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Abstract

This paper discusses issues related to the progress in computational integer program-
ming. The first part deals with the question to what extent computational experiments
can be reproduced at all. Afterwards the performance measurement of solvers and their
comparison are investigated. Then academic progress in solving mixed-integer pro-
gramming at the examples of the solver SIP and its successor SCIP is demonstrated.
All arguments are supported by computational results. Finally, we discuss the pros
and cons of developing academic software for solving mixed-integer programs.

1 Introduction
The field computational integer programming deals with the computational aspects of
integer and combinatorial optimization. Ever since the paper of Dantzig, Fulkerson,
and Johnson [33] it has been clear that one main goal would be to actually compute
(optimal) solutions and that practical considerations would have a major influence on
the evolution of this field.

This article discusses the developments that have been made in the last 20 years
with and through academic research and software. The main point is to highlight
important issues that arise when implementing, testing, and benchmarking mixed-
integer programming (MIP) software. For concreteness, we use the MIP-solvers SIP
and SCIP as examples, see [67] and [3, 71]. Consequently, this article is written from
the personal perspective and experience of the authors, which allows us to present
more details compared to just a general overview. We believe that many parts will
find their analogies with other solvers (both commercial and academic). All three
authors were involved in the development of SCIP or its ancestor SIP and were or are
still working at the group of Martin Grötschel at the University of Augsburg and at
the Zuse Institute Berlin (ZIB). In fact, the authors are lucky to have lead the integer
programming group for some time.

One main motivation for this article is the growing importance of computer driven
experiments and how to draw scientifically meaningful conclusions from them in the
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area of computational integer programming in particular. Indeed, it seems that the
publication standards of papers involving computations have not yet been fully fixed
– in contrast to other physical sciences that are based on experiments. Actually,
Hooker [49] called for a new paradigm to evaluate experimental results obtained on
the computer, and Greenberg [42] already discussed standards of publication – both,
from our point of view, without much effect. Our article tries to bring (back) into
focus several issues that one has to be aware of in the context of computational integer
programming.

It seems to be important to note that most issues that we discuss are not primar-
ily of a mathematical nature, but they are necessary to come to scientifically sound
conclusions when evaluating mathematical ideas. Clearly, these topics are at the in-
tersection of different fields like computer science, operations research, engineering,
and mathematics. Consequently, researchers from all these fields – mathematicians,
in particular – have to be aware of the loopholes, traps, and organizational issues
that are related to such computations. We see our article as one contribution in this
direction.

We explicitly mention mathematicians here, because the authors have heard sev-
eral times throughout their careers that implementation would be an issue for engi-
neers/computer scientists and should not be performed by mathematicians. We do
not agree and believe in the interdisciplinary viewpoint stated above.

We begin with a brief historical review of the developments during the last two
decades related to SIP and SCIP in order to put things into a perspective and – in
a sense – to document its achievements. Then we discuss the question whether the
computational experiments that have been performed in the past can be reproduced at
all. This is a topic that is often neglected in the literature and that, we think, deserves
more attention. The next section deals with our experiences of benchmarking MIP-
solvers. In the final section, we discuss issues related to the development of academic
software in this context.

2 Historical Overview
This section briefly reviews the last 20 to 30 years in computational integer program-
ming; it focuses on academic developments, and, in particular, those at ZIB.

As mentioned above, we decided to largely neglect other (academic) software de-
velopments in this article. The following references give more balanced surveys on
the available software: Atamtürk and Savelsbergh [17], as well as Linderoth and
Lodi [61], give an overview of MIP-solvers, while Linderoth and Ralphs [62] focus
on non-commercial MIP-solvers. For an overview of linear programming (LP) solvers,
see Fourer [39]. More details and a discussion of possible future research topics can
be found in the survey of Lodi [64].

2.1 General Developments starting in the 1980s
Possibly the first major step for the development of integer programming solvers was
the seminal paper by Crowder, Johnson, and Padberg [31], which introduces many
concepts that are still part of modern MIP-solvers. In the context of combinatorial
optimization, the development of branch-and-cut (B&C) algorithms turned out to be
very influential, based, e.g., on the article by Grötschel, Jünger, and Reinelt [43] on
the linear ordering problem. From a computational perspective, the paper of Padberg
and Rinaldi [70] on the solution of the traveling salesman problem (TSP) was a major
step. Apart from the introduction of many important components like the cut pool,
it also coined the name “branch-and-cut”. At that time it became common to look
for an NP-hard combinatorial problem, investigate its facets, and then implement
a specialized B&C algorithm to solve it. The algorithms consisted of a separation
procedure for the identified problem-specific facets and valid inequalities plus some
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branching scheme.
At ZIB, a large number of specialized B&C solvers were implemented in the late

1990s, e.g., [28, 29, 35, 44, 45, 57, 75], to mention just a few.
People generally implemented their own branch-and-bound framework using one

of the available out-of-the-box LP-solvers like OSL, MINOS, CPLEX, or XPRESS.
General cutting planes like Gomory cuts were not considered to be useful in practice.
For MIP-solving this only changed with the rediscovery of Gomory’s mixed integer
cuts by Balas et al. [18], which made B&C approaches dominant also for MIP-solving.

The main focus of the B&C algorithms for combinatorial optimization was on
separating, and the number of branch-and-bound nodes that had to be enumerated
was relatively small (or the instance could not be solved anyway due to the computer
standards of the time). This fits well with the statement that branching is a sign of
mathematical defeat, which is attributed to Manfred Padberg.

Several general out-of-the-box MIP-solvers like OSL, CPLEX, or XPRESS existed,
but apart from their versatility, these were inferior to the special implemented algo-
rithms.

