
Computational Aspects of

Combinatorial Optimization

Dr. Marc E. Pfetsch

Kumulative Habilitationsschrift an der

Fakultät II – Mathematik und Naturwissenschaften

der Technischen Universität Berlin

Lehrgebiet:

Mathematik

Eröffnung des Verfahrens: 10.10.2007

Verleihung der Lehrbefähigung: 30.04.2008

Gutachter:

Prof. Dr. Martin Grötschel

Prof. Dr. Thomas M. Liebling

Prof. Dr. Rolf H. Möhring

Prof. Dr. Giovanni Rinaldi

Berlin 2008

D 83

List of Publications

The following six papers are contained in this cumulative habilitation thesis.

(1) Volker Kaibel and Marc E. Pfetsch

Packing and Partitioning Orbitopes
Math. Program. 114 (2008), no. 1, pp. 1–36

(2) Volker Kaibel, Matthias Peinhardt, and Marc E. Pfetsch

Orbitopal Fixing
Proc. 12th Integer Programming and Combinatorial Optimization con-
ference (IPCO), M. Fischetti and D. Williamson, eds., LNCS 4513,
Springer-Verlag, 2007, pp. 74–88

(3) Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch

A Column-Generation Approach to Line Planning in Public Transport
Transportation Sci. 41 (2007), no. 1, pp. 123–132

(4) Michael Joswig and Marc E. Pfetsch

Computing Optimal Morse Matchings
SIAM J. Discrete Math. 20 (2006), no. 1, pp. 11–25

(5) Edoardo Amaldi, Leslie E. Trotter, Jr., and Marc E. Pfetsch

On the Maximum Feasible Subsystem Problem, IISs, and IIS-hypergraphs
Math. Program. 95 (2003), no. 3, pp. 533–554

(6) Marc E. Pfetsch

Branch-And-Cut for the Maximum Feasible Subsystem Problem
SIAM J. Optimization 19 (2008), no. 1, pp. 21–38

Contents

Introduction 1
1. Symmetries in Integer Programs 1
2. Line Planning 2
3. Morse Matchings 3
4. Maximum Feasible Subsystem Problem 4

Paper 1. Packing and Partitioning Orbitopes 5
1. Introduction 5
2. Orbitopes: General Definitions and Basic Facts 9
3. Packing and Partitioning Orbitopes for Cyclic Groups 13
4. Packing and Partitioning Orbitopes for Symmetric Groups 15
5. Concluding Remarks 34
References 36

Paper 2. Orbitopal Fixing 39
1. Introduction 39
2. Orbitopes 42
3. The Geometry of Fixing Variables 44
4. Fixing Variables for Orbitopes 45
5. Computational Experiments 50
6. Concluding Remarks 52
References 53

Paper 3. A Column-Generation Approach to Line Planning in Public
Transport 55

1. Introduction 55
2. Related Work 56
3. Line-Planning Model 57
4. Column Generation 61
5. Computational Results 67
6. Conclusions 71
References 71

Paper 4. Computing Optimal Morse Matchings 73
1. Introduction 73
2. Discrete Morse Functions and Morse Matchings 74
3. Properties of Morse Matchings 76
4. Hardness of Optimal Morse Matchings 77
5. An IP-Formulation 80
6. Computational Results 86
References 89

i

ii Contents

Paper 5. On the Maximum Feasible Subsystem Problem, IISs and
IIS-hypergraphs 91

1. Introduction 92
2. Irreducible Infeasible Subsystems 93
3. IIS-hypergraphs 98
4. Feasible Subsystem (FS) Polytope 102
5. Concluding Remarks 109
Appendix 110
References 111

Paper 6. Branch-And-Cut for the Maximum Feasible Subsystem
Problem 115

1. Introduction 115
2. Alternative Solution Approaches 117
3. Ingredients for Branch-and-Cut 118
4. Computational Results 124
5. Conclusions 131
References 133

Introduction

This collection contains the following six papers that I submit for obtaining
the habilitation at the Technische Universität Berlin, Fakultät II – Mathe-
matik und Naturwissenschaften.

(1) Packing and Partitioning Orbitopes
(2) Orbitopal Fixing
(3) A Column-Generation Approach to Line Planning in Public Transport
(4) Computing Optimal Morse Matchings
(5) On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs
(6) Branch-And-Cut for the Maximum Feasible Subsystem Problem

The papers form a cross-section through my research in combinatorial
optimization. They can be grouped into four topics:

◦ Symmetries in Integer Programs (Papers 1 and 2)
◦ Line Planning (Paper 3)
◦ Morse Matchings (Paper 4)
◦ Maximum Feasible Subsystem Problem (Papers 5 and 6)

In the following, I will outline the main ideas of these topics and papers.

Note. The only changes I made in the papers with respect to the original
versions concern the unified layout, e.g., renumbering of theorems and mi-
nor reformulations necessary for the modified presentation. Furthermore, I
updated some references.

1. Symmetries in Integer Programs

It seems to be folklore knowledge in integer programming that symmetries
pose severe problems for linear programming based branch-and-bound meth-
ods. The reasons are twofold: The linear programming bounds are weak and
many equivalent solutions (with respect to the symmetry) appear in the
search tree, although they do not provide new information. These difficul-
ties usually have been resolved by finding alternative nonsymmetric formu-
lations or by adding problem dependent symmetry breaking inequalities. In
the recent years, interest in general methods to directly deal with symmetric
formulations has increased.

A particular feature, which arises in many symmetric integer program-
ming models, is that of a assignment structure, i.e., the models contain 0/1
variables xij for i = 1, . . . , p, j = 1, . . . , q and constraints

q∑

j=1

xij = 1 for i = 1, . . . , p. (1)

1

2 Introduction

If the problem dependent additional constraints and objective function have
the property that permuting columns of the matrix (xij) preserves feasibility
and the objective function value, the corresponding formulation is symmet-
ric, i.e., the full symmetric group acts on the columns. Examples of such
formulations arise from the graph coloring problem (see Paper 1, Model (1))
and the graph partitioning problem (see Paper 2, Model (1)).

Paper 1 (Packing and Partitioning Orbitopes, written jointly with Volker
Kaibel), and Paper 2 (Orbitopal Fixing, written jointly with Volker Kaibel
and Matthias Peinhardt), deal with a polyhedral approach to handle such
assignment-based symmetries in integer programming. The basic idea is to
use a lexicographic sorting of the columns of 0/1-matrices (xij) that fulfill (1);
this breaks the symmetry by leaving a single representative in each orbit of
the symmetry group. The main object of study are partitioning orbitopes,
which are the convex hulls of all such lexicographically sorted 0/1-matrices
of sizes p × q.

The main results of Paper 1 are as follows. We prove a complete linear de-
scription of partitioning orbitopes, which uses exponentially many so-called
shifted column inequalities. The corresponding separation problem is solv-
able in linear time. Moreover, except for few exceptions, these inequalities
define facets. Similar results hold for the case of packing orbitopes, in which
the number of ones in each row is at most 1, i.e., (1) is replaced by

q∑

j=1

xij ≤ 1 for all i = 1, . . . , p.

Furthermore, complete linear descriptions for the case of cyclic groups acting
on the columns are obtained. The corresponding orbitopes, which are the
convex hulls of the single representatives of each orbit under the cyclic group,
can be described by a polynomial number of inequalities in p and q, and we
provide totally unimodular formulations.

In Paper 2, we provide a linear time algorithm to deduce variable fixings
depending on the fixings of other variables, using the structure of orbitopes.
This can be seen as a node preprocessing or constraint programming ap-
proach. For the particular case of the graph partitioning problem, we com-
putationally show that using this approach significantly improves the solu-
tion time – also compared to a direct integer programming approach via the
symmetry breaking methods employed in CPLEX. It also turns out that this
variable fixing method is slightly faster than the approach via the separation
of shifted inequalities.

Summarizing, Papers 1 and 2 provide a way to deal with symmetries
that arise from assignment-like structures. They can be used as one starting
point towards a more detailed and general investigation of symmetries in
integer programs.

2. Line Planning

The motivation for Paper 3 (A Column-Generation Approach to Line Plan-
ning in Public Transport, written jointly with Ralf Borndörfer and Martin

3 Morse Matchings 3

Grötschel) arises from the practical problem of planing lines in a public trans-
port network. Here, given information about the transportation demands of
passengers, the problem is to find line routes and frequencies such that the
demand can be transported. Two opposing objectives have to be handled:
One the one hand the passengers are interested in small traveling times and
few transfers. On the other hand, the costs of the computed system have to
be taken into account.

The line planning problem is a strategic problem, which decides upon the
service level of a public transport system and hence is of social and political
interest. In the strategic planning area, much fewer practically relevant
integer programming approaches have appeared in the literature than for
operational planning problems like vehicle and duty scheduling – let alone
cases of uses in practice. One reason is that the inherent multi-objective
structure makes optimization approaches more difficult to apply. The long-
term goal in this area is to develop decision support tools for practical use.

Paper 3 provides an integer programming model for the line planning
problem that allows for the generation of passenger and line paths. We
discuss the corresponding pricing problems in a column generation approach.
While the pricing of passenger paths can be solved by shortest path methods,
the line pricing problem turns out to be NP-hard. We provide a polynomial
time algorithm for this pricing problem, if the lengths of the lines are bounded
to be O(log n), where n is the number of nodes in the network; in many
practical cases, this is a realistic assumption. Computational experiments for
data from the city of Potsdam show that one can compute the LP-relaxation
of this model in a few minutes and obtain integer solutions with reasonable
quality by a greedy type algorithm.

3. Morse Matchings

Paper 4 (Computing Optimal Morse Matchings, written jointly with Michael
Joswig) studies a problem that arises in combinatorial topology. It is one
of the few examples in which combinatorial optimization tools have been
applied in this area.

The basic objects are simplicial complexes, i.e., a collection of (finite)
sets closed under taking subsets. Simplicial complexes provide one way of
representing many “well-behaved” topological spaces. A Morse matching is
a matching in the Hasse diagram of a simplicial complex, such that a certain
acyclicity condition is fulfilled. Morse matchings are important in combina-
torial topology, because they provide a way to obtain a smaller representation
of the underlying topological space, starting from a simplicial complex and
performing contraction operations. The hope is that the resulting represen-
tation allows to deduce topological properties of the space or even classify
its topological type.

In the paper, we first show that the problem of finding a maximum size
Morse matching is NP-hard and then give an integer programming formula-
tion. We discuss the arising separation problem of the acyclicity condition.
It turns out that one needs to find shortest paths in a bipartite graph with

4 Introduction

conservative weights, i.e., no negative cycles exist. We provide a reduc-
tion of this problem to the computation of shortest paths with nonnegative
weights. Computational results of a branch-and-cut algorithm show that
one can compute optimal Morse matchings for medium-sized instances, es-
pecially if the upper bound derived by homology considerations is close to
the optimal solution.

4. Maximum Feasible Subsystem Problem

The maximum feasible subsystem problem (Max FS) is to find a largest
feasible subsystem of a given infeasible linear inequality system. This has
interesting connections to many different combinatorial optimization prob-
lems. One example is the problem of finding a solution of a linear equation
system with the fewest number of nonzeros. Even more closely related are
irreducible infeasible subsystems (IISs), i.e., infeasible subsystems such that
every proper subsystem is feasible. A feasible subsystem can be obtained by
removing at least one inequality of each IIS; this complementary problem to
Max FS can be formulated as a set covering problem (Paper 6 takes this
viewpoint).

Paper 5 (On the Maximum Feasible Subsystem Problem, IISs and IIS-
hypergraphs, written jointly with Leslie Trotter and Edoardo Amaldi) is also
contained in my dissertation (The Maximum Feasible Subsystem Problem
and Vertex-Facet Incidence of Polyhedra, TU Berlin, 2002). The paper gives
a theoretical study of the Max FS problem and structural and algorithmic
properties of IISs. We first provide a geometric characterization of IISs as
systems that arise by reversing the inequalities describing a simplex plus a
linear space. Then we show that the problem to find a smallest IIS is NP-
hard and very hard to approximate. The recognition of a given set of indices
to be the set of IISs of some infeasible inequality system turns out to be
hard as well. We proceed with a study of the feasible subsystem polytope,
i.e., the convex hull of incidence vectors of feasible subsystems. We show
that inequalities that arise from IISs define facets of this polytope and the
corresponding separation problem is NP-hard. Finally, we characterize under
which conditions so-called generalized antiweb inequalities define facets.

The empirical counterpart to Paper 5 is given by Paper 6 (Branch-And-
Cut for the Maximum Feasible Subsystem Problem). It gives a detailed com-
putational study of a branch-and-cut implementation for the Max FS prob-
lem. Several heuristics to separate the inequalities arising from IISs are
presented. Further issues of the implementation are discussed: general cut-
ting planes, heuristics, and branching rules. The computational results can
be summarized as follows. It turns out that computing optimal Max FS

solutions is quite hard for a number of instances arising from different appli-
cations. Although general purpose inequalities like Gomory-cuts or {0, 1

2}-
cuts reduce the total number of nodes, they do not significantly reduce the
computation time. Nevertheless, the presented algorithm is currently the
only way to compute nontrivial upper bounds for Max FS.

Paper 1

Packing and Partitioning

Orbitopes

Volker Kaibel and Marc E. Pfetsch

Packing and Partitioning Orbitopes1

Math. Program. 114 (2008), no. 1, pp. 1–36

Abstract. We introduce orbitopes as the convex hulls of 0/1-matrices that
are lexicographically maximal subject to a group acting on the columns.
Special cases are packing and partitioning orbitopes, which arise from re-
strictions to matrices with at most or exactly one 1-entry in each row, respec-
tively. The goal of investigating these polytopes is to gain insight into ways
of breaking certain symmetries in integer programs by adding constraints,
e.g., for a well-known formulation of the graph coloring problem.

We provide a thorough polyhedral investigation of packing and partition-
ing orbitopes for the cases in which the group acting on the columns is the
cyclic group or the symmetric group. Our main results are complete linear
inequality descriptions of these polytopes by facet-defining inequalities. For
the cyclic group case, the descriptions turn out to be totally unimodular,
while for the symmetric group case, both the description and the proof are
more involved. The associated separation problems can be solved in linear
time.

1. Introduction

Symmetries are ubiquitous in discrete mathematics and geometry. They are
often responsible for the tractability of algorithmic problems and for the
beauty of both the investigated structures and the developed methods. It
is common knowledge, however, that the presence of symmetries in integer
programs may severely harm the ability to solve them. The reasons for this
are twofold. First, the use of branch-and-bound methods usually leads to an

1Supported by the DFG Research Center Matheon in Berlin

5

6 Packing and Partitioning Orbitopes

unnecessarily large search tree, because equivalent solutions are found again
and again. Second, the quality of LP relaxations of such programs typically
is extremely poor.

A classical approach to “break” such symmetries is to add constraints
that cut off equivalent copies of solutions, in hope to resolve these problems.
There are numerous examples of this in the literature; we will give a few
references for the special case of graph coloring below. Another approach
was developed by Margot [11, 12]. He studies a branch-and-cut method that
ensures to investigate only one representative of each class of equivalent solu-
tions by employing methods from computational group theory. Furthermore,
the symmetries are also used to devise cutting planes. Methods for symme-
try breaking in the context of constraint programming have been developed,
for instance, by Fahle, Schamberger, and Sellmann [7] and Puget [16].

The main goal of this paper is to start an investigation of the polytopes
that are associated with certain symmetry breaking inequalities. In order to
clarify the background, we first discuss the example of a well-known integer
programming (IP) formulation for the graph coloring problem.

Let G = (V,E) be a loopless undirected graph without isolated nodes.
A (vertex) coloring of G using at most C colors is an assignment of colors
{1, . . . , C} to the nodes such that no two adjacent nodes receive the same
color. The graph coloring problem is to find a vertex coloring with as few
colors as possible. This is one of the classical NP-hard problems [9]. It is
widely believed to be among the hardest problems in combinatorial opti-
mization. In the following classical IP formulation, V = {1, . . . , n} are the
nodes of G and C is some upper bound on the number of colors needed.

min
C∑

j=1

yj

xij + xkj ≤ yj {i, k} ∈ E, j ∈ {1, . . . , C} (i)
C∑

j=1

xij = 1 i ∈ V (ii)

xij ∈ {0, 1} i ∈ V, j ∈ {1, . . . , C} (iii)
yj ∈ {0, 1} j ∈ {1, . . . , C} (iv)

(1)

In this model, variable xij is 1 if and only if color j is assigned to node i and
variable yj is 1 if color j is used. Constraints (i) ensure that color j is assigned
to at most one of the two adjacent nodes i and k; it also enforces that yj

is 1 if color j is used, because there are no isolated nodes. Constraints (ii)
guarantee that each node receives exactly one color.

It is well known that this formulation exhibits symmetry: Given a solu-
tion (x, y), any permutation of the colors, i.e., the columns of x (viewed as
an n × C-matrix) and the components of y, results in a valid solution with
the same objective function value. Viewed abstractly, the symmetric group
of order C acts on the solutions (x, y) (by permuting the columns of x and
the components of y) in such a way that the objective function is constant
along every orbit of the group action. Each orbit corresponds to a symmetry
class of feasible colorings of the graph. Note that “symmetry” here always
refers to the symmetry of permuting colors, not to symmetries of the graph.

1 Introduction 7

The weakness of the LP-bound mentioned above is due to the fact that
the point (x⋆, y⋆) with x⋆

ij = 1/C and y⋆
j = 2/C is feasible for the LP

relaxation with objective function value 2. The symmetry is responsible
for the feasibility of (x⋆, y⋆), since x⋆ is the barycenter of the orbit of an
arbitrary x ∈ {0, 1}n×C satisfying (ii) in (1).

It turned out that the symmetries make the above IP-formulation for
the graph coloring problem difficult to solve. One solution is to develop
different formulations for the graph coloring problem. This line has been
pursued, e.g., by Mehrotra and Trick [13], who devised a column genera-
tion approach. See Figueiredo, Barbosa, Maculan, and de Souza [8] and
Cornaz [5] for alternative models.

Another solution is to enhance the IP-model by additional inequalities
that cut off as large parts of the orbits as possible, keeping at least one
element of each orbit in the feasible region. Méndez-Díaz and Zabala [15]
showed that a branch-and-cut algorithm using this kind of symmetry break-
ing inequalities performs well in practice. The polytope corresponding to (1)
was investigated by Campêlo, Corrêa, and Frota [3] and Coll, Marenco,
Méndez-Díaz, and Zabala [4]. Ramani, Aloul, Markov, and Sakallah [17]
studied symmetry breaking in connection with SAT-solving techniques to
solve the graph coloring problem.

The strongest symmetry breaking constraints that Méndez-Díaz and Za-
bala [14, 15] introduced are the inequalities

xij −
i−1∑

k=1

xk,j−1 ≤ 0, for all i and j ≥ 2. (2)

From each orbit, they cut off all points except for one representative that
is the maximal point in the orbit with respect to a lexicographic ordering.
A solution (x, y) of the above IP-model is such a representative if and only
if the columns of x are in decreasing lexicographic order. We introduce a
generalization and strengthening of Inequalities (2) in Section 4.1.

Breaking symmetries by adding inequalities like (2) does not depend on
the special structure of the graph coloring problem. These inequalities single
out the lexicographic maximal representative from each orbit (with respect
to the symmetric group acting on the columns) of the whole set of all 0/1-
matrices with exactly one 1-entry per row. The goal of this paper is to
investigate the structure of general “symmetry breaking polytopes” like the
convex hull of these representatives. We call these polytopes orbitopes. The
idea is that general knowledge on orbitopes (i.e., valid inequalities) can be
utilized for different symmetric IPs in order to address both the difficulties
arising from the many equivalent solutions and from the poor LP-bounds.
In particular with respect to the second goal, for concrete applications it
will be desirable to combine the general knowledge on orbitopes with con-
crete polyhedral knowledge on the problem under investigation in oder to
derive strengthened inequalities. For the example of graph coloring, we in-
dicate that (and how) this can be done in Section 5. Figure 1 illustrates the
geometric situation.

The case of a symmetric group acting on the columns is quite important.
It does not only appear in IP-formulations for the graph coloring problem,

8 Packing and Partitioning Orbitopes

Figure 1: Breaking symmetries by orbitopes. The left figure illustrates an orbitope, i.e.,
the convex hull of the representatives of a large system of orbits. For a concrete problem,
like graph coloring, only a subset of the orbits are feasible (the dark orbits). Combining
a (symmetric) IP-formulation for the concrete problem with the orbitope removes the
symmetry from the formulation (right figure).

but also in many other contexts like, e.g., block partitioning of matrices [1],
k-partitioning in the context of frequency assignment [6], or line-planning
in public transport [2]. However, other groups are interesting as well. For
instance, in the context of timetabling in public transport systems [19], cyclic
groups play an important role.

We thus propose to study different types of orbitopes, depending on the
group acting on the columns of the variable-matrix and on further restrictions
like the number of 1-entries per row being exactly one (partitioning), at most
one (packing), at least one (covering), or arbitrary (full).

The main results of this paper are complete and irredundant linear de-
scriptions of packing and partitioning orbitopes for both the symmetric group
and for the cyclic group acting on the columns of the variable-matrix. We
also provide (linear time) separation algorithms for the corresponding sets of
inequalities. While this work lays the theoretical foundations on orbitopes,
a thorough computational investigation of the practical usefulness of the re-
sults will be the subject of further studies (see also the remarks in Section 5).

The outline of the paper is as follows. In Section 2, we introduce some
basic notations and define orbitopes. In Section 2.1 we show that optimiza-
tion over packing and partitioning orbitopes for symmetric and cyclic groups
can be done in polynomial time. In Section 3 we give complete (totally uni-
modular) linear descriptions of packing and partitioning orbitopes for cyclic
groups. Section 4 deals with packing and partitioning orbitopes for symmet-
ric groups, which turn out to be more complicated than their counterparts for
cyclic groups. Here, besides (strengthenings of) Inequalities (2), one needs
exponentially many additional inequalities, the “shifted column inequalities”,
which are introduced in Section 4.2. We show that the corresponding sepa-
ration problem can be solved in linear time, see Section 4.3. Section 4.4 gives
a complete linear description, and Section 4.5 investigates the facets of the
polytopes. We summarize the results for symmetric groups in Section 4.6
for easier reference. Finally, we close with some remarks in Section 5.

2 Orbitopes: General Definitions and Basic Facts 9

2. Orbitopes: General Definitions and Basic Facts

We first introduce some basic notation. For a positive integer n, we define
[n] := {1, 2, . . . , n}. We denote by 0 the 0-matrix or 0-vector of appropriate

sizes. Throughout the paper let p and q be positive integers. For x ∈ R[p]×[q]

and S ⊆ [p] × [q], we write

x(S) :=
∑

(i,j)∈S

xij .

For convenience, we use S−(i, j) for S \{(i, j)} and S +(i, j) for S∪{(i, j)},
where S ⊆ [p]× [q] and (i, j) ∈ [p]× [q]. If p and q are clear from the context,
then rowi := {(i, 1), (i, 2), . . . , (i, q)} are the entries of the ith row.

Let Mp,q := {0, 1}[p]×[q] be the set of 0/1-matrices of size p × q. We
define

◦ M≤
p,q := {x ∈ Mp,q : x(rowi) ≤ 1 for all i}

◦ M=
p,q := {x ∈ Mp,q : x(rowi) = 1 for all i}

◦ M≥
p,q := {x ∈ Mp,q : x(rowi) ≥ 1 for all i}.

Let ≺ be the lexicographic ordering of Mp,q with respect to the ordering

(1, 1) < (1, 2) < · · · < (1, q) < (2, 1) < (2, 2) < · · · < (2, q) < · · · < (p, q)

of matrix positions, i.e., A ≺ B with A = (aij), B = (bij) ∈ Mp,q if and only
if akℓ < bkℓ, where (k, ℓ) is the first position (with respect to the ordering
above) where A and B differ.

Let Sn be the group of all permutations of [n] (symmetric group) and
let G be a subgroup of Sq, acting on Mp,q by permuting columns. Let
Mmax

p,q (G) be the set of matrices of Mp,q that are ≺-maximal within their
orbits under the group action G.

We can now define the basic objects of this paper.

Definition 2.1 (Orbitopes).

(1) The full orbitope associated with the group G is

Op,q(G) := conv Mmax
p,q (G).

(2) We associate with the group G the following restricted orbitopes:

O≤
p,q(G) := conv(Mmax

p,q (G) ∩M≤
p,q) (packing orbitope)

O=
p,q(G) := conv(Mmax

p,q (G) ∩M=
p,q) (partitioning orbitope)

O≥
p,q(G) := conv(Mmax

p,q (G) ∩M≥
p,q) (covering orbitope)

Remark. By definition, O=
p,q(G) is a face of both O≤

p,q(G) and O≥
p,q(G).

In this paper, we will be only concerned with the cases of G being the
cyclic group Cq containing all q cyclic permutations of [q] (Section 3) or the
symmetric group Sq (Section 4). Furthermore, we will restrict attention
to packing and partitioning orbitopes. For these, we have the following
convenient characterizations of vertices:

10 Packing and Partitioning Orbitopes

Observation.

(1) A matrix of Mp,q is contained in Mmax
p,q (Sq) if and only if its columns

are in non-increasing lexicographic order (with respect to the order ≺
defined above).

(2) A matrix of M≤
p,q is contained in Mmax

p,q (Cq) if and only if its first column
is lexicographically not smaller than the remaining ones (with respect to
the order ≺).

(3) In particular, a matrix of M=
p,q is contained in Mmax

p,q (Cq) if and only if
it has a 1-entry at position (1, 1).

2.1. Optimizing over Orbitopes

The main aim of this paper is to provide complete descriptions of O=
p,q(Sq),

O≤
p,q(Sq), O=

p,q(Cq), and O≤
p,q(Cq) by systems of linear equations and linear

inequalities. If these orbitopes admit “useful” linear descriptions then the
corresponding linear optimization problems should be solvable efficiently, due
to the equivalence of optimization and separation, see Grötschel, Lovász, and
Schrijver [10].

We start with the cyclic group operation, since the optimization problem
is particularly easy in this case.

Theorem 2.2. Both the linear optimization problem over Mmax
p,q (Cq)∩M≤

p,q

and over Mmax
p,q (Cq) ∩M=

p,q can be solved in time O(pq).

Proof. We first give the proof for the packing case.
For a vector c ∈ Q[p]×[q], we consider the linear objective function

〈c, x〉 :=

p∑

i=1

q∑

j=1

cij xij.

The goal is to find a matrix A⋆ ∈ Mmax
p,q (Cq) ∩ M≤

p,q such that 〈c,A⋆〉 is
maximal. Let A⋆ be such a c-maximal matrix, and let a⋆ ∈ {0, 1}p be its
first column. If a⋆ = 0, then A⋆ = 0 by Part (2) of Observation 2. By
the same observation it follows that if a⋆ 6= 0 and i⋆ ∈ [p] is the minimum
row-index i with a⋆

i = 1, then A⋆ has only zero entries in its first i⋆ rows,
except for the 1-entry at position (i⋆, 1) (there is at most one 1-entry in each
row). Furthermore, each row i > i⋆ of A⋆ either has no 1-entry or it has its
(unique) 1-entry at some position where c is maximal in row i.

Thus, we can compute an optimal solution as follows: (1) For each i ∈ [p]
determine a vector bi ∈ {0, 1}q that is the zero vector if c does not have any
positive entries in row i and otherwise is the j-th standard unit vector,
where j ∈ [q] is chosen such that cij = max{ciℓ : ℓ ∈ [q]}; set σi := 0 in
the first case and σi := cij in the second. (2) Compute the values sp := σp

and si := σi + si+1 for all i = p− 1, p − 2, . . . , 1. (3) Determine i⋆ such that
ci⋆,1 + si⋆+1 is maximal among {ci,1 + si+1 : i ∈ [p]}. (4) If ci⋆,1 + si⋆+1 ≤ 0,
then 0 is an optimal solution. Otherwise, the matrix whose i-th row equals bi

for i ∈ {i⋆ + 1, . . . , p} and which is all-zero in the first i⋆ rows, except for a
1-entry at position (i⋆, 1), is optimal.

From the description of the algorithm it is easy to see that its running
time is bounded by O(pq) (in the unit-cost model).

2 Orbitopes: General Definitions and Basic Facts 11

µ(i1, i2 − 1, j)

λ(i2, j)

i1

i2

j

i

j

k

M

T

Figure 2: Illustration of the proof of Theorem 2.3. Left: Computation of µ(i1, i2, j).
Right: Computation of τ (i, j) via the dynamic programming relation (3). Indicated are the
matrix M(i, k−1, j−1) and corresponding term µ(i, k−1, j−1) and matrix T (k+1, j+1)
with corresponding term τ (k + 1, j + 1).

The partitioning case is then straightforward and even becomes easier
due to Part (3) of Observation 2. �

Theorem 2.3. Both the linear optimization problem over Mmax
p,q (Sq)∩M≤

p,q

and over Mmax
p,q (Sq) ∩M=

p,q can be solved in time O(p2q).

Proof. We give the proof for the partitioning case, indicating the necessary
modifications for the packing case at the relevant points.

As in the proof of Theorem 2.2, we maximize the linear objective function
given by 〈c, x〉 for c ∈ Q[p]×[q]. We describe a two-step approach.

In the first step, for i1, i2 ∈ [p] with i1 ≤ i2 and j ∈ [q], we let M(i1, i2, j)

be c-maximal among the matrices in {0, 1}{i1 ,i1+1,...,i2}×[j] with exactly (in
the packing case: at most) one 1-entry in every row. Denote by µ(i1, i2, j)
the c-value of M(i1, i2, j), i.e.,

µ(i1, i2, j) =

i2∑

k=i1

j∑

ℓ=1

ckℓ M(i1, i2, j)kℓ .

The values µ(i1, i2, j) can be computed in time O(p2q) as follows. First,
we compute all numbers λ(i, j) = max{ciℓ : ℓ ∈ [j]} (in the packing case:
λ(i, j) = max(0, {ciℓ : ℓ ∈ [j]})) for all i ∈ [p] and j ∈ [q]. This can clearly
be done in O(pq) steps by using the recursions λ(i, j) = max{λ(i, j − 1), cij}
for j ≥ 2. Then, after initializing µ(i, i, j) = λ(i, j) for all i ∈ [p] and
j ∈ [q], one computes µ(i1, i2, j) = µ(i1, i2 − 1, j) + λ(i2, j) for all j ∈ [q],
i1 = 1, 2, . . . , p, and i2 = i1 + 1, i1 + 2, . . . , q; see Figure 2.

In the second step, for i ∈ [p] and j ∈ [q], let T (i, j) be c-maximal

among the matrices in {0, 1}{i,i+1,...,p}×[q] with exactly (in the packing case:
at most) one 1-entry in every row and with columns j, j + 1, . . . , q being
in non-increasing lexicographic order. Thus, by Part (1) of Observation 2,
T (1, 1) is an optimal solution to our linear optimization problem. Denote by
τ(i, j) the c-value of T (i, j), i.e.,

τ(i, j) =

p∑

k=i

q∑

ℓ=1

ckℓ T (i, j)kℓ.

Let k ∈ {i, i+1, . . . , p+1} be the index of the first row, where T (i, j) has
a 1-entry in column j (with k = p+1 if there is no such 1-entry); see Figure 2.

12 Packing and Partitioning Orbitopes

Then T (i, j) has a c-maximal matrix T in rows k + 1, . . . , p with exactly (in
the packing case: at most) one 1-entry per row and lexicographically sorted
columns j +1, . . . , q (contributing τ(k +1, j +1)). In row k, there is a single
1-entry at position (k, j) (contributing ckj). And in rows i, . . . , k − 1, we
have a c-maximal matrix M with exactly (in the packing case: at most) one
1-entry per row in the first j−1 columns (contributing µ(i, k−1, j −1)) and
zeroes in the remaining columns. Therefore, we obtain

τ(i, j) = µ(i, k − 1, j − 1) + ckj + τ(k + 1, j + 1).

Hence, considering all possibilities for k, we have

τ(i, j) = max { µ(i, k − 1, j − 1) + ckj + τ(k + 1, j + 1) : (3)

k ∈ {i, i + 1, . . . , p + 1}},
for all i ∈ [p] and j ∈ [q]. For convenience we define µ(k1, k2, 0) = 0 for
k1, k2 ∈ [p] with k1 ≤ k2 and µ(k, k − 1, ℓ) = 0 for all k ∈ [p] and ℓ ∈
{0, 1, . . . , q}. Furthermore, we set cp+1,ℓ = 0 for all ℓ ∈ [q]. Finally, we
define τ(p+2, ℓ) = τ(p+1, ℓ) = τ(k, q +1) = 0 for all k ∈ [p] and ℓ ∈ [q + 1].

Thus, by dynamic programming, we can compute the table τ(i, j) via
Equation (3) in the order i = p, p − 1, . . . , 1, j = q, q − 1, . . . , 1. For each
pair (i, j) the evaluation of (3) requires no more than O(p) steps, yielding a
total running time bound of O(p2q).

