ Λ.
Let v′ := π(v). As FΓ is a fundamental domain, we have u′ ∈ Γ and c′ ∈ FΓ such that

v′ = u′ + c′

Pick any u ∈ π−1(u′) ∩ Λ. Then

v1 := v − v′ ∈ lin(b1) and u1 := u− u′ ∈ lin(b1) ,

so there are λ ∈ Z and µ ∈ [0, 1) such that

v1 − u1 = (λ+ µ)b1 .

We can write

v = v′ + (v − v′) = u′ + c′ + v1

= u + (u′ − u) + c′ + v1 = u − u1 + c′ + v1

= u + c′ + (λ+ µ)b1 = (u+ λb1) + (c′ + µb1) .

The left summand in the last term is in the lattice, and the right is in F.
We still need to prove that different translates of F do not intersect. So assume there is u,v ∈ Λ
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with u ̸= v such that there is x ∈ u+ F∩v + F. Then

π(x) ∈ π(u) + FΓ ∩ π(v) + FΓ .

As π(u), π(v) ∈ Γ and FΓ is a fundamental domain, we know that π(u) = π(v), so v − u = λb1

for some λ ∈ Z.
Further, there are 0 ≤ µ1, νi < 1 for 1 ≤ i ≤ d such that

x = u+
∑︂

µiwi = v +
∑︂

νiwi .

As w2, . . . ,wd is the Gram-Schmidt basis in L we know that µi = νi for i ≥ 2, and thus

λb1 = (µ1 − ν1)w1 = (µ1 − ν1)b1 .

But −1 < µ1 − ν1 = λ < 1 and λ ∈ Z, so λ = 0, So u = v.

B.7. Solutions for Cuts and Lattice Free Polytopes (Chapter * 11)

* 11.3. Let K = {x : ⟨ai,x ⟩ ≤ βi for 1 ≤ i ≤ m }. We have rec K ⊆ recK − C.
Let x := y−c ∈ int(K−C) for some y ∈ K and c ∈ C, and choose ε > 0 such thatBx(ε) ⊆ K−C.
Let

δi := max (⟨ai, z ⟩ : z ∈ Bx(ε)) for 1 ≤ i ≤ m.

Then δi >∞ as Bx(ε) is finite, and for each i we can find ki such that ⟨ai, kc ⟩ < βi − δi, and let
k := max(ki). Then

⟨ai, z+ kc ⟩ = ⟨ai, z ⟩ + ⟨ai, kc ⟩ ≤ δi + βi − δi = βi .

and hence, Bx+kc(ε) = Bx(ε) + kc ⊆ K. So x+ kc ∈ int K and

x = (x+ kc) − (k + 1)c ∈ int(K) − C .

B.8. Solutions for Convexity (Appendix A)

A.5. The matrix A2 is positive definite, so there isM such that A2 =M2. Then

(det(A1 +A2))
1/d = (det(M +A2))

1/d = (det M)
2/d (︁I+M−1A2M

−1)︁1/d
and

(det A1)
1/d + (det A2)

1/d = (det M)
2/d
(︂
1 +

(︁
det(M−1A2M

−1)︁1/d)︂ .
Let B :=M−1A1M

−1. Then it suffices to show that

(det(I+B))
1/d ≥ 1 + (det B)

1/d (B.9)

with equality if and only if B is a positive multiple of I. Let λ1, . . . , λd be the eigenvalues of B.
Then (B.9) is equivalent to

(︄
d∏︂

i=1

(1 + λi)

)︄1/d

≥ 1 + (λ1 · · ·λd)
1/d (B.10)
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with equality if and only if λi = λ for all i and some positive λ. Let

σk := σk(λ1, . . . , λd) :=
∑︂

1≤i1<···<ik≤d

λi1 · · ·λik .

Then

d∏︂
i=1

(1 + λi) = 1 + σ1 + · · · + σd .

The inequality bewtween the arithmetic and geometric mean implies

σk =

(︄
d

k

)︄ ∑︂
1≤i1<···<ik≤d

1(︁
d
k

)︁λi1 · · ·λik

=

(︄
d

k

)︄ ∏︂
1≤i1<···<ik≤d

(λi1 · · ·λik )
1/

(︂
d
k

)︂

=

(︄
d

k

)︄
(λi1 · · ·λid)

(︂
d−1
k−1

)︂
/
(︂
d
k

)︂

=

(︄
d

k

)︄
(λi1 · · ·λid)

k/d

with equality if and only if

λi1 · · ·λik = λj1 · · ·λjk

for all 1 ≤ i1 < · · · < ik ≤ d and 1 ≤ j1 < · · · < jk ≤ d, so if and only if λi = λ for some λ. This
gives

(︂
1 + (λ1 · · ·λd)

1/d
)︂d

=
∑︂

k = 0d
(︄
d

k

)︄
(λi1 · · ·λid)

k/d

= 1 + σ1 + · · · + σd =

d∏︂
i=1

(1 + λi)

with equality if and only if λi = λ for all i and some λ > 0. This is equivalent to (B.10).

A.6. Let E be an ellipsoid in the cube C. We can use a linear transformation T to map it into the unit
sphere. The map sends C into a parallelepiped enclosing the unit ball.
The map T preserves the volume ratio between the ellipsoid and the cube. Hence, instead of
maximising the volume of E we can find parallelepipeds P enclosing the unit ball that minimize
the volume.
We prove this by induction. In dimension 1 there is nothing to prove. SO assume we know this for
dimensions up to d− 1. Choose one of the facets F of P . it has an opposite parallel facet F ′ at
distance 2. Let Q be the intersection of P with the hyperplane parallel to F through the origin.
Then Q has distance 1 from F and F ′, and the volume of P is twice the volume of Q. Q encloses
a unit ball in dimension d − 1, but its facets may not touch. Yet, by assumption, only the cube
[−1, 1]d−1 in lin Q minimizes the volume, so Q must be this cube. This, however, implies that all
facets of P defining facets of Q must be tangent planes to the sphere at Q, so also P must be the
cube [−1, 1]d.

A.7. We can map the simplex into Rd with some orthogonal map, and translate, so that the center of
the maximal volume ellipsoid is the orign.
The maximum volume ellipsoid E is unique inside the simplex, so it must have (at least) the same
symmetries as the simplex, which is the group Sd. Assume that E has a principal direction a of
maximal length ℓ, and at least one, that has a smaller length.
Any orthogonal map maps principal directions onto such and preserves the length, so if there are
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k < d directions of the ℓ, then the symmetry group of E is a subgroup of Sk. This implies k = d
and all principal directions of E have the same length. Hence, E is a ball.
The other claims follow.
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