2.2 MIP-Solving at ZIB
The work of the integer programming group at ZIB started in the early 90s, after
Martin Grötschel had moved to Berlin. Beginning in 1992, Cray Research had funded
a project to develop a general parallel B&C framework to solve large combinatorial
optimization problems. This framework was targeted at the then state-of-the art
distributed memory Cray T3D computer. The project was lead by Christian Hege
and conducted by Roland Wunderling and Martin Grammel. Their assumption was
that the central part of any B&C solver is the simplex algorithm, and therefore the
first goal of the project was to develop a fast parallel distributed memory simplex
algorithm.

When in 1996 Roland Wunderling finished his PhD thesis [76] on the LP-solver
library SoPlex (sequential object-oriented simplex), two things could be concluded:

1. It was possible to write a simplex-based LP-solver that matched the performance
of the commercial implementations at that time.

2. Developing a (distributed memory) parallel simplex-based LP-solver is not an
especially promising idea (see also [26]). The work on the distributed memory
B&C framework ceased even some time before.

One of the main features of SoPlex was the exploitation of the sparsity of the
constraint matrix. In most linear and integer programming problems, the matrix A
is very sparse, see [65]. There are some exceptions in which specialized algorithms
for dense linear algebra computations are needed, see, e.g., [34]; remarkably, this area
never received much attention. Despite the enormous speed-up that linear program-
ming achieved in practice as reported by Bixby [22], there is only a small number of
articles that together seem to contain everything important on how to implement a
simplex based LP-solver: [32, 38, 37, 47, 58, 60, 72, 73].

At the end of the 1990s, the performance of general out-of-the-box MIP-solvers
tremendously improved. One main influencing action was mining the literature, as
Bob Bixby, the founder of CPLEX and Gurobi, called it. At this point a significant
amount of theoretical results, in particular, on cutting planes, had been published that
were not utilized in the out-of-the box (commercial) MIP-solvers. By incorporating
these insights, it was possible to enormously improve the performance of general MIP-
solvers, and for the first time it became hard to beat them by special implementations.
More and more (practical) problems could be modeled and solved directly without
further programming. As the solvers evolved, it became common to use them as
frameworks for specialized algorithms by only extending the basic solver, instead of
implementing a complete B&C algorithm from scratch.
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In 1994, Alexander Martin started to develop the general MIP-solver SIP (Solving
Integer Programs). When he finished his habilitation treatise in 1998, two things could
be concluded:

1. At that time it was possible to write a B&C based MIP-solver that matched
the performance of commercial implementations: SIP was comparable in per-
formance to CPLEX at the time, see [67], although a notable disadvantage was
that it used CPLEX as embedded LP-solver.

2. It became clear that implementing (shared memory) parallel MIP-solvers had
some potential, but proved to be difficult. The reason for this is that the back-
bone of MIP-solvers was (and still is) the (dual) simplex algorithm. Moreover,
one particular problem was the insufficient memory bandwidth of the available
machines.

When Alexander Martin moved to TU Darmstadt in 2000, Tobias Achterberg and
Thorsten Koch continued the work on SIP at ZIB. In particular, it was interfaced with
SoPlex, making SIP completely available in the source code for the first time.

A main component of MIP-solvers are rules to choose the branching variable in
each node of the tree. One key idea is strong branching, which was invented in
the 1990s, see [14, 15, 51]. Before actually branching on some variable, its value is
tested by temporarily fixing the variable to its up and down value and comparing
the resulting LP relaxations. This is obviously time-consuming, but currently the
best choice in terms of the number of branch-and-bound nodes. In 2004, the state-
of-the-art w.r.t. solving time was the so-called pseudo cost branching, an idea that
was already developed in the 70s, see [19, 67, 63], which tries to “learn” from previous
branching decisions and constructs artificial costs of the variables that hopefully reflect
their merit for branching. In 2005, a dynamic combination of both methods, the so-
called reliability branching, was developed, see [8]. A variation of it is still state-of-
the-art, see Achterberg and Berthold [4]. This was a major step forward, since the
main handicap of pseudo cost branching is that, especially in the beginning when the
branching decision is most influential, no additional information is available, and most
infeasible branching was used; this missing information at the beginning is dynamically
supplied by strong branching. As experiments revealed, most infeasible branching does
not perform better than branching randomly.

Around 2003, MIPs were generalized by incorporating concepts from constraint
programming leading to so-called Constraint Integer Programming, see [2] for an exact
definition. This was motivated by an industry project with Infineon on the verification
in chip design. Since it became clear that the basic infrastructure of SIP was very much
tailored towards solving MIPs, Tobias Achterberg began to develop SCIP (Solving
Constraint Integer Programs) as part of his PhD thesis, see [2, 5]. He also extended
SCIP by using SAT solving techniques, e.g., restarts and conflict analysis.

Since then, SCIP has been continuously developed and improved. Apart from the
added functionality with respect to constraint programming, SCIP has been one of the
fastest non-commercial MIP-solvers, see, e.g., Mittelmann [69], and used in numerous
areas – often beyond classical MIP-solving; examples are:
◦ column generation and decomposition of MIPs [40]
◦ constraint programming and conflict analysis [1, 3, 6],
◦ counting solutions [7, 48],
◦ MIP-solver technology [4, 10, 21],
◦ mixed-integer nonlinear programming [27, 74],
◦ pseudo-Boolean optimization [20],
◦ semidefinite programming [16, 66],
◦ symmetries in integer programs [52, 53].
In 2007, the first version of the ZIB Optimization Suite was released, which inte-

grated SCIP as CIP-solver, SoPlex as solver for the LP-relaxations, and Zimpl [55, 54]
as modeling environment. The source codes are freely available for academic usage.
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Thus, a complete state-of-the-art solver environment is available in the source code
for usage, improvement, and teaching.