Furthermore, if during these computations for each (i, j) we store a max-
imizer k(i, j) for k in (3), then we can easily reconstruct the optimal solution
T (1, 1) from the k-table without increasing the running time asymptotically:
For i ∈ [p], j ∈ [q] the matrix T (i, j) is composed of M(i, k(i, j) − 1, j − 1)
(if k(i, j) ≥ i + 1 and j ≥ 2), T (k(i, j) + 1, j + 1) (if k(i, j) ≤ p − 1 and
j ≤ q − 1), and having 0-entries everywhere else, except for a 1-entry at
position (k(i, j), j) (if k(i, j) ≤ p). Each single matrix M(i1, i2, j) can be
computed in O((i2 − i1)j) steps. Furthermore, for the matrices M(i1, i2, j)
needed during the recursive reconstruction of T (1, 1), the sets {i1, . . . , i2}×[j]
are pairwise disjoint (see Figure 2). Thus, these matrices all together can be
computed in time O(pq). At the end there might be a single T (k, q + 1) to
be constructed, which trivially can be done in O(pq) steps. �

Thus, with respect to complexity theory there are no “obstructions” to
finding complete linear descriptions of packing and partitioning orbitopes
for both the cyclic and the symmetric group action. In fact, for cyclic group
actions we will provide such a description in Theorem 3.1 and Theorem 3.2 for
the partitioning and packing case, respectively. For symmetric group actions
we will provide such a description for partitioning orbitopes in Theorems 4.15
and for packing orbitopes in Theorem 4.16. The algorithm used in the proof
of Theorem 2.2 (for cyclic groups) is trivial, while the one described in the
proof of Theorem 2.3 (for symmetric groups) is a bit more complicated. This
is due to the simpler characterization of the cyclic case in Observation 2
and is reflected by the fact that the proofs of Theorems 4.15 and 4.16 (for
symmetric groups) need much more work than the ones of Theorems 3.1
and 3.2 (for cyclic groups).

The algorithms described in the above two proofs heavily rely on the
fact that we are considering only matrices with at most one 1-entry per row.

3 Packing and Partitioning Orbitopes for Cyclic Groups 13

For cyclic group operations, the case of matrices with more ones per row
becomes more involved, because we do not have a simple characterization
(like the one given in parts 2 and 3 of Observation 2) of the matrices in
Mmax

p,q (Cq) anymore. For the action of the symmetric group, though we
still have the characterization provided by Part (1) of Observation 2, the
dynamic programming approach used in the proof of Theorem 2.3 cannot
be adapted straight-forwardly without resulting in an exponentially large
dynamic programming table (unless q is fixed). These difficulties apparently
are reflected in the structures of the corresponding orbitopes (see the remarks
in Section 5).

3. Packing and Partitioning Orbitopes for Cyclic Groups

From the characterization of the vertices in parts (2) and (3) of Observa-
tion 2 one can easily derive IP-formulations of both the partitioning orbitope
O=

p,q(Cq) and the packing orbitope O≤
p,q(Cq) for the cyclic group Cq. In fact,

it turns out that these formulations do already provide linear descriptions of
the two polytopes, i.e., they are totally unimodular. We refer the reader to
Schrijver [18, Chap. 19] for more information on total unimodularity.

It is easy to see that for the descriptions given in Theorems 3.1 and 3.2
below, the separation problem can be solved in time O(pq).

Theorem 3.1. The partitioning orbitope O=
p,q(Cq) for the cyclic group Cq

equals the set of all x ∈ R[p]×[q] that satisfy the following linear constraints:

◦ the equations x11 = 1 and x1j = 0 for all 2 ≤ j ≤ q,
◦ the nonnegativity constraints xij ≥ 0 for all 2 ≤ i ≤ p and j ∈ [q],
◦ the row-sum equations x(rowi) = 1 for all 2 ≤ i ≤ p.

This system of constraints is non-redundant.

Proof. The constraints x(rowi) = 1 for i ∈ [p] and xij ≥ 0 for i ∈ [p], j ∈ [q]
define an integral polyhedron, since they describe a transshipment problem
(and thus, the coefficient matrix is totally unimodular). Hence, the con-
straint system given in the statement of the theorem describes an integer
polyhedron, because it defines a face of the corresponding transshipment
polytope.

By Part (3) of Observation 2, the set of integer points satisfying this con-
straint system is M=

p,q ∩Mmax
p,q (Cq). Hence the given constraints completely

describe O=
p,q(Cq). The non-redundancy follows from the fact that dropping

any of the constraints enlarges the set of feasible integer solutions. �

Theorem 3.2. The packing orbitope O≤
p,q(Cq) for the cyclic group Cq equals

the set of all x ∈ R[p]×[q] that satisfy the following linear constraints:

◦ the constraints 0 ≤ x11 ≤ 1 and x1j = 0 for all 2 ≤ j ≤ q,
◦ the nonnegativity constraints xij ≥ 0 for all 2 ≤ i ≤ p and j ∈ [q],
◦ the row-sum inequalities x(rowi) ≤ 1 for all 2 ≤ i ≤ p,
◦ the inequalities

q∑

j=2

xij −
i−1∑

k=1

xk1 ≤ 0 (4)

14 Packing and Partitioning Orbitopes

i

Figure 3: Example of the coefficient vector for an inequality of type (4); “−” stands for
a −1, “+” for a +1.

P1

P2 Pi−1 Pi Pi+1 Pp

v11 v21 vi−1,1 vi1 vi+1,1 vp1 vp+1,1

vi,j−1

vij

viq

α11 αi−1,1 αi1 αp1

α22

α2j

α2q

αi2

αij

αiq

αp2

αpj

αpq

Figure 4: The network matrix constructed in the proof of Theorem 3.2.

for all 2 ≤ i ≤ p (see Figure 3 for an example).

This system of constraints is non-redundant.

Proof. From Part (2) of Observation 2 it follows that an integer point is
contained in O≤

p,q(Cq) if and only if it satisfies the constraints described in
the statement, where Inequalities (4) ensure that the first column of x is
lexicographically not smaller than the other ones (note that we have at most
one 1-entry in each row of x). Dropping any of the constraints enlarges
the set of integer solutions, which proves the statement on non-redundancy.
Thus, as in the proof of the previous theorem, it remains to show that the
polyhedron defined by the constraints is integral. We prove this by showing
that the coefficient matrix A of the row-sum inequalities x(rowi) ≤ 1 (for
2 ≤ i ≤ p) and Inequalities (4) (for all 2 ≤ i ≤ p) is a network matrix (and
thus, totally unimodular). Adding the nonnegativity constraints amounts
to adding an identity matrix and preserves total unimodularity, which also
holds for the inclusion of x11 ≤ 1 into the system.

In order to establish the claim on the network structure of A, we will
identify a directed tree T , whose arcs are in bijection with [p] × [q] (the set
of indices of the columns of A), such that there are pairs of nodes (vr, wr)

4 Packing and Partitioning Orbitopes for Symmetric Groups 15

of T in bijection with the row indices r ∈ [2(p − 1)] of A with the following
property. The matrix A has a (+1)-entry in row r and column (i, j), if the
unique path πr from node vr to node wr in the tree T uses arc (i, j) in its
direction from i to j, a (−1)-entry, if πr uses (i, j) in its reverse direction,
and a 0-entry, if πr does not use (i, j).

For the construction of the tree T , we take a directed path P1 of length p
on nodes {v11, v21, . . . , vp+1,1} with arcs αi1 := (vi+1,1, vi1) for i ∈ [p]; see
Figure 4. For each 2 ≤ i ≤ p, we append a directed path Pi of length q−1 to
node vi1, where Pi has node set {vi1, vi2, . . . , viq} and arcs αij := (vi,j−1, vij)
for 2 ≤ j ≤ q. Choosing the pair (vi+1,1, viq) for the i-th row sum-inequality
and the pair (v11, viq) for the i-th Inequality (4), finishes the proof (using
the bijection between the arcs of T and the columns of A indicated by the
notation αij). �

4. Packing and Partitioning Orbitopes for Symmetric Groups

For packing orbitopes O≤
p,q(Sq) and partitioning orbitopes O=

p,q(Sq) with
respect to the symmetric group it follows readily from the characterization
in Part (1) of Observation 2 that the equations

xij = 0 for all i < j (5)

are valid. Thus, we may drop all variables corresponding to components in
the upper right triangle from the formulation and consider

O≤
p,q(Sq), O=

p,q(Sq) ⊂ RIp,q with Ip,q := {(i, j) ∈ [p] × [q] : i ≥ j}.
We also adjust the definition of

rowi := {(i, 1), (i, 2), . . . , (i,min{i, q})} for i ∈ [p]

and define the jth column for j ∈ [q] as

colj := {(j, j), (j + 1, j), . . . , (p, j)}.
Furthermore, we restrict ourselves to the case

p ≥ q ≥ 2

in this context. Because of (5), the case of q > p can be reduced to the case
p = q and the case of q = 1 is of no interest.

The next result shows a very close relationship between packing and
partitioning orbitopes for the case of symmetric group actions.

Proposition 4.1. The polytopes O=
p,q(Sq) and O≤

p−1,q−1(Sq−1) are affinely

isomorphic via orthogonal projection of O=
p,q(Sq) onto the space

L := {x ∈ RIp,q : xi1 = 0 for all i ∈ [p]}
(and the canonical identification of this space with RIp−1,q−1).

Proof. The affine subspace

A := {x ∈ RIp,q : x(rowi) = 1 for all i}
of RIp,q clearly contains O=

p,q(Sq). Let π : A → RIp−1,q−1 be the orthogonal
projection mentioned in the statement (identifying L in the canonical way

16 Packing and Partitioning Orbitopes

with RIp−1,q−1); note that the first row is removed since it only contains the
element (1, 1). Consider the linear map φ : RIp−1,q−1 → RIp,q defined by

φ(y)ij =

{
1 − y(rowi−1) if j = 1

yi−1,j−1 otherwise
for (i, j) ∈ Ip,q

(where row0 = ∅ and y(∅) = 0). This is the inverse of π, showing that π

is an affine isomorphism. As we have π(O=
p,q(Sq)) = O≤

p−1,q−1(Sq−1), this
finishes the proof. �

It will be convenient to address the elements in Ip,q via a different “system
of coordinates”:

〈η, j〉 := (j + η − 1, j) for j ∈ [q], 1 ≤ η ≤ p − j + 1.

Thus (as before) i and j denote the row and the columns, respectively, while η
is the index of the diagonal (counted from above) containing the respective
element; see Figure 5 (a) for an example. For (k, j) = 〈η, j〉 and x ∈ RIp,q ,
we write x〈η,j〉 := x(k,j) := xkj.

For x ∈ {0, 1}Ip,q we denote by Ix := {(i, j) ∈ Ip,q : xij = 1} the set of
all coordinates (positions in the matrix), where x has a 1-entry. Conversely,
for I ⊆ Ip,q, we use χI ∈ {0, 1}Ip,q for the 0/1-point with χI

ij = 1 if and only

if (i, j) ∈ I.
For (i, j) ∈ Ip,q, we define the column

col(i, j) = {(j, j), (j + 1, j), . . . , (i − 1, j), (i, j)} ⊆ Ip,q,

and for (i, j) = 〈η, j〉 we write col〈η, j〉 := col(i, j). Of course, we have
col〈η, j〉 = {〈1, j〉, 〈2, j〉, . . . , 〈η, j〉}.

The rest of this section is organized as follows. First, in Section 4.1, we
deal with basic facts about integer points in packing and partitioning or-
bitopes for the symmetric group. To derive a linear description of O≤

p,q(Sq)
and O=

p,q(Sq) that only contains integer vertices, we need additional inequal-
ities, the shifted column inequalities, which are introduced in Section 4.2. We
then show that the corresponding separation problem can be solved in lin-
ear time (Section 4.3). Section 4.4 proves the completeness of the linear
description and Section 4.5 investigates the facets of the polytopes.

4.1. Characterization of Integer Points

We first derive a crucial property of the vertices of O≤
p,q(Sq).

Lemma 4.2. Let x be a vertex of O≤
p,q(Sq) with 〈η, j〉 ∈ Ix (j ≥ 2). Then

we have Ix ∩ col〈η, j − 1〉 6= ∅.

Proof. With 〈η, j〉 = (i, j) we have xij = 1, which implies xi,j−1 = 0 (since x
has at most one 1-entry in row i). Thus, Ix ∩ col〈η, j − 1〉 = ∅ would yield
xk,j−1 = 0 for all k ≤ i, contradicting the lexicographic order of the columns
of x (see Part (1) of Observation 2). �

Definition 4.3 (Column inequality). For (i, j) ∈ Ip,q and the set B = {(i, j),
(i, j + 1), . . . , (i,min{i, q})}, we call

x(B) − x(col(i − 1, j − 1)) ≤ 0

a column inequality ; see Figure 5 (b) for an example with (i, j) = (9, 5).

4 Packing and Partitioning Orbitopes for Symmetric Groups 17

The column inequalities are strengthenings of the symmetry breaking
inequalities

xij − x(col(i − 1, j − 1)) ≤ 0, (6)

introduced by Méndez-Díaz and Zabala [14] in the context of vertex-coloring
(see (2) in the introduction).

Proposition 4.4. A point x ∈ {0, 1}Ip,q lies in O≤
p,q(Sq) (O=

p,q(Sq)) if and
only if x satisfies the row-sum constraints x(row(i)) ≤ 1 (x(row(i)) = 1) for
all i ∈ [p] and all column inequalities.

Proof. By Lemma 4.2, Inequalities (6) are valid for O≤
p,q(Sq) (and thus, for

its face O=
p,q(Sq) as well). Because of the row-sum constraints, all column

inequalities are valid as well. Therefore, it suffices to show that a point
x ∈ {0, 1}Ip,q that satisfies the row-sum constraints x(row(i)) ≤ 1 and all
column inequalities is contained in Mmax

p,q (Sq).
Suppose, this was not the case. Then, by Part (1) of Observation 2, there

must be some j ∈ [q] such that the (j−1)-st column of x is lexicographically
smaller than the jth column. Let i be minimal with xij = 1 (note that
column j cannot be all-zero). Thus, xk,j−1 = 0 for all k < i. This implies
x(col(i − 1, j − 1)) = 0 < 1 = xij , showing that the column inequality
x(B) − x(col(i − 1, j − 1)) ≤ 0 is violated by the point x for the bar B =
{(i, j), (i, j + 1), . . . , (i,min{i, q})}. �

4.2. Shifted Column Inequalities

Proposition 4.4 provides a characterization of the vertices of the packing-
and partitioning orbitopes for symmetric groups among the integer points.
Different from the situation for cyclic groups (see Theorems 3.1 and 3.2),
however, the inequalities in this characterization do not yield complete de-
scriptions of these orbitopes. In fact, we need to generalize the concept of a
column inequality in order to arrive at complete descriptions. This will yield
exponentially many additional facets (see Proposition 4.13).

Definition 4.5 (Shifted columns). A set S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂
Ip,q with η ≥ 1 and c1 ≤ c2 ≤ · · · ≤ cη is called a shifted column. It is a
shifting of each of the columns

col〈η, cη〉, col〈η, cη + 1〉, . . . , col〈η, q〉.
Remark.

◦ As a special case we have column col(i, j), which is the shifted column
{〈1, j〉, 〈2, j〉, . . . , 〈η, j〉} for 〈η, j〉 = (i, j).

◦ By definition, if S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂ Ip,q is a shifted col-
umn, then so is {〈1, c1〉, 〈2, c2〉, . . . , 〈η′, cη′〉} for every 1 ≤ η′ ≤ η.

Lemma 4.6. Let x be a vertex of O≤
p,q(Sq) with 〈η, j〉 ∈ Ix (j ≥ 2). Then

we have Ix ∩ S 6= ∅ for all shiftings S of col〈η, j − 1〉.
Proof. The proof proceeds by induction on j. The case j = 2 follows from
Lemma 4.2, because the only shifting of col〈η, 1〉 is col〈η, 1〉 itself. There-
fore, let j ≥ 3, and let S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} be a shifting of
col〈η, j − 1〉 (hence, c1 ≤ c2 ≤ · · · ≤ cη ≤ j − 1). Since by assumption

18 Packing and Partitioning Orbitopes

i

j

η

(a)

i

j

(b)

i

j

(c)

i

j

(d)

Figure 5: (a) Example for coordinates (9, 5) = 〈5, 5〉. (b)–(d) Shifted column inequalities
with leader 〈5, 5〉, see Definition 4.7. All SCI inequalities are ≤-inequalities with right-
hand sides zero and “−” stands for a (−1)-coefficient, “+“ for a (+1) coefficient. The
shifted column of (c) is {〈1, 2〉, 〈2, 3〉, 〈3, 3〉, 〈4, 4〉, 〈5, 4〉}.

〈η, j〉 ∈ Ix, Lemma 4.2 yields that there is some η′ ≤ η with 〈η′, j − 1〉 ∈ Ix.
If 〈η′, j − 1〉 ∈ S, then we are done. Otherwise, cη′ < j − 1 holds. There-
fore, {〈1, c1〉, 〈2, c2〉, . . . , 〈η′, cη′〉} is a shifting of (col〈η′, cη′〉 and hence of)
col〈η′, j − 2〉, which, by the inductive hypothesis, must intersect Ix. �

Definition 4.7 (Shifted column inequalities). For (i, j) = 〈η, j〉 ∈ Ip,q, B =
{(i, j), (i, j + 1), . . . , (i,min{i, q})}, and a shifting S of col〈η, j − 1〉, we call

x(B) − x(S) ≤ 0

a shifted column inequality (SCI). The set B is the bar of the SCI, and (i, j)
is the leader of (the bar of) the SCI. The set S is the shifted column (SC) of
the SCI. See Figure 5 for examples.

In particular, all column inequalities are shifted column inequalities. The
class of shifted column inequalities, however, is substantially richer: It con-
tains exponentially many inequalities (in q).

Proposition 4.8. Shifted column inequalities are valid both for the packing
orbitopes O≤

p,q(Sq) and for the partitioning orbitopes O=
p,q(Sq).

Proof. As O=
p,q(Sq) is a face of O≤

p,q(Sq), it is enough to prove the proposition

for packing orbitopes O≤
p,q(Sq). Therefore, let (i, j) = 〈η, j〉 ∈ Ip,q, with

j ≥ 2, and let S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} be a shifting of col〈η, j − 1〉.
Denote by B the bar of the corresponding SCI.

Let x ∈ {0, 1}Ip,q be a vertex of O≤
p,q(Sq). If B ∩ Ix = ∅, then clearly

x(B) − x(S) = 0 − x(S) ≤ 0 holds. Otherwise, there is a unique element
(i, j′) = 〈η′, j′〉 ∈ B ∩ Ix. As j′ ≥ j, we have η′ ≤ η. Therefore S′ =
{〈1, c1〉, 〈2, c2〉, . . . , 〈η′, cη′〉} ⊆ S is a shifting of col〈η′, j′ − 1〉. Thus, by
Lemma 4.6, we have S′ ∩ Ix 6= ∅. This shows x(S) ≥ x(S′) ≥ 1, implying
x(B) − x(S) ≤ 1 − 1 = 0. �

4.3. A Linear Time Separation Algorithm for SCIs

In order to devise an efficient separation algorithm for SCIs, we need a
method to compute minimal shifted columns with respect to a given weight

4 Packing and Partitioning Orbitopes for Symmetric Groups 19

i

j

η

i

j

η

Figure 6: The two cases arising in the dynamic programming algorithm of Section 4.3.

vector w ∈ QIp,q . The crucial observation is the following. Let S =
{〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} with 1 ≤ c1 ≤ c2 ≤ · · · ≤ cη ≤ j be a shift-
ing of col〈η, j〉 for 〈η, j〉 ∈ Ip,q with η > 1. If cη < j, then S is a shifting of
col〈η, j − 1〉 (Case 1). If cη = j, then

S − 〈η, j〉 = {〈1, c1〉, 〈2, c2〉, . . . , 〈η − 1, cη−1〉}
is a shifting of col〈η − 1, j〉 (Case 2); see Figure 6.

For all 〈η, j〉 ∈ Ip,q, let ω〈η, j〉 be the weight of a w-minimal shifting of
col〈η, j〉. The table (ω〈η, j〉) can be computed by dynamic programming as
follows; we also compute a table of values τ〈η, j〉 ∈ {1, 2}, for each 〈η, j〉,
which are needed later to reconstruct the corresponding shifted columns:

(1) For j = 1, 2, . . . , q, initialize ω〈1, j〉 := min{w〈1,ℓ〉 : ℓ ∈ [j]}.
(2) For η = 2, 3, . . . , p, initialize ω〈η, 1〉 := ω〈η − 1, 1〉 + w〈η,1〉.
(3) For η = 2, 3, . . . , p, j = 2, 3, . . . , q (with 〈η, j〉 ∈ Ip,q): Compute

ω1 := ω〈η, j − 1〉 and ω2 := ω〈η − 1, j〉 + w〈η,j〉

corresponding to Cases 1 and 2, respectively. Then set

ω〈η, j〉 = min{ω1, ω2} and τ〈η, j〉 =

{
1 if ω1 ≤ ω2

2 otherwise.

Thus, the tables (ω〈η, j〉) and (τ〈η, j〉) can be computed in time O(pq).
Furthermore, for a given 〈η, j〉 ∈ Ip,q, we can compute a w-minimal shifting
S〈η, j〉 of col〈η, j〉 in time O(η) from the table (τ〈η, j〉): We have S〈1, j〉 =
{〈1, j〉} for all j ∈ [q], S〈η, 1〉 = col〈η, 1〉 for all η ∈ [p], and

S〈η, j〉 =

{
S〈η, j − 1〉 if τ〈η, j〉 = 1

S〈η − 1, j〉 ∪ {〈η, j〉} if τ〈η, j〉 = 2

for all other 〈η, j〉. This proves the following result.

Theorem 4.9. Let w ∈ QIp,q be a given weight vector. There is an O(pq)
time algorithm that simultaneously computes the weights of w-minimal shift-
ings of col〈η, j〉 for all 〈η, j〉 ∈ Ip,q and a data structure that afterwards, for
a given 〈η, j〉, allows to determine a corresponding shifted column in O(η)
steps.

In particular, we obtain the following:

Corollary 4.10. The separation problem for shifted column inequalities can
be solved in linear time O(pq).

20 Packing and Partitioning Orbitopes

Proof. Let a point x⋆ ∈ QIp,q be given. We can compute the x⋆-values
β(i, j) := x⋆(B(i, j)) of all bars B(i, j) = {(i, j), (i, j + 1), . . . , (i,min{i, q})}
in linear time in the following way: First, we initialize β(i, ℓ) = x⋆

iℓ for all
i ∈ [p] and ℓ = min{i, q}. Then, for each i ∈ [p], we calculate the value
β(i, j) = x⋆

ij + β(i, j + 1) for j = min{i, q} − 1,min{i, q} − 2, . . . , 1.

Using Theorem 4.9 (and the notations introduced in the paragraphs pre-
ceeding it), we compute the table (ω〈η, j〉) and the mentioned data struc-
ture in time O(pq). Then in time O(pq) we check whether there exists an
(i, j) = 〈η, j〉 ∈ Ip,q with j ≥ 2 and ω〈η, j − 1〉 < β(i, j). If there exists
such an 〈η, j〉, we compute the corresponding shifted column S〈η, j − 1〉 (in
additional time O(η) ⊆ O(p)), yielding an SCI that is violated by x⋆. Oth-
erwise x⋆ satisfies all SCIs. �

Of course, the procedure described in the proof of the corollary can be
modified to find a maximally violated SCI if x⋆ does not satisfy all SCIs.

4.4. Complete Inequality Descriptions

In this section we prove that nonnegativity constraints, row-sum equations,
and SCIs suffice to describe partitioning and packing orbitopes for symmetric
groups. The proof will be somewhat more involved than in the case of cyclic
groups. In particular, the coefficient matrices are not totally unimodular
anymore. In order to see this, consider the three column inequalities

x3,3 − x2,2 ≤ 0, x4,3 + x4,4 − x2,2 − x3,2 ≤ 0, and

x5,4 + x5,5 − x3,3 − x4,3 ≤ 0.

The submatrix of the coefficient matrix belonging to these three rows and
the columns corresponding to (2, 2), (3, 3), and (4, 3) is the matrix

−1 +1 0
−1 0 +1

0 −1 −1

 ,

whose determinant equals −2. Note that the above three inequalities define
facets both of O≤

p,q(Sq) and O=
p,q(Sq) for p ≥ q ≥ 5 (see Propositions 4.13

and 4.14, respectively).

Proposition 4.11. The partitioning orbitope O=
p,q(Sq) is completely de-

scribed by the nonnegativity constraints, the row-sum equations, and the
shifted column inequalities:

O=
p,q(Sq) = {x ∈ RIp,q : x ≥ 0, x(rowi) = 1 for i = 1, . . . , p,

x(B) − x(S) ≤ 0 for all SCIs with SC S and bar B }.
Proof. Let P be the polyhedron on the right-hand side of the statement
above. From Propositions 4.4 and 4.8 we know already that

P ∩ ZIp,q = O=
p,q(Sq) ∩ZIp,q

holds. Thus, it suffices to show that P is an integral polytope (as O=
p,q(Sq)

is by definition). In the following, we first describe the strategy of the proof.
For the rest of the proof, fix an arbitrary vertex x⋆ of P . A basis B of x⋆

is a cardinality |Ip,q| subset of the constraints describing P that are satisfied

4 Packing and Partitioning Orbitopes for Symmetric Groups 21

with equality by x⋆ with the property that the |Ip,q|×|Ip,q|-coefficient matrix
of the left-hand sides of the constraints in B is non-singular. Thus, the
equation system obtained from the constraints in B has x⋆ as its unique
solution.

We will show that there exists a basis B⋆ of x⋆ that does not contain
any SCI. Thus, B⋆ contains a subset of the p row-sum equations and at
least |Ip,q| − p nonnegativity constraints. This shows that x⋆ has at most p
nonzero entries and, since x⋆ satisfies the row-sum equations, it has a nonzero
entry in every row. Therefore, B⋆ contains all p row-sum equations, and all p
nonzero entries must in fact be 1. Hence, x⋆ is a 0/1-point. So the existence
of such a basis proves the proposition.

The weight of a shifted column S = {〈1, c1〉, 〈2, c2, ,〉 . . . , 〈η, cη〉} with
1 ≤ c1 ≤ c2 ≤ · · · ≤ cη < q (we will not need shifted columns with cη = q
here, as they do not appear in SCIs) is

weight(S) :=

η∑

i=1

ci qi.

In particular, if S1 and S2 are two shifted columns with |S1| < |S2|, then
we have weight(S1) < weight(S2). The weight of an SCI is the weight of its
shifted column, and the weight of a basis B is the sum of the weights of the
SCIs contained in B (note that a shifted column can appear in several SCIs).

A basis of x⋆ that contains all row-sum equations and all nonnegativ-
ity constraints corresponding to 0-entries of x⋆ is called reduced. As the
coefficient vectors (of the left-hand sides) of these constraints are linearly
independent, some reduced basis of x⋆ exists. Hence, there is also a reduced
basis B⋆ of x⋆ of minimal weight.

To prove the proposition, it thus suffices to establish the following claim.

Claim. A reduced basis of x⋆ of minimal weight does not contain any SCI.

The proof of Claim 4.4 consists of three parts:

(1) We show that a reduced basis of x⋆ does not contain any “trivial SCIs”
(Claim 4.4).

(2) We prove that a reduced basis of x⋆ of minimal weight satisfies three
structural conditions on its (potential) SCIs (Claim 4.4).

(3) Finally, assuming that a reduced basis of x⋆ with minimal weight con-
tains at least one SCI, we will derive a contradiction by constructing a
different solution x̃ 6= x⋆ of the corresponding equation system.

We are now ready to start with Part 1. We call an SCI with shifted
column S trivial if x⋆(S) = 0 holds or if we have x⋆(S) = 1 and x⋆

kℓ = 0
for all (k, ℓ) ∈ S − (i, j) for some (i, j) ∈ S (thus satisfying x⋆

ij = 1) (see

Figure 7 (a)).

Claim. A reduced basis B of x⋆ does not contain any trivial SCIs.

Proof. Let S be the shifted column S and B be the bar of some SCI that is
satisfied with equality by x⋆.

If x⋆(S) = 0, then the coefficient vector of the SCI is a linear combination
of the coefficient vectors of the inequalities xij ≥ 0 for (i, j) ∈ S ∪ B, which
all are contained in B (due to x⋆(B) = x⋆(S) = 0). Since the coefficient

22 Packing and Partitioning Orbitopes

0

0

0
0

?

(a)

0 0 ⋆

(b)

0

(c) (d)

Figure 7: Illustration of trivial SCIs and of the three types of configurations not present
in reduced bases of minimal weight, see Claim 4.4. Bars are shown in dark gray, shifted
columns in light gray. Figure (a) shows trivial SCIs (“?” refers to a 0 or 1). Figures (b),
(c), and (d) refer to parts (1), (2), and (3) of Claim 4.4, respectively (“⋆” indicates any
nonzero number).

vectors of the inequalities in B form a non-singular matrix, the SCI can not
be in B. (By “coefficient vector” we always mean the vector formed by the
coefficients of the left-hand side of a constraint.)

If S contains exactly one entry (k, ℓ) ∈ S with x⋆
kℓ = 1, then we have

x⋆(S) = x⋆(B) = 1. Let i be the index of the row that contains the bar B.
The nonnegativity constraints xrs ≥ 0 for (r, s) ∈ S − (k, ℓ), xks ≥ 0 for
(k, s) ∈ rowk −(k, ℓ), and xis ≥ 0 for (i, s) ∈ rowi \B are contained in B.

Since the coefficient vector of the considered SCI can linearly be com-
bined from the coefficient vectors of these nonnegativity constraints and of
the row-sum equations x(rowk) = 1 and x(rowi) = 1, this SCI cannot be
contained in B. �

Claim. A minimal weight reduced basis B of x⋆ satisfies the following three
conditions:

(1) If (k, ℓ) is contained in the shifted column of some SCI in B, then there
exists some s < ℓ with x⋆

ks > 0.
(2) If (i, j) is the leader of an SCI in B, then x⋆

ij > 0 holds.

(3) If (i, j) is the leader of an SCI in B, then there is no SCI in B whose
shifted column contains (i, j).

See Figure 7, (b)–(d) for an illustration of the three conditions.

Proof. Part (1): Assume there exists an SCI in B with shifted column S
and bar B that contains the first nonzero entry of a row k, i.e., there is
(k, ℓ) ∈ S with x⋆

kℓ > 0 and x⋆
ks = 0 for all s < ℓ. Let S′ := S ∩ Ik−1,q

be the entries of S above row k. Let C = {(k, 1), (k, 2), . . . , (k, ℓ − 1)} and
B′ = rowk \(C + (k, ℓ)). See Figure 8 (1) for an illustration.

Because S′ is a shifting of col(k − 1, ℓ), x(B′) − x(S′) ≤ 0 is an SCI
and hence satisfied by x⋆. Since we have |S′| < |S| (thus, weight(S′) <
weight(S)), it suffices to show that replacing the original SCI x(B)−x(S) ≤ 0
by x(B′) − x(S′) ≤ 0 gives another basis B′ of x⋆ (which also is reduced),
contradicting the minimality of the weight of B.

4 Packing and Partitioning Orbitopes for Symmetric Groups 23

k

ℓ

C

B

B′

S′

(1)

i

j

k

ℓ

0

(2)

i

j

S3

S4

B2

B3

(3)

Figure 8: Illustration of the proof of Claim 4.4, parts (1) to (3).

Due to x⋆(rowk) = 1, x⋆(C) = 0, x⋆(B′)−x⋆(S′) ≤ 0, and S′+(k, ℓ) ⊆ S
we have

1 = x⋆
kℓ + x⋆(B′) ≤ x⋆

kℓ + x⋆(S′) ≤ x⋆(S) = x⋆(B) ≤ 1. (7)

Therefore, equality must hold throughout this chain. In particular, this
shows x⋆(B′) − x⋆(S′) = 0. Thus, its suffices to show that the coefficient
matrix of the equation system obtained from B′ is non-singular, which can
be seen as follows.

Since x⋆(S′+(k, ℓ)) = 1 = x⋆(S) (see (7)), we know that all nonnegativity
constraints xrs ≥ 0 with (r, s) ∈ S \ (S′ + (k, ℓ)) are contained in B and B′.
The same holds for xks ≥ 0 with (k, s) ∈ C and for xis ≥ 0 with (i, s) ∈
rowi \B, where row i contains bar B (since x⋆(B) = 1 by (7)). Thus, we can
linearly combine the coefficient vector of x(B)−x(S) ≤ 0 from the coefficient
vectors of the constraints x(B′) − x(S′) ≤ 0, x(rowk) = 1, x(rowi) = 1, and
the nonnegativity constraints mentioned above. Since all these constraints
are contained in B′, this shows that the coefficient matrix of B′ has the same
row-span as that of B, thus proving that it is non-singular as well.