In 2012, the third major version of the now called SCIP Optimization Suite has
been released. It integrates, for example, a framework for distributed parallel compu-
tations and substantially extended the functionality to solve mixed-integer nonlinear
programs.

However, the size of the suite (altogether about 800,000 lines of code) also demon-
strates that computational integer programming has clearly evolved beyond the point
where an individual can just sit down and implement a state-of-the-art solver as a
PhD thesis. A large number of complex and involved components are needed, and
their integration is a major issue. We will discuss this further in Section 6.

When looking back over the last 25 years of work on the topic, the question that
comes up is How much progress has been made? There is the well-known article by
Bixby [22] that determines at least a million times speed-up for linear programming
during 15 years and an article by Achterberg and Wunderling [11] investigating the
improvements in MIP solving. Can we make similar conclusions regarding (academic)
integer programming? To answer this question we have to compare the performance
of different MIP solvers over time. But in order to compare results, they have to be
available or at least reproducible, an issue addressed in the next section. The question
on how to compare results is then discussed in Section 4.

3 Reproducibility of Computational Results
One of the foundations of scientific research is that experiments should be reproducible.
The key question is what kind of reproducibility one actually requires. This generally
varies over different natural sciences. The results of an experiment reproduced by
independent researchers with the same or similar material and experimental set-up
are generally accepted, where the degree of agreement of the results depends on the
field. However, this is complicated in such cases when the investigated material is
destroyed during measurements as it may happen in biology, for instance. In areas
that use computers to perform experiments reproducibility has been discussed for
some time, see, e.g., [77, 68]. Clearly, this is highly relevant for computational integer
programming. It seems, however, that we have not yet reached a generally accepted
agreement on the kind of reproducibility that is needed or wanted. One guideline
would be that at least the same/similar conclusions could be drawn from similar
experiments - a statement that must be made more precise. In fact, one goal of
this section is to provide an example from computational integer programming that
illustrates the difficulties of reproducibility in this area.

There are four basic options for reproducing results of an algorithmic idea published
in the literature:
◦ use the published results;
◦ run an old code on old machines;
◦ recompile and run an old code on new machines, possibly using new libraries;
◦ reimplement the published method.

Clearly, every option has severe drawbacks: Assuming that the new code is run on a
new computer it is obviously very difficult to compare running times across different
machines. (We do not know of any computational experiment with a new algorithm
that has been run on purpose on a much older machine.) While this might suffice to
get a very crude estimation, there is one major obstacle to this approach: The sample
sizes especially of the older articles are too small for today’s standards. As it can
be seen in [11], one needs several hundred and more instances to actually be able to
measure smaller performance changes. Thus, we actually need to run the published
algorithm on more instances than have been published in order to derive a sound
comparison. Running an old code on old or new machines comes with complicated
technical problems, as we shall illustrate below. This leaves us to reimplement the
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published method. But this last option is often practically too time consuming. One
issue is that a reimplementation does not provide any scientific merit. Moreover, it
moves the burden of supplying a good implementation of an algorithmic idea to the
one that is performing the comparison. If the old idea performs badly, it might be
due to a bad implementation.

We do not have good solutions for these issues, but in the following we will inves-
tigate how precisely we can reproduce old results and use the particular example of
reproducing results from SIP to highlight the problems involved. Clearly, to provide a
historic perspective like in this paper, only the first three options above are significant.

As one goal of this article we would like to show the progress achieved in the
field and thus compare results of current solvers with previously published ones. As
reference we will take Table 5.1 given on page 75 of [67], where the results of solving
a set of instances using SIP 1.1 are listed and copied in Table 1. Is it possible to
reproduce those results? Our observations concerning this question are:
◦ The test instances used in the article are still openly available, though there are

no checksums (or similar) available to ensure that they are identical with the ones
used in [67].

◦ The SIP source code is available. While not mentioned in [67], it seems clear which
precise version of the code was used.

◦ The program was run on a SUN Ultra Enterprise 3000 with 4 UltraSparc processors
with 167 MHz, 1 GB RAM using Solaris 7. Incidentally, this machine or a quite
similar one is still available at ZIB, because it is planned to be exhibited in a
museum. In a few years it will be very unlikely to find such a machine without
major effort.

◦ As it turned out, this machine has no compiler installed. Furthermore, it is neither
clear from the description in the article nor the source code which compiler was
used. It seems that some version of the SUN SUNWspro C/C++ compiler had
been applied. Probably it would be possible to locate an old CD with this software
and try to install it. Nevertheless, it is unlikely that we would be able to reproduce
the exact binary.

◦ SIP used CPLEX 5.0 as its LP-solver, i.e., it needs the CPLEX callable library.
Finding an old CD will not help, since any available license would have expired
for years. In the meantime ILOG, the owner of CPLEX at that time, has been
acquired by IBM. IBM is still in the possession of the source code, but is not
willing to release the code, even in binary form, due to the legal effort required.
We conclude that while it might be technically possible to reproduce the binary (or

something very similar) and run it on a machine similar to the original one, it would
require a lot of effort to do so. Furthermore, there is no way to check whether we
actually succeeded in producing the precise environment under which the tests where
performed in the paper. It seems to be the only possibility to compare the new results
with the old log files – which are still available – and those printed in the article. If
there is any mismatch, this could be due to a hundred different reasons, like a different
compiler switch for some subsystem, a different version of a system library, etc.

Another point is determinism and reproducibility regarding computer hardware.
Computer hardware is not free of errors, e.g., Intel is listing several hundred errors for
their CPUs in so-called Specification Updates on http://arki.intel.com. It should
be noted though that most of these errors are very rare and need extremely complicated
conditions to appear. Computers and in particular RAM are also prone to errors due
to cosmic rays. While all this might be an issue on large scale super-computers,
we can neglect it on workstation level. Another issue is that modern systems have
features like NUMA, Hyperthreading, Turbo-Boost, etc. that require careful attention
to ensure reproducible results.

Since we are interested in the algorithmic advances and less in the question whether
the computing machinery got faster, it should suffice to compile the code on a modern
machine, using a modern compiler and get comparable results apart from the timings.
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Table 1: SIP with default settings; taken from Table 5.1 given on page 75 of [67].
Example B&B Cuts Dual Bound Primal Bound Time Gap %

lOteams 10370 0 922 924 3600.0 0.217
air03 8 0 340160 340160 6.7 0.000
air04 1220 0 56137 56137 1532.5 0.000
air05 3588 0 26374 26374 1696.8 0.000
arkiOOl 100776 4 7579808.299 7646059.57 3600.1 0.874
bell3a 25146 0 878430.316 878430.316 45.3 0.000
bell5 337394 1 8966406.491 8966406.491 536.7 0.000
blend2 15055 5 7.598985 7.598985 122.4 0.000
cap6000 4323 2578 -2451418.742 -1236924 3604.0 49.543
dano3mip 1 0 576.2316203 – 3710.3 –
danoint 12655 0 62.94058146 70 3600.3 11.216
dcmulti 2637 0 188182 188182 14.6 0.000
dsbmip 867 0 -305.198175 -305.198175 42.7 0.000
egout 222 0 568.1007 568.1007 0.2 0.000
enigma 8002 524 0 0 24.2 0.000
fast0507 234 0 172.2530211 177 3604.8 2.756
fiber 783 372 405935.18 405935.18 16.9 0.000
fixnet6 1669 0 3983 3983 14.6 0.000
flugpl 7976 25 1201500 1201500 4.4 0.000
gen 11 20 112313.3627 112313.3627 0.3 0.000
gesa2 209525 33 25771445.96 25783761.56 3600.0 0.048
gesa2_o 264243 0 25711931.57 25823063.47 3600.0 0.432
gesa3 5297 0 27991042.65 27991042.65 97.1 0.000
gesa3_o 74472 0 27991042.65 27991042.65 1144.7 0.000
gt2 2215 5 21166 21166 3.2 0.000
harp2 23990 15966 -73944202.17 -70801289 3600.1 4.250
khb05250 2637 0 106940226 106940226 16.3 0.000
l1521av 3209 269 4722 4722 93.8 0.000
lseu 303 164 1120 1120 1.1 0.000
misc03 699 14 3360 3360 4.1 0.000
misc06 308 0 12850.86074 12850.86074 4.2 0.000
misc07 35585 0 2810 2810 378.8 0.000
mitre 1286 3865 115155 115155 1125.8 0.000
mod008 884 371 307 307 9.8 0.000
modO1O 237 3 6548 6548 5.6 0.000
mod011 6108 0 -54558535.01 -54558535.01 2791.4 0.000
modglob 1000000 0 20652263.27 20763655.71 3495.8 0.539
noswot 1000000 179 -43 -41 2270.7 4.651
nw04 1827 0 16862 16862 732.9 0.000
p0033 77 53 3089 3089 0.1 0.000
p0201 507 136 7615 7615 5.0 0.000
p0282 1345 2308 258411 258411 38.3 0.000
p0548 1610 902 8691 8691 25.3 0.000
p2756 23151 6923 3113.257351 3141 3600.2 0.891
pk1 501934 0 11 11 1581.8 0.000
pp08a 1000000 0 5446.190476 8620 2092.7 58.276
pp08aCUTS 624198 0 6970.027419 7650 3600.0 9.756
qiu 17378 0 -132.873137 -132.873137 2326.5 0.000
qnet1 17694 12 16029.69268 16029.69268 1229.9 0.000
qnet1_o 3806 0 16029.69268 16029.69268 158.6 0.000
rentacar 105 0 30356760.98 30356760.98 53.2 0.000
rgn 2505 315 82.19999924 82.19999924 9.6 0.000
rout 200371 316 1048.991823 1079.19 3600.0 2.879
set1ch 841033 0 39920.71098 67819.5 3600.0 69.886
seymour 1947 0 406.4218572 438 3601.8 7.770
stein27 4666 0 18 18 8.0 0.000
stein45 54077 0 30 30 277.7 0.000
vpm1 1000000 0 19.5 20 1892.6 2.564
vpm2 555712 0 13.75 13.75 1368.7 0.000

Total (59) 8017878 35366 77823.6 226.547
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Tobias Achterberg, now at IBM, kindly agreed to do this. He compiled the original
SIP code together with CPLEX 5.0.1 using gcc 4.0.1 on a modern Intel Xenon X5260
powered Linux computer. As it turned out, we achieved identical results regarding the
number of branch-and-bound nodes for all but three instances. Trying to solve the in-
stance mitre the program crashed due to a numerical error from CPLEX. The runs for
the instances lseu and p0033 differ. The most likely explanation is that the LP-solver
returned a different optimal basis. Indeed, Intel x86 architecture CPUs do double pre-
cision (64 bit) floating point calculations internally with 80 bit precision. This can lead
to different results compared to SPARC CPUs which use 64 bits throughout. Even
though both conform with the IEEE 754 standard. There are further reasons which
might lead to different results. These differences can be large enough to let the simplex
algorithm terminate at a different vertex of the optimal face. As a consequence, SIP
then generated different cuts, which in turn led to a different number of nodes. The
returned objective function value was the same in all solved cases. Since the original
solutions are not available anymore, we cannot check whether the solutions returned
are also the same.

Different to the original runs, the time limit given to SIP was in wall-clock time.
Due to changes in the operating system API, CPU time measurement seemed not
to work correctly (anymore). We also conducted limited experiments concerning the
CPLEX 5.0.1 MIP-solver. Here we experienced that any change of the compiler options
would also change the number of branch-and-bound nodes. And again, there were
problems regarding the time measurement.