Part (2): Assume that there exists an SCI in B with leader (i, j), bar B,
and shifted column S such that x⋆

ij = 0. If S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉},
then we have (i, j) = 〈η, j〉. Define B′ := B − (i, j), S′ := S − 〈η, cη〉, and
observe that B′ 6= ∅, S′ 6= ∅, i.e., |B| > 1 and |S| > 1, because a reduced
basis does not contain trivial SCIs by Claim 4.4; see Figure 8 (2). Hence,
x(B′) − x(S′) ≤ 0 is an SCI. We therefore have:

0 = x⋆(B) − x⋆(S) = x⋆(B′) − x⋆(S) ≤ x⋆(B′) − x⋆(S′) ≤ 0, (8)

where the first equation holds because x(B) − x(S) ≤ 0 is satisfied with
equality by x⋆ and the second equation follows from x⋆

ij = 0. Hence, we

know that x⋆(B′) − x⋆(S′) = 0. Since we have |S′| < |S| (and consequently
weight(S′) < weight(S)), again it remains to show that the coefficient vector
of x(B) − x(S) ≤ 0 can be linearly combined from the coefficient vector of
x(B′) − x(S′) ≤ 0 and some coefficient vectors of nonnegativity constraints
in B and B′. But this is clear, as we have x⋆

ij = 0 and x⋆
〈η,cη〉

= 0, where the

latter follows from (8).

24 Packing and Partitioning Orbitopes

Part (3): Assume that in B there exists an SCI

x(B1) − x(S1) ≤ 0 (9)

with leader (i, j) = 〈η, j〉, bar B1, and shifted column

S1 = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉}
(in particular: cη < j) and another SCI

x(B2) − x(S2) ≤ 0 (10)

with bar B2 and shifted column

S2 = {〈1, d1〉, 〈2, d2〉, . . . , 〈η, j〉, 〈η + 1, dη+1〉, . . . , 〈τ, dτ 〉}.
Hence, we have (i, j) = 〈η, j〉 ∈ S2. Define

S3 := {〈1, d1〉, 〈2, d2〉, . . . , 〈η − 1, dη−1〉}
(i.e, the part of S2 lying strictly above row i) and

S4 := {〈1, c1〉, . . . , 〈η, cη〉, 〈η + 1, dη+1〉, . . . , 〈τ, dτ 〉}
(i.e, S1 together with the part of S2 strictly below row i). Clearly, S3 is a
shifting of col〈η − 1, j〉 = col(i − 1, j), and S4 is a shifted column as well
(due to cη < j ≤ dη+1). Thus, with B3 = B1 − (i, j), we obtain the SCIs

x(B3) − x(S3) ≤ 0 (11)

x(B2) − x(S4) ≤ 0 (12)

(see Figure 8 (3)).
Since (9) and (10) are contained in B, we have x⋆(B1)− x⋆(S1) = 0 and

x⋆(B2) − x⋆(S2) = 0. Adding these two equations yields
(
x⋆(B3) − x⋆(S3)

)
+

(
x⋆(B2) − x⋆(S4)

)
= 0, (13)

because x⋆
ij cancels due to (i, j) ∈ B1 ∩ S2. Since x⋆ satisfies the SCIs (11)

and (12), Equation (13) shows that in fact we have x⋆(B3)−x⋆(S3) = 0 and
x⋆(B2) − x⋆(S4) = 0.

It is not clear, however, that we can simply replace (9) and (10) by (11)
and (12) in order to obtain a new basis of x⋆. Nevertheless, if v1, v2, v3,
and v4 are the coefficient vectors of (9), (10), (11), and (12), respectively,
we have v1 + v2 = v3 + v4, which implies

v2 = v3 + v4 − v1. (14)

Let V ⊂ RIp,q be the subspace of RIp,q that is spanned by the coefficient
vectors of the constraints different from (10) in B. Thus, the linear span
of V ∪ {v2} is the whole space RIp,q . Due to (14), the same holds for
V ∪{v3, v4} (since v1 ∈ V). Therefore, there is α ∈ {3, 4} such that V ∪{vα}
spans RIp,q . Let (a) be the corresponding SCI from {(11), (12)}. Hence,
B′ := B \ {(10)} ∪ {(a)} is a (reduced) basis of x⋆ as well.

Since we have |S3| < |S2| and weight(S4) < weight(S2) (due to cη < j),
the weight of B′ is smaller than that of B, contradicting the minimality of
the weight of B. �

4 Packing and Partitioning Orbitopes for Symmetric Groups 25

i

j

S
′

1

S
′

2

S
′

2 B1

B2

Figure 9: Illustration of sets used in the proof of Claim 4.4.

Before we finish the proof of the proposition by establishing Claim 4.4,
we need one more structural result on the SCIs in a reduced basis of x⋆. Let
S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} be any shifted column with x⋆

〈γ,cγ〉
> 0 for

some γ ∈ [η]. We call 〈γ, cγ〉 the first nonzero element of S if

x⋆
〈1,c1〉

= · · · = x⋆
〈γ−1,cγ−1〉

= 0

holds. Similarly, 〈γ, cγ〉 is called the last nonzero element of S if we have

x⋆
〈γ+1,cγ+1〉

= · · · = x⋆
〈η,cη〉

= 0.

Claim. Let B be a reduced basis of x⋆, and let S1, S2 be the shifted columns
of some SCIs in B (S1 = S2 is allowed).

(1) If (i, j) is the first nonzero element of S1 and (i, j) ∈ S2, then (i, j) is
also the first nonzero element of S2.

(2) If (i, j) is the last nonzero element of S1 with x⋆(S1) = 1 and (i, j) ∈ S2,
then (i, j) is also the last nonzero element of S2 and x⋆(S2) = 1.

(3) If (i, j) is the last nonzero element of S1 with x⋆(S1) = 1, then (i, j) is
not the first nonzero element of S2.

Proof. Let

S1 = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} and S2 = {〈1, d1〉, 〈2, d2〉, . . . , 〈τ, dτ 〉}
be two shifted columns of SCIs with bars B1 and B2, respectively, in the
reduced basis B of x⋆. Suppose that (i, j) = 〈γ, j〉 ∈ S1∩S2, i.e., cγ = j = dγ

holds. Define

S′
1 := {〈1, c1〉, 〈2, c2〉, . . . , 〈γ − 1, cγ−1〉},

S′
2 := {〈1, d1〉, 〈2, d2〉, . . . , 〈γ − 1, dγ−1〉},

and S
′
2 := S2 \ S′

2, see Figure 9. Since 〈γ, j〉 ∈ S1 ∩ S2 holds, S′
1 ∪ S′

2 is a

shifted column and x(B2) − x(S′
1 ∪ S′

2) ≤ 0 is an SCI. Thus, we obtain

x⋆(B2) − x⋆(S′
1) − x⋆(S

′
2) ≤ 0. (15)

Furthermore, since x(B2) − x(S2) ≤ 0 is contained in the basis B of x⋆, we
have

x⋆(B2) − x⋆(S′
2) − x⋆(S

′
2) = 0. (16)

Subtracting (16) from (15) yields x⋆(S′
2) − x⋆(S′

1) ≤ 0. We thus conclude

x⋆(S′
2) ≤ x⋆(S′

1) and x⋆(S′
1) ≤ x⋆(S′

2) (17)

26 Packing and Partitioning Orbitopes

replacemen

−λ ⋆
0

0

(a)

+λ ⋆

000 0
0

(b)

⋆⋆

(c)

Figure 10: Illustration of the construction of x̃, Steps (1) to (3).

(where the second inequality follows by exchanging the roles of S1 and S2 in
the argument).

Part (1): If (i, j) is the first nonzero element of S1, then we have x⋆(S′
1) = 0.

Thus, the first inequality of (17) implies x⋆(S′
2) = 0, showing that (i, j) is

the first nonzero element of S2.

Part (2): If (i, j) is the last nonzero element of S1 and x⋆(S1) = 1 holds,
then we have x⋆(S′

1 + (i, j)) = 1. With the second inequality of (17) we
obtain:

1 = x⋆(S′
1 + (i, j)) ≤ x⋆(S′

2 + (i, j)) ≤ x⋆(S2) = x⋆(B2) ≤ 1,

where the last equation holds because x(B2) − x(S2) ≤ 0 is contained in B.
It follows that x⋆(S2) = 1 and (i, j) is the last nonzero element of S2.

Part (3): This follows from the first two parts of the claim, since B does not
contain any trivial SCIs by Claim 4.4. �

We will now proceed with the proof of Claim 4.4. Thus, assume that B⋆

is a reduced basis of x⋆ of minimal weight and suppose that B⋆ contains
at least one SCI. We are going to construct a point x̃ 6= x⋆ that satisfies
the equation system obtained from B⋆, contradicting the fact the x⋆ is the
unique solution to this system of equations.

At the beginning, we set x̃ = x⋆, and let λ > 0 be an arbitrary posi-
tive number. Then we perform the following four steps (see Figure 10 for
illustrations of the first three).

(1) For every (i, j) that is the first nonzero element of the shifted column of
at least one SCI in B⋆, we reduce x̃ij by λ.

(2) For every (i, j) that is the last nonzero element of the shifted column S
of at least one SCI in B⋆ with x⋆(S) = 1, we increase x̃ij by λ.

(3) For each i ∈ [p] and for all j = min{i, q},min{i, q} − 1, . . . , 1 (in this
order): If (i, j) is the leader of some SCI in B⋆, we adjust x̃ij such that,
with B = {(i, j), (i, j + 1), . . . , (i,min{i, q})},

x̃(B) =

{
1 if x⋆(B) = 1

x⋆(B) − λ otherwise

holds.

4 Packing and Partitioning Orbitopes for Symmetric Groups 27

(4) For each i ∈ [p], adjust x̃ij in order to achieve x̃(rowi) = 1, where
j = min{ℓ : x⋆

iℓ > 0}.
The reason for treating the case x⋆(S) = 1 separately in Step 2 will

become evident in the proof of Claim 4.4 below.
The following four claims will yield that x̃ is a solution of the equation

system corresponding to B⋆.

Claim. After Step 2, for each shifted column S of some SCI in B⋆ we have

x̃(S) =

{
1 if x⋆(S) = 1

x⋆(S) − λ otherwise.

Proof. Let S be the shifted column of some SCI in B⋆. It follows from
Part (1) of Claim 4.4 that the first nonzero element (i, j) of S is the only
element in S whose x̃-component is changed (reduced by λ) in Step 1. Thus,
after Step 1 we have x̃(S) = x⋆(S) − λ.

If x⋆(S) < 1, then, by Part (2) of Claim 4.4, x̃(S) is not changed in Step 2.
Otherwise, x⋆(S) = 1, and x̃kℓ is increased by λ in Step 2, where (k, ℓ) is
the last nonzero element of S. According to Part (2) of Claim 4.4, no other
component of x̃ belonging to some element in S is changed in Step 2. Thus,
in both cases the claim holds. �

Claim. No component of x̃ belonging to the shifted column of some SCI
in B⋆ is changed in Step 3.

Proof. Let S be the shifted column of some SCI in B⋆. According to Part (3)
of Claim 4.4, S does not contain the leader of any SCI in B⋆, since B⋆ is a
reduced basis of minimal weight. �

Claim. After Step 3, for each SCI in B⋆ with shifted column S and bar B
we have x̃(S) = x̃(B).

Proof. For an SCI in B⋆ with shifted column S and bar B, we have x⋆(S) =
x⋆(B). Thus, from Claims 4.4 and 4.4 it follows that x̃(S) = x̃(B) holds
after Step 3. �

Claim. Step 4 does not change any component of x̃ that belongs to the
shifted column or the bar of some SCI in B⋆.

Proof. Let (i, j) be such that x⋆
iℓ = 0 for all ℓ < j and x⋆

ij > 0. By Part (1)

of Claim 4.4, (i, j) is not contained in any shifted column of an SCI in B⋆.
If (i, j) is contained in the bar B of some SCI in B⋆, then clearly x⋆(B) = 1
holds. Thus, after Step 3, we have x̃(rowi) = x̃(B) = 1, which shows that x̃ij

is not changed in Step 4. �

We can now finish the proof of the proposition. Claims 4.4 and 4.4 show
that x̃ satisfies all SCIs contained in B⋆ with equality. Furthermore, in all
steps of the procedure only components x̃ij with x⋆

ij > 0 are changed (this is

clear for Steps 1, 2, and 4; for Step 3 it follows from Part (2) of Claim 4.4).
Since after Step 4, x̃ satisfies all row-sum equations, this proves that x̃ is a
solution to the equation system obtained from B⋆.

We assumed that B⋆ contains at least one SCI. Let S be the shifted
column of one of these. We know x⋆(S) > 0 by Claim 4.4. Thus, let (i, j) be

28 Packing and Partitioning Orbitopes

the first nonzero element of S. Hence, after Step 1, we have x̃ij = x⋆
ij−λ. By

Part (3) of Claim 4.4, this still holds after Step 2. As x̃ij is also not changed
in Steps 3 and 4 (see Claims 4.4 and 4.4), we deduce x̃ 6= x⋆, contradicting
the fact that x⋆ is the unique solution to the equation system belonging
to B⋆.

This concludes the proof of Proposition 4.11. �

We hope that reading this proof was somewhat enjoyable. Anyway, at
least it also gives us a linear description of the packing orbitopes for sym-
metric groups almost for free.

Proposition 4.12. The packing orbitope O≤
p,q(Sq) is completely described

by the nonnegativity constraints, the row-sum inequalities, and the shifted
column inequalities:

O≤
p,q(Sq) = {x ∈ RIp,q : x ≥ 0, x(rowi) ≤ 1 for i = 1, . . . , p,

x(B) − x(S) ≤ 0 for all SCIs with SC S and bar B }.

Proof. Let Q ⊂ RIp,q be the polyhedron on the right-hand side of the state-
ment. We define A := {x ∈ RIp+1,q+1 : x(rowi) = 1 for all i ∈ [p + 1]}.

The proof of Proposition 4.11 in fact shows that its statement remains
true if we drop all SCIs with shifted column S and S ∩ col1 6= ∅ from the
linear description. This follows from the fact that, due to x⋆

11 = 1 and
Claim 4.4, no such SCI can be contained in any reduced basis of x⋆ (using
the notations from the proof of Proposition 4.11). Thus we obtain

O=
p+1,q+1(Sq+1) = A ∩ Q̃, (18)

with

Q̃ = {x ∈ RIp+1,q+1 : x(B) − x(S) ≤ 0 for all SCIs with bar B

and shifted column S with S ∩ col1 = ∅,

xij ≥ 0 for all (i, j) ∈ Ip+1,q+1 \ col1,

x(rowi −(i, 1)) ≤ 1 for all i = 2, . . . , p + 1},

where the last inequalities are equivalent (with respect to O=
p+1,q+1(Sq+1)) to

the nonnegativity constraints associated with the elements of col1 by addition
of row-sum equations.

Define L := {x ∈ RIp+1,q+1 : xi1 = 0 for all i ∈ [p + 1]}, and denote by
π̃ : RIp+1,q+1 → L the orthogonal projection. Since none of the inequalities
defining Q̃ has a nonzero coefficient in col1, we have π̃−1(Q̃∩L) = Q̃, hence

Q̃∩L = π̃(Q̃). This yields π̃(A∩Q̃) = π̃(A)∩ π̃(Q̃), which, due to π̃(A) = L,

implies π̃(A ∩ Q̃) = Q̃ ∩ L. Thus, we obtain

O≤
p,q(Sq) = π̃(O=

p+1,q+1(Sq+1)) = π̃(A ∩ Q̃) = Q̃ ∩ L = Q,

where the first equation is due to Proposition 4.1, the second equation follows
from (18), and the final arises from identifying L with RIp,q . �

4 Packing and Partitioning Orbitopes for Symmetric Groups 29

k

ℓ

(a) matrix V kℓ

k

ℓ

i

(b) matrix V̂ kℓ

B

c1

c2

(c)

Figure 11: (a)–(b): Illustration of the matrices used in the proof of parts (1) and (3) of
Proposition 4.13. (c): Example of an SCI that does not define a facet; see the proof of
Part (4) of Proposition 4.13.

4.5. Facets

In this section, we investigate which of the constraints from the linear de-
scriptions of O=

p,q(Sq) and O≤
p,q(Sq) given in Propositions 4.11 and 4.12,

respectively, define facets. This will also yield non-redundant descriptions.
It seems to be more convenient to settle the packing case first and then

to carry over the results to the partitioning case. Recall that we assume
2 ≤ p ≤ q.

Proposition 4.13.

(1) The packing orbitope O≤
p,q(Sq) ⊂ RIp,q is full dimensional:

dim(O≤
p,q(Sq)) = |Ip,q| = pq − q(q−1)

2 =
(
p − q−1

2

)
q.

(2) A nonnegativity constraint xij ≥ 0, (i, j) ∈ Ip,q, defines a facet of

O≤
p,q(Sq), unless i = j < q holds. The faces defined by xjj ≥ 0 with

j < q are contained in the facet defined by xqq ≥ 0.
(3) Every row-sum constraint x(rowi) ≤ 1 for i ∈ [p] defines a facet of

O≤
p,q(Sq).

(4) A shifted column inequality x(B) − x(S) ≤ 0 with bar B and shifted
column S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} defines a facet of O≤

p,q(Sq), un-
less η ≥ 2 and c1 < c2 (exception I) or η = 1 and B 6= {〈1, c1 + 1〉}
(exception II) hold. In case of exception I, the corresponding face is
contained in the facet defined by the SCI with bar B and shifted column
{〈1, c2〉, 〈2, c2〉, . . . , 〈η, cη〉}. In case of exception II, the face is contained
in the facet defined by the SCI x〈1,c1+1〉 − x〈1,c1〉 ≤ 0.

Proof. Part (1): For all (k, ℓ) ∈ Ip,q, we define V kℓ = (vkℓ
ij) ∈ RIp,q by

vkℓ
ij =

{
1 if

(
i = j ≤ ℓ and j < q

)
or (i, j) = (k, ℓ)

0 otherwise
for (i, j) ∈ Ip,q,

that is, V kℓ has 1-entries at position (k, ℓ) and on the main diagonal up to
column ℓ, except that vkℓ

qq = 0 unless (k, ℓ) = (q, q); see Figure 11 (a). The

columns of each V kℓ are in non-increasing lexicographic order. Hence, by
Part (1) of Observation 2, each V kℓ is a vertex of O≤

p,q(Sq).

30 Packing and Partitioning Orbitopes

In order to show that these vectors are linearly independent, we fix an
arbitrary ordering of the V kℓ that starts with V 11, V 22, . . . , V q−1,q−1. For
each (k, ℓ) ∈ Ip,q, all points V rs preceding V kℓ have a 0-entry at position

(k, ℓ), while vkℓ
kℓ = 1. This shows that these |Ip,q| vertices of O≤

p,q(Sq) are
linearly independent. Together with 0 this gives |Ip,q|+1 affinely independent

points contained in O≤
p,q(Sq), proving that O≤

p,q(Sq) is full dimensional. The
calculations in the statement are straightforward.

Part (2): For (i, j) ∈ Ip,q \ {(j, j) : j < q} all points V kℓ with (k, ℓ) 6= (i, j)
are contained in the face defined by xij ≥ 0. Since this is also true for 0, the
face defined by xij ≥ 0 contains |Ip,q| affinely independent points (see the

proof of Part (1)), i.e., it is a facet of O≤
p,q(Sq).

For every vertex x⋆ ∈ O≤
p,q(Sq) contained in the face defined by xjj ≥ 0

for some j < q, we have x⋆
ℓℓ = 0 for all ℓ ≥ j (because otherwise the columns

of x⋆ would not be in non-increasing lexicographic order). This shows that x⋆

is contained in the facet defined by xqq ≥ 0.

Part (3): In order to show that x(rowi) ≤ 1 defines a facet of O≤
p,q(Sq)

for i ∈ [p], we construct points V̂ kℓ (depending on i) from the points V kℓ

defined in Part (1) by adding a 1 at position (i, 1) if V kℓ(rowi) = 0 (see

Figure 11 (b)). The (|Ip,q| − 1) points V̂ kℓ for all (k, ℓ) ∈ Ip,q − (i, 1), and
the unit vector Ei1 (with a single 1 in position (i, 1)) satisfy x(rowi) = 1.
Furthermore, they are affinely independent, since subtracting Ei1 from all
vectors V̂ kℓ yields vectors Ṽ kℓ, which can be shown to be linearly independent
similarly to Part (1); here, we need (k, ℓ) 6= (i, 1).

Part (4): Let x(B) − x(S) ≤ 0 be an SCI with bar B, leader (i, j) = 〈η, j〉,
and shifted column S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉}.

If η ≥ 2 and c1 < c2 hold (exception I), then the SCI is the sum of the
SCI

x〈1,c1+1〉 − x〈1,c1〉 ≤ 0

and the SCI with bar B and shifted column {〈1, c1 + 1〉, 〈2, c2〉, . . . , 〈η, cη〉};
see Figure 11 (c). Repeating this argument (c2 − c1 − 1) times proves the
second statement of Part (4) for exception I.

If η = 1 and B = {〈1, j〉} with j > c1 + 1 hold (exception II), then the
SCI is the sum of the SCIs x〈1,c1+1〉 − x〈1,c1〉 ≤ 0, . . . , x〈1,j〉 − x〈1,j−1〉 ≤ 0.
This proves the second statement of Part (4) for exception II.

Otherwise, let V be the set of vertices of O≤
p,q(Sq) that satisfy the SCI

with equality, and let L = lin(V ∪ {Eij}) be the linear span of V and the
unit vector Eij . We will show that L = RIp,q , which proves dim(aff(V)) =
|Ip,q| − 1 (since 0 ∈ V). Hence, the SCI defines a facet of O≤

p,q(Sq).

To show that L = RIp,q , we prove that Ers ∈ L for all (r, s) ∈ Ip,q. We
partition the set Ip,q \ (B ∪ S) into three parts (see Figure 12 (a)):

A :={〈ρ, s〉 ∈ Ip,q : (ρ ≤ η and s < cρ) or ρ > η},
C :={〈ρ, s〉 = (r, s) ∈ Ip,q : ρ ≤ η and r > i}, and

D :={〈ρ, s〉 = (r, s) ∈ Ip,q : ρ < η, s > cρ, and r < i}.

4 Packing and Partitioning Orbitopes for Symmetric Groups 31

A

B
C

D

S

(a) All cases

s

r

(b) Case A, W rs

s

r

(c) Case D,Urs

i

j

s

r

(d) Case S

Figure 12: Illustration of the constructions in the proof of Part (4) of Proposition 4.13.

For (r, s) = 〈ρ, s〉, denote by diag≤(r, s) = {〈ρ, 1〉, 〈ρ, 2〉, . . . , 〈ρ, s〉} the
diagonal starting at 〈ρ, 1〉 = (r − s + 1, 1) and ending at 〈ρ, s〉 = (r, s).
Similarly, denote by diag≥(r, s) = {〈ρ, s〉, 〈ρ, s + 1〉, . . . } ∩ Ip,q the diagonal
starting at (r, s) and ending in colq or in rowp.

Claim. For all (r, s) = 〈ρ, s〉 ∈ A ∪ C we have Ers ∈ L.

Proof. Denote the incidence vector of diag≤(r, s) by W rs = χdiag≤(r,s) (see
Figure 12 (b)). Both W rs and W rs −Ers are vertices of O≤

p,q(Sq). We have

diag≤(r, s) ∩ (B ∪ S) = ∅ for (r, s) ∈ A. Furthermore

|diag≤(r, s) ∩ B| = 1 = |diag≤(r, s) ∩ S|
for (r, s) ∈ C. Hence, these two vertices satisfy the SCI with equality and
we obtain Ers = W rs − (W rs − Ers) ∈ L. �

Claim. For all (r, s) = 〈ρ, s〉 ∈ D we have Ers ∈ L.

Proof. Define the set

U(r, s) := diag≤(r, s) ∪ diag≥(r + 1, s) ∪
(
{〈ρ + 1, q〉, 〈ρ + 2, q〉, . . . } ∩ Ip,q

)
,

see Figure 12 (c). Let U rs := χU(r,s). By construction, the three points U rs,
U rs − Ers, and U rs − Er+1,s are vertices of O≤

p,q(Sq).
If ρ = 1, we have |U(r, s) ∩ B| = 1 and |U(r, s) ∩ S| = 1, where we need

c1 = c2 in case of s = c1 + 1 (notice that in case of η = 1 we have D = ∅).
Due to (r, s) /∈ B ∪S, both U rs and U rs −Ers satisfy the SCI with equality.
This yields Ers = U rs − (U rs − Ers) ∈ L.

If ρ > 1, then |U(r, s) ∩ S| = 1 does not hold in all cases (e.g., if s = cρ+1,
we have (r +1, s) ∈ S). However, since ρ > 1, U(r− 1, s) is well-defined and

|U(r − 1, s) ∩ B| = 1 and |U(r − 1, s) ∩ S| = 1

hold. Hence the vertices U r−1,s and U r−1,s−Ers satisfy the SCI with equal-
ity, giving Ers = U r−1,s − (U r−1,s − Ers) ∈ L. �

Claim. For all (r, s) = 〈ρ, s〉 ∈ S we have Ers ∈ L.

Proof. Define the set

T (r, s) := diag≤(r + j − s, j) ∪
(
{〈ρ + 1, j〉, 〈ρ + 2, j〉, . . . } ∩ Ip,q

)
,

32 Packing and Partitioning Orbitopes

see Figure 12 (d). The incidence vector T rs := χT (r,s) is a vertex of O≤
p,q(Sq),

which, due to T (r, s) ∩ S = {(r, s)} and T (r, s) ∩ B = {(i, j)} satisfies the
SCI with equality. Thus, from

Ers = T rs − Eij −
∑

(k,ℓ)∈T (r,s)∩A

Ekℓ −
∑

(k,ℓ)∈T (r,s)∩C

Ekℓ −
∑

(k,ℓ)∈T (r,s)∩D

Ekℓ

we conclude Ers ∈ L, since Eij ∈ L by definition of L, and Ekℓ ∈ L for all
(k, ℓ) ∈ A ∪ C ∪ D by Claims 4.5 and 4.5. �

Claim. For all (i, s) = 〈ρ, s〉 ∈ B we have Ers ∈ L.

Proof. The vector W is := χdiag≤(i,s) is a vertex of O≤
p,q(Sq) that satisfies the

SCI with equality. Furthermore, we have

Eis = W is − Ercρ −
∑

(k,ℓ)∈diag≤(i,s)∩A

Ekℓ −
∑

(k,ℓ)∈diag≤(i,s)∩D

Ekℓ,

where (r, cρ) := 〈ρ, cρ〉 ∈ S. Thus, we conclude Eis ∈ L, since Ekℓ ∈ L for
all (k, ℓ) ∈ A ∪ D ∪ S by Claims 4.5, 4.5, and 4.5. �

Claims 4.5 to 4.5 show Ers ∈ L for all (r, s) ∈ Ip,q. This proves that the

SCI defines a facet of O≤
p,q(Sq) (unless exception I or II hold). �

Finally, we carry the results of Proposition 4.13 over to partitioning
orbitopes.

Proposition 4.14.

(1) The partitioning orbitope O=
p,q(Sq) ⊂ RIp,q has dimension

dim(O=
p,q(Sq)) = |Ip−1,q−1| = |Ip,q| − p =

(
p − q

2

)
(q − 1).

The constraints x(rowi) = 1 form a complete and non-redundant linear
description of aff(O=

p,q(Sq)).
(2) A nonnegativity constraint xij ≥ 0, (i, j) ∈ Ip,q, defines a facet of

O=
p,q(Sq), unless i = j < q holds. The faces defined by xjj ≥ 0 with

j < q are contained in the facet defined by xqq ≥ 0.
(3) A shifted column inequality x(B) − x(S) ≤ 0 with bar B and shifted

column S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} defines a facet of O=
p,q(Sq), un-

less c1 = 1 (Exception I) or η ≥ 2 and c1 < c2 (Exception II) or η = 1
and B 6= {〈1, c1 + 1〉} (Exception III). In case of Exception I, the cor-
responding face is contained in the facet defined by xi1 ≥ 0, where i is
the index of the row containing B. In case of Exception II, the face is
contained in the facet defined by the SCI with bar B and shifted col-
umn {〈1, c2〉, 〈2, c2〉, . . . , 〈η, cη〉}. In case of Exception III, the face is
contained in the facet defined by the SCI x〈1,c1+1〉 − x〈1,c1〉 ≤ 0.

Proof. According to Proposition 4.1, O≤
p−1,q−1(Sq−1) is affinely isomorphic

to O=
p,q(Sq) via the orthogonal projection of the latter polytope to the space

L := {x ∈ RIp,q : xi1 = 0 for all i ∈ [p]}
(and via the canonical identification of L and RIp−1,q−1). This shows the
statement on the dimension of O=

p,q(Sq); the calculations and the claim on
the non-redundancy of the equation system are straightforward.

4 Packing and Partitioning Orbitopes for Symmetric Groups 33

Furthermore, this projection (which is one-to-one on aff(O=
p,q(Sq))) maps

every face of O=
p,q(Sq) that is defined by some inequality

〈a, x〉 :=
∑

(i,j)∈Ip,q

aij xij ≤ a0,

with a ∈ RIp,q , a0 ∈ R, and ai1 = 0 for all i ∈ [p] to a face of O≤
p−1,q−1(Sq−1)

of the same dimension defined by
∑

(i,j)∈Ip−1,q−1

ai+1,j+1 xij ≤ a0.

Conversely, if 〈ã, x〉 ≤ ã0 defines a face of O≤
p−1,q−1(Sq−1) for ã ∈ RIp−1,q−1

and ã0 ∈ R, then the inequality
∑

(i,j)∈Ip,q

ãij xi+1,j+1 ≤ ã0

defines a face of O=
p,q(Sq) of the same dimension.

Due to parts (2) and (3) of Proposition 4.13, this proves Part (2) of the
proposition, where we use the fact that the inequalities xi1 ≥ 0 are equivalent
to x

(
rowi −(i, 1)

)
≤ 1 with respect to O=

p,q(Sq).
Furthermore, due to Part (4) of Proposition 4.13, the above arguments

also imply the statements of Part (3) for c1 ≥ 2 (including Exception II
and III). Finally, we consider the case c1 = 1 (Exception I). Since we have
x1,1 = 1 for all x ∈ O=

p,q(Sq), the equation x(B) − x(S) = 0 implies

1 ≥ x(B) = x(S) ≥ x1,1 = 1,

and hence xi,1 = 0 (using the row-sum equation for row i containing B).
This concludes the proof. �

4.6. Summary of Results on the Symmetric Group

We collect the results on the packing- and partitioning orbitopes for sym-
metric groups.

Theorem 4.15. The partitioning orbitope O=
p,q(Sq) (for p ≥ q ≥ 2) with

respect to the symmetric group Sq equals the set of all x ∈ RIp,q that satisfy
the following linear constraints:

◦ the row-sum equations x(rowi) = 1 for all i ∈ [p],
◦ the nonnegativity constraints xij ≥ 0 for all (i, j) ∈ Ip,q \{(j, j) : j < q},
◦ the shifted column inequalities x(B) − x(S) ≤ 0 for all bars

B = {(i, j), (i, j + 1), . . . , (i,min{i, q})}
with (i, j) = 〈η, j〉 ∈ Ip,q, j ≥ 2, and shifted columns

S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} with 2 ≤ c1 = c2 ≤ · · · ≤ cη ≤ j − 1,

where in case of η = 1 the last condition reduces to 2 ≤ c1 and we
additionally require j = c1 + 1.

This system of constraints is non-redundant. The corresponding separation
problem can be solved in time O(pq).

34 Packing and Partitioning Orbitopes

For the result on the completeness of the description see Proposition 4.11,
for the question of redundancy see Proposition 4.14, and for the separation
algorithm see Corollary 4.10. Note that the SCI with shifted column {(1, 1)}
and bar {(2, 2)} defines the same facet of O=

p,q(Sq) as the nonnegativity
constraint x2,1 ≥ 0.

Theorem 4.16. The packing orbitope O≤
p,q(Sq) (for p ≥ q ≥ 2) with respect

to the symmetric group Sq equals the set of all x ∈ RIp,q that satisfy the
following linear constraints:

◦ the row-sum inequalities x(rowi) ≤ 1 for all i ∈ [p],
◦ the nonnegativity constraints xij ≥ 0 for all (i, j) ∈ Ip,q \{(j, j) : j < q},
◦ the shifted column inequalities x(B) − x(S) ≤ 0 for all bars

B = {(i, j), (i, j + 1), . . . , (i,min{i, q})}
with (i, j) = 〈η, j〉 ∈ Ip,q, j ≥ 2, and shifted columns

S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} with c1 = c2 ≤ · · · ≤ cη ≤ j − 1,

where in case of η = 1 we additionally require j = c1 + 1.

This system of constraints is non-redundant. The corresponding separation
problem can be solved in time O(pq).

For the result on the completeness of the description see Proposition 4.12,
for the question of redundancy see Proposition 4.13, and for the separation
algorithm see Corollary 4.10.

5. Concluding Remarks

We close with some remarks on the technique used in the proof of Proposi-
tion 4.11, on the combination of SCIs and clique-inequalities for the graph-
coloring problem, and on full and covering orbitopes.

The Proof Technique.

Our technique to prove Proposition 4.11 can be summarized as follows. As-
sume a polytope Q ⊂ Rn is described by some (finite) system Q of linear
equations and inequalities. Suppose that Q′ is a subsystem of Q for which
it is known that Q′ defines an integral polytope Q′ ⊇ Q. One can prove
that Q is integral by showing that every vertex x⋆ of Q is a vertex of Q′ in
the following way. Here we call a basis (with respect to Q) of x⋆ reduced if
it contains as many constraints from Q′ as possible:

(1) Starting from an arbitrary reduced basis B of x⋆, construct iteratively a
reduced basis B⋆ of x⋆ that satisfies some properties that are useful for
the second step.