Moreover, we tried to link the newly compiled SIP code to more recent versions
of CPLEX. This succeeded only half-way because of changes in the CPLEX API and
behaviors that could not easily be translated back to match the functionality expected
by the SIP code. We found the Version 10.1 (current is 12.5) to be the best suitable
one (later versions had some used functions removed). But also in 10.1 the behavior
of some functions has changed. Between Versions 7 and 8, CPLEX changed the return
codes given for the optimization functions. We tried to fix this in the old code, but
there seems to be at least one issue for which we do not know a solution.

SIP could also run using multiple threads in a non-deterministic parallel mode.
Again, we were not able to reliably reproduce the old results. The major reason is that
especially in the area of multi-threaded computations the underlying computational
environment changed significantly. Furthermore, in the case of non-deterministic codes
where decisions are taken depending on timings, the reproduction of results on different
hardware is, by construction, hardly possible at all.

One main observation is that the use of closed-source (commercial) libraries is a
major roadblock for reproducibility. If a company goes out of business, the source
code or binary might be lost forever. In any case it is usually difficult to get the old
code. Moreover, licensing problems are critical.

We observe that it is important to save all relevant information of the experiments.
The source code used for experiments should be available including all needed libraries,
all necessary data and log files. It seems to be useful to also save the binaries. Table 3
below, for example, was produced using a binary made in 2003. The current trend
to use dynamically linked libraries is disastrous for reproducibility. While a statically
linked program might run still decades later, trying to run a dynamically linked pro-
gram later on is often hopeless and even might not produce the same result due to
possibly changed system libraries.

Finally, one might also question whether the originally published results were cor-
rect to begin with. In the current academic system, the review process conducted
by journals usually does not include looking at the code or the experimental data.
Questions similar to the ones above led to the founding of the journal Mathemati-
cal Programming Computation in 2008 published by the Mathematical Optimization
Society, see [30]. A notable feature of the journal is that authors are encouraged to
submit the code and all the data necessary to reproduce the results of the article.
A special group of Technical Editors then recompiles the code and reproduces the
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results. Furthermore, the code is reviewed to assess whether it resembles the descrip-
tion in the paper. Initially, questions were raised whether this will always be possible.
From the experience made in the last years the answer is yes. It was even possible
to rerun and review a code that was designed for a BlueGene supercomputer. And
in this case, as in many others, the review process helped to substantially improve
the quality and usability of the code submitted. Also the review process forces the
authors to explicitly state the details of all third party codes needed.

The solving of publicly available (benchmark) instances can lead to a certain com-
petitiveness. As announced on June 28th, 2011 on the website http://ilk.uvt.nl/
icga of the International Computer Games Association (ICGA), the four times world
chess championship winner program Rybka was banned and disqualified because an
investigation by [59] found the programmer guilty of plagiarizing two other programs.
This also can only happen if the code is not available for reviewing.

Assume you have the source code for the program in question. Furthermore, there
is a script that runs the test and so documents the settings used and the complete log
files for the runs used for the publication. They have to be detailed enough to decide
whether another run was similar/identical. The best situation is if the environment
that has been used for the publication is still available, i.e., the computer/operating
system and the binary. Given that a static binary was used, it should be possible to
reproduce the experiments easily. Therefore, a static linked binary of the program
should be kept. Once the computer is not available anymore, but at least the archi-
tecture/operating system is still available, chances are relatively good that the binary
will run on a more modern environment. If the architecture/operating system is no
longer available because it is too old, there is a high probability that emulators are
available.

If the binary is not available anymore, it gets more complicated. If the source
code to all used third party libraries is available, it is possible to completely compile
the program again, although maybe not by the same compiler. If the library source
code is not available, there might be (new) versions of the library for the new target
architecture. But APIs change over time and it may be necessary to adjust the source
code of the program. Here it is important that the log files are available and detailed
enough to allow a check whether the program produces similar results.

To summarize here is what you want to keep:

1. source code and makefiles,

2. run scripts and log files,

3. source code for all used non-system libraries, and

4. a static linked binary of the program or as close as you can get to it.

4 How to Measure Performance of Integer Program-
ming Solvers
An obvious question that arises when trying to find better ways to solve integer pro-
grams is how to measure progress. The common solution is to have a publicly available
and accessible library of test instances to compare algorithms and implementations
against. This was started for LPs with the NETLIB by Gay [41] and then for inte-
ger programming with the MIPLIB by Bixby, Boyd, and Indovina [24]. Due to the
permanent advances in algorithms and the increase in computer speed, instances that
are difficult in the beginning become easy to be solved over time. Consequently, the
test instance libraries have to evolve, dropping “too easy” instances and adding harder
ones. For the MIPLIB this has been done five times by now, as shown in Table 2.

The first two authors have been involved in these updates: first in 2003, see [9],
and in the current version in 2010, see [56]. For the first time a consensus of all
major solver developers in industry and academia on the selection of the instances
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Table 2: List of MIPLIB versions
Version Name Date Who Reference

1 MIPLIB 1991 Bixby, Boyd, Indovina [24]
2 MIPLIB 2.0 1992 Bixby, Boyd, Indovina [24]
3 MIPLIB 3.0 1996 Bixby, Ceria, McZeal, Savelsbergh [25]
4 MIPLIB 2003 2003 Achterberg, Koch, Martin [9]
5 MIPLIB 2010 2010 Many [56]

could be achieved. It was agreed to substantially extend the test set. The effort
and investigations to produce the 5th incarnation of the MIPLIB were substantial.
The reward was a comprehensive instance library that is accepted by researchers
worldwide. Furthermore, it was possible to give a true snapshot of the state-of-the art
in MIP-solvers.