(2) Under the assumption that B⋆ 6⊆ Q′, modify x⋆ to some x̃ 6= x⋆ that
also satisfies the equation system corresponding to B⋆ (contradicting the
fact that B⋆ is a basis).

(In our proof of Proposition 4.11, Step (1) was done by showing that a
reduced basis of “minimal weight” has the desired properties.)

5 Concluding Remarks 35

j

Figure 13: Combination of a clique inequality and an SCI.

Such a proof is conceivable for every 0/1-polytope Q by choosing Q′ =
[0, 1]n as the whole 0/1-cube and Q′ as the set of the 2n trivial inequalities
0 ≤ xi ≤ 1, for i = 1, . . . , n (if necessary, modifying Q in order to contain
them all).

We do not know whether this kind of integrality proof has been used in
the literature. It may well be that one can interpret some of the classical
integrality proofs in this setting. Anyway, it seems to us that the technique
might be useful for other polytopes as well.

The Graph-Coloring Problem.

As mentioned in the introduction, for concrete applications like the graph
coloring problem one can (and probably has to) combine the polyhedral
knowledge on orbitopes with the knowledge on problem specific polyhedra.
We illustrate this by the example of clique inequalities for the graph coloring
model (1) described in the introduction.

Fix a color index j ∈ [C]. If W ⊆ V is a clique in the graph G = (V,E),
then clearly the inequality

∑
i∈W xij ≤ 1 is valid. In fact, the strengthened

inequalities
∑

i∈W xij ≤ yj are known to be facet-defining for the convex
hull of the solutions to (1), see [4]. Suppose that S ⊂ I|V |,C is a shifted
column and that we have η ≤ |S| for all 〈η, j〉 = (i, j) with i ∈ W . Then the
inequality ∑

i∈W

xij − x(S) ≤ 0

is valid for all solutions to the model obtained from (1) by adding inequali-
ties (2) (which are all “column inequalities” in terms of orbitopes), see Fig-
ure 13. The details and a computational study will be the subject of a
follow-up paper.

Full and Covering Orbitopes.

As soon as one starts to consider 0/1-matrices that may have more than one
1-entry per row, things seem to become more complicated.

With respect to cyclic group actions, we loose the simplicity of the char-
acterizations in Observation 2. The reason is that the matrices under inves-
tigation may have several equal nonzero columns. In particular, the lexico-
graphically maximal column may not be unique.

36 Packing and Partitioning Orbitopes

With respect to the action of the symmetric group, we still have the
characterization of the representatives as the matrices whose columns are in
non-increasing lexicographic order (see Part 1 of Observation 2). The struc-
tures of the respective full and covering orbitopes, however, become much
more complicated. In particular, we know from computer experiments that
several powers of two arise as coefficients in the facet-defining inequalities.
This increase in complexity is reflected by the fact that optimization of linear
functionals over these orbitopes seems to be more difficult than over packing
and partitioning orbitopes (see the remarks at the end of Section 2.1).

Let us close with a comment on our choice of the set of representatives
as the maximal elements with respect to a lexicographic ordering (referring
to the row-wise ordering of the components of the matrices). It might be
that the difficulties for full and covering orbitopes mentioned in the previous
paragraph can be overcome by the choice of a different system of representa-
tives. The choice of representatives considered in this paper, however, seems
to be appropriate for the packing and partitioning cases.

Whether the results presented in this paper are useful in practice will
turn out in the future. In any case, we hope that the reader shares our
view that orbitopes are neat mathematical objects. It seems that symmetry
strikes back by its own beauty, even when mathematicians start to fight it.

Acknowledgments

We thank the referees for their work. In particular, we are indepted to one
of them for several insightful and constructive remarks, including the proof
of Theorem 3.2 that we have in this final version. We furthermore thank
Yuri Faenza, Andreas Loos, and Matthias Peinhardt for helpful comments.

References

[1] R. Borndörfer, C. E. Ferreira, and A. Martin, Decomposing matrices
into blocks, SIAM J. Optim. 9, no. 1 (1998), pp. 236–269.

[2] R. Borndörfer, M. Grötschel, and M. E. Pfetsch, A column-
generation approach for line planning in public transport, Transportation Sci.
41, no. 1 (2006), pp. 123–132.

[3] M. Campêlo, R. Corrêa, and Y. Frota, Cliques, holes and the vertex
coloring polytope, Inform. Process. Lett. 89, no. 4 (2004), pp. 159–164.

[4] P. Coll, J. Marenco, I. Méndez Díaz, and P. Zabala, Facets of the
graph coloring polytope, Ann. Oper. Res. 116 (2002), pp. 79–90.

[5] D. Cornaz, On forests, stable sets and polyhedras associated with clique par-
titions. Preprint, 2006. Available at www.optimization-online.org.

[6] A. Eisenblätter, Frequency Assignment in GSM Networks: Models, Heuris-
tics, and Lower Bounds, PhD thesis, TU Berlin, 2001.

[7] T. Fahle, S. Schamberger, and M. Sellmann, Symmetry breaking, in
Principles and Practice of Constraint Programming CP 2007, 7th International
Conference, T. Walsh, ed., LNCS 2239, Springer-Verlag, Berlin/Heidelberg,
2001, pp. 93–107.

[8] R. Figueiredo, V. Barbosa, N. Maculan, and C. de Souza, New 0-1 in-
teger formulations of the graph coloring problem, in Proceedings of XI CLAIO,
2002.

www.optimization-online.org

5 References 37

[9] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, New York,
1979.

[10] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer-
Verlag, Heidelberg, 2nd ed., 1993.

[11] F. Margot, Pruning by isomorphism in branch-and-cut, Math. Programming
94, no. 1 (2002), pp. 71–90.

[12] F. Margot, Small covering designs by branch-and-cut, Math. Programming
94, no. 2–3 (2003), pp. 207–220.

[13] A. Mehrotra and M. A. Trick, A column generation approach for graph
coloring, INFORMS J. Comput. 8, no. 4 (1996), pp. 344–354.

[14] I. Méndez-Díaz and P. Zabala, A polyhedral approach for graph coloring,
Electron. Notes Discrete Math. 7 (2001).

[15] I. Méndez-Díaz and P. Zabala, A branch-and-cut algorithm for graph col-
oring, Discrete Appl. Math. 154, no. 5 (2006), pp. 826–847.

[16] J.-F. Puget, Symmetry breaking revisited, Constraints 10, no. 1 (2005),
pp. 23–46.

[17] A. Ramani, F. A. Aloul, I. L. Markov, and K. A. Sakallah, Breaking
instance-independent symmetries in exact graph coloring, in Design Automa-
tion and Test in Europe Conference, 2004, pp. 324–329.

[18] A. Schrijver, Theory of linear and integer programming, John Wiley & Sons,
Chichester, 1986. Reprint 1998.

[19] P. Serafini and W. Ukovich, A mathematical model for periodic scheduling
problems., SIAM J. Discrete Math. 2, no. 4 (1989), pp. 550–581.

Paper 2

Orbitopal Fixing

Volker Kaibel, Matthias Peinhardt, and Marc E. Pfetsch

Orbitopal Fixing1

Proc. 12th Integer Programming and Combinatorial Optimization conference
(IPCO), M. Fischetti and D. Williamson, eds., LNCS 4513, Springer-Verlag,
2007, pp. 74–88

Abstract. The topic of this paper are integer programming models in which
a subset of 0/1-variables encode a partitioning of a set of objects into disjoint
subsets. Such models can be surprisingly hard to solve by branch-and-cut
algorithms if the order of the subsets of the partition is irrelevant. This kind
of symmetry unnecessarily blows up the branch-and-cut tree.

We present a general tool, called orbitopal fixing, for enhancing the ca-
pabilities of branch-and-cut algorithms in solving such symmetric integer
programming models. We devise a linear time algorithm that, applied at
each node of the branch-and-cut tree, removes redundant parts of the tree
produced by the above mentioned symmetry. The method relies on certain
polyhedra, called orbitopes, which have been investigated in [11]. It does,
however, not add inequalities to the model, and thus, it does not increase the
difficulty of solving the linear programming relaxations. We demonstrate the
computational power of orbitopal fixing at the example of a graph partition-
ing problem motivated from frequency planning in mobile telecommunication
networks.

1. Introduction

Being welcome in most other contexts, symmetry causes severe trouble in
the solution of many integer programming (IP) models. This paper describes

1Supported by the DFG Research Center Matheon Mathematics for key technologies

in Berlin. During the research of this work the first author was a visiting professor at the
Technical University of Berlin.

39

40 Orbitopal Fixing

a method to enhance the capabilities of branch-and-cut algorithms with re-
spect to handling symmetric models of a certain kind that frequently occurs
in practice.

We illustrate this kind of symmetry by the example of a graph par-
titioning problem (another notorious example is the vertex coloring prob-
lem). Here, one is given a graph G = (V,E) with nonnegative edge weights
w ∈ QE

≥0 and an integer q ≥ 2. The task is to partition V into q disjoint
subsets such that the sum of all weights of edges connecting nodes in the
same subset is minimized.

A straight-forward IP model arises by introducing 0/1-variables xij for
all i ∈ [p] := {1, . . . , p} and j ∈ [q] that indicate whether node i is contained
in subset j (where we assume V = [p]). In order to model the objective
function, we furthermore need 0/1-variables yik for all edges {i, k} ∈ E
indicating whether nodes i and k are contained in the same subset. This
yields the following model (see, e.g., [5]):

min
∑

{i,k}∈E

wik yik

s.t.

q∑

j=1

xij = 1 for all i ∈ [p]

xij + xkj − yik ≤ 1 for all {i, k} ∈ E, j ∈ [q]

xij ∈ {0, 1} for all i ∈ [p], j ∈ [q]

yik ∈ {0, 1} for all {i, k} ∈ E.

(1)

The x-variables describe a 0/1-matrix of size p × q with exactly one 1-
entry per row. They encode the assignment of the nodes to the subsets of
the partition. The methods that we discuss in this paper do only rely on this
structure and thus can be applied to many other models as well. We use the
example of the graph partitioning problem as a prototype application and re-
port on computational experiments in Sect. 5. Graph partitioning problems
are discussed in [3, 4, 5], for instance as a relaxation of frequency assignment
problems in mobile telecommunication networks. The maximization version
is relevant as well [6, 12]. Also capacity bounds on the subsets of the par-
tition (which can easily be incorporated into the model) are of interest, in
particular the graph equipartitioning problem [7, 8, 18, 19]. For the closely
related clique partitioning problem, see [9, 10].

As it is given above, the model is unnecessarily difficult for state-of-the-
art IP solvers. Even solving small instances requires enormous efforts (see
Sect. 5). One reason is that every feasible solution (x, y) to this model can
be turned into q! different ones by permuting the columns of x (viewed as a
0/1-matrix) in an arbitrary way, thereby not changing the structure of the
solution (in particular: its objective function value). Phrased differently, the
symmetric group of all permutations of the set [q] operates on the solutions by
permuting the columns of the x-variables in such a way that the objective
function remains constant along each orbit. Therefore, when solving the
model by a branch-and-cut algorithm, basically the same work will be done
in the tree at many places. Thus, there should be potential for reducing

1 Introduction 41

the running times significantly by exploiting the symmetry. A more subtle
second point is that interior points of the convex hulls of the individual orbits
are responsible for quite weak linear programming (LP) bounds. We will,
however, not address this second point in this paper.

In order to remove symmetry, the above model for the graph partition-
ing problem is often replaced by models containing only edge variables, see,
e.g. [7]. However, for this to work the underlying graph has to be com-
plete, which might introduce many unnecessary variables. Moreover, formu-
lation (1) is sometimes favorable, e.g., if node-weighted capacity constraints
should be incorporated.

One way to deal with symmetry is to restrict the feasible region in each
of the orbits to a single representative, e.g., to the lexicographically maximal
(with respect to the row-by-row ordering of the x-components) element in
the orbit. In fact, this can be done by adding inequalities to the model that
enforce the columns of x to be sorted in a lexicographically decreasing way.
This can be achieved by O(pq) many column inequalities. In [11] even a
complete (and irredundant) linear description of the convex hull of all 0/1-
matrices of size p× q with exactly one 1-entry per row and lexicographically
decreasing columns is derived; these polytopes are called orbitope. The de-
scription basically consists of an exponentially large superclass of the column
inequalities, called shifted column inequalities, for which there is a linear time
separation algorithm available. We recall some of these results in Sect. 2.

Incorporating the inequalities from the orbitope description into the IP
model removes symmetry. At each node of the branch-and-cut tree this
ensures that the corresponding IP is infeasible as soon as there is no rep-
resentative in the subtree rooted at that node. In fact, already the column
inequalities are sufficient for this purpose.

In this paper, we investigate a way to utilize these inequalities (or the
orbitope that they describe) without adding any of the inequalities to the
models explicitly. The reason for doing this is the unpleasant effect that
adding (shifted) column inequalities to the models results in more difficult LP
relaxations. One way of avoiding the addition of these inequalities to the LPs
is to derive logical implications instead: If we are working in a branch-and-
cut node at which the x-variables corresponding to index subsets I0 and I1

are fixed to zero and one, respectively, then there might be a (shifted) column
inequality yielding implications for all representatives in the subtree rooted
at the current node. For instance, it might be that for some (i, j) 6∈ I0∪I1 we
have xij = 0 for all feasible solutions in the subtree. In this case, xij can be
fixed to zero for the whole subtree rooted at the current node, enlarging I0.
We call the iterated process of searching for such additional fixings sequential
fixing with (shifted) column inequalities.

Let us mention at this point that deviating from parts of the literature,
we do not distinguish between “fixing“ and “setting“ of variables in this paper.

Sequential fixing with (shifted) column inequalities is a special case of
constraint propagation, which is well known from constraint logic program-
ming. Modern IP solvers like SCIP [1] use such strategies also in branch-and-
cut algorithms. With orbitopes, however, we can aim at something better:

42 Orbitopal Fixing

Consider a branch-and-cut node identified by fixing the variables corres-
ponding to sets I0 and I1 to zero and one, respectively. Denote by W (I0, I1)
the set of all vertices x of the orbitope with xij = 0 for all (i, j) ∈ I0 and
xij = 1 for all (i, j) ∈ I1. Define the sets I⋆

0 and I⋆
1 of indices of all variables,

for which no x in W (I0, I1) satisfies xij = 1 for some (i, j) ∈ I⋆
0 or xij = 0 for

some (i, j) ∈ I⋆
1 . Fixing of the corresponding variables is called simultaneous

fixing at the branch-and-cut node. Simultaneous fixing is always at least as
strong as sequential fixing.

Investigations of sequential and simultaneous fixing for orbitopes are the
central topic of the paper. The main contributions and results are the fol-
lowing:

◦ We present a linear time algorithm for orbitopal fixing, i.e., for solving the
problem to compute simultaneous fixings for orbitopes (Theorem 4.8).

◦ We show that, for general 0/1-polytopes, sequential fixing, even with
complete and irredundant linear descriptions, is weaker than simultane-
ous fixing (Theorem 3.2), We clarify the relationships between different
versions of sequential fixing with (shifted) column inequalities, where
(despite the situation for general 0/1-polytopes) the strongest one is as
strong as orbitopal fixing (Theorem 4.7).

◦ We report on computer experiments (Sect. 5) with the graph partitioning
problem described above, showing that orbitopal fixing leads to signifi-
cant performance improvements for branch-and-cut algorithms.

Margot [14, 15, 17] considers a related method for symmetry handling. His
approach works for more general types of symmetries than ours. Similarly to
our approach, the basic idea is to assure that only (partial) solutions which
are lexicographical maximal in their orbit are explored in the branch-and-cut
tree. This is guaranteed by an appropriate fixing rule. The fixing and prun-
ing decisions are done by means of a Schreier-Sims table for representing the
group action. While Margot’s approach is much more generally applicable
than orbitopal fixing, the latter seems to be more powerful in the special sit-
uation of partitioning type symmetries. One reason is that Margot’s method
requires to choose the branching variables according to an ordering that is
chosen globally for the entire branch-and-cut tree.

Another approach has recently been proposed by Linderoth et al. [13] (in
this volume). They exploit the symmetry arising in each node of a branch-
and-bound tree when all fixed variables are removed from the model. Thus
one may find additional local symmetries. Nevertheless, for partitioning type
symmetries one still may miss some part of the (fixed) global symmetry we
are dealing with.

We will elaborate on the relations between orbitopal fixing, isomorphism
pruning, and orbital branching in more detail in a journal version of the
paper.

2. Orbitopes

Throughout the paper, let p and q be integers with p ≥ q ≥ 2. The orbitope
O=

p,q is the convex hull of all 0/1-matrices x ∈ {0, 1}[p]×[q] with exactly one

2 Orbitopes 43

i

j
η

(a)

i

j

(b)

i

j

(c)

i

j

(d)

Figure 1: (a) Example for coordinates (9, 5) = 〈5, 5〉. (b), (c), (d) Three shifted column
inequalities, the left one of which is a column inequality

1-entry per row, whose columns are in decreasing lexicographical order (i.e.,
they satisfy

∑p
i=1 2p−ixij >

∑p
i=1 2p−ixi,j+1 for all j ∈ [q − 1]). Let the sym-

metric group of size q act on {0, 1}[p]×[q] via permuting the columns. Then the
vertices of O=

p,q are exactly the lexicographically maximal matrices (with re-
spect to the row-by-row ordering of the components) in those orbits whose el-
ements are matrices with exactly one 1-entry per row. As these vertices have
xij = 0 for all (i, j) with i < j, we drop these components and consider O=

p,q

as a subset of the space RIp,q with Ip,q := {(i, j) ∈ {0, 1}[p]×[q] : i ≥ j}.
Thus, we consider matrices, in which the i-th row has q(i) := min{i, q}
components.

In [11], in the context of more general orbitopes, O=
p,q is referred to as the

partitioning orbitope with respect to the symmetric group. As we will confine
ourselves with this one type of orbitopes in this paper, we will simply call it
orbitope.

The main result in [11] is a complete linear description of O=
p,q. In order

to describe the result, it will be convenient to address the elements in Ip,q

via a different “system of coordinates”: For j ∈ [q] and 1 ≤ η ≤ p − j + 1,
define 〈η, j〉 := (j + η − 1, j). Thus (as before) i and j denote the row and
the column, respectively, while η is the index of the diagonal (counted from
above) containing the respective element; see Figure 1 (a) for an example.

A set S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂ Ip,q with c1 ≤ c2 ≤ · · · ≤ cη

and η ≥ 1 is called a shifted column. For (i, j) = 〈η, j〉 ∈ Ip,q, a shifted
column S as above with cη < j, and B = {(i, j), (i, j + 1), . . . , (i, q(i))}, we
call x(B)− x(S) ≤ 0 a shifted column inequality. The set B is called its bar.
In case of c1 = · · · = cη = j − 1 the shifted column inequality is called a
column inequality. See Figure 1 for examples.

Finally, a bit more notation is needed. For each i ∈ [p], we define rowi :=
{(i, j) : j ∈ [q(i)]}. For A ⊂ Ip,q and x ∈ RIp,q , we denote by x(A) the sum∑

(i,j)∈A xij.

Theorem 2.1 (see [11]). The orbitope O=
p,q is completely described by the

nonnegativity constraints xij ≥ 0, the row-sum equations x(rowi) = 1, and
the shifted column inequalities.

In fact, in [11] it is also shown that, up to a few exceptions, the in-
equalities in this description define facets of O=

p,q. Furthermore, a linear

44 Orbitopal Fixing

time separation algorithm for the exponentially large class of shifted column
inequalities is given.

3. The Geometry of Fixing Variables

In this section, we deal with general 0/1-integer programs and, in particular,
their associated polytopes. We will define some basic terminology used later
in the special treatment of orbitopes, and we are going to shed some light
on the geometric situation of fixing variables.

We denote by [d] the set of indices of variables, and by Cd = {x ∈ Rd :
0 ≤ xi ≤ 1 for all i ∈ [d]} the corresponding 0/1-cube. For two disjoint sub-
sets I0, I1 ⊆ [d] (with I0 ∩ I1 = ∅) we call

{x ∈ Cd : xi = 0 for all i ∈ I0, xi = 1 for all i ∈ I1}
the face of Cd defined by (I0, I1). All nonempty faces of Cd are of this type.

For a polytope P ⊆ Cd and for a face F of Cd defined by (I0, I1), we
denote by FixF (P) the smallest face of Cd that contains P ∩F ∩{0, 1}d (i.e.,
FixF (P) is the intersection of all faces of Cd that contain P ∩ F ∩ {0, 1}d).
If FixF (P) is the nonempty cube face defined by (I⋆

0 , I⋆
1), then I⋆

0 and I⋆
1

consist of all i ∈ [d] for which xi = 0 and xi = 1, respectively, holds for
all x ∈ P ∩ F ∩ {0, 1}d. In particular, we have I0 ⊆ I⋆

0 and I1 ⊆ I⋆
1 , or

FixF (P) = ∅. Thus, if I0 and I1 are the indices of the variables fixed to
zero and one, respectively, in the current branch-and-cut node (with respect
to an IP with feasible points P ∩ {0, 1}d), the node can either be pruned, or
the sets I⋆

0 and I⋆
1 yield the maximal sets of variables that can be fixed to

zero and one, respectively, for the whole subtree rooted at this node. Unless
FixF (P) = ∅, we call (I⋆

0 , I⋆
1) the fixing of P at (I0, I1). Similarly, we call

FixF (P) the fixing of P at F .

Remark 3.1. If P,P ′ ⊆ Cd are two polytopes with P ⊆ P ′ and F and F ′

are two faces of Cd with F ⊆ F ′, then FixF (P) ⊆ FixF ′(P ′) holds.

In general, it is not clear how to compute fixings efficiently. Indeed,
computing the fixing of P at (∅, ∅) includes deciding whether P ∩{0, 1}d =
∅, which, of course, is NP-hard in general. Instead, one can try to derive
as large as possible subsets of I⋆

0 and I⋆
1 by looking at relaxations of P . In

case of an IP that is based on an intersection with an orbitope, one might
use the orbitope as such a relaxation. We will deal with the fixing problem
for orbitopes in Sect. 4.

If P is given via an inequality description, one possibility is to use the
knapsack relaxations obtained from single inequalities out of the description.
For each of these relaxations, the fixing can easily be computed. If the
inequality system describing P is exponentially large, and the inequalities are
only accessible via a separation routine, it might still be possible to decide
efficiently whether any of the exponentially many knapsack relaxations allows
to fix some variable (see Sect. 4.2).

Suppose, P = {x ∈ Cd : Ax ≤ b} and Pr = {x ∈ Cd : aT
r x ≤ br} is

the knapsack relaxation of P for the rth-row aT
r x ≤ br of Ax ≤ b, where

r = 1, . . . ,m. Let F be some face of Cd. The face G of Cd obtained by

4 Fixing Variables for Orbitopes 45

setting G := F and then iteratively replacing G by FixG(Pr) as long as there
is some r ∈ [m] with FixG(Pr) (G, is denoted by FixF (Ax ≤ b). Note that
the outcome of this procedure is independent of the choices made for r, due
to Remark 3.1. We call the pair (Ĩ0, Ĩ1) defining the cube face FixF (Ax ≤ b)
(unless this face is empty) the sequential fixing of Ax ≤ b at (I0, I1). In the
context of sequential fixing we often refer to (the computation of) FixF (P)
as simultaneous fixing.

Due to Remark 3.1 it is clear that FixF (P) ⊆ FixF (Ax ≤ b) holds.

Theorem 3.2. In general, even for a system of facet-defining inequalities
describing a full-dimensional 0/1-polytope, sequential fixing is weaker than
simultaneous fixing.

Proof. The following example shows this. Let P ⊂ C4 be the 4-dimensional
polytope defined by the trivial inequalities xi ≥ 0 for i ∈ {1, 2, 3}, xi ≤ 1 for
i ∈ {1, 2, 4}, the inequality −x1 +x2 +x3−x4 ≤ 0 and x1−x2 +x3−x4 ≤ 0.
Let F be the cube face defined by ({4}, ∅). Then, sequential fixing does not
fix any further variable, although simultaneous fixing yields I⋆

0 = {3, 4} (and
I⋆
1 = ∅). Note that P has only 0/1-vertices, and all inequalities are facet

defining (x4 ≥ 0 and x3 ≤ 1 are implied). �

4. Fixing Variables for Orbitopes

For this section, suppose that I0, I1 ⊆ Ip,q are subsets of indices of orbitope
variables with the following properties:

(P1) |I0 ∩ rowi| ≤ q(i) − 1 for all i ∈ [p]
(P2) For all (i, j) ∈ I1, we have (i, ℓ) ∈ I0 for all ℓ ∈ [q(i)] \ {j}.
In particular, P1 and P2 imply that I0 ∩ I1 = ∅. Let F be the face of
the 0/1-cube CIp,q defined by (I0, I1). Note that if P1 is not fulfilled, then
we have O=

p,q ∩F = ∅. The following statement follows immediately from
Property P2.

Remark 4.1. If a vertex x of O=
p,q satisfies xij = 0 for all (i, j) ∈ I0, then

x ∈ F .

We assume that the face FixF (O=
p,q) is defined by (I⋆

0 , I⋆
1), if FixF (O=

p,q)
is not empty. Orbitopal fixing is the problem to compute the simultaneous
fixing (I⋆

0 , I⋆
1) from (I0, I1), or determine that FixF (O=

p,q) = ∅.

Remark 4.2. If FixF (O=
p,q) 6= ∅, it is enough to determine I⋆

0 , as we have
(i, j) ∈ I⋆

1 if and only if (i, ℓ) ∈ I⋆
0 holds for for all ℓ ∈ [q(i)] \ {j}.

4.1. Intersection of Orbitopes with Cube Faces

We start by deriving some structural results on orbitopes that are crucial
in our context. Since O=

p,q ⊂ CIp,q is a 0/1-polytope (i.e., it is integral), we

have conv(O=
p,q ∩F ∩ {0, 1}Ip,q) = O=

p,q ∩F . Thus, FixF (O=
p,q) is the smallest

cube face that contains the face O=
p,q ∩F of the orbitope O=

p,q.

46 Orbitopal Fixing

Let us, for i ∈ [p], define values αi := αi(I0) ∈ [q(i)] recursively by
setting α1 := 1 and, for all i ∈ [p] with i ≥ 2,

αi :=

{
αi−1 if αi−1 = q(i) or (i, αi−1 + 1) ∈ I0

αi−1 + 1 otherwise.

The set of all indices of rows, in which the α-value increases, is denoted by

Γ(I0) := {i ∈ [p] : i ≥ 2, αi = αi−1 + 1} ∪ {1}
(where, for technical reasons 1 is included).

The following observation follows readily from the definitions.

Remark 4.3. For each i ∈ [p] with i ≥ 2 and αi(I0) < q(i), the set Si(I0) :=
{(k, αk(I0) + 1) : k ∈ [i] \ Γ(I0)} is a shifted column with Si(I0) ⊆ I0.

Lemma 4.4. For each i ∈ [p], no vertex of O=
p,q ∩F has its 1-entry in row i

in a column j ∈ [q(i)] with j > αi(I0).

Proof. Let i ∈ [p]. We may assume αi(I0) < q(i), because otherwise the
statement trivially is true. Thus, B := {(i, j) ∈ rowi : j > αi(I0)} 6= ∅.

Let us first consider the case i ∈ Γ(I0). As we have αi(I0) < q(i) ≤ i
and α1(I0) = 1, there must be some k < i such that k 6∈ Γ(I0). Let k be
maximal with this property. Thus we have k′ ∈ Γ(I0) for all 1 < k < k′ ≤ i.
According to Remark 4.3, x(B)−x(Sk(I0)) ≤ 0 is a shifted column inequality
with x(Sk(I0)) = 0, showing x(B) = 0 as claimed in the lemma.

Thus, let us suppose i ∈ [p] \ Γ(I0). If αi(I0) ≥ q(i) − 1, the claim holds
trivially. Otherwise, B′ := B \ {(i, αi(I0) + 1)} 6= ∅. Similarly to the first
case, now the shifted column inequality x(B′) − x(Si−1(I0)) ≤ 0 proves the
claim. �

For each i ∈ [p] we define µi(I0) := min{j ∈ [q(i)] : (i, j) 6∈ I0}. Because
of Property P1, the sets over which we take minima here are non-empty.

Lemma 4.5. If we have µi(I0) ≤ αi(I0) for all i ∈ [p], then the point
x⋆ = x⋆(I0) ∈ {0, 1}Ip,q with x⋆

i,αi(I0) = 1 for all i ∈ Γ(I0) and x⋆
i,µi(I0)

= 1

for all i ∈ [p] \ Γ(I0) and all other components being zero, is contained in
O=

p,q ∩F .

Proof. Due to αi(I0) ≤ αi−1(I0) + 1 for all i ∈ [p] with i ≥ 2, the point x⋆

is contained in O=
p,q. It follows from the definitions that x⋆ does not have a

1-entry at a position in I0. Thus, by Remark 4.1, we have x⋆ ∈ F . �

We now characterize the case O=
p,q ∩F = ∅ (leading to pruning the cor-

responding node in the branch-and-cut tree) and describe the set I⋆
0 .

Proposition 4.6.

(1) We have O=
p,q ∩F = ∅ if and only if there exists i ∈ [p] with µi(I0) >

αi(I0).
(2) If µi(I0) ≤ αi(I0) holds for all i ∈ [p], then the following is true.

(a) For all i ∈ [p] \ Γ(I0), we have

I⋆
0 ∩ rowi = {(i, j) ∈ rowi : (i, j) ∈ I0 or j > αi(I0)}.

4 Fixing Variables for Orbitopes 47

0

0

0 00

0

1

1

(a)

0

0

0 0

01

1

1

(b)

0

0 0 0

1

1

(c)

0

00

1

(d)

Figure 2: (a): Example for Prop. 4.6 (1). Light-gray entries indicate the entries (i, µi(I0))
and dark-gray entries indicate entries (i, αi(I0)). (b): Example of fixing an entry to 1 for
Prop. 4.6 (2c). As before light-gray entries indicate entries (i, µi(I0)). Dark-gray entries
indicate entries (i, αi(I0 ∪ {(s, αs(I0))})) with s = 3. (c) and (d): Gray entries show the
SCIs used in the proofs of Parts 1(a) and 1(b) of Thm. 4.7, respectively.

(b) For all i ∈ [p] with µi(I0) = αi(I0), we have

I⋆
0 ∩ rowi = rowi \{(i, αi(I0))}.

(c) For all s ∈ Γ(I0) with µs(I0) < αs(I0) the following holds: If there is
some i ≥ s with µi(I0) > αi(I0 ∪ {(s, αs(I0))}), then we have

I⋆
0 ∩ rows = rows \{(s, αs(I0))}.

Otherwise, we have

I⋆
0 ∩ rows = {(s, j) ∈ rows : (s, j) ∈ I0 or j > αs(I0)}.

Proof. Part 1 follows from Lemmas 4.4 and 4.5.
In order to prove Part 2, let us assume that µi(I0) ≤ αi(I0) holds for all

i ∈ [p]. For Part 2a, let i ∈ [p] \ Γ(I0) and (i, j) ∈ rowi. Due to I0 ⊂ I⋆
0 , we

only have to consider the case (i, j) 6∈ I0. If j > αi(I0), then, by Lemma 4.4,
we find (i, j) ∈ I⋆

0 . Otherwise, the point that is obtained from x⋆(I0) (see
Lemma 4.5) by moving the 1-entry in position (i, µi(I0)) to position (i, j) is
contained in O=

p,q ∩F , proving (i, j) 6∈ I⋆
0 .

In the situation of Part 2b, the claim follows from Lemma 4.4 and because
O=

p,q ∩F 6= ∅ (due to Part 1).
For Part 2c, let s ∈ Γ(I0) with µs(I0) < αs(I0) and define the new set

I ′0 := I0∪{(s, αs(I0))}. It follows that we have µi(I
′
0) = µi(I0) for all i ∈ [p].

Let us first consider the case that there is some i ≥ s with µi(I0) > αi(I
′
0).

Part 1 (applied to I ′0 instead of I0) implies that O=
p,q ∩F does not contain a

vertex x with xs,αs(I0) = 0. Therefore, we have (s, αs(I0)) ∈ I⋆
1 , and thus

I⋆
0 ∩ rows = rows \{(s, αs(I0))} holds (where for “⊆“ we exploit O=

p,q ∩F 6= ∅

by Part 1, this time applied to I0).
The other case of Part 2c follows from s 6∈ Γ(I ′0) and αs(I

′
0) = αs(I0)−1.

Thus, Part 2a applied to I ′0 and s instead of I0 and i, respectively, yields the
claim (because of (s, αs(I0)) 6∈ I⋆

0 due to s ∈ Γ(I0) and O=
p,a ∩F 6= ∅). �

4.2. Sequential Fixing for Orbitopes

Let us, for some fixed p ≥ q ≥ 2, denote by SSCI the system of the nonnega-
tivity inequalities, the row-sum equations (each one written as two inequal-
ities, in order to be formally correct) and all shifted column inequalities.

48 Orbitopal Fixing

Thus, according to Theorem 2.1, O=
p,q is the set of all x ∈ RIp,q that sat-

isfy SSCI. Let SCI be the subsystem of SSCI containing only the column
inequalities (and all nonnegativity inequalities and row-sum equations).