We report on some of the issues related to benchmarking, based on the experiences
from the current MIPLIB. A key issue is that people tend to like condensed informa-
tion. For measuring performances, be it the speed of a computer or the publication
performance of a researcher, one would like to have a single number to describe it,
since single numbers are easy to compare. Sometimes this is impossible. Regarding
the computation of citation scores for researchers, we refer to [12, 13] for a discussion
why this is not catching the truth. For integer programs it is slightly easier, both to
compute a single number and to show that this number has to be interpreted very
carefully.

It is the central problem to decide which measures to compare and on which in-
stances. One way is to select a large number of instances by some high-level argument,
for instance, they should be real-world instances or from a mix of applications. A more
detailed description of this can be found in [56]. The selection of the instances seemed
to work quite well, since incidentally the geometric mean performance of the three
top solvers on the benchmark set were nearly equal, while the maximum difference
on a particular instance was a factor greater than 1,000. This answers the question
what such a mean number tells you in case that you have to solve a particular class of
instances: nothing. It reveals that by careful (or sloppy) selection of the instances it
is quite easy to come up with a test set where one solver is 1,000 times faster than the
other. Note the above characteristic makes it easy for the marketing departments to
produce funny comparison numbers. Basically, all three top commercial solver vendors
claim to be faster than the competition, see [36], [46], [50].

It is even more complicated to compare solvers on instances that one solver can
solve in a given time and the other solver cannot. In many cases it is not possible to
wait until both solvers have solved the instance, e.g., if we have a one-hour time limit
and solver B would need 10,000 times as long, we would have to wait more than a
year. How should these instances be counted? One possibility is to only take those
instances that both solvers can solve. This is quite biased towards the weaker solver:
Imagine a solver that only checks whether the zero solution is feasible on instances
that have no objective function. It will be at least as fast as any other solver and there
is no way to beat it. Another option is to use a time limit and then report this limit as
the solution time. Due to the large differences in solution time the ratio between two
solvers then becomes just a lower bound in favor of the weaker solver. By increasing
the time limit, the ratio will also continue to increase, as long as one solver solves
one instance more. One could also simply not use averaging times and just count the
number of instances that can be solved by a particular solver in a given amount of
time. The obvious problem is that again the result depends heavily on the particular
time limit and very much on the selected test set.

Figure 1 shows the distribution of solution times for the 89 instances of the MIP-
LIB 2010 benchmark test set. For each solver the times have been sorted in ascending
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CBC 2.6.4 (1)
SCIP/spx 2.0.1.3 (1)

CPlex 12.2.0.2 (1)
XPress 7.2 RC (1)

Gurobi 4.5 beta0 (1)
CPlex 12.2.0.2 (12)
XPress 7.2 RC (12)

Gurobi 4.5 beta0 (12)

Figure 1: MIPLIB 2010 benchmark set, distribution of solving time for 1 and 12 threads

order, therefore a specific position of the x-axis does not necessarily correspond to
a particular instance. It can be observed that the instances fall into basically three
categories: easy instances that can be solved within a few minutes, those instances
that cannot be solved at all, and those in between. The criteria for the benchmark set
were, among others, that at least two solvers where able to solve a particular instance
within two hours and that the instance was not too easy. Therefore, compared to
a larger more random set of instances, the amount of easy and unsolved instances
is reduced. But we still can see that the in-between category is small. By speeding
up the solvers using 12 threads this phenomenon becomes more pronounced, i.e., the
in-between group actually shrinks. This is a phenomenon that can be observed in
general. Making the computer faster will just solve those problems faster that could
be solved before, but the number of instances that could not be solved at all will stay
mostly the same.

5 Measuring Advances in Computational Integer Pro-
gramming
As described in the introduction, the work on the MIP-solvers SIP and SCIP has now
spanned more than 16 years from 1996 to 2012. In the following we give an impression
on the advances of the field during this time.

First, Figure 2 shows the time distribution for the test set used in [67] in 1998.
The results on the UltraSparc CPU were taken from [67] (see Table 1). The results on
the 3333 MHz Intel Xenon X5260 CPU were obtained by recompiling the original SIP
code and linking to CPLEX 5.0.1 using gcc 4.0.1. The picture shows the comparison
between the old and the new codes. In 1998, SIP could solve 41 out of 59 instances.
Instance mitre that could be solved on the UltraSparc now stopped with a numerical
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CPLEX 5.0                               UltraSparc 167 MHz
SIP 1.1      [CPLEX 5.0.1 for LP] X5260 3333 MHz
SCIP 2.1.1 [CPLEX 12.4 for LP] X5260 3333 MHz
CPLEX 12.4                                X5260 3333 MHz

Figure 2: 1998 benchmark set, distribution of solving time for different computers and
codes

error and was counted as a timeout with 3,600 seconds. For the X5260 we did not
impose the 1,000,000 node limit used in the paper (this limit was probably set in order
to control memory consumption). This affects the results for instances 10teams, 2756,
rout, pp08aCUTS, vmp1, gesa2_o – compare Table 1.

The geometric mean of the running time using SIP on the UltraSparc was 40.2 sec-
onds. This is now down to about 1.2 seconds, which gives us a speed-up factor of
roughly 30 between the 167 MHz and the 3333 MHz computer. The clock speed ratio
is about 20, but one should keep in mind that these are two totally different archi-
tectures: UltraSparc is a pure RISC architecture with in-order execution, while the
Xenon is a much more complex out-of-order execution CISC CPU. Moreover, note
that since reading times are included in the time measurement and due to the slight
variations that are always present, fractions of seconds are not measured accurately
enough to draw conclusions from it.