At first sight, it is not clear whether sequential fixing with the exponen-
tially large system SSCI can be done efficiently. A closer look at the problem
reveals, however, that one can utilize the linear time separation algorithm for
shifted column inequalities (mentioned in Sect. 2) in order to devise an algo-
rithm for this sequential fixing, whose running time is bounded by O(̺pq),
where ̺ is the number of variables that are fixed by the procedure.

In fact, one can achieve more: One can compute sequential fixings with
respect to the affine hull of the orbitope. In order to explain this, consider a
polytope P = {x ∈ Cd : Ax ≤ b}, and let S ⊆ Rd be some affine subspace
containing P . As before, we denote the knapsack relaxations of P obtained
from Ax ≤ b by P1, . . . , Pm. Let us define FixS

F (Pr) as the smallest cube-face
that contains Pr∩S∩{0, 1}d∩F . Similarly to the definition of FixF (Ax ≤ b),
denote by FixS

F (Ax ≤ b) the face of Cd that is obtained by setting G := F and
then iteratively replacing G by FixS

G(Pr) as long as there is some r ∈ [m] with

FixS
G(Pr) (G. We call FixS

F (Ax ≤ b) the sequential fixing of Ax ≤ b at F

relative to S. Obviously, we have FixF (P) ⊆ FixS
F (Ax ≤ b) ⊆ FixF (Ax ≤ b).

In contrast to sequential fixing, sequential fixing relative to affine subspaces
in general is NP-hard (as it can be used to decide whether a linear equation
has a 0/1-solution).

Theorem 4.7.

(1) There are cube-faces F 1, F 2, F 3 with the following properties:

(a) FixF 1(SSCI) (FixF 1(SCI)

(b) Fix
aff(O=

p,q)

F 2 (SCI) (FixF 2(SSCI)

(c) Fix
aff(O=

p,q)

F 3 (SSCI) (Fix
aff(O=

p,q)

F 3 (SCI)

(2) For all cube-faces F , we have Fix
aff(O=

p,q)

F (SSCI) = FixF (O=
p,q).

Proof. For Part 1(a), we chose p = 5, q = 4, and define the cube-face F1 via
I1
0 = {(3, 2), (5, 1), (5, 2), (5, 3)} and I1

1 = {(1, 1), (5, 4)}. The shifted column
inequality with shifted column {(2, 2), (3, 2)} and bar {(5, 4)} allows to fix x22

to one (see Fig. 2 (c)), while no column inequality (and no nonnegativity
constraint and no row-sum equation) allows to fix any variable.

For Part 1(b), let p = 4, q = 4, and define F 2 via the fixing sets I2
0 =

{(3, 2), (4, 1), (4, 2)} and I2
1 = {(1, 1)}. Exploiting x43 + x44 = 1 for all x ∈

aff(O=
p,q)∩F 2, we can use the column inequality with column {(2, 2), (3, 2)}

and bar {(4, 3), (4, 4)} to fix x22 to one (see Fig. 2 (d)), while no fixing is
possible with SSCI only.

For Part 1(c), we use F 3 = F 1. The proof of Part 2 is omitted here. �

The different versions of sequential fixing for partitioning orbitopes are
dominated by each other in the following sequence: SCI → {SSCI, affine SCI}
→ affine SSCI, which finally is as strong as orbitopal fixing. For each of the
arrows there exists an instance for which dominance is strict. The exam-
ples in the proof of Theorem 4.7 also show that there is no general relation
between SSCI and affine SCI.

4 Fixing Variables for Orbitopes 49

Algorithm 1 Orbitopal Fixing

1: Set I⋆
0 ← I0, I⋆

1 ← I1, µ1 ← 1, α1 ← 1, and Γ = ∅.
2: for i = 2, . . . , p do

3: compute µi ← min{j : (i, j) 6∈ I0}.
4: if αi−1 = q(i) or (i, αi−1 + 1) ∈ I0 then

5: αi ← αi−1

6: else

7: αi ← αi−1 + 1, Γ← Γ ∪ {i}
8: if µi > αi then

9: return “Orbitopal fixing is empty”
10: Set I⋆

0 ← I⋆
0 ∪ {(i, j) : j > αi}.

11: if |I⋆
0 ∩ rowi | = q(i)− 1 then

12: set I⋆
1 ← I⋆

1 ∪ (rowi \I
⋆
0).

13: for all s ∈ Γ with (s, αs) /∈ I⋆
1 do

14: Set βs ← αs − 1.
15: for i = s + 1, . . . , p do

16: if βi−1 = q(i) or (i, βi−1 + 1) ∈ I0 then

17: βi ← βi−1

18: else

19: βi ← βi−1 + 1
20: if µi > βi then

21: I⋆
1 ← I⋆

1 ∪ {(s, αs)} and I⋆
0 ← rows \{(s, αs)}.

22: Proceed with the next s in Step 13.

In particular, we could compute orbitopal fixings by the polynomial time
algorithm for sequential fixing relative to aff(O=

p,q). It turns out, however,
that this is not the preferable choice. In fact, we will describe below a linear
time algorithm for solving the orbitopal fixing problem directly.

4.3. An Algorithm for Orbitopal Fixing

Algorithm 1 describes a method to compute the simultaneous fixing (I⋆
0 , I⋆

1)
from (I0, I1) (which are assumed to satisfy Properties P1 and P2). Note that
we use βi for αi(I0 ∪ {(s, αs(I0))}).
Theorem 4.8. A slight modification of Algorithm 1 solves the orbitopal
fixing problem in time O(pq).

Proof. The correctness of the algorithm follows from the structural results
given in Proposition 4.6.

In order to prove the statement on the running time, let us assume that
the data structures for the sets I0, I1, I⋆

0 , and I⋆
1 allow both membership

testing and addition of single elements in constant time (e.g., the sets can
be stored as bit vectors).

As none of the Steps 3 to 12 needs more time than O(q), we only have
to take care of the second part of the algorithm starting in Step 13. (In fact,
used verbatim as described above, the algorithm might need time Ω(p2).)

For s, s′ ∈ Γ with s < s′ denote the corresponding β-values by βi (i ≥ s)
and by β′

i (i ≥ s′), respectively. We have βi ≤ β′
i for all i ≥ s′, and

furthermore, if equality holds for one of these i, we can deduce βk = β′
k

for all k ≥ i. Thus, as soon as a pair (i, βi) is used a second time in Step 20,
we can break the for-loop in Step 15 and reuse the information that we have
obtained earlier.

50 Orbitopal Fixing

This can, for instance, be organized by introducing, for each (i, j) ∈ Ip,q,
a flag f(i, j) ∈ {red, green,white} (initialized by white), where f(i, j) =
red / green means that we have already detected that βi = j eventually leads
to a positive/negative test in Step 20. The modifications that have to be
applied to the second part of the algorithm are the following: The selection
of the elements in Γ in Step 13 must be done in increasing order. Before
performing the test in Step 20, we have to check whether f(i, βi) is green.
If this is true, then we can proceed with the next s in Step 13, after setting
all flags f(k, βk) to green for s ≤ k < i. Similarly, we set all flags f(k, βk)
to red for s ≤ k ≤ i, before switching to the next s in Step 22. And finally,
we set all flags f(k, βk) to green for s ≤ k ≤ p at the end of the body of the
s-loop starting in Step 13.

As the running time of this part of the algorithm is proportional to the
number of flags changed from white to red or green, the total running time
indeed is bounded by O(pq) (since a flag is never reset). �

5. Computational Experiments

We performed computational experiments for the graph partitioning prob-
lem mentioned in the introduction. The code is based on the SCIP 0.90
framework by Achterberg [1], and we use CPLEX 10.01 as the basic LP
solver. The computations were performed on a 3.2 GHz Pentium 4 machine
with 2 GB of main memory and 2 MB cache running Linux. All computa-
tion times are CPU seconds and are subject to a time limit of four hours.
Since in this paper we are not interested in the performance of heuristics, we
initialized all computations with the optimal primal solution. We compare
different variants of the code by counting winning instances. An instance is
a winner for variant A compared to variant B, if A finished within the time
limit and B did not finish or needed a larger CPU time; if A did not finish,
then the instance is a winner for A in case that B did also not finish, leaving,
however, a larger gap than A. If the difference between the times or gaps are
below 1 sec. and 0.1, respectively, the instance is not counted.

In all variants, we fix the variables xij with j > i to zero. Furthermore,
we heuristically separate general clique inequalities

∑
i,j∈C yij ≥ b, where

b =
1

2
t(t − 1)(q − r) +

1

2
t(t + 1)r

and C ⊆ V is a clique of size tq + r > q with integers t ≥ 1, 0 ≤ r < q
(see [3]). The separation heuristic for a fractional point y⋆ follows ideas of
Eisenblätter [5]. We generate the graph G′ = (V,E′) with {i, k} ∈ E′ if
and only if {i, k} ∈ E and y⋆

ik < b(b + 1)/2, where y⋆ is the y-part of an
LP-solution. We search for maximum cliques in G′ with the branch-and-
bound method implemented in SCIP (with a branch-and-bound node limit
of 10 000) and check whether the corresponding inequality is violated.

Our default branching rule combines first index and reliability branching.
We branch on the first fractional x-variable in the row-wise variable order
used for defining orbitopes, but we skip columns in which a 1 has appeared
before. If no such fractional variable could be found, we perform reliability
branching as described by Achterberg, Koch, and Martin [2].

5 Computational Experiments 51

Table 1: Results of the branch-and-cut algorithm. All entries are rounded averages over
three instances. CPU times are given in seconds.

basic Iso Pruning OF

n m q nsub cpu nsub cpu nsub cpu #OF

30 200 3 1 082 6 821 4 697 5 6

30 200 6 358 1 122 0 57 0 25

30 200 9 1 0 1 0 1 0 0

30 200 12 1 0 1 0 1 0 0

30 300 3 3 470 87 2 729 64 2 796 69 7

30 300 6 89 919 445 63 739 168 8 934 45 353

30 300 9 8 278 19 5 463 5 131 0 73

30 300 12 1 0 1 0 1 0 0

30 400 3 11 317 755 17 433 800 9 864 660 8

30 400 6 458 996 14 400 1 072 649 11 220 159 298 3 142 1 207

30 400 9 2 470 503 14 400 1 048 256 2 549 70 844 450 7 305

30 400 12 3 668 716 12 895 37 642 53 2 098 12 1 269

50 560 3 309 435 10 631 290 603 14 400 288 558 10 471 10

50 560 6 1 787 989 14 400 3 647 369 14 400 1 066 249 9 116 4 127

50 560 9 92 0 2 978 5 10 0 10

50 560 12 1 0 1 0 1 0 0

250 s250 s250 s

500 s500 s500 s

750 s750 s750 s

1000 s1000 s1000 s

3 3 33 3 33 3 3 6 6 66 6 66 6 6 9 9 99 9 99 9 9

2 h2 h2 h2 h2 h

4 h4 h4 h4 h4 h

50%50%50%50%50%

100%100%100%100%100%

150%150%150%150%150%

3 3 33 3 33 3 33 3 33 3 3 6 6 66 6 66 6 66 6 66 6 6 9 9 99 9 99 9 99 9 99 9 9 12 12 1212 12 1212 12 1212 12 1212 12 12 3 3 33 3 33 3 33 3 33 3 3 6 6 66 6 66 6 66 6 66 6 6

2 h2 h2 h2 h2 h

4 h4 h4 h4 h4 h

50%50%50%50%50%

100%100%100%100%100%

Figure 3: Computation times/gaps for the basic version (dark gray) and the version
with orbitopal fixing (light gray). From left to right: instances with n = 30, m = 300,
instances for n = 30, m = 400, instances for n = 50, m = 560. The number of partitions q
is indicated on the x-axis. Values above 4 hours indicate the gap in percent.

We generated random instances with n vertices and m edges of the fol-
lowing types. For n = 30 we used m = 200 (sparse), 300 (medium), and 400
(dense). Additionally, for n = 50 we choose m = 560 in search for the limits
of our approach. For each type we generated three instances by picking edges
uniformly at random (without recourse) until the specified number of edges
is reached. The edge weights are drawn independently uniformly at random
from the integers {1, . . . , 1000}. For each instance we computed results for
q = 3, 6, 9, and 12.

In a first experiment we tested the speedup that can be obtained by
performing orbitopal fixing. For this we compare the variant (basic) without
symmetry breaking (except for the zero-fixing of the upper right x-variables)
and the version in which we use orbitopal fixing (OF); see Table 1 for the
results. Columns nsub give the number of nodes in the branch-and-bound
tree. The results show that orbitopal fixing is clearly superior (OF winners:
26, basic winners: 3), see also Figure 3.

Table 1 shows that the sparse instances are extremely easy, the instances
with m = 300 are quite easy, while the dense instances are hard. One effect
is that often for small m and large q the optimal solution is 0 and hence no

52 Orbitopal Fixing

work has to be done. For m = 300 and 400, the hardest instances arise when
q = 6. It seems that for q = 3 the small number of variables helps, while
for q = 12 the small objective function values help. Of course, symmetry
breaking methods become more important when q gets larger.

In a second experiment we investigated the symmetry breaking capabili-
ties built into CPLEX. We suspect that it breaks symmetry within the tree,
but no detailed information was available. We ran CPLEX 10.01 on the IP
formulation stated in Sect. 1. In one variant, we fixed variables xij with j > i
to zero, but turned symmetry breaking off. In a second variant, we turned
symmetry breaking on and did not fix variables to zero (otherwise CPLEX
seems not to recognize the symmetry). These two variants performed about
equally good (turned-on winners: 13, turned-off winners: 12). The variant
with no symmetry breaking and no fixing of variables performed extremely
badly. The results obtained by the OF-variant above are clearly superior to
the best CPLEX results (CPLEX could not solve 10 instances within the
time limit, while OF could not solve 2). Probably this is at least partially
due to the separation of clique inequalities and the special branching rule in
our code.

In another experiment, we turned off orbitopal fixing and separated
shifted column inequalities in every node of the tree. The results show that
the OF-version is slightly better than this variant (OF winners: 13, SCI
winners: 10), but the results are quite close (OF average time: 1563.3, SCI
average time: 1596.7). Although by Part 2 of Theorem 4.7, orbitopal fixing
is not stronger than fixing with SCIs (with the same branching decisions),
the LPs get harder and the process slows down a bit.

Finally, we compared orbitopal fixing to the isomorphism pruning ap-
proach of Margot. We implemented the ranked branching rule (see [16])
adapted to the special symmetry we exploit, which simplifies Margot’s algo-
rithm significantly. It can be seen from Table 1 that isomorphism pruning is
inferior to both orbitopal fixing (OF winners: 25, isomorphism pruning win-
ners: 3) and shifted column inequalities (26:2), but is still a big improvement
over the basic variant (23:7).

6. Concluding Remarks

The main contribution of this paper is a linear time algorithm for the or-
bitopal fixing problem, which provides an efficient way to deal with partition-
ing type symmetries in integer programming models. The result can easily
be extended to “packing orbitopes” (where, instead of x(rowi) = 1, we re-
quire x(rowi) ≤ 1). Our proof of correctness of the procedure uses the linear
description of O=

p,q given in [11]. However, we only need the validity of the
shifted column inequalities in our arguments. In fact, one can devise a simi-
lar procedure for the case where the partitioning constraints x(rowi) = 1 are
replaced by covering constraints x(rowi) ≥ 1, though, for the corresponding
“covering orbitopes” no complete linear descriptions are known at this time.
A more detailed treatment of this will be contained in a journal version of
the paper, which will also include comparisons to the isomorphism pruning
method [14, 15, 17] and to orbital branching [13].

6 References 53

References

[1] T. Achterberg, SCIP – A framework to integrate constraint and mixed in-
teger programming, Report 04-19, Zuse Institute Berlin, 2004. Available online
at http://www.zib.de/Publications/abstracts/ZR-04-19/.

[2] T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Oper.
Res. Lett. 33, no. 1 (2005), pp. 42–54.

[3] S. Chopra and M. Rao, The partition problem, Math. Program. 59, no. 1
(1993), pp. 87–115.

[4] S. Chopra and M. Rao, Facets of the k-partition polytope, Discrete Appl.
Math. 61, no. 1 (1995), pp. 27–48.

[5] A. Eisenblätter, Frequency Assignment in GSM Networks: Models, Heuris-
tics, and Lower Bounds, PhD thesis, TU Berlin, 2001.

[6] J. Falkner, F. Rendl, and H. Wolkowicz, A computational study of
graph partitioning, Math. Program. 66, no. 2 (1994), pp. 211–239.

[7] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and
L. A. Wolsey, Formulations and valid inequalities of the node capacitated
graph partitioning problem, Math. Program. 74, no. 3 (1996), pp. 247–266.

[8] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A.
Wolsey, The node capacitated graph partitioning problem: A computational
study, Math. Program. 81, no. 2 (1998), pp. 229–256.

[9] M. Grötschel and Y. Wakabayashi, A cutting plane algorithm for a clus-
tering problem, Math. Prog. 45, no. 1 (1989), pp. 59–96.

[10] M. Grötschel and Y. Wakabayashi, Facets of the clique partitioning poly-
tope, Math. Prog. 47, no. 3 (1990), pp. 367–387.

[11] V. Kaibel and M. E. Pfetsch, Packing and partitioning orbitopes, Math.
Program. (2007). In press.

[12] G. Kochenberger, F. Glover, B. Alidaee, and H. Wang, Clustering
of microarray data via clique partitioning, J. Comb. Optim. 10, no. 1 (2005),
pp. 77–92.

[13] J. Linderoth, J. Ostrowski, F. Rossi, and S. Smriglio, Orbital branch-
ing, in Proceedings of IPCO XII, M. Fischetti and D. Williamson, eds., LNCS
4513, Springer-Verlag, 2007, pp. 106–120.

[14] F. Margot, Pruning by isomorphism in branch-and-cut, Math. Program. 94,
no. 1 (2002), pp. 71–90.

[15] F. Margot, Exploiting orbits in symmetric ILP, Math. Program. 98, no. 1–3
(2003), pp. 3–21.

[16] F. Margot, Small covering designs by branch-and-cut, Math. Program. 94,
no. 2–3 (2003), pp. 207–220.

[17] F. Margot, Symmetric ILP: Coloring and small integers, Discrete Opt. 4,
no. 1 (2007), pp. 40–62.

[18] A. Mehrotra and M. A. Trick, Cliques and clustering: A combinatorial
approach, Oper. Res. Lett. 22, no. 1 (1998), pp. 1–12.

[19] M. M. Sørensen, Polyhedral computations for the simple graph partitioning
problem, working paper L-2005-02, Århus School of Business, 2005.

http://www.zib.de/Publications/abstracts/ZR-04-19/

Paper 3

A Column-Generation

Approach to Line Planning in

Public Transport

Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch

A Column-Generation Approach to Line Planning in Public Transport1

Transportation Sci. 41 (2007), no. 1, pp. 123–132

Abstract. The line-planning problem is one of the fundamental problems in
strategic planning of public and rail transport. It involves finding lines and
corresponding frequencies in a transport network such that a given travel
demand can be satisfied. There are (at least) two objectives: the transport
company wishes to minimize operating costs and the passengers want to
minimize traveling times. We propose a new multicommodity flow model for
line planning. Its main features, in comparison to existing models, are that
the passenger paths can be freely routed and lines are generated dynamically.
We discuss properties of this model, investigate its complexity, and present
a column-generation algorithm for its solution. Computational results with
data for the city of Potsdam, Germany, are reported.

1. Introduction

The strategic planning process in public and rail transport is usually divided
into consecutive steps of network design, line planning, and timetabling. Each
step can be supported by operations research methods, see for instance the
survey articles of Odoni, Rousseau, and Wilson [20] and of Bussieck, Winter,
and Zimmermann [7].

This article is about the line-planning problem (LPP) in public trans-
port. The problem is to design line routes and their frequencies in a street

1Supported by the DFG Research Center Matheon in Berlin

55

56 Line Planning in Public Transport

or track network such that a transportation volume, given by a so-called
origin-destination matrix (OD-matrix), can be routed. The frequency of a
line is supposed to indicate a basic timetable period and controls the lines’
transportation capacity. There are two competing objectives: on the one
hand to minimize the operating costs of lines, and on the other hand to
minimize user discomfort. User discomfort is usually measured by the total
passenger traveling time or the number of transfers during the ride, or both.

The recent literature on the LPP mainly deals with railway networks.
One common assumption is the so-called system split, which fixes the travel-
ing paths of the passengers before the lines are known. A second common
assumption is that an optimal line plan can be chosen from a (small) pre-
computed set of lines. Third, maximization of direct travelers (that travel
without transfers) is often considered as the objective. In such an approach,
transfer waiting times do not play a role.

This article proposes a new, extended multicommodity flow model for the
LPP. The model minimizes a combination of total passenger traveling time
and operating costs. It generates line routes dynamically, handles frequencies
by means of continuous frequency variables, and allows passengers to change
their routes according to the computed line system; in particular, we do not
assume a system split. These properties aim at line-planning scenarios in
public transport, in which we see less justification for a system split and fewer
restrictions in line design than one seems to have in railway line planning.
The goal of this article is to show that such a model is tractable and can be
used to optimize the line plan of a medium-sized town.

The paper is organized as follows. Section 2 surveys the literature on
the LPP. Section 3 introduces and discusses our model. Section 4 presents
a column-generation solution approach. We show that the pricing problem
for the passenger variables is a shortest path problem, while the pricing
problem for the lines turns out to be an NP-hard longest path problem.
However, if only lines of logarithmic length with respect to the number of
nodes are considered, the pricing problem can be solved in polynomial time.
In Section 5, computational results on a practical problem for the city of
Potsdam, Germany, are reported. We end with conclusions in Section 6.

2. Related Work

This section provides a short overview of the literature for the line-planning
problem. Additional information can be found in the article of Ceder and
Israeli [8], which covers the literature up to the beginning of the 1990s; see
also Odoni, Rousseau, and Wilson [20] and Bussieck, Winter, and Zimmer-
mann [7].

The first approaches to the line-planning problem had the idea to assem-
ble lines from short pieces in an iterative (and often interactive) process. An
early example is the so-called skeleton method described by Silman, Barzily,
and Passy [25], that chooses the endpoints of a route and several intermedi-
ate nodes which are then joined by shortest paths with respect to length or
traveling time; for a variation see Dubois, Bel, and Llibre [13]. In a similar
way, Sonntag [26] and Pape, Reinecke, and Reinecke [21] constructed lines

3 Line-Planning Model 57

by adjoining small pieces of streets/tracks to maximize the number of direct
travelers.

Successive approaches precompute some set of lines in a first phase and
choose a line plan from this set in a second phase; all articles discussed in the
remainder of this section use this idea. For example, Ceder and Wilson [9]
described an enumeration method to generate lines whose length is within a
certain factor from the length of the shortest path, while Mandl [19] proposed
a local search strategy to optimize over such a set. Ceder and Israeli [8, 18]
introduced a quadratic set covering approach.

An important line of developments is based on the concept of the so-
called system split. Its starting point is a classification of the links of a
transportation system into levels of different speed, as is common in railway
systems. Assuming that travelers are likely to change to fast levels as early
and leave them as late as possible, the passengers are distributed onto several
paths in the system—using Kirchhoff-like rules at the transit points—before
any lines are known. This fixes the passenger flow on each individual link
in the network. The system split was promoted by Bouma and Oltrogge [3],
who used it to develop a branch-and-bound-based software system for the
planning and analysis of the line system of the Dutch railway network.

Recently, advanced integer programming techniques have been applied
to the line-planning problem. Bussieck, Kreuzer, and Zimmermann [5] (see
also Bussieck [4]) and Claessens, van Dijk, and Zwaneveld [10] both pro-
pose cut-and-branch approaches to select lines from a previously generated
set of potential lines and report computations on real-world railway data.
Both articles deal with homogeneous transport systems, which can be as-
sumed after a system-split is performed as a preprocessing step. Bussieck,
Lindner, and Lübbecke [6] extend this work by incorporating nonlinear com-
ponents into the model. Goossens, van Hoesel, and Kroon [16, 17] show
that practical railway problems can be solved within reasonable time and
quality by a branch-and-cut approach, even for the simultaneous optimiza-
tion of several transportation systems. Schöbel and Scholl [23, 24] study a
Dantzig-Wolfe decomposition approach to route passengers through an ex-
panded line-network to minimize the number of transfers or the transfer
time.

3. Line-Planning Model

We typeset vectors in bold face, scalars in normal face. If v ∈ RJ is a
real valued vector and I a subset of J , we denote by v(I) the sum over all
components of v indexed by I, i.e., v(I) :=

∑
i∈I vi.

For the line-planning problem (LPP), we are given a number M of
transportation modes (bus, tram, subway, etc.), an undirected multigraph
G = (V,E) = (V,E1∪̇ . . . ∪̇EM) representing a multimodal transportation
network, terminal sets T1, . . . ,TM ⊆ V of nodes for each mode where lines
can start and end, line operating costs c1 ∈ QE1

+ , . . . , cM ∈ QEM
+ on the

edges, fixed costs C1, . . . , CM ∈ Q+ for the set-up of a line for each mode,
vehicle capacities κ1, . . . , κM ∈ Q+ for each mode, and edge capacities
Λ ∈ QE

+. Denote by Gi = (V,Ei) the subgraph of G corresponding to

58 Line Planning in Public Transport

Figure 1: Multimodal transportation network in Potsdam. Black: tram, light gray: bus,
dark gray: ferry, large nodes: terminals, small nodes: stations, grey: rivers and lakes.

mode i. See Figure 1 for an example network and Table 1 for a list of
notation that we use throughout the paper.

A line of mode i is a path in Gi connecting two (different) terminals of Ti.
Note that paths are always simple, i.e., the repetition of nodes is not allowed;
it is possible to consider additional constraints on the formation of lines such
as a maximum length, etc. Let cℓ :=

∑
e∈ℓ ci

e be the operating cost of line ℓ
of mode i, Cℓ := Ci be its fixed cost, and κℓ := κi be its vehicle capacity.
Let L be the set of all feasible lines. Furthermore, Le :=

⋃{ℓ ∈ L : e ∈ ℓ}
is the set of lines that use edge e ∈ E.

The problem formulation further involves a (not necessarily symmetric)

origin-destination matrix (OD-matrix) (dst) ∈ QV ×V
+ of travel demands, i.e.,

dst is the number of passengers who want to travel from node s to node t.
Let D := {(s, t) ∈ V × V : dst > 0} be the set of all OD-pairs.

Finally, we derive a directed passenger route graph (V,A) from G =
(V,E) by replacing each edge e ∈ E with two antiparallel arcs a(e) and a(e);
conversely, let e(a) ∈ E be the undirected edge corresponding to a ∈ A.
For simplicity of notation, we denote this digraph also by G = (V,A). We
are given traveling times τa ∈ Q+ for every arc a ∈ A. For an OD-pair
(s, t) ∈ D, an (s, t)-passenger path is a directed path in (V,A) from s to t.
Let Pst be the set of all (s, t)-passenger paths, P :=

⋃{p ∈ Pst : (s, t) ∈ D}
the set of all passenger paths, and Pa :=

⋃{p ∈ P : a ∈ p} the set of all
passenger paths that use arc a. The traveling time of a passenger path p is
defined as τp :=

∑
a∈p τa.

With this notation, the LPP can be modeled using three kinds of vari-
ables:

3 Line-Planning Model 59

Table 1: Notation and terminology.

G multimodal transport network Gi subnetwork for mode i
Ti terminals for mode i ci line operating costs for mode i
cℓ operating costs for line ℓ Ci line fixed costs for mode i
κi vehicle capacity for mode i κℓ vehicle capacity for line ℓ
L set of all lines Le lines using edge e
D set of OD-pairs dst travel demand between s and t
τa traveling time on arc a τp traveling time on path p
P set of all passenger paths Pst paths between s and t
yp passenger flow on path p xℓ whether line ℓ is used
fℓ frequency of line ℓ Λe frequency bounds for edge e

yp ∈ R+ the flow of passengers traveling from s to t on path p ∈ Pst,
fℓ ∈ R+ the frequency of line ℓ ∈ L,
xℓ ∈ {0, 1} a decision variable for using line ℓ ∈ L.

(LPP) min τTy + CTx + cTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ Λe ∀ e ∈ E (iii)
f ≤ Fx (iv)
xℓ ∈ {0, 1} ∀ ℓ ∈ L (v)
fℓ ≥ 0 ∀ ℓ ∈ L (vi)
yp ≥ 0 ∀ p ∈ P. (vii)

The passenger flow constraints (i) and the nonnegativity constraints (vii)
model a multicommodity flow problem for the passenger flow, where the
commodities correspond to the OD-pairs (s, t) ∈ D. This part guarantees
that the demand is routed. The capacity constraints (ii) link the passenger
paths with the line paths to ensure sufficient transportation capacity on each
arc. The frequency constraints (iii) bound the total frequency of lines using
an edge. Inequalities (iv) link the frequencies with the decision variables for
the use of lines; they guarantee that the frequency of a line is zero whenever
it is not used. Here, F is an upper bound on the frequency of a line; for
technical reasons, we assume that F ≥ Λe for all e ∈ E, see Section 4 for
more information.

Let us discuss some properties of the model before we investigate its
algorithmic tractability.

Objectives: The objective of the model has two competing parts, namely,
to minimize total passenger traveling time τTy and to minimize costs CTx+
cTf . Here, CTx is the fixed cost for setting up lines, and cTf is the variable
cost for operating these lines at frequencies f . The model allows to adjust the
relative importance of one part over the other by an appropriate scaling of
the respective objective coefficients. Including fixed costs allows to consider
objectives such as minimizing the number of lines; note that LPP is a linear
program (LP) if all fixed costs are zero.

60 Line Planning in Public Transport

OD-Matrices: Each entry in an OD-matrix gives the number of passengers
who want to travel from one point in the network to another point within
a fixed time horizon. It is well known that such data have certain deficien-
cies. For instance, OD-matrices depend on the geometric discretization used,
they are highly aggregated, they give only a snapshot type of view, it is of-
ten questionable how well the entries represent the real situation, and they
should only be used when the transportation demand can be assumed to be
fixed. However, OD-matrices are at present the industry standard for esti-
mating transportation demand. It is already quite an art and rather costly
to assemble this data, and currently, no alternative is in sight.

Time horizon: The LPP implicitly contains a time horizon via the OD-
matrix. Usually, OD-data are aggregated over one day, but it is similarly
appropriate to consider, for instance, peak traffic in rush hours. In fact, the
asymmetry of demands in rush hours was one of the reasons why we consider
directed passenger paths.

Passenger Routes: Because the traveling times τ are nonnegative, we can
assume passenger routes to be (simple) paths.

Our model does not fix passenger paths according to a system split, but
allows to freely route passengers according to the computed lines. This is
targeted at local public transport systems, where, in our opinion, people
determine their traveling paths according to the line system and not only
according to the network topology. Except for the work of Schöbel and
Scholl [23, 24], which is independent of ours, such routings have not been
considered in the context of line planning before.

Our model computes a set of passenger paths that minimize the total
traveling times τTy in the sense of a system optimum. However, in our case,
with a linear objective function and linear capacities, it can be shown that
the resulting system optimum is also a user equilibrium, namely, the so-called
Beckmann user equilibrium, see Correa, Schulz, and Stier Moses [11]. We do
not address the question of why passengers should choose this equilibrium
out of several possible equilibria that can arise in routing with capacities.

The routing in our model allows for passengers paths of arbitrary travel
times, which may force some passengers to long detours. We remark that
this problem could be handled by introducing appropriate bounds on the
travel times of paths. This would, however, turn the pricing problem for the
passenger paths into an NP-hard resource-constrained shortest path problem;
see Section 4.1. Note also that such an approach would measure travel times
with respect to shortest paths in the underlying network (independent of
any line system). Ideally, however, one would like to compare to the shortest
paths using only arcs covered by the computed line system.

Line Routes: The literature generally takes line routes as (simple) bidi-
rected paths, and we do the same in this article. In fact, a restriction forcing
some sort of simplicity is necessary to prevent repetitions around cycles. As
a slight generalization of the concept of simplicity, one could investigate the
case in which one assumes that every line route is bounded in length or
“almost” simple, i.e., no node is repeated within a given interval.

4 Column Generation 61

It is easy to incorporate additional constraints on the formation of in-
dividual lines and constraints on sets of lines, e.g., that the length of a line
should not deviate too much from a shortest path between its endpoints or
bounds on the number of lines using an edge. Such constraints are important
in practice. In this article we consider bounds on the number of edges in a
line. Let us give two arguments why this case is practically relevant.

The first argument is based on an idea of a transportation network as a
planar graph, probably of high connectivity. Suppose this network occupies
a square, in which n nodes are evenly distributed. A typical line starts in the
outer regions of the network, passes through the center, and ends in another
outer region; we would expect such a line to be of length O(

√
n).

Real networks, however, are not only (more or less) planar, but often
resemble trees. But in a balanced and preprocessed tree, where each node
degree is at least three, the length of a path between any two nodes is only
O(log n).

Transfers: Transfers between lines are currently ignored in our model, be-
cause constraints (ii) only control the total capacity on edges and not the
assignment of passengers to lines. The problem are not transfers between
different modes, which can be handled by linking the mode networks Gi with
appropriate transfer edges, weighted by estimated transfer times. In prin-
ciple, a similar trick could be used for transfers between lines of the same
mode, using an appropriate expansion of the graph. However, this greatly
increases the complexity of the model, and it introduces degeneracy; it is
unclear whether such a model remains tractable for practical data.