It should be noted that in case of instance dano3mip, the optimum is still unknown,
and in case of instance seymour, while it has been solved, none of the commercial
solvers is able to solve it within one hour even on 12 threads.

What can be concluded from the comparison of the curves of SIP 1.1 on the
UltraSparc and the X5260 is that basically the same number of instances can be
solved, but it now only takes 1/30th of the time. This speed-up results in a nearly
rectangular shaped curve for the faster computer for the MIPLIB 2010 case. SIP 1.1
either solves an instance in two minutes, or not at all. The same is essentially true
for the new codes: They are able to solve about ten more instances, but do this very
fast, while a few instances remain which have a solving time close to the time limit.

Figure 3 shows the performance over time relative to the current version of SCIP.
All results were computed on an Intel Xeon X5672 CPU at 3200 MHz. Note that due
to the time limit of one hour, the maximum slow-down factor compared to the latest
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Figure 4: Comparison of MIP-solver performance relative to SCIP/SoPlex

version is five. The time for SIP 1.2 was computed using an old binary. It was able
to solve only 13 out of 87 instances within the time limit and consequently was rated
4.9 times slower than the current version.

Note that it is unlikely that SIP will solve much more instances when increasing
the time limit. This can be seen by Figure 2, where SIP on a roughtly 30 times faster
machine can only solve 5 instances more.

As mentioned before, the above factor is a lower bound on the real slow-down,
which is likely to be arbitrarily large, because there will be instances which can be
solved with SCIP 2.1 and which might take practically forever using SIP 1.2. In this
sense, the number of solved instances is much more important than the slow-down
factor.

Figure 4 depicts a comparison between contemporary solvers conducted by Hans
Mittelmann. (See http://plato.asu.edu/ftp/milpc.html for the latest results.)
There are several interesting facts to note:
◦ Because of the one-hour time limit compared to the two-hours in Figure 3, SCIP

with SoPlex solves 10 instances less. As Figure 1 shows, the bend in the curve
is more pronounced in the commercial solvers, i.e., the number of in-between in-
stances is bigger for SCIP. Therefore SCIP would benefit more from an increased
time limit as compared to the commercial solvers.

◦ The speed-up from SCIP using CPLEX as LP-solver instead of SoPlex is just
about 30%. Given that CPLEX on pure LP benchmarks is much faster than
SoPlex and that solving the LPs takes a considerable amount of the total running
time of a MIP-solver, this is a surprisingly small difference. The reasons for this
are manifold, and we are currently investigating this phenomenon which was also
observed by others, e.g., Bixby [23].

◦ If two solvers are compared that solve a substantially different number of instances
to optimality, the speed-factor is underestimated in favor of the code that solves
less instances. For lpsolve and glpk the factor given in the picture is meaningless
as they solve only 3 or 5 instances, respectively.
We can now make an estimation on the progress in MIP-solving by SIP/SCIP

since 1998. As computed above, the hardware speed-up factor is about 30. The latest
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Table 3: Number of instances in each class of MIPLIB 2003/2010 over time
Date Easy Hard Unsolved

MIPLIB 2003

Start 2003 22 3 35
2004 27 12 21
2005 28 13 19
2006 28 13 19
2007 31 22 7
2008 34 20 6
2009 35 19 6
2010 35 19 6
2011 41 15 4
2012 44 12 4

MIPLIB 2010

05.2011 185 42 134
07.2011 196 33 132
08.2011 202 29 130
01.2012 202 30 129
02.2012 203 40 118
03.2012 204 41 116
04.2012 204 43 114
05.2012 206 42 113
06.2012 208 45 108
07.2012 208 47 106
08.2012 208 50 103

version of SCIP/SoPlex is at least five times faster than SIP 1.2/SoPlex. We assume
SIP 1.2 was at least as fast as SIP 1.1. Since SIP 1.1 was run with CPLEX as LP-
solver, we now must also compare relatively to SCIP/CPLEX, which is about 3.5 times
slower than Gurobi. This gives us an estimated lower bound on the speed-up from SIP
1.1/CPLEX on an UltraSparc to Gurobi on a modern PC of about 30×5×3.5 ≈ 525.
Multiplying this number with the average speed-up from multithreading (approxi-
mately a factor of 3) gives an average speed-up of 1.63 times per year over 15 years or
a practical doubling of the MIP-solver performance every 18 months. Remember that
this is only a lower bound and that the speed-up is distributed extremely unevenly on
the instances.

A more general picture can be drawn from the MIPLIB. In MIPLIB we classify
an instance as easy, if a commercial solver on a high-end PC can solve the instance
within an hour. It is classified as hard if it can be solved by some solver, but not by
every solver, and as unsolved otherwise. People often report or publish if they are
able to solve an instance for the first time. Figure 3 lists the number of easy, hard,
and unsolved instances in MIPLIB 2003 and 2010 over time. Note that this includes
also the progress through faster computers.

One has to be cautious regarding the interpretation of these numbers, because part
of the progress results from the library instances used to tune the solver algorithms.
Therefore the progress is probably overstated.
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6 Developing Academic Integer Programming Codes
Last but not least, we want to discuss issues related to the development of academic
integer programming codes. We think that such a discussion is important, since we
have the impression that currently researchers may not be aware of several of these
issues or might even disagree over the consequences. Our main question is

“Does it still make sense to develop integer programming codes in academia?”

Before addressing this question, we point to several organizational obstacles that have
to be dealt with. We dispense with licensing issues here, because this is a longer topic
of its own, and rather focus on code development and publications.