Frequencies: Frequencies indicate the (approximate) number of times ve-
hicles need to be employed to serve the demand over the time horizon. In
a real-world line plan, frequencies often have to produce a regular timetable
and, hence, are not allowed to take arbitrary fractional values. Our model,
however, treats frequencies as continuous values. This is a simplification. We
have introduced fixed costs to reduce the number of lines and decrease the
likelihood of low frequencies. In addition, we could have forced our model
to accept only a finite number of frequencies by enumerating lines with fixed
frequencies in a similar way as Claessens, van Dijk, and Zwaneveld [10] and
Goossens, van Hoesel, and Kroon [16, 17]; but the resulting model would be
much harder to solve. However, as the frequencies mainly are used to adjust
line capacities, we do (at present) not care so much about “nice” frequencies
and view the fractional values as approximations or clues to “sensible” values.

4. Column Generation

The LP relaxation of (LPP) can be simplified by eliminating the x-variables.
In fact, since (LPP) minimizes over nonnegative costs, one can assume
w.l.o.g. that inequalities (iv) above are satisfied with equality, i.e., there
is an optimal LP solution such that Fxℓ = fℓ ⇔ xℓ = fℓ/F for all lines ℓ.
Substituting for x, we observe that the inequalities fℓ ≤ F remaining after
the elimination are dominated by inequalities (iii) and, hence, can be omit-
ted (recall that we assumed F ≥ Λe). Setting γℓ = Cℓ/F + cℓ, we arrive at

62 Line Planning in Public Transport

the following equivalent, but simpler, linear program:

(LP) min τTy + γTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ Λe ∀ e ∈ E (iii)
fℓ ≥ 0 ∀ ℓ ∈ L (iv)
yp ≥ 0 ∀ p ∈ P. (v)

Note that (LP) contains only a polynomial number of inequalities (apart
from the nonnegativity constraints (iv) and (v)).

We aim at solving (LP) with a column-generation approach (see Barnhart
et al. [2] for an introduction) and therefore investigate the corresponding
pricing problems. These pricing problems are studied in terms of the dual
of (LP). Denote the variables of the dual as follows: π = (πst) ∈ RD (flow
constraints (i)), µ = (µa) ∈ RA (capacity constraints (ii)), and η ∈ RE

(frequency constraints (iii)). The dual of (LP) is:

max dTπ − Λ
Tη

πst − µ(p) ≤ τp ∀ p ∈ Pst, (s, t) ∈ D
κℓ µ(ℓ) − η(ℓ) ≤ γℓ ∀ ℓ ∈ L

µ, η ≥ 0,

where

µ(ℓ) =
∑

e∈ℓ

(
µa(e) + µa(e)

)
.

It will turn out that the pricing problem for the line variables fℓ is a
longest path problem; the pricing problem for the passenger variables yp,
however, is a shortest path problem.

4.1. Pricing of the Passenger Variables

The reduced cost τp for variable yp with p ∈ Pst, (s, t) ∈ D, is

τp = τp − πst + µ(p) = τp − πst +
∑

a∈p

µa = −πst +
∑

a∈p

(µa + τa).

The pricing problem for the y-variables is to find a path p such that τp < 0 or
to conclude that no such path exists. This easily can be done in polynomial
time as follows. For all (s, t) ∈ D, we search for a shortest (s, t)-path p with
respect to the nonnegative weights (µa+τa) on the arcs; we can, for instance,
use Dijkstra’s algorithm. If the length of this path p is less than πst, then yp

is a candidate variable to be added to the LP, otherwise, we proved that no
such path exists (for the pair (s, t)). Note that we can assume that each
passenger path is simple: just remove cycles of length 0 – or trust Dijkstra’s
algorithm, which produces only simple paths.

4 Column Generation 63

4.2. Pricing of the Line Variables

The pricing problem for line variables fℓ is more complicated. The reduced
cost γℓ for a variable fℓ is

γℓ = γℓ − κℓ µ(ℓ) + η(ℓ) = γℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)
.

The corresponding pricing problem consists of finding a (simple) path ℓ of
mode i such that

0 > γℓ = γℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)

= Cℓ/F + cℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)

= Ci/F +
∑

e∈ℓ ci
e −

∑
e∈ℓ

(
κi (µa(e) + µa(e)) − ηe

)

= Ci/F +
∑

e∈ℓ

(
ci
e − κi (µa(e) + µa(e)) + ηe

)

⇔ ∑
e∈ℓ(κi (µa(e) + µa(e)) − ηe − ci

e) > Ci/F.

This problem turns out to be a maximum weighted path problem, because
the weights (κi (µa(e) + µa(e)) − ηe − ci

e) are not restricted in sign. Hence,
the pricing problem for the line variables is NP-hard [15]. This shows that
solving the LP relaxation (LP) is NP-hard as well. In fact, we can prove the
stronger result that the line-planning problem itself is NP-hard, even with
fixed costs zero, independent of the model (Proposition 4.1 implies that (LP)
is NP-hard, because (LPP) is equivalent to (LP) for fixed costs 0).

Proposition 4.1. The line-planning problem LPP is NP-hard, even with
fixed costs 0.

Proof. We reduce the Hamiltonian path problem, which is strongly NP-
complete [15], to the LPP with fixed costs 0. Let (H, s, t) be an instance of
the Hamiltonian path problem, i.e., H = (V, E) is a graph and s and t are
two distinct nodes of H.

u v

u1 v1

u2 v2

u3 v3

Figure 2: Example for the node splitting gadget in the proof of Proposition 4.1

For the reduction, we are going to derive an appropriate instance of LPP.
The underlying network is formed by a graph H ′ = (V ′, E′), which arises
from H by splitting each node v into three copies v1, v2, and v3. For each
node v ∈ V , we add edges {v1, v2} and {v2, v3} to E′ and for each edge {u, v}
the edges {u1, v3} and {u3, v1}, see Figure 2. Our instance of LPP contains
just a single mode with only two terminals s1 and t3 such that every line
must start at s1 and end at t3. The demands are dv1v2

= 1 (v ∈ V) and 0
otherwise, and the capacity of every line is 1 For every e ∈ E′, we set Λe to
some high value (e.g., to |V ′|). The cost of all edges is set to 0, except for
the edges incident to s1, for which the costs are set to 1. The traveling times

64 Line Planning in Public Transport

are set to 0 everywhere. It follows that the value of a solution to LPP is the
sum of the frequencies of all lines.

Assume that p = (s, v1, . . . , vk, t) (for v1, . . . , vk ∈ V) is an (s, t)-Hamil-
tonian path in H. Then p′ = (s1, s2, s3, v

1
1 , v

1
2 , v1

3 , . . . , v
k
1 , vk

2 , vk
3 , t1, t2, t3) is

an (s1, t3)-Hamiltonian path in H ′, which gives rise to an optimal solution
of LPP. Namely, we can take p′ as the route of a single line with frequency 1
and route the demands dv1v2

= 1 for every v ∈ V on this line directly
from v1 to v2. As the frequency of p′ is 1, the objective value of this solution
is also 1. On the other hand, every solution to LPP must have value at least
one, because every line has to pass an edge incident to s1 and the sum of the
frequencies of lines visiting an arbitrary edge of type {v1, v2}, for v ∈ V , is at
least 1. This proves that LPP has a solution of value 1, if (H, s, t) contains
a Hamiltonian path.

For the converse, assume that there exists a solution to LPP of value 1,
for which we ignore lines with frequency 0. We know that every edge {v1, v2}
(v ∈ V) is covered by at least one line of the solution. If every line contains
all edges {v1, v2} (v ∈ V), each such line gives rise to a Hamiltonian path
(because the line paths are simple) and we are done. Otherwise, there must
be an edge e = {v1, v2} (v ∈ V) that is not covered by all of the lines.
Because the lines have to provide enough capacity, the sum of the frequencies
of the lines covering e is at least 1. However, the edges incident to s1 are
covered by the lines covering edge e plus at least one more line of nonzero
frequency. Hence, the total sum of all frequencies is larger than one, which
is a contradiction to the assumption that the solution has value 1.

This shows that there exists an (s, t)-Hamiltonian path in H if and only
if an optimal solution of LPP with respect to H ′ has value 1. �

4.3. Pricing of Length Restricted Lines

Let us now consider the pricing problem for line-planning problems with
bounds on the lengths of the lines, i.e., the number of edges of a line. Con-
sider for this purpose the graph G = (V,E) (for simplicity of notation with
only one mode) with arbitrary edge weights we ∈ Q for all e ∈ E, and a
source node s and a sink node t. We let n = |V | and m = |E|. In this
setting, the line-pricing problem is to find a maximum weight path from s
to t with respect to w. We first show that this problem is NP-hard for the
case in which the length of a line is bounded by O(

√
n).

Proposition 4.2. It is NP-hard to compute a maximum weight path from s
to t of length at most k, if k ∈ O

(
n1/N

)
for any fixed N ∈ N \ {0}.

Proof. Let (H, s, t) be an instance of the Hamiltonian path problem, in
which H is a graph with n nodes. We add (nN − n) isolated nodes to H
in order to obtain a graph H ′ with nN nodes; note that nN is polynomial
in n for fixed N . Let the weights on the edges be 1. If we could find a
maximum weight path from s to t with at most k = (nN)1/N = n edges
in polynomial time, we could solve the Hamiltonian path problem for H in
polynomial time. �

We now provide a result that shows that the maximum weighted path
problem can be solved in polynomial time in the case when the lengths of

4 Column Generation 65

the paths are at most O(log n). Our method is a direct generalization of
work by Alon, Yuster, and Zwick [1] on the unweighted case; it works both
for directed and undirected graphs.

Alon et al. consider the problem to find simple paths of fixed length k−1
in a graph. Their basic idea is to randomly color the nodes of the graph
with k colors and only allow paths that use distinct colors for each node;
such paths are called colorful with respect to the coloring and are necessarily
simple. Choosing a coloring c : V → {1, . . . , k} uniformly at random, every
path using at most k − 1 edges has a chance of at least k!/kk > e−k to be
colorful with respect to c. If we repeat this process α · ek times with α > 0,
the probability that a given path p with at most k−1 edges is never colorful
is less than (

1 − e−k
)α·ek

< e−α.

Hence, the probability that p is colorful at least once is at least 1−e−α. The
search for such colorful paths can be performed using dynamic program-
ming, which leads to an algorithm running in m · 2O(k) expected time. This
algorithm is then derandomized.

These arguments yield the following result for the weighted undirected
case, which is easily seen to be valid for directed graphs as well.

Proposition 4.3. Let G = (V,E) be a graph with m edges, k be a fixed
number, and c : V → {1, . . . , k} be a coloring of the nodes of G. Let s be a
node in G and (we) be edge weights. Then a colorful maximum weight path
with respect to w using at most k − 1 edges from s to every other node can
be found in time O

(
m · k · 2k

)
, if such paths exist.

Proof. We find the maximum weight of such paths by dynamic programming.
Let v ∈ V , i ∈ {1, . . . , k}, and C ⊆ {1, . . . , k} with |C| ≤ i. Define w(v,C, i)
to be the weight of the maximum weight colorful path with respect to w

from s to v using at most i − 1 edges and using the colors in C. Hence, for
each iteration i, we store the set of colors of all maximum weight colorful
paths from s to v using at most i − 1 edges. Note that we do not store the
set of paths, only their colors. Hence, at each node, we store at most 2i

entries. The entries of the table are initialized with minus infinity, and we
set w(s, {c(s)}, 1) = 0.

At iteration i ≥ 1, let (u,C, i) be an entry in the dynamic programming
table. If for some edge e = {u, v} ∈ E we have c(v) /∈ C, let C ′ = C ∪{c(v)}
and set

w(v,C ′, i + 1) = max
{
w(u,C, i) + we, w(v,C ′, i + 1), w(v,C ′, i)

}
.

The term w(v,C ′, i + 1) accounts for the cases in which we already found
a path to v (using at most i edges) with higher weight, whereas w(v,C ′, i)
makes sure that paths using at most i − 1 edges to v are accounted for.
After iteration i = k, we take the maximum of all entries corresponding to
each node v, which is the wanted result. The number of updating steps is
bounded by

k∑

i=0

i · 2i · m = m ·
(
2 + 2k+1(k − 1)

)
= O

(
m · k · 2k

)
.

66 Line Planning in Public Transport

The sum on the left side of this equation arises as follows. In iteration i, m
edges are considered; each edge {u, v} starts at node u, to which at most 2i

labels w(u,C, i) are associated, one for each possible set C; for each such set,
checking whether c(v) ∈ C takes time O(i). The summation formula itself
can be proved by induction, see also [22, Exc. 5.7.1, p. 95]. The algorithm
can be easily modified to actually find the maximum weight paths. �

We can use Proposition 4.3 to produce an algorithm that finds a max-
imum weight path in α ek O

(
mk2k

)
= αO

(
m · 2O(k)

)
time with high prob-

ability. Then a derandomization can be performed by a clever enumeration
of colorings such that each path with at most k − 1 edges is colorful with
respect to at least one such coloring. Alon et al. combine several techniques
to show that 2O(k) · log n colorings suffice. Applying this result we obtain
the following.

Theorem 4.4. Let G = (V,E) be a graph with n nodes and m edges and k
be a fixed number. Let s be a node in G and (we) be edge weights. Then a
maximum weight path with respect to w using at most k − 1 edges from s
to every other node can be found in time O

(
m · 2O(k) · log n

)
, if such paths

exist.

If k ∈ O(log n), this yields a polynomial time algorithm. Hence, by the
discussion above, we get the following result.

Corollary 4.5. The LP relaxation of (LPP) can be solved in polynomial
time, if the lengths of the lines are most k, with k ∈ O(log n).

4.4. Algorithm

We used the results of the previous sections to implement a column-gen-
eration algorithm for the solution of the model (LPP) with length-restricted
lines. As an overall objective function, we used the weighted sum

λ (CTx + cTf) + (1 − λ) τTy,

where λ ∈ [0, 1] is a parameter weighing the two parts.
The algorithm solves the LP relaxation in a first phase and constructs a

feasible line plan using a greedy type heuristic in a second phase.
To solve the LP relaxation, our algorithm iteratively prices out passenger

and line path variables until no improving variables are found. We solve the
master LP with the barrier algorithm and, toward the end of the process,
with the primal simplex algorithm of CPLEX 9.1. We check for new passen-
ger path variables for all OD-pairs using Dijkstra’s algorithm, see Section 4.1,
until no more improving passenger paths are found. If we do not find an im-
proving passenger path, we price out line variables for all line modes and all
feasible terminal pairs. We have implemented two different methods for the
pricing of (simple) line paths, namely, we either use an enumeration or the
randomized coloring algorithm of Section 4.3 (we do not derandomize the
algorithm). If an improving passenger or line path has been found, another
iteration is started; otherwise, the LP is solved.

In the second phase, our algorithm tries to construct a good integer so-
lution from a line pool consisting of the lines having nonzero frequencies in

5 Computational Results 67

the optimal LP solution. The heuristic is motivated by the observation that
the solution of the LP relaxation of a line-planning problem often contains
lines with very low frequencies. We try to remove these lines by a simple
greedy method based on a strong branching selection criterion. In the be-
ginning, the x-variables of all lines in the pool are set to 1. In each iteration,
we tentatively remove a line (set its x-variable to 0), compute the objective
λ cTf + (1 − λ) τTy of the LP obtained by fixing the line variables as de-
scribed, pricing passenger variables as needed, and add the fixed costs CTx

of all lines that are fixed to 1. After probing candidate lines with the smallest
f -values in this way, we permanently delete the line whose removal resulted
in the smallest objective. We repeat this elimination as long as the remaining
set of lines is still feasible, i.e., all demands can be routed, and the objective
function decreases.

5. Computational Results

In this section, we report on computational experience with line-planning
problems for the city of Potsdam, Germany. The experiments originate from
a joint project with the two local public transport companies, ViP Verkehrs-
gesellschaft GmbH and Havelbus Verkehrsgesellschaft mbH, the city of Pots-
dam, and the software company IVU Traffic Technologies AG.

Potsdam is a medium sized town near Berlin; it has about 150,000 inhabi-
tants. Its public transportation system uses city buses and trams (operated
by ViP) and regional buses (operated by Havelbus). Additionally, regional
trains connect Potsdam to its surroundings (operated by Deutsche Bahn
AG) and a city railroad (operated by S-Bahn Berlin) provides connections
to Berlin. Because regional trains and the city railroad are not operated by
ViP and Havelbus, the associated lines routes are assumed to be fixed.

5.1. Data

Our data consists of a multimodal traffic network of Potsdam and an asso-
ciated OD-matrix, which had been used by IVU in a consulting project for
planning the Potsdam network (Nahverkehrsplan). The data represents the
1998 line system of Potsdam. It has 27 bus lines and 4 tram lines. Including
line variants, the total number of lines was 80. The network has 951 nodes,
including 111 OD-nodes, and 1,321 edges. The maximum length of a line
is 47 edges.

The network was preprocessed as follows. We removed isolated nodes.
Then, we iteratively removed “leaves” in the graph—i.e., nodes with only
one neighbor—and iteratively contracted nodes with two neighbors. The
preprocessed graph has 410 nodes, 106 of which were OD-nodes, and 891
edges. We remark that although such preprocessing steps are conceptually
easy, the data handling can be quite intricate in practice; for instance, our
data included information on possible turnings of a line at road/rail crossings,
which must be updated in the course of the preprocessing.

The OD-matrix was also modified. Nodes with zero traffic were removed.
The original time horizon was one day, but we wanted to construct a line plan
for the peak hour. We therefore scaled the matrix to 40% in an (admittedly

68 Line Planning in Public Transport

Table 2: Experimental results of line planning for λ = 0.9978.

Optimized LP solution – enumeration:
total traveling time: 108,360,036.33 [scaled: 238,392.08]
total line cost: 233,776.86 [scaled: 233,262.55]
LP objective value: 471,654.63
active line/pass. var.: 60/4,879 transfers: 8,777/64,607

Optimized LP solution – randomized coloring – 5 trials:
total traveling time: 108,396,741.75 [scaled: 238,472.83]
total line cost: 239,099.73 [scaled: 238,573.71]
LP objective value: 477,046.54
active line/pass. var.: 61/4,880 transfers: 9,143/66,546

Optimized LP solution – randomized coloring – 15 trials:
total traveling time: 108,491,234.25 [scaled: 238,680.72]
total line cost: 237,422.50 [scaled: 236,900.17]
LP objective value: 475,580.88
active line/pass. var.: 62/4,885 transfers: 9,387/68,049

Optimized integer solution – greedy heuristic:
total traveling time: 112,581,291.50 [scaled: 247,678.84]
total line cost: 287,060.90 [scaled: 286,429.37]
integer objective value: 818,491.68
active line/pass. var.: 30/4,767 transfers: 8,638/60,539

Reference LP solution:
total traveling time: 105,269,846.00 [scaled: 231,593.66]
total line cost: 501,376.24 [scaled: 500,273.21]
LP objective value: 731,866.87
active line/pass. var.: 61/4,857 transfers: 8,618/63,310

Reference integer solution – greedy heuristic:
total traveling time: 106,952,869.00 [scaled: 235,296.31]
total line cost: 562,964.54 [scaled: 561,726.02]
integer objective value: 1,213,221.49
active line/pass. var.: 44/4,814 transfers: 9,509/70,525

rough) attempt to simulate afternoon traffic (3 p.m. to 6 p.m.). Note that the
resulting matrix is still quite symmetric (the maximum difference between
each of the two directions was 25) whereas a real afternoon OD-matrix would
not be symmetric. The scaled OD-matrix had 4685 nonzeros and the total
scaled travel demand was 42796.

All traveling times are measured in seconds and we always restricted the
maximum length of a line to 55 edges. Because no data was available on line
costs, we decided on Cℓ = 10000 (fixed costs) for each line ℓ and ci

e = 100
(operating costs) for each edge e and mode i. Hence, we do not distinguish
between costs of different modes (an unrealistic assumption in practice).

5.2. Experiments

Table 2 reports the results of several computational experiments with the
data and implementation we have described. All experiments were performed

5 Computational Results 69

using a 3.4 GHz Pentium 4 machine running Linux. In the table, the total
traveling time is τTy and the total line cost is γTf , the scaled values are
(1−λ) τ Ty and λγTf , respectively; all four values refer to the LP relaxation
(LP). The LP objective value is λγTf + (1 − λ) τTy, the integer objective
value refers to λ (CTx + cTf) + (1 − λ) τTy. The last line in each block of
results gives the number of active (i.e., nonzero) line and passenger variables,
and the number of passenger transfers (first number) that were needed as
well as the number of transfering passengers (second number). Note that we
can compute transfers from passenger routes as an afterthought, although
our optimization model is currently insensitive to them.

Let us point out explicitly that we do not claim that our results are
already practically significant; we only want to show that there is potential
to apply our methods to practical data. For example, our costs are not
realistic. Therefore, the frequencies we compute cannot be compared to
ones used in practice. To allow some adaptation to our cost model, we let
the frequencies of all lines be variable, in particular, the frequencies of the
city railroad and regional train lines.

In our first experiment, we solved the LP relaxation (LP) of the Potsdam
problem, pricing lines either by enumeration or by the randomized coloring
method of Section 4.3, see top of Table 2. We set λ = 0.9978, which roughly
balances the two parts of the objective function. The resulting LP had 5761
rows. Using enumeration, we obtained an optimal solution after 451 seconds
and 283 iterations (i.e., solutions of the master LP), of which 15 were used
to price lines. The pricing problems needed a total time of 183 seconds of
which most was used for the pricing of line paths. Hence, more than half the
time is spent for solving the master LPs.

We repeated this experiment using the randomized coloring algorithm
with 5 and 15 trials for line pricing. With 5 trials, we needed 397 master
LPs and 394 seconds in total; line pricing used only 99 seconds. One can
see, however, that the objective is about 1% higher than for the enumeration
variant. Using 15 trials resulted in 269 master LPs and 473 seconds in
total. Line pricing now uses 265 seconds, and the difference in the objective
function relative to the enumeration variant is reduced to 0.8%. Hence, one
can achieve a good approximation of the optimal value using randomized
line pricing, although approaching the optimum solution comes at the cost
of larger computation times.

We also investigated in more detail the passenger routing of our LP solu-
tion for the enumeration variant. To connect the 4,685 OD-pairs only 4,879
paths are needed, i.e., most OD-pairs are connected by a unique path. The
total traveling time is 108,360,036.33 seconds, see Table 2. For comparison,
when we ignore capacities and route all passengers between every OD-pair on
the fastest path in the final line system, the total traveling time is 95,391,460
seconds. This relative difference of 12% seems to be an acceptable deviation.

In our second experiment, we computed two integer solutions for (LPP)
associated with the parameter λ = 0.9978, as above. The first solution
is obtained by rounding all nonzero x-variables in the solution of the LP
relaxation, computed with the enumeration variant, to 1. The (integer) ob-
jective of this rounded solution is 1,058,079.69, which leads to a gap of 55%

70 Line Planning in Public Transport

1.2e+08

1.15e+08

1.1e+08

1.05e+08

1e+08

0.95e+08

0.9e+08
0 1.0

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

line cost
traveling time

Figure 3: Total traveling time (solid, left axis) and total line cost (dashed, right axis) in
dependence on λ (x-axis in logscale).

compared to the LP relaxation value of 471,654.63. The second solution is
obtained by the greedy algorithm described in Section 4.4, starting from the
same LP solution (only lines for city buses, trams, and regional buses were
removed). It has 30 lines (17 bus lines and 2 tram lines), down from 60
in the first solution, see Table 2; it took 1,368 seconds to compute. The
final (scaled) operating costs are 286,429.37, while the final fixed costs are
λ · 300, 000 = 299, 340. The integer objective of 818,491.68 has a gap of 42%
with respect to the LP relaxation value of 471,654.63. Note that the results
heavily depend on the cost structure: decreasing the fixed costs automat-
ically reduces the gap. In our context, with high fixed costs, emphasis is
on reducing the number of lines (recall that the costs were artificial). The
result obtained seems to be quite good, given that the original line system
contained 27 bus lines and 4 tram lines; it seems unlikely that one can fur-
ther reduce the number. Furthermore, the lower bound of the LP relaxations
typically is very weak for such fixed-cost problems. Still, more research is
needed to provide better lower bounds and primal solutions.

We compare the LP and integer solutions to “reference solutions” shown
in the lower part of Table 2. The reference LP solution is obtained by fixing
the paths of the original lines of Potsdam and then solving the resulting
LP relaxation without generating new lines, but allowing the frequencies of
the lines to change. The reference integer solution is obtained by applying
the greedy heuristic to the reference LP solution. The results show that
allowing the generation of new line paths reduces line costs in both cases to
roughly 50% and the total objective to roughly 2/3 of the original values,
while the total traveling time increases by a small percent. Hence, in these
experiments, the greedy algorithm has not changed the relative improvement
obtained from optimizing lines.

Our third experiment investigates the influence of the parameter λ on the
solution. We computed the solutions to the LP relaxation for 21 different

values of λi, taking λi = 1 −
(
1 − i/20

)4
, for i = 0, . . . , 20. This collects

6 References 71

increasingly more samples near λ = 1, a region where the total traveling
time and total line cost are about equal.

The results are plotted in Figure 3. This figure shows the total traveling
time and the total line cost depending on λ. The extreme cases are as
expected: For λ = 0, the line costs do not contribute to the objective and are
therefore high, while the total traveling time is low. For λ = 1, only the total
line cost contributes to the objective and is therefore minimized as much as
possible at the cost of increasing the total traveling time. With increasing λ,
the total line cost monotonically decreases, while the total traveling time
increases. Note that each computed pair of total traveling time and line
cost constitutes a Pareto optimal point, i.e., is not dominated by any other
attainable combination. Conversely, any Pareto optimal solution of the LP
relaxation can be obtained as the solution for some λ ∈ [0, 1], see, e.g.,
Ehrgott [14].

6. Conclusions

We proposed a new model for line planning in public transport that allows
to generate lines dynamically and to freely route passengers according to
the computed lines. The model allows to deal with manifold requirements
from practice. We showed that line-planning problems for a medium-sized
town can be solved within reasonable quality with integer programming tech-
niques. Our computational results indicate significant optimization poten-
tial. Our results on the polynomial time solvability of the LP relaxation for
the case of logarithmic line lengths raises our hope that the model is suited
to deal with larger problems as well.

Acknowledgment

The authors thank Volker Kaibel for pointing out Proposition 4.2.

References

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput.
Mach. 42, no. 4 (1995), pp. 844–856.

[2] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh,
and P. H. Vance, Branch-and-price: Column generation for solving huge
integer programs, Oper. Res. 46, no. 3 (1998), pp. 316–329.

[3] A. Bouma and C. Oltrogge, Linienplanung und Simulation für öffentliche
Verkehrswege in Praxis und Theorie, Eisenbahntechnische Rundschau 43, no. 6
(1994), pp. 369–378.

[4] M. R. Bussieck, Optimal lines in public rail transport, PhD thesis, TU Braun-
schweig, 1997.

[5] M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann, Optimal lines for
railway systems, Eur. J. Oper. Res. 96, no. 1 (1997), pp. 54–63.

[6] M. R. Bussieck, T. Lindner, and M. E. Lübbecke, A fast algorithm for
near optimal line plans, Math. Methods Oper. Res. 59, no. 2 (2004).

[7] M. R. Bussieck, T. Winter, and U. T. Zimmermann, Discrete optimiza-
tion in public rail transport, Math. Program. 79, no. 1–3 (1997), pp. 415–444.

72 Line Planning in Public Transport

[8] A. Ceder and Y. Israeli, Scheduling considerations in designing transit
routes at the network level, in Proc. of the Fifth International Workshop on
Computer-Aided Scheduling of Public Transport (CASPT), Montréal, Canada,
1990, M. Desrochers and J.-M. Rousseau, eds., Lecture Notes in Economics and
Mathematical Systems 386, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 113–
136.

[9] A. Ceder and N. H. M. Wilson, Bus network design, Transportation Res.
20B, no. 4 (1986), pp. 331–344.

[10] M. T. Claessens, N. M. van Dijk, and P. J. Zwaneveld, Cost optimal
allocation of rail passanger lines, Eur. J. Oper. Res. 110, no. 3 (1998), pp. 474–
489.

[11] J. R. Correa, A. S. Schulz, and N. E. Stier Moses, Selfish routing in
capacitated networks, Math. Oper. Res. 29 (2004), pp. 961–976.

[12] J. R. Daduna, I. Branco, and J. M. P. Paixão, eds., Proc. of the Sixth
International Workshop on Computer-Aided Scheduling of Public Transport
(CASPT), Lisbon, Portugal, 1993, Lecture Notes in Economics and Mathe-
matical Systems 430, Springer-Verlag, Berlin, Heidelberg, 1995.

[13] D. Dubois, G. Bel, and M. Llibre, A set of methods in transportation
network synthesis and analysis, J. Oper. Res. Soc. 30, no. 9 (1979), pp. 797–
808.

[14] M. Ehrgott, Multicriteria optimization, Springer-Verlag, Berlin, 2nd ed.,
2005.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, New York,
1979.

[16] J.-W. H. M. Goossens, S. van Hoesel, and L. G. Kroon, On solv-
ing multi-type line planning problems, METEOR Research Memorandum
RM/02/009, University of Maastricht, 2002.

[17] J.-W. H. M. Goossens, S. van Hoesel, and L. G. Kroon, A branch-
and-cut approach for solving railway line-planning problems, Transportation
Sci. 38, no. 3 (2004), pp. 379–393.

[18] Y. Israeli and A. Ceder, Transit route design using scheduling and multi-
objective programming techniques, in Daduna et al. [12], pp. 56–75.

[19] C. E. Mandl, Evaluation and optimization of urban public transportation
networks, Eur. J. Oper. Res. 5 (1980), pp. 396–404.

[20] A. R. Odoni, J.-M. Rousseau, and N. H. M. Wilson, Models in urban
and air transportation, in Handbooks in OR & MS 6, S. M. Pollock et al., ed.,
North Holland, 1994, ch. 5, pp. 107–150.

[21] U. Pape, Y.-S. Reinecke, and E. Reinecke, Line network planning, in
Daduna et al. [12], pp. 1–7.

[22] M. Petkovsek, H. S. Wilf, and D. Zeilberger, A = B, A. K. Peters,
Wellesley, MA, 1996.

[23] A. Schöbel and S. Scholl, Line planning with minimal travelling time,
Tech. Report 1-2005, University of Göttingen, Germany, 2005.

[24] S. Scholl, Customer-Oriented Line Planning, PhD thesis, University of Göt-
tingen, 2005.

[25] L. A. Silman, Z. Barzily, and U. Passy, Planning the route system for
urban buses, Comput. Oper. Res. 1 (1974), pp. 201–211.

[26] H. Sonntag, Ein heuristisches Verfahren zum Entwurf nachfrageorientierter
Linienführung im öffentlichen Personennahverkehr, Z. Oper. Res. 23 (1979),
pp. B15–B31.

Paper 4

Computing Optimal

Morse Matchings

Michael Joswig and Marc E. Pfetsch

Computing Optimal Morse Matchings1

SIAM J. Discrete Math. 20 (2006), no. 1, pp. 11–25

Abstract. Morse matchings capture the essential structural information of
discrete Morse functions. We show that computing optimal Morse matchings
is NP-hard and give an integer programming formulation for the problem.
Then we present polyhedral results for the corresponding polytope and report
on computational results.

1. Introduction

Discrete Morse theory was developed by Forman [8, 10] as a combinato-
rial analog to the classical smooth Morse theory. Applications to questions
in combinatorial topology and related fields are numerous: e.g., Babson et
al. [3], Forman [9], Shareshian [30], Batzies and Welker [4], and Jonsson [19].

It turns out that the topologically relevant information of a discrete
Morse function f on a simplicial complex can be encoded as a (partial)
matching in its Hasse diagram (considered as a graph), the Morse matching
of f . A matching in the Hasse diagram is Morse if it satisfies a certain,
entirely combinatorial, acyclicity condition. Unmatched k-dimensional faces
are called critical ; they correspond to the critical points of index k of a
smooth Morse function. The total number of noncritical faces equals twice
the number of edges in the Morse matching. The purpose of this paper is
to study algorithms which compute maximum Morse matchings of a given
finite simplicial complex. This is equivalent to finding a Morse matching
with as few critical faces as possible.

1The authors’ research was partially supported by the DFG Research Center Math-
eon in Berlin.

73

74 Computing Optimal Morse Matchings

A Morse matching M can be interpreted as a discrete flow on a simplicial
complex ∆. The flow indicates how ∆ can be deformed into a more com-
pact description as a CW complex with one cell for each critical face of M .
Naturally one is interested in a most compact description, which leads to
the combinatorial optimization problem described above. This way optimal
(or even sufficiently good) Morse matchings of ∆ can help to recognize the
topological type of a space given as a finite simplicial complex. The latter
problem is known to be undecidable even for highly structured classes of
topological spaces, such as smooth 4-manifolds. We have to admit, however,
that so far no new topological results have been obtained by our approach.