Concerning code development we mentioned above that solver development has
more and more become a team effort. As an example, a new release of SCIP requires
a tremendous amount of work that we briefly mention in the following, as it might
give an example for other projects. SCIP alone contains more than 400,000 lines
of code and surely contains (possibly many) errors. Thus, a big part of the work
concerns debugging. Bugs are either reported by the users through a web interface or
are found by significant amount of tests. These bugs might become visible, because
the computed result differs from the known optimum or from a previously computed
value. Bugs can also be found because one of the checkpoints (asserts) or unit-tests
in SCIP is triggered. Some bugs may be due to numerical issues and thus require
longer time to debug. The infrastructure of SCIP helps debugging, but in total the
preparation of a release is spread over the time span of three months and the work of
about four full-time developers.

There is one further aspect that seems to be relevant in this context. It is indis-
pensable to further advance the field teamwork, and this has repercussions on how
research is conducted. Like in physics and other areas, research in computational
integer programming is more and more becoming team-work. Moreover, students are
able to learn how a solver works and are possibly able to join commercial MIP-solver
teams. (This seems to be the employee recruitment strategy in the field.) We think
that all this is only possible through academic research.

With respect to publications, we all know that it is still hard to publish papers on
computational optimization in first class journals. Basically, there is no credit for the
code development work that is involved. It is a fact that still almost all codes used
for publications are not publicly available. This is, actually, the biggest obstacle for
reproducibility. The introduction of the journal Mathematical Programming Compu-
tation is a little step in the right direction, but a different way of handling papers
by editors of journals is needed. It is clear that the goal should be that every code
used for computations in a paper should be available for possible reproduction or even
improvement. Moreover, the effort needed for code development should be taken into
account.

We now come back to our initial question: Is there (still) room for academic solvers
in times when the commercial solvers seem to be computationally ahead?

There are several commercial codes available that either serve their purpose as a
stand-alone program or can be used as a B&C framework for individual applications
through callbacks. Clearly, for many applications it suffices to just use a stand-alone
MIP-solver, since this already “finishes the job” in many cases.

It is also a fact that many publications in the field use these commercial solvers
as a B&C framework through callbacks. To quantify this claim, we conducted the
following literature investigation. We checked all articles in the journals Mathemati-
cal Programming A and B (MPA and MPB, resp.) and Mathematical Computation
(MPC) in the years from 2003 (for MPA/MPB) and 2009 (for MPC) to 2012 that
perform computations and use integer programming techniques. Table 4 shows the
results.

Here, we have not counted articles on mixed integer nonlinear programming. Sev-
eral articles simply apply a MIP-solver, but have been counted if there is additional
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Table 4: Statistics on articles in Mathematical Programming A and B (MPA/MPB)
and Mathematical Programming Computation (MPC) that use MIP-solvers/frameworks
(2003–2012)

Journal # articles

MPA 61
MPB 33
MPC 12
Total 106

Framework # articles

CPLEX 51
XPRESS 9

COIN-OR 14
SCIP 6
ABACUS 4
MINTO 2
CONCORDE 2
unkown 2
own 27

coding involved. Furthermore, note that double counts in the number of frameworks
are possible, e.g., article [56] on MIPLIB 2010, which compares several MIP-solvers.
Articles that use own implementations to handle subproblems, bounds, primal heuris-
tics, etc. are listed in “own”. These articles often also use MIP-solvers, e.g., for solving
MIP-subproblems; such articles are counted twice.

It should be clear that these numbers have to be treated with care. However, it
seems to be clear from these numbers that CPLEX is clearly the framework that has
been used the most. Moreover, most of the articles use closed-code frameworks; for
instance, we have: CPLEX + XPRESS = 60 vs. COIN-OR + SCIP + ABACUS = 24
(MINTO/CONCORDE should probably be counted as a closed code, and ABACUS
was a closed code at the time of the publication of some of the articles).

Of course, this dominance of commercial codes has reasons. Some of the arguments
for using commercial MIP-solvers are the following:

1. Commercial solvers are highly tuned and, thus, also promise the best perfor-
mance for individual applications.

2. These solvers have to be used as a black-box. Thus, there is no possibility to tune
the implementation of the framework. Consequently, researchers can concentrate
on their own code, which reduces the amount of work needed.

3. Many researchers in the field have developed a code over the years, which is
often based on a particular solver. Thus, changing the framework would require
significant reimplementation effort.

4. One main argument against using such solvers was that licensing was problem-
atic. However, most commercial solvers offer academic licenses today, so this is
currently not an issue.

Ironically, all of these arguments can be turned around and used against using com-
mercial MIP-solvers:

1. The promise of best performance might be wrong, and it is (almost) impossible
to check whether small changes to the system or implementation might lead to
a still better performance. Moreover, using a black-box solver does not help to
understand why a code is fast.

2. We do not know (completely) what happens in a black-box solver. Thus, it is
scientifically questionable to have significant parts of the code in which we are
not able to determine exactly what happens. More severely, the resulting code
might produce wrong results, since some effects inside the black-box could not
be taken into account.
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3. The code basis is not really a scientific issue. Possibly, researchers would be
willing to switch their code bias, if this would promise a significantly improved
performance.

4. Licensing might change (see the comments in Section 3).

An additional argument for academic MIP-solvers is that some functionality of a
black-box solver might not be available through its API. Moreover, the usage of API
functions might incur unintended effects – sometimes even if no action should actually
be taken; examples are refactorizations of the basis in the LP-solver or even removing
old basis information or the automatic deactivation of certain algorithmic components
when using callbacks.

All these arguments support the development of academic MIP-solvers or, more
generally, B&C frameworks. However, it is unclear whether academic implementations
for MIP-solving will be able to keep up with the performance of commercial solvers.
Currently, the difference seems to be still acceptable as we have seen in this paper. Of
course, this might change in the future, but predictions are always difficult. It is our
belief that new ideas in the field have to be developed both in academia and industry
– this worked very well in the past. Otherwise, the performance of MIP-solvers,
academic and commercial, will stall.
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