Optimization of discrete Morse matchings has been studied by Lewiner,
Lopes, and Tavares [23, 24]. Hersh [17] investigated heuristic approaches to
the maximum Morse matching problem with applications to combinatorics.
Morse matchings can also be interpreted as pivoting strategies for homology
computations; see [20]. Furthermore, the set of all Morse matchings of a
given simplicial complex itself has the structure of a simplicial complex;
see [6].

The paper is structured as follows. First we show that computing opti-
mal Morse matchings is NP-hard. This issue has been addressed previously
by Lewiner, Lopes, and Tavares [24], but their argument omits details which
to us seem quite important to address carefully. Then we give an integer
programming (IP) formulation for the problem. The formulation consists
of two parts: one for the matching conditions and one for the acyclicity
constraints. This turns out to be related to the acyclic subgraph problem
studied by Grötschel, Jünger, and Reinelt [14]. We derive polyhedral results
for the corresponding polytope. In particular, we give two different polyno-
mial time algorithms for the separation of the acyclicity constraints. The
paper closes with computational results.

Like most of discrete Morse theory, also most of our results extend to
arbitrary finite regular CW-complexes. We stick to the simplicial setting,
however, to simplify the presentation.

2. Discrete Morse Functions and Morse Matchings

We will first introduce discrete Morse functions as developed by Forman.
The essential structure of discrete Morse functions is captured by so-called
Morse matchings; see Forman [8] and Chari [5]. It turns out that this latter
formulation directly leads to a combinatorial optimization problem in which
one wants to maximize the size of a Morse matching.

We first need some notation. Let ∆ be a (finite abstract) simplicial
complex, i.e., a set of subsets of a finite set V with the following property:
if F ∈ ∆ and G ⊆ F , then G ∈ ∆; in other words, ∆ is an independence
system with ground set V . In the following we will ignore ∅ as a member
of ∆. The elements in V are called vertices and the sets in ∆ are called
faces. The dimension of a face F is dim F := |F | − 1. Let d = max{dim F :
F ∈ F} be the dimension of ∆. We often write i-faces for i-dimensional
faces. Let F be the set of faces of ∆ and let fi = fi(∆) be the number of
faces of dimension i ≥ 0. The maximal faces with respect to inclusion are

2 Discrete Morse Functions and Morse Matchings 75

called facets and 1-faces are called edges. The complex ∆ is pure, if all facets
have the same dimension. For F , G ∈ ∆, we write F ≺ G if F ⊂ G and
dim F = dim G − 1, i.e., “≺” denotes the covering relation in the Boolean
lattice. The graph of ∆ is the (abstract) graph on V in which two vertices
are connected by an edge if there exists a 1-face containing both vertices.
Throughout this paper we assume that ∆ is connected, i.e., its graph is
connected. This is no loss of generality since the connected components can
be treated separately.

The size of ∆ is defined as the coding length of its face lattice, i.e., if ∆
has n faces, then size ∆ = O(n · d · log n). Statements about the complexity
of algorithms in the subsequent sections are always with respect to this notion
of size.

A function f : ∆ → R is a discrete Morse function if for every G ∈ ∆
the sets

{F : F ≺ G, f(G) ≤ f(F)} and {H : G ≺ H, f(H) ≤ f(G)} (1)

both have cardinality at most 1. The first set includes the faces covered by
face G which are not assigned a lower value than G, while the second set
includes the faces covering G which are not assigned a higher value. The
face G is critical if both sets have cardinality 0. A simple example of a
discrete Morse function can be obtained by setting f(F) = dim F for every
F ∈ ∆. With respect to this function every face is critical.

Discrete Morse functions are interesting because they can be used to
deform a simplicial complex into a (smaller) CW-complex that has a cell for
each critical face; see Section 3.

Consider the Hasse diagram H = (F, A) of ∆, that is, a directed graph
on the faces of ∆ with an arc (G,F) ∈ A if F ≺ G; note that the arcs lead
from higher to lower dimensional faces. Let M ⊂ A be a matching in H, i.e.,
each face is incident to at most one arc in M . Let H(M) be the directed
graph obtained from H by reversing the direction of the arcs in M . Then M
is a Morse matching of ∆ if H(M) does not contain directed cycles, i.e., is
acyclic (in the directed sense). Morse matchings are also often called acyclic
matchings. Given M ⊂ A, one can decide in linear time (in the size of ∆)
whether it is a Morse matching: the matching conditions are trivial and
acyclicity of H(M) can be checked by depth first search in linear time (see,
e.g., Korte and Vygen [22]).

There is the following relation between Morse functions and Morse match-
ings; see Forman [8] and Chari [5]. Let f be a discrete Morse function and
let M be the set of arcs (G,F) ∈ A such that f(G) ≤ f(F), i.e., f is not
decreasing on these arcs. A simple proof shows that at most one of the sets
in (1) can have cardinality one. This shows that M is a matching. Since the
order given by f can be refined to a linear ordering of the faces of ∆, the
directed graph H(M) is in fact acyclic and therefore a Morse matching. To
construct a discrete Morse function from a Morse matching, compute a lin-
ear ordering extending H(M) (which is acyclic) and then number the faces
consecutively in the reverse order.

Although we lose the concrete numbers attached to the faces when going
from a discrete Morse function f to the corresponding Morse matching M ,

76 Computing Optimal Morse Matchings

we do not lose the information about critical faces: Critical faces of f are
exactly the unmatched faces of M . Hence, by maximizing |M | we minimize
the number of critical faces of f . In fact, the number of critical faces is
|F| − 2 |M |. For 0 ≤ j ≤ d, let cj = cj(M) be the number of critical faces of
dimension j and let c(M) be the total number of critical faces.

It seems helpful to briefly describe the case of Morse matchings for a
one-dimensional simplicial complex ∆. Then ∆ represents the incidences of
a graph G. A Morse matching M of ∆ matches edges with nodes of G. Let G̃
be the following oriented subgraph of G: take all edges which are matched
in M and orient them towards its matched node. Since M is a matching,
this construction is well defined and the in-degree of each node is at most
one. The acyclicity property shows that G̃ contains no directed cycles and
hence is a branching, i.e., the underlying graph is a forest and each (weakly)
connected component has a unique root. Therefore, the Morse matchings on
a graph G are in one-to-one correspondence with orientations of subgraphs
of G which are branchings.

Building on this idea, Lewiner, Lopes, and Tavares [23] computed maxi-
mum Morse matchings, i.e., Morse matchings with maximal cardinality, for
combinatorial 2-manifolds. In [24] they developed a heuristic for comput-
ing Morse matchings for arbitrary simplicial complexes. In the general case,
however, this problem is NP-hard, as shown in Section 4.

3. Properties of Morse Matchings

In this section we briefly review some important properties of Morse match-
ings which we need in what follows.

Let F be a facet of ∆ and let G be a facet of F , which is not contained
in any other facet of ∆. The operation of transforming ∆ to ∆ \ {F,G} is
called a simplicial or elementary collapse. We will simply use collapse in the
following.

Proposition 3.1 (Forman [8]). Let ∆ be a simplicial complex and Σ a
subcomplex of ∆. Then there exists a sequence of collapses from ∆ to Σ if
and only if there exists a discrete Morse function such that ∆ \ Σ contains
no critical face.

Forman [8] also proved the following result, which describes one of the
most interesting features of Morse matchings:

Theorem 3.2. Let ∆ be a simplicial complex and M be a Morse matching
on ∆. Then ∆ is homotopy equivalent to a CW-complex containing a cell of
dimension i for each critical face of dimension i.

We refer to Munkres [27] for more information on CW-complexes. By
Theorem 3.2 we can hope for a compact representation of the topology of ∆
(up to homotopy) by computing a Morse matching with few critical faces.
This is the main motivation for the combinatorial optimization problem stud-
ied in this paper.

Let K be a field and let βj = βj(K) be the Betti number for dimension j
over K for ∆; see again Munkres [27] for details. Forman [8] proved the
following bounds on the number of critical faces cj of a Morse matching M :

4 Hardness of Optimal Morse Matchings 77

Theorem 3.3 (Weak Morse inequalities). Let K be a field, ∆ be a simplicial
complex, and M a Morse matching for ∆. We have

cj ≥ βj for all j = 0, . . . , d (2)

and

c0 − c1 + c2 − · · · + (−1)dcd = β0 − β1 + β2 − · · · + (−1)dβd. (3)

The Betti numbers over Q and finite fields can easily be obtained in
polynomial time (in the size of ∆), by computing the ranks of the bound-
ary matrices for each dimension. Although harder to compute (see Iliopou-
los [18]), the homology over Z can be used to choose among the finite fields
or Q, in order to obtain the strongest form of the Morse inequalities (2).

4. Hardness of Optimal Morse Matchings

In this section we prove NP-hardness of the problem to compute a maximum
Morse matching, i.e., to find a Morse matching M with maximal cardinality.
As we saw previously, this is equivalent to minimizing the number of critical
faces.

We want to reduce the following collapsibility problem, introduced by
Eǧecioǧlu and Gonzalez [7], to the problem of finding an optimal Morse
matching: Given a connected pure 2-dimensional simplicial complex ∆ that
is embeddable in R3 and an integer k, decide whether there exists a subset K
of the facets of ∆ with |K| ≤ k such that there exists a sequence of collapses
which transforms ∆ \ K to a 1-dimensional complex. Eǧecioǧlu and Gonza-
lez proved that this collapsibility problem is strongly NP-complete. Using
Proposition 3.1, this result reads as follows in terms of discrete Morse theory.

Theorem 4.1. Given a connected pure 2-dimensional simplicial complex ∆
that is embeddable in R3 and a nonnegative integer k, it is NP-complete in
the strong sense to decide whether there exists a Morse matching with at
most k critical 2-faces.

When k is fixed, we can try all possible sets K of size at most k and
then decide whether the resulting complex is collapsible to a 1-dimensional
complex in polynomial time. Therefore we let k be part of the input.

We need the following construction. Consider a Morse matching M for
a simplicial complex ∆, with dim ∆ ≥ 1. Let Γ(M) be the graph obtained
from the graph of ∆ by removing all edges (1-faces) matched with 2-faces.
Note that Γ(M) contains all vertices of ∆.

Lemma 4.2. The graph Γ(M) is connected.

Proof. Without loss of generality we assume that dim∆ ≥ 2. Otherwise,
Γ(M) coincides with the graph of ∆, which is connected (recall that ∆ is
connected).

Suppose that Γ(M) is disconnected. Let N be its set of nodes in a
connected component of Γ(M), and let C be the set of cut edges, that is,
edges of ∆ with one vertex in N and one vertex in its complement. Since ∆
is connected, C is not empty. By definition of Γ(M), each edge in C is
matched to a unique 2-face.

78 Computing Optimal Morse Matchings

N

e1

τ1
e2

τ2e3

τ3

e4

τ4

Figure 1: Illustration of the proof of Lemma 4.2.

Consider the directed subgraph D of the Hasse diagram consisting of the
edges in C and their matching 2-faces. The standard direction of arcs in the
Hasse diagram (from the higher to the lower dimensional faces) is reversed
for each matching pair of M , i.e., D is a subgraph of H(M).

We construct a directed path in D as follows; see Figure 1. Start with any
node of D corresponding to a cut edge e1. Go to the node of D determined
by the unique 2-face τ1 to which e1 is matched to. Then τ1 contains at least
one other cut edge e2, otherwise e1 cannot be a cut edge. Now iteratively
go to e2, then to its unique matching 2-face τ2, choose another cut edge e3,
and so on. We observe that we obtain a directed path e1, τ1, e2, τ2, . . . in D,
i.e., the arcs are directed in the correct direction.

Since we have a finite graph at some point the path must arrive at a node
of D which we have visited already. Hence, D (and therefore also H(M))
contains a directed cycle, which is a contradiction since M is a Morse match-
ing. �

Now pick an arbitrary node r and any spanning tree of Γ(M) (which can
be computed in polynomial time; see Korte and Vygen [22]) and direct all
edges away from r. This yields a maximum Morse matching on Γ(M); see
the end of Section 2. It is easy to see that replacing the part of M on Γ(M)
with this matching yields a Morse matching. This Morse matching has only
one critical vertex (the root r). Note that every Morse matching contains
at least one critical vertex; this can be seen from the Morse inequalities (2)
in Theorem 3.3. Furthermore, the total number of critical faces can only
decrease, since we computed an optimal Morse matching on Γ(M). The
number of critical i-faces for i ≥ 2 stays the same. We have thus proved the
following corollary, which is also implicit in Forman [8].

Corollary 4.3. Let M be a Morse matching on ∆. Then we can compute a
Morse matching M ′ in polynomial time which has exactly one critical vertex
and the same number of critical faces of dimension 2 or higher as M , such
that c(M ′) ≤ c(M).

We can now prove the hardness result.

Theorem 4.4. Given a simplicial complex ∆ and a nonnegative integer c,
it is strongly NP-complete to decide whether there exists a Morse matching

4 Hardness of Optimal Morse Matchings 79

with at most c critical faces, even if ∆ is connected, pure, 2-dimensional,
and can be embedded in R3.

Proof. Clearly this problem is in NP. So let (∆, k) be an input for the
collapsibility problem. We claim that there exists a Morse matching with
at most k critical 2-faces if and only if there exists a Morse matching with
at most g(k) := 2(k + 1) − χ(∆) critical faces altogether. Here, χ(∆) =
β0 − β1 + · · · + (−1)dβd is the Euler characteristic, which can be computed
in polynomial time; see Section 3. Hence g is a polynomial-time computable
function. Using Theorem 4.1 then finishes the proof.

So assume that M is a Morse matching on ∆ with at most k critical 2-
faces. We use Corollary 4.3 to compute a Morse matching M ′, in polynomial
time, such that c0(M

′) = 1, c2(M
′) = c2(M), and c(M ′) ≤ c(M). By (3)

of Theorem 3.3, we have c1(M
′) = c2(M

′) + 1 − χ(∆). Since c(M ′) =
c0(M

′) + c1(M
′) + c2(M

′) it follows that

c2(M) = c2(M
′) = 1

2(c(M ′) + χ(∆)) − 1. (4)

Solving for c(M ′), it follows that M ′ has at most 2(k + 1) − χ(∆) critical
faces altogether.

Conversely, assume there exists a Morse matching M with at most g(k)
critical faces. Computing M ′ as above, we obtain by (4), that

c2(M) = c2(M
′) ≤ 1

2(g(k) + χ(∆)) − 1 = k,

which completes the proof. �

Lewiner, Lopes, and Tavares [24] showed that it is NP-hard to compute
an optimal Morse matching, but their proof omits an argument similar to
Lemma 4.2 above. We therefore provided a proof for it.

Since there exists a Morse matching with at most c critical faces if and
only if there exists a Morse matching of size at least 1

2(|F| − c), we proved
the following corollary.

Corollary 4.5. Let ∆ be as in Theorem 4.4 and m be a nonnegative integer.
Then it is NP-complete in the strong sense to decide whether there exists a
Morse matching of size at least m.

We do not know about the complexity status for this problem with m
fixed.

Eǧecioǧlu and Gonzalez [7] additionally proved that the collapsibility
problem is as hard to approximate as the set covering problem. In particu-
lar, the collapsibility problem cannot be approximated better than within a
logarithmic factor in polynomial time, unless P = NP. Using this, Lewiner,
Lopes, and Tavares [24] claimed that the problem to compute a Morse match-
ing minimizing the number of critical faces is hard to approximate. However,
the function g used in the proof above is not “approximation preserving” and
we do not see how the nonapproximability result carries over.

Similarly, the problem to approximate the size of a Morse matching seems
to be open.

80 Computing Optimal Morse Matchings

Figure 2: Example for a directed cycle of size 6; at least three arcs with reversed orien-
tation (pointing “up”) are necessary to close a 6-cycle in the Hasse diagram of a simplicial
complex.

5. An IP-Formulation

In this section we introduce an integer programming formulation for the
problem to compute a Morse matching of maximal size. From now on we
assume that dim ∆ ≥ 1, since the other cases are uninteresting in our context.

We use the following notation. We depict vectors in bold font. Let ei

be the ith unit vector and let 1 be the vector of all ones. For any vector
x ∈ Rn and I ⊆ {1, . . . , n} we define

x(I) :=
∑

i∈I

xi.

Furthermore, for S ⊆ {1, . . . , n}, I(S) ∈ Rn denotes the incidence vector
of S.

For a node v in a directed graph, let δ(v) be the arcs incident to v,
i.e., the arcs having v as one of their endnodes. For a subset A′ ⊆ A, we
denote by N(A′) the nodes incident to at least one arc in A′. Throughout
this article, all directed or undirected cycles are assumed to be simple, i.e.,
without node repetitions.

For ease of notation, we consider the Hasse diagram H as directed or
undirected depending on the context; we will explicitly say directed when we
refer to the directed version.

We split H into d levels H0 = (F0, A0), . . . , Hd−1 = (Fd−1, Ad−1),
where Hi denotes the level of the Hasse diagram between faces of dimension i
and i+1. Then A is the disjoint union of A0, . . . , Ad−1 and Fi−1∩Fi consists
of the faces of dimension i. Recall that the arcs in the Hasse diagram are
directed from the higher to the lower dimensional faces.

Let M ⊂ A be a Morse matching of ∆. By definition, its incidence
vector x = I(M) ∈ {0, 1}A satisfies the matching inequalities

x(δ(F)) ≤ 1 ∀ F ∈ F. (5)

Now assume that for some M ⊆ A there exists a directed cycle D
in H(M). Then in D “up” and “down” arcs alternate; for an example, see
Figure 2. In particular, the size of D is always even. Hence, 1

2 |D| arcs
are contained in M , i.e., are reversed in H(M). We will use the following
well-known observation.

Observation. Let M ⊂ A be a matching. If D is a directed cycle in H(M),
the edges in D can only belong to one level Hi (i ∈ {0, . . . , d − 1}), i.e., we
have {dim F : F ∈ N(D)} = {i, i + 1}.

5 An IP-Formulation 81

Putting these arguments together we obtain: If M is acyclic, x = I(M)
satisfies the following cycle inequalities:

x(C) ≤ 1
2 |C| − 1 ∀ C ∈ Ci, i = 1, . . . , d − 1, (6)

where Ci are the cycles in Hi.
Conversely, it is easy to see that every x ∈ {0, 1}A which fulfills inequal-

ities (5) and (6) is the incidence vector of a Morse matching. Hence, we
arrive at the following IP formulation for the problem to find a maximum
Morse matching:

(MaxMM) max 1Tx

s.t. x(δ(F)) ≤ 1 ∀ F ∈ F

x(C) ≤ 1
2 |C| − 1 ∀ C ∈ Ci, i = 1, . . . , d − 1

x ∈ {0, 1}A.

This formulation can easily be extended to arbitrary weights on the arcs, i.e.,
replacing 1 in the objective function by an arbitrary nonnegative vector w.

A different view on this optimization problem is to find directed spanning
trees in the hypergraph defined by Hi and to patch them together (see Warme
et al. [31] for spanning trees in hypergraphs).

We define the corresponding polytope as

PM = conv
{
x ∈ {0, 1}A : x satisfies (5) and (6)

}
.

Let M be a Morse matching and x = I(M) be its incidence vector. Then
F ∈ F is a critical face with respect to M if and only if it is unmatched by M ,
i.e., x(δ(F)) = 0. Hence, the total number of critical faces is

c(M) =
∑

F∈F

(
1 −

∑

a∈δ(F)

xa

)
= |F| − 2

∑

a∈A

xa = |F| − 21Tx, (7)

since every arc is incident to exactly two nodes. Using this formula one can
easily switch between the number of critical faces and the number of arcs in
a Morse matching.

The LP relaxation of MaxMM can be strengthened by using the weak
Morse inequalities (2) of Theorem 3.3. Applying (7), this yields the following
Betti inequality for dimension i:

∑

F :dimF=i

(
1−

∑

a∈δ(F)

xa

)
≥ βi ⇔

∑

F :dimF=i

∑

a∈δ(F)

xa ≤ fi−βi. (8)

Observe that we can choose the field in Theorem 3.3 to employ the Morse
inequalities in their strongest form.

Example 5.1. This can be illustrated by the real projective plane RP2.
The Betti numbers with respect to Q and Z2 are β(Q) = (1, 0, 0) and
β(Z2) = (1, 1, 1), respectively. The resulting lower bounds are (1, 1, 1), i.e.,
we have at least three critical faces in any Morse matching (this is, in fact,
optimal).

Remark 5.2. The cycle inequalities (6) are similar to the cycle inequalities
for the acyclic subgraph problem (ASP); see Jünger [21], and Grötschel,

82 Computing Optimal Morse Matchings

Figure 3: Example of a nonmonotone behavior of acyclic matchings. The directed graph
on the right, obtained from the left graph by reversing the dashed arcs, is acyclic. However,
if the top arc is set to its original orientation, the graph is not acyclic anymore. This shows
that subsets of acyclic matchings are not necessarily acyclic.

Jünger, and Reinelt [14]. The separation problem for (6), however, is more
complicated than the corresponding problem for ASP; see Section 5.2.

Furthermore, there is a similarity to the relation between the ASP and
the linear ordering problem (see Reinelt [28], and Grötschel, Jünger, and
Reinelt [13]): an alternative formulation for our problem can be obtained
by modeling discrete Morse functions as linear orders on the faces, subject
to matching requirements. Since this formulation is based on the relation
between faces, it leads to quadratically many variables in the number of faces;
therefore we have opted for the above formulation, at the cost of having to
solve the separation problem for the cycle inequalities; see Section 5.2.

5.1. Facial Structure of PM

It is easy to see that PM is a full dimensional polytope and xa ≥ 0 defines a
facet for every a ∈ A. Furthermore, PM is monotone, since every subset of a
Morse matching is a Morse matching. It is well known that this implies that
every facet defining inequality αTx ≤ β not equivalent to the nonnegativity
inequalities fulfills α ≥ 0, β > 0; see Hammer, Johnson, and Peled [16].

Interestingly, if we consider acyclic matchings as defined above for arbi-
trary acyclic directed graphs, the collection of such acyclic matchings is not
necessarily monotone anymore; see the example in Figure 3. Therefore, the
structure of the generalized problem is likely to be more complicated.

We have the following two results.

Proposition 5.3. The matching inequalities x(δ(F)) ≤ 1 define facets of PM

for F ∈ F , except if |δ(F)| = 1, in which case F is a vertex.

Proof. Let F be a face with |δ(F)| > 1 (note that |δ(F)| = 0 does not
occur since dim ∆ ≥ 1 and ∆ is connected). We can assume that A =
{a1, . . . , ak, ak+1, . . . , am}, where δ(F) = {a1, . . . , ak}. For i = k + 1, . . . ,m,
observe that ai cannot be adjacent to every arc in δ(F): since |δ(F)| > 1, ai

would either be incident to at least two nodes of the same dimension or to
two nodes whose dimensions are two apart, which is impossible. Therefore,
choose p(i) ∈ {1, . . . , k} such that ai and ap(i) are not adjacent. It follows
that ei + ep(i) ∈ PM . Then

e1, . . . ,ek,ek+1 + ep(k+1), . . . ,em + ep(m)

are affinely independent and fulfill x(δ(F)) = 1. �

5 An IP-Formulation 83

P1

P2u

v
C̃1 C̃2

u

v

Figure 4: Illustration of the first case in the proof of Theorem 5.4. The sets P1 and P2

are shown by continuous lines. The edges in C1 are drawn gray and hence P1 ⊂ C1; edges
in C2 are drawn black. The dashed edges incident to u and v are not considered. The
right-hand side shows the graph embedded in the Hasse diagram.

It follows that the inequalities xa ≤ 1, a ∈ A, never define facets, since
each arc has a nonvertex endpoint.

Theorem 5.4. The cycle inequalities (6) define facets of PM .

Proof. We extend the corresponding proof by Jünger [21] for the ASP.

Let C be a cycle in H. Without loss of generality assume that A =
{a1, . . . , ak, ak+1, . . . , am}, where C = (a1, . . . , ak) and k is even. We will
construct affinely independent feasible vectors v1, . . . ,vk,vk+1, . . . ,vm sat-
isfying the cycle inequality corresponding to C with equality.

Let C1 = {a1, a3, . . . , ak−1} and C2 = {a2, a4, . . . , ak}. Hence C1 and C2

are the “up” and “down” arcs in C.
Define

vi =

{
I(C1 \ {ai}) if ai ∈ C1

I(C2 \ {ai}) if ai ∈ C2
for i = 1, . . . , k.

Hence, for i = 1, . . . , k we have vi(C) = k
2 − 1.

For i = k + 1, . . . ,m, consider ai = {u, v} /∈ C. We have four cases.

⊲ u, v ∈ N(C): Let C̃ := C \
(
δ(u) ∪ δ(v)

)
. We have that |C̃| = k − 4 (since

there exist no odd cycles) and C̃ splits into two odd nonempty parts, C̃1

and C̃2, which are both paths. Let k1 := |C̃1| and k2 := |C̃2|; k1 and k2

are odd, since u and v are on opposite sides of the bipartition. We choose
a subset P1 ⊂ C̃1 by taking every second arc in order to get |P1| = k1+1

2 ;

similarly we choose P2 ⊂ C̃2 with |P2| = k2+1
2 . By construction either

Pi ⊂ C1 or Pi ⊂ C2 and either Pi ∩ C2 = ∅ or Pi ∩ C1 = ∅ for i = 1, 2.
An easy calculation shows that |P1 ∪ P2| = k

2 − 1; see Figure 4 for an
illustration of this case. Then define vi := I(P1 ∪ P2 ∪ {ai}).

⊲ u /∈ C, v ∈ C: Here we define vi := I(C1 \ δ(v) ∪ {ai}).
⊲ u ∈ C, v /∈ C: Define vi := I(C1 \ δ(u) ∪ {ai}).
⊲ u, v /∈ C: Choose any a ∈ C1 and define vi := I(C1 \ {a} ∪ {ai}).
It is easy to check in each case that vi ∈ PM and that vi(C) = k

2 − 1.
It can be shown that the m vectors v1, . . . ,vm are affinely independent,

which concludes the proof. �

The separation problem for the cycle inequalities is discussed in the next
section.

84 Computing Optimal Morse Matchings

5.2. Separating the Cycle Inequalities

Of course, there are exponentially many cycle inequalities (6). Hence we
have to deal with the separation problem for these inequalities.

We can assume that we are given x∗ ∈ [0, 1]A, which satisfies all matching
inequalities (5). We consider the separation problem for each graph Hi in
turn, i = 0, . . . , d − 1. The problem is to find an undirected cycle C in Hi

such that

x∗(C) > 1
2 |C| − 1

or conclude that no such cycle exists. In the next sections we describe two
methods to solve this problem in polynomial time.

5.2.1. Undirected Shortest Path with Conservative Weights

A well-known trick to solve the above separation problem is to apply an affine
transformation and obtain a shortest cycle problem. The transformation
suitable for our needs is x′ = 1

21− x, which yields

x(C) ≤ 1
2 |C| − 1 ⇔ x′(C) ≥ 1.

The separation problem can now be solved as follows: compute a shortest
cycle in Hi with respect to the weights 1

21− x∗. If its weight is at most 1,
this cycle yields a violated cycle inequality, otherwise no such cycle exists.

However, the weights can be negative and we have to rule out negative
cycles in order to apply polynomial time methods from the literature; that
is, we want the weights to be conservative.

Lemma 5.5. There exists no cycle of negative weight in Hi with respect
to 1

21− x∗, for 0 ≤ i ≤ d − 1.

Proof. Let C = (a1, . . . , ak) be a cycle in Hi and let F1, . . . , Fk be the faces
that are visited by C. Recall that x∗ satisfies the matching inequalities. We
obtain

k∑

j=1

∑

a∈δ(Fi)∩C

x∗
a = 2

∑

a∈C

x∗
a = 2x∗(C), (9)

since each edge weight is counted twice in the first term. Applying the
matching inequalities (5) on the left-hand side yields that x∗(C) ≤ 1

2k =
1
2 |C|. Hence, the weight of C with respect to 1

21 − x∗ can be bounded as
follows: ∑

a∈C

(
1
2 − x∗

a

)
= 1

2 |C| − x∗(C) ≥ 0,

which proves the lemma. �

We have now reduced the separation problem to finding a shortest cycle
in a weighted undirected graph G = (V,E) without negative cycles.

By using T -join techniques, one can compute a shortest path in an undi-
rected graph without negative cycles in O(ni(mi + ni log ni)) time, where in
this formula ni = |Fi| and mi = |Ai|; see Schrijver [29, Chapter 29]. It fol-
lows that a shortest cycle can be computed in O(mini(mi + ni log ni)) time.

5 An IP-Formulation 85

w1 w2 w3

u1 u2 u3 u4

({u1, u2}, w1)

({u2, u3}, w1)

({u1, u3}, w1)

({u2, u4}, w2)

({u3, u4}, w3)

Figure 5: Example of the construction in Section 5.2.2. Left : original graph G. Right:

constructed graph G′. The 6-cycle on the left corresponds to the 3-cycle on the right (both
shown with dashed lines).

Since |Ai| ≤ (i + 2)ni, this leads to an O
(
(d + 1)2n3 + (d + 1)n3 log n

)
over-

all algorithm, where n := |F| is the number of faces and d is the dimension
of the complex.

5.2.2. Transforming the Graph

Another method for the separation problem of cycle inequalities, which is
easier to implement, works as follows.

Let G = (U ∪̇W, E) be a bipartite graph, e.g., G = Hi (with i ∈
{0, . . . , d − 1}), the ith level of the Hasse diagram. Let ℓ : E → R≥0 be a
length function for the edges of G. In the following we write ℓ(u, v) = ℓ(v, u)
for the length ℓ({u, v}).

We construct a graph G′ = (V ′, E′) and lengths ℓ′ : E′ → R≥0 as follows;
see Figure 5 for an example. The set of nodes of G′ is

{
({u, u′}, w) : u, u′ ∈ U, u 6= u′, w ∈ W, {u,w} ∈ E, {u′, w} ∈ E

}
.

Hence, G′ has a node for each path with two edges in G. There is an edge
between two nodes ({u1, u

′
1}, w1) and ({u2, u

′
2}, w2) if

|{u1, u
′
1} ∩ {u2, u

′
2}| = 1 and w1 6= w2.

The length of such an edge e′ is defined by

ℓ′(e′) = 1
2

(
ℓ(u1, w1) + ℓ(u′

1, w1) + ℓ(u2, w2) + ℓ(u′
2, w2)

)
.

Hence, G′ contains an edge for each path with four edges in G and its length
is the length of this path divided by 2. We now consider the relation of cycles
in G and G′.

Lemma 5.6. C = (u0, w0, u1, w1, . . . , wk−1, u1) is a cycle in G with k > 1
of length ℓ(C) if and only if

C ′ =
(
({u0, u1}, w0), ({u1, u2}, w1), . . . , ({uk−1, u1}, wk−1), ({u0, u1}, w0)

)

is a cycle in G′ with ℓ′(C ′) = ℓ(C).

We omit the straightforward proof.
The previous lemma does not cover cycles in G of length four. These do

not occur for the case of G = Hi, since Hi is a level in the Hasse diagram of
a simplicial complex. Moreover, cycles of length four can readily be detected
in the construction of G′ and handled accordingly (there is only a polynomial
number of them).

86 Computing Optimal Morse Matchings

To solve our separation problem, let G = Hi, i ∈ {0, . . . , d − 1}, and
ℓ(e) = x∗

e for e ∈ G. Then we have ℓ′(e′) ∈ [0, 1] for each e′ ∈ E′, because

of the matching inequalities. We now set ℓ̃(e′) = 1 − ℓ′(e′) for e′ ∈ G′ and

hence ℓ̃(e′) ∈ [0, 1]. Let C be a cycle in G with at least six edges and C ′

be the corresponding cycle in G′. Note that |C ′| = 1
2 |C|. We then have the

following:

ℓ̃(C ′) =
∑

e′∈C′

ℓ̃(e′) =
∑

e′∈C′

(1 − ℓ′(e′)) < 1

⇔
∑

e′∈C′

ℓ′(e′) > |C ′| − 1

⇔ ℓ′(C ′) > |C ′| − 1

⇔ ℓ(C) > 1
2 |C| − 1 (by Lemma 5.6).

Hence, C violates the cycle inequality (6) if and only if ℓ̃(C ′) < 1. Since

ℓ̃(e′) ≥ 0, we can use the Floyd-Warshall algorithm to solve the separation
problem in time O

(
|V ′|3

)
; see Korte and Vygen [22].

If G = Hi and W is the part arising from the higher dimensional faces, we
have |V ′| =

(i+2
2

)
|W | =

(i+2
2

)
fi+1. This leads to an O

(
(d + 1)6n3

)
algorithm

for separating cycle inequalities, which is roughly as fast as the method
discussed in Section 5.2.1, but much easier to implement.

6. Computational Results

In this section we report on computational experience with a branch-and-
cut algorithm along the lines of Section 5. The C++ implementation uses
the framework SCIP (Solving Constraint Integer Programs) by Achterberg,
see [1]. It furthermore builds on polymake; see [11, 12]. As an LP solver we
used CPLEX 9.0.

As the basis of our implementation we take the formulation of MaxMM

in Section 5. Matching inequalities (5) and Betti inequalities (8) (together
with variable bounds) form the initial LP. The computation of the simplicial
homology from which the Betti numbers are computed is very fast, because
the examples are small; its running time is not included in the following.
Cycle inequalities (6) are separated as described in Section 5.2.2. Addition-
ally, Gomory cuts are added. As a branching rule we use reliability branching
implemented in SCIP, a variable branching rule introduced by Achterberg,
Koch, and Martin [2].

We implemented the following primal heuristic. First a simple greedy
algorithm is run: We start with the empty matching M = ∅. We add arcs
of the Hasse diagram to M in the order of decreasing value of the current
LP solution as long as M stays an acyclic matching (which can easily be
tested). Then the outcome is iteratively improved by a method described
in Forman [8]: One searches for a unique path between two critical faces
in H(M). Such a path is alternating with respect to M . Then M can be
augmented along the path (the new matching is the symmetric difference

6 Computational Results 87

Table 1: Computational results of the branch-and-cut algorithm with separating cycle
inequalities and Gomory cuts.

name n m d nodes depth time β c

solid_2_torus 24 42 2 1 0 0.00 2 2
simon2 31 60 2 1 0 0.00 1 1
projective (RP2) 31 60 2 1 0 0.01 3 3
bjorner 32 63 2 1 0 0.05 2 2
nonextend 39 77 2 6 5 0.16 1 1
simon 41 82 2 1 0 0.18 1 1
dunce 49 99 2 385 10 2.62 1 3
c-ns3 63 128 2 349 10 3.47 1 3
c-ns 75 152 2 28 10 1.95 1 3
c-ns2 79 159 2 14 7 1.11 1 1
ziegler 119 310 3 1 0 0.01 1 1
gruenbaum 167 434 3 1 0 25.24 1 1
lockeberg 216 600 3 1 0 36.25 2 2
rudin 215 578 3 77 30 103.78 1 1
mani-walkup-D 392 1112 3 111 23 512.81 2 2
mani-walkup-C 464 1312 3 135 83 1658.02 2 2

MNSB 103 267 3 12 10 73.39 1 1
MNSS 250 698 3 292 110 750.36 2 2
CP2 255 864 4 230 80 558.14 3 3

of M and the path). As is easily seen, this generates an acyclic match-
ing, because the path is unique. This heuristic turns out to be extremely
successful; see below.

We tested the implementation on a set of simplicial complexes collected
by Hachimori; see [15] for more details. This test set was also used by
Lewiner et al. [24]. Additionally, we considered the following complexes:
CP2 (complex projective plane), CP2+CP2 (connected sum of CP2 with itself),
MNSB (vertex minimal nonshellable ball), and MNSS (nonshellable sphere with
the fewest number of vertices known). The last two examples are due to
Lutz [25, 26].

All computational experiments were run on a 3 GHz Pentium machine
running Linux. In the tables of computational results, n denotes the number
of faces, m the number of arcs in the Hasse diagram (= number of variables),
d the dimension, nodes the number of nodes in the branch-and-bound tree,
depth the maximal depth in the tree, time the computation time in seconds,
β the lower bound obtained by adding all Betti inequalities (8), and c the
number of critical faces in the optimal solution.

Our implementation could not solve the larger problems of Hachimori’s
collection in reasonable time: bing, knot, poincare, nonpl_sphere, and
nc_sphere. In fact, for poincare we ran our code in different settings, each
for about a week – without success.

Table 1 shows the results of a computation where we separate cycle
inequalities and Gomory cuts and run the heuristic every 10th level. At
most seven separation rounds of cycle inequalities were performed at a node.
We do not report results on the problems by Moriyama and Takeuchi in

88 Computing Optimal Morse Matchings

Table 2: Computational results of the branch-and-cut algorithm without separation.

name n m d nodes depth time β c

solid_2_torus 24 42 2 1 0 0.00 2 2
simon2 31 60 2 1 0 0.01 1 1
projective (RP2) 31 60 2 1 0 0.00 3 3
bjorner 32 63 2 1 0 0.01 2 2
nonextend 39 77 2 3 2 0.02 1 1
simon 41 82 2 4 3 0.02 1 1
dunce 49 99 2 168367 42 145.60 1 3
c-ns3 63 128 2 3665581 53 3940.40 1 3
c-ns 75 152 2 16625713 58 19359.69 1 3
c-ns2 79 159 2 4 3 0.03 1 1
ziegler 119 310 3 1 0 0.01 1 1
gruenbaum 167 434 3 21 20 0.68 1 1
lockeberg 216 600 3 1 0 0.05 2 2
rudin 215 578 3 81 80 3.18 1 1
mani-walkup-D 392 1112 3 107 100 2.00 2 2
mani-walkup-C 464 1312 3 1498 456 30.54 2 2

MNSB 103 267 3 1 0 0.01 1 1
MNSS 250 698 3 163 126 4.63 2 2
CP2 255 864 4 198 190 4.77 3 3
CP2+CP2 460 1592 4 5178 534 110.21 4 4

Hachimori’s collection – they all could be solved within a second. The version
with cut separation could not solve CP2+CP2 within 90 minutes.

For most problems the bound obtained by adding Betti inequalities (8),
as indicated in column “β”, is tight. This means that the algorithm is done
once an optimal solution is found. This usually happens very fast and shows
that the heuristic is efficient. In fact, there are only three problems for which
the bound is not tight and could be solved by our algorithm (dunce, c-ns,
and c-ns3). These three problems are solved easily by the version with cut
separation. In our problem set there exists no hard but still solvable problem
with a “Betti bound” which is not sharp. We therefore cannot estimate the
limits of our implementation for these cases (poincare is the next larger
problem of this kind with 1112 variables, but we could not solve it).

The tractability of problems with a tight “Betti bound” is supported by
the results obtained by running the implementation without any separation;
see Table 2. Only integer solutions are checked whether they are acyclic
and the heuristic is run every 10th level. This essentially is a test of the
performance of the primal heuristic. Indeed, all problems with tight “Betti
bound” were solved within a few seconds (CP2+CP2 and mani-walkup-C being
the exception, but could be solved within two minutes). The results for
the problems c-ns, c-ns3, and dunce show that the cycle inequalities and
Gomory cuts are very effective in reducing the number of nodes in the tree
and the computing time for problems where the “Betti bound” is not sharp.

Summarizing, we can say that our implementation can solve large in-
stances with up to about 1500 variables if the bounds from the Betti numbers
are tight and small instances with up to about 150 variables if the bounds

6 References 89

are not tight. In all the instances computed so far, the topology of the spaces
involved was known. In the future, we plan to apply our techniques to other
cases.

Acknowledgments

We are indebted to Tobias Achterberg for his support of the implementation.
We also thank both referees for their helpful comments.

References

[1] T. Achterberg, SCIP – a framework to integrate constraint and mixed in-
teger programming. ZIB-Report 04-19, 2004.

[2] T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Oper.
Res. Lett. 33, no. 1 (2005), pp. 42–54.

[3] E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker,
Complexes of not i-connected graphs, Topology 38, no. 2 (1999), pp. 271–299.

[4] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions,
J. Reine Angew. Math. 543 (2002), pp. 147–168.

[5] M. K. Chari, On discrete Morse functions and combinatorial decompositions,
Discrete Math. 217, no. 1–3 (2000), pp. 101–113.

[6] M. K. Chari and M. Joswig, Complexes of discrete Morse functions, Dis-
crete Math. 302 (2005), pp. 39–51.

[7] Ö. Eǧecioǧlu and T. F. Gonzalez, A computationally intractable problem
on simplicial complexes, Comut. Geom. 6 (1996), pp. 85–98.

[8] R. Forman, Morse theory for cell-complexes, Advances in Math. 134 (1998),
pp. 90–145.

[9] R. Forman, Morse theory and evasiveness, Combinatorica 20, no. 4 (2000),
pp. 489–504.

[10] R. Forman, A user’s guide to discrete Morse theory, Sém. Lothar. Combin.
48 (2002), pp. Art. B48c, 35 pp.

[11] E. Gawrilow and M. Joswig, polymake: a framework for analyzing convex
polytopes, in Polytopes – Combinatorics and Computation, G. Kalai and G. M.
Ziegler, eds., DMV Seminar 29, Birkhäuser, Basel, 2000, pp. 43–74.

[12] E. Gawrilow and M. Joswig, polymake: Version 2.1.0. http://www.

math.tu-berlin.de/polymake, 2004. With contributions by T. Schröder and
N. Witte.

[13] M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm
for the linear ordering problem, Oper. Res. 32 (1984), pp. 1195–1220.

[14] M. Grötschel, M. Jünger, and G. Reinelt, On the acyclic subgraph
polytope, Math. Program. 33 (1985), pp. 28–42.

[15] M. Hachimori, Simplicial complex library. http://infoshako.sk.tsukuba.
ac.jp/~hachi/math/library/index_eng.html, 2001.

[16] P. L. Hammer, E. L. Johnson, and U. N. Peled, Facets of regular 0-1
polytopes, Math. Program. 8 (1975), pp. 179–206.

[17] P. Hersh, On optimizing discrete Morse functions, Adv. in Appl. Math.
(2005). To appear.

[18] C. S. Iliopoulos, Worst-case complexity bounds on algorithms for computing
the canonical structure of finite Abelian groups and the Hermite and Smith
normal forms of an integer matrix, SIAM J. Comput. 18, no. 4 (1989), pp. 658–
669.

http://www.math.tu-berlin.de/polymake
http://www.math.tu-berlin.de/polymake
http://infoshako.sk.tsukuba.ac.jp/~hachi/math/library/index_eng.html
http://infoshako.sk.tsukuba.ac.jp/~hachi/math/library/index_eng.html

90 Computing Optimal Morse Matchings

[19] J. Jonsson, On the topology of simplicial complexes related to 3-connected and
Hamiltonian graphs, J. Combin. Theory Ser. A 104, no. 1 (2003), pp. 169–199.

[20] M. Joswig, Computing invariants of simplicial manifolds. Preprint, available
at arXiv math.AT/0401176, 2004.

[21] M. Jünger, Polyhedral combinatorics and the acyclic subdigraph problem, Re-
search and Exposition in Mathematics 7, Heldermann Verlag, Berlin, 1985.

[22] B. Korte and J. Vygen, Combinatorial optimization. Theory and algo-
rithms, Algorithms and Combinatorics 21, Springer, Berlin, 2nd ed., 2002.

[23] T. Lewiner, H. Lopes, and G. Tavares, Optimal discrete Morse functions
for 2-manifolds, Comput. Geom. 26, no. 3 (2003), pp. 221–233.

[24] T. Lewiner, H. Lopes, and G. Tavares, Towards optimality in discrete
Morse theory, Exp. Math. 12, no. 3 (2003), pp. 271–285.

[25] F. H. Lutz, Small examples of non-constructible simplicial balls and spheres,
SIAM J. Discrete Math 18 (2004), pp. 103–109.

[26] F. H. Lutz, A vertex-minimal non-shellable simplicial 3-ball with 9 vertices
and 18 facets, Electronic Geometry Models , no. 2003.05.004 (2004). www.

eg-models.de.
[27] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park

CA, 1984.
[28] G. Reinelt, The linear ordering problem: Algorithms and applications, Re-

search and Exposition in Mathematics 8, Heldermann Verlag, Berlin, 1985.
[29] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algo-

rithms and Combinatorics 24, Springer, Berlin Heidelberg, 2003.
[30] J. Shareshian, Discrete Morse theory for complexes of 2-connected graphs,

Topology 40, no. 4 (2001), pp. 681–701.
[31] D. M. Warme, P. Winter, and M. Zachariasen, Exact solutions to large-

scale plane steiner tree problems, in Proceedings of the 10th annual ACM-SIAM
symposium on discrete algorithms, SIAM, Philadelphia, 1999, pp. 979–980.

www.eg-models.de
www.eg-models.de

Paper 5

On the Maximum Feasible

Subsystem Problem, IISs and

IIS-hypergraphs

Edoardo Amaldi, Leslie E. Trotter, Jr., and Marc E. Pfetsch

On the Maximum Feasible Subsystem Problem, IISs, and IIS-hypergraphs1

Math. Program. 95 (2003), no. 3, pp. 533–554

Abstract. We consider the Max FS problem: For a given infeasible linear
system Ax ≤ b, determine a feasible subsystem containing as many inequal-
ities as possible. This problem, which is NP-hard and also difficult to ap-
proximate, has a number of interesting applications in a wide range of fields.
In this paper we examine structural and algorithmic properties of Max FS

and of Irreducible Infeasible Subsystems (IISs), which are intrinsically re-
lated since one must delete at least one constraint from each IIS to attain
feasibility. First we provide a new simplex decomposition characterization
of IISs and prove that finding a smallest cardinality IIS is very difficult to
approximate. Then we discuss structural properties of IIS-hypergraphs, i.e.,
hypergraphs in which each edge corresponds to an IIS, and show that rec-
ognizing IIS-hypergraphs subsumes the Steinitz problem for polytopes and
hence is NP-hard. Finally we investigate rank facets of the Feasible Subsys-
tem polytope whose vertices are incidence vectors of feasible subsystems of
a given infeasible system. In particular, using the IIS-hypergraph structural
result, we show that only two very specific types of rank inequalities induced
by generalized antiwebs (which generalize cliques, odd holes and antiholes
to general independence systems) can arise as facets.

1Part of this work was done while the first two authors were with the School of
OR&IE, Cornell University, USA. A preliminary version appeared in the Proceedings of
the 10th IPCO conference [7], held in Graz, Austria, June 1999. This work was supported
by NSF grant DMS-9527124.

91

92 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

1. Introduction

We consider the following combinatorial optimization problem related to
infeasible linear inequality systems.

Max FS: Given an infeasible system Σ : {Ax ≤ b} with A ∈ Rm×n and
b ∈ Rm, find a feasible subsystem containing as many inequalities as possible.

Weighted and unweighted versions of this problem have a number of
interesting applications in various fields such as operations research, com-
putational geometry, statistical discriminant analysis and machine learning
(see [2, 10, 29, 31, 34, 39, 43] and the references therein).

In linear programming (LP) it arises when the formulation phase yields
infeasible models and one wishes to diagnose and resolve infeasibility by
deleting as few constraints as possible, which is the complementary version
of Max FS [19, 28, 40]. In most situations this cannot be done by inspection
and the need for effective algorithmic tools has become more acute with the
considerable increase in model size. This type of questions was first addressed
in [48]. The reader is referred to [27] for a survey on redundant and implied
relations of inequality systems as well as on infeasibility issues. From the
computational complexity point of view, Max FS is NP-hard [46] even when
the matrix A is totally unimodular and b is integer; it can be approximated
within a factor 2 but it does not admit a polynomial-time approximation
scheme, unless P = NP [4]. The above-mentioned complementary version,
in which the goal is to delete as few inequalities as possible in order to
achieve feasibility, is equivalent to solve to optimality but is much harder to
approximate than Max FS [5, 8].

Not surprisingly, minimal infeasible subsystems, discussed for instance in
Motzkin’s thesis [37], play a key role in the study of Max FS. An infeasible
subsystem Σ′ of Σ is an Irreducible Infeasible Subsystem (IIS) if every proper
subsystem of Σ′ is feasible. In order to help the modeler resolve infeasibility
of large linear inequality systems, attention was first devoted to the problem
of identifying IISs, with a small and possibly minimum number of inequali-
ties [28]; see [20, 22, 47] for some heuristics and [18] for implementations in
commercial solvers such as CPLEX and MINOS. Clearly, in the presence of
many overlapping IISs, this does not provide enough information to repair
the original system. To achieve feasibility, one must delete at least one in-
equality from each IIS. If all IISs were known, the complementary version of
Max FS could be formulated as the following covering problem [26].

Min IIS Cover: Given an infeasible system Σ : {Ax ≤ b} with A ∈ Rm×n

and b ∈ Rm and the set C of all its IISs, minimize
∑m

i=1 yi subject to∑
i∈C yi ≥ 1 ∀C ∈ C, yi ∈ {0, 1}, 1 ≤ i ≤ m.

Note that |C| can grow exponentially with m and n [17].
An exact algorithm based on a partial cover formulation is proposed

in [39, 40] and several heuristics are described in [10, 19, 21, 34]; a collection
of infeasible LPs is maintained in the Netlib Repository [38]. In [44, 45] the
class of hypergraphs representing the IISs of infeasible systems is studied
and it is shown that in some special cases Max FS and Min IIS Cover

can be solved in polynomial time in the number of IISs.

2 Irreducible Infeasible Subsystems 93

Although Max FS with 0-1 variables can be easily shown to admit as
a special case the graphical problem of finding a maximum stable set of
nodes [4], it has a different structure when the variables are real-valued.
Note that, since linear system feasibility can be checked in polynomial time,
Max FS structure also differs substantially from that of the maximum sat-
isfiability problem aimed at satisfying a maximum number of disjunctive
Boolean clauses. The reader is referred to [25] for the exact definitions of
these well-known problems.

Variants of the classical Agmon-Motzkin-Schoenberg relaxation method
for solving linear inequality systems have also been investigated and used,
among others, in machine learning as well as image and signal processing
applications (see e.g. [2, 3, 6, 24]). The implicit enumeration technique
described in [29] for optimizing general functions of a set of linear relations
can, in principle, also be applied to the special case of Max FS. As to
more recent work on problems related to Max FS and IISs let us mention,
for instance, Håstad’s breakthrough [30] which bridges the approximability
gap for Max FS on GF (p), and the problems of determining minimum or
minimal witnesses of infeasibility in network flows [1].

In this paper we investigate some structural and algorithmic properties of
IISs, of IIS-hypergraphs in which each edge corresponds to an IIS, and of the
feasible subsystem polytope defined by the convex hull of incidence vectors
of feasible subsystems of a given infeasible system. In Section 2 we provide
a new IIS simplex decomposition characterization and prove that finding a
smallest cardinality IIS is very difficult to approximate. In Section 3 we first
discuss the connection between IIS-hypergraphs and vertex-facet incidences
of polyhedra which is needed in the sequel. Based on this connection we also
derive that the problem of recognizing IIS-hypergraphs is NP-hard since it
subsumes the well-known Steinitz problem for polytopes. In Section 4 we
investigate rank facets of the feasible subsystem polytope. In particular, we
focus attention on the rank inequalities arising from generalized antiwebs,
which generalize cliques, odd holes and antiholes to general independence
systems [33]. Finally, the appendix contains the proof of a result stated in
Section 3 which completes the discussion but is not required in Section 4.

Below we denote the ith row of the matrix A ∈ Rm×n by ai ∈ Rn,
1 ≤ i ≤ m; for S ⊆ [m] := {1, . . . ,m}, AS denotes the |S| × n matrix
consisting of the rows of A indexed by S. By identifying the ith inequality
of the system Σ (i.e., aix ≤ bi) with index i itself, [m] may also refer to Σ.

2. Irreducible Infeasible Subsystems

First we briefly recall the main structural results regarding IISs. For nota-
tional simplicity, we use the same A and b, with A ∈ Rm×n and b ∈ Rm, to
denote either the original system Σ or one of its IISs.

The known characterizations of IISs are based on the following version
of the Farkas Lemma:

For any linear inequality system Σ : {Ax ≤ b}, either Ax ≤ b is feasible
or there exists y ∈ Rm, y ≥ 0, such that yA = 0 and yb < 0, but not both.

94 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

Theorem 2.1 (Motzkin [37], Fan [23]). The system Σ : {Ax ≤ b} with A, b
as above is an IIS if and only if rank(A) = m− 1 and ∃y ∈ Rm, y > 0, such
that yA = 0 and yb < 0.

The rank condition obviously implies that m ≤ n + 1.

Now let Σ : {Ax ≤ b} be an infeasible system which is not necessarily
an IIS. The following result relates the IISs of Σ to the vertices of a given
alternative polyhedron. Recall that the support of a vector is the set of indices
of its nonzero components.

Theorem 2.2 (Gleeson and Ryan [26]). Let Σ : {Ax ≤ b} be an infeasible
system with A, b as above. Then the IISs of Σ are in one-to-one correspon-
dence with the vertices of the polyhedron

P := {y ∈ Rm : yA = 0, yb = −1, y ≥ 0} .

In particular, the nonzero components of any vertex of P index an IIS.

See [40] for this statement that slightly extends the original result.
Theorem 2.2 can also be stated in terms of rays [40] and elementary

vectors [27].

Definition 2.3. An elementary vector of a subspace L ⊆ Rm is a nonzero
vector y that has minimal support (when expressed with respect to the
standard basis of Rm). In other words, if x ∈ L and supp(x) ⊂ supp(y)
then x = 0, where supp(y) denotes the support of y.

Corollary 2.4 (Greenberg [27]). Let Σ : {Ax ≤ b} be an infeasible system
with A and b as above. Then S ⊆ [m] corresponds to an IIS of Σ if and
only if there exists an elementary vector y in the subspace L := {y ∈ Rm :
yA = 0} with yb < 0 and y ≥ 0 such that S = supp(y).

The following result establishes an interesting geometric property of the
polyhedra obtained by deleting any inequality from an IIS.

Theorem 2.5 (Motzkin [37]). Let Σ : {Ax ≤ b} be an IIS and let σ ∈ Σ be
an arbitrary inequality of Σ. Then the polyhedron corresponding to Σ \ σ,
i.e., the subsystem obtained by removal of σ, is an affine convex cone.

2.1. IIS simplex decomposition

We provide here a new geometric characterization of IISs with at least two
inequalities, that is m ≥ 2. For A ∈ Rm×n, b ∈ Rm, let Ai := A[m]\{i} and

bi := b[m]\{i} denote the (m−1)×n submatrix and, respectively, the (m−1)-
dimensional vector obtained by removing the ith row of A and ith component
of b. The following result strengthens the necessity of Theorem 2.1.

Lemma 2.6. Let {Ax ≤ b} be an IIS. Then Ai has linearly independent
rows, for all 1 ≤ i ≤ m; i.e., rank(Ai) = m − 1.

Proof. According to Theorem 2.1, there exists a y > 0 such that yA = 0

and yb = −1 (by scaling yb < 0). Suppose some proper subset of rows
is linearly dependent; i.e., ∃z, such that zA = 0, zb ≥ 0 (without loss of
generality) and some zk = 0.

2 Irreducible Infeasible Subsystems 95

If some component zi > 0, consider (y − ǫz)A = 0, (y − ǫz)b ≤ −1,
where ǫ = min{yi/zi : 1 ≤ i ≤ m, zi > 0} > 0 (and y is as above).
Then y − ǫz ≥ 0, at least one additional component of y − ǫz is 0, and
the Farkas Lemma contradicts minimality of the system (y − ǫz fulfills the
requirements).

If all zi ≤ 0, then −z ≥ 0, −zA = 0 and −zb ≤ 0; so setting y = −z in
the Farkas Lemma leads to a contradiction of minimality, provided −zb < 0.
If −zb = 0, then (y + ǫz)A = 0, (y + ǫz)b = −1, with ǫ = min{yi/(−zi) :
1 ≤ i ≤ m, −zi > 0} leads to a contradiction as above. �

It is interesting to note that this lemma together with Theorem 2.1 imply
that an infeasible system {Ax ≤ b} is an IIS if and only if rank(Ai) = m−1
for all i, 1 ≤ i ≤ m.

We then have the following simplex decomposition result for IISs.

Theorem 2.7. The system {Ax ≤ b} is an IIS if and only if {Ax = b}
is infeasible and {x ∈ Rn : Ax ≥ b} = L + Q, where L is the lineality
subspace {x ∈ Rn : Ax = 0} and Q is an (m − 1)-simplex with vertices
determined by maximal proper subsystems of {Ax = b}; namely, each vertex
of Q is a solution for a subsystem {Aix = bi}, 1 ≤ i ≤ m.

Proof. (⇒) The system {Ax = b} is obviously infeasible. To see the feasi-
bility of {Ax ≥ b}, delete constraint aix ≥ bi to get the equality system
{Aix = bi}. By Lemma 2.6, this system has a solution, say xi, and we must
have aixi > bi, else xi satisfies {Ax ≤ b}. Applying the polyhedral resolu-
tion theorem, P := {x ∈ Rn : Ax ≥ b} 6= ∅ can be written as P = K + Q,
where K = {x ∈ Rn : Ax ≥ 0} is its recession cone and Q ⊆ P is a polytope
generated by representatives of its minimal nonempty faces.

If x satisfies Ax ≥ 0 and aix > 0 for row ai then xi − ǫx satisfies
A(xi − ǫx) ≤ b for sufficiently large ǫ > 0 and the original system {Ax ≤ b}
would be feasible. Therefore we must have that each aix = 0 for 1 ≤ i ≤ m,
x ∈ K and we get that in fact K = L := {x ∈ Rn : Ax = 0}.

For Q, minimal nonempty faces of P are given by changing a maximal
set of inequalities into equalities (all but one relation). Thus the vectors xi

obtained by solving {Aix = bi} determine Q; i.e., Q = conv{x1, . . . ,xm}.
For A ∈ Rm×n, Q is the (m− 1)-simplex generated by the m points x1, . . . ,
xm. To see that the xi generate an (m − 1)-simplex, we must only show
that they are affinely independent. But if xi is affinely dependent on the
other xj , then xi =

∑
j 6=i λjx

j with
∑

j 6=i λj = 1. Thus we have aixi > bi,

but also aixi = ai(
∑

j 6=i λjx
j) =

∑
j 6=i λj(a

ixj) =
∑

j 6=i λjbi = bi, which is
a contradiction.

(⇐) If the system {Ax ≤ b} is infeasible, then the minimality is obvious,
because the simplex conditions on Q imply that every proper subsystem has
an equality solution.

To show that {Ax ≤ b} is infeasible, assume for the sake of contradiction
that x̂ ∈ {x ∈ Rn : Ax ≤ b} 6= ∅ and x̂ satisfies a maximal number of
these relations at equality. Since Ax = b is assumed to be infeasible, we
have Ax̂ 6= b, i.e., there exists i ∈ [m] with aix̂ < bi. Let x1, . . . ,xm be the
vertices of Q, where xi is a solution of {Aix = bi} for i = 1, . . . ,m. Similarly,

96 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

x1 x2
Q

L

x1 x2Q

L

x3

Figure 1: Illustrations of Theorem 2.7 in dimensions n = 2 and n = 3. The IISs
corresponding to Ax ≤ b are indicated by the halfspaces with arrows pointing inward. If
these are turned around the resulting polyhedron can be written as the sum of a simplex Q
(indicated by the dotted segment and grey area, respectively) and a lineality space L
(indicated by the dashed lines).

the above assumption together with the fact that Q ⊆ {x : Ax ≥ b} implies
that aixi > bi. Thus we can take λ = (aixi − bi)/(a

ixi − aix̂) and have
0 < λ < 1, so that ai(λx̂+(1−λ)xi) = bi. But then at λx̂+(1−λ)xi more
relations of {Ax ≤ b} hold at equality than at x̂, contradicting the choice
of x̂. �

According to the above proof, we can take among all possible solutions xi

of the corresponding subsystems {Aix = bi}, for 1 ≤ i ≤ m, the repre-
sentatives of the minimal nonempty faces of {Ax ≤ b} that lie in the or-
thogonal linear subspace L⊥; i.e., Q ⊂ L⊥. By Lemma 2.6, we know that
{x ∈ Rn : Aix = bi} = xi +L, where L is the lineality space of the original
linear system {Ax ≥ b}. However, any choice of xi would do (see Figure 1).

It is worth noting that Theorem 2.7 handles the following special cases.

◦ If m = 1, then the system {A1x ≤ b1} is empty and hence has a solution.
Consider for instance {Ax ≤ b} = {0x ≤ −1}, then L = {x ∈ Rn :
0x = 0} = Rn and {x ∈ Rn : 0x ≥ −1} = Rn + {0} = L + Q = L.

◦ If m = n + 1, then A has n + 1 rows. Assuming A to be of full column
rank, L = {x ∈ Rn : Ax = 0} = {0}, Q = conv{x1, . . . ,xn+1} is an
n-simplex and {x ∈ Rn : Ax ≥ b} = {0} + Q.

2.2. Minimum cardinality IISs

We now consider the complexity status of the following problem for which
heuristics have been proposed in [20, 22, 39, 40].

Min IIS: Given an infeasible system Σ : {Ax ≤ b} as above, find a minimum
cardinality IIS.

2 Irreducible Infeasible Subsystems 97

To settle the issue left open in [20, 22, 28, 40], we prove that Min IIS

is not only NP-hard to solve optimally but also hard to approximate. Note
that, where DTIME(T (m)) denotes the class of problems solvable in deter-

ministic time T (m), the assumption NP 6⊆ DTIME(mpolylog(m)) is stronger
than NP 6= P, but it is also believed to be extremely likely. Since polylog(m)
denotes any polynomial in log(m), the assumption amounts to stating that
all problems in NP cannot be solved in quasi-polynomial time. Results that
hold under such an assumption are often referred to as almost NP-hard.

Theorem 2.8. Assuming P 6= NP, no polynomial-time algorithm is guar-
anteed to yield an IIS whose cardinality is at most c times larger than the
minimum one, for any constant c ≥ 1. Assuming NP 6⊆ DTIME(mpolylog(m)),

Min IIS cannot be approximated within a factor 2log1−ε(m), for any ε > 0,
where m is the number of inequalities.

Proof. We proceed by reduction from the following problem: Given a feasible
linear system Dz = d, with D ∈ Rm′×n′

and d ∈ Rm′

, find a solution z

satisfying all equations with as few nonzero components as possible. In [5]
this problem is proved to be (almost) NP-hard to approximate within the
same type of factors, but with m replaced by the number of variables n. Note
that the above nonconstant factor grows faster than any polylogarithmic
function, but slower than any polynomial function.

For each instance of the latter problem which has an optimal solution
containing s nonzero components, we construct a particular instance of Min

IIS with a minimum cardinality IIS containing s+1 inequalities. Given any
instance (D, d), consider the system

[
D −D −d

]

z+

z−

z0

 = 0,

[
0

T
0

T −1
]

z+

z−

z0

< 0, z+,z− ≥ 0, z0 ≥ 0. (1)

Since the strict inequality implies z0 > 0, the system Dz = d has a solution
with s nonzero components if and only if (1) has one with s + 1 nonzero
components. Now, applying Corollary 2.4, (1) has such a solution if and
only if the system

DT

−DT

−dT

 x ≤

0

0

−1

 (2)

has an IIS of cardinality s + 1. Since (2) is the alternative system of (1), the
Farkas Lemma implies that exactly one of these is feasible; as (1) is feasible,
(2) must be infeasible. Thus (2) is a particular instance of Min IIS with
m = 2n′ + 1 inequalities in n = m′ variables.

Given that the polynomial-time reduction preserves the objective func-
tion modulo an additive unit constant, we obtain the same type of non-
approximability factors for Min IIS. �

Note that for the similar (but not directly related) problem of deter-
mining minimum witnesses of infeasibility in network flows, NP-hardness is
established in [1].

98 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

3. IIS-hypergraphs

Although in the previous section the focus was on single IISs, we have seen
in the introduction that the complementary version of Max FS, in which
one aims at minimizing the number of inequalities that must be deleted to
make a given infeasible system feasible, can be viewed as the problem of
covering all its IISs with a minimum number of inequalities. Assuming the
IISs are known, the entire combinatorial structure of a Max FS instance
can thus be represented by an appropriate hypergraph containing one node
per inequality and one edge for each IIS.

Let H = (V, E) be a finite hypergraph with node set V and edge set
E ⊆ 2V . All hypergraphs in this paper will be finite. H is called a clutter
hypergraph, if no set of E contains any other set of E , i.e., E is a clutter.

A hypergraph H = (V, E) is isomorphic to a hypergraph H ′ = (V ′, E ′)
if there exists a bijection π : V → V ′ and a bijection τ : E → E ′ such that

τ(E) = {π(v) : v ∈ E} for all E ∈ E .

This relation is denoted by H ∼= H ′.

In this section let K denote either the field Q, A, or R. Recall that A
denotes the real algebraic numbers, namely all real numbers that are roots
of polynomials with integer coefficients.

Definition 3.1. A hypergraph H = (V, E), with m := |V |, is an IIS-hyper-
graph (over K) if there exists an infeasible linear system Σ = {Ax ≤ b},
with A ∈ Km×n (for some n) and b ∈ Km, such that H is isomorphic to
the clutter hypergraph H(Σ) := ([m], I), where the i-th inequality of Σ is
identified with i and I is the set of IISs of Σ.

In the above definition, infeasibility is meant with respect to R.

Investigations of the structure of IIS-hypergraphs (over R) were initi-
ated by [44, 45]. IIS-hypergraphs (with no trivial IISs of cardinality 1) turn
out to be bicolorable, i.e., their nodes can be partitioned into two subsets so
that neither subset contains an edge. Furthermore, IIS-hypergraphs do not
share many properties with other known classes of hypergraphs generalizing
bipartite graphs. See, for instance, the figure in [45] summarizing how IIS-
hypergraphs fit into Berge’s hierarchy. Note, however, that there is more
structure for IIS-hypergraphs than simply bicolorability, as there will gener-
ally exist many different bipartitions into two feasible subsystems [27, 44].

According to hypergraph terminology, Min IIS Cover amounts to find-
ing a minimum cardinality transversal, i.e., a subset of nodes having non-
empty intersection with every edge. Clearly, the problem can also be viewed
as that of finding a maximum stable set in IIS-hypergraphs. The special
structure of IIS-hypergraphs accounts for the fact a minimum transversal
(maximum stable set) can be found in polynomial time in the size of the
hypergraph if the corresponding alternative polyhedron is nondegenerate (a
subclass of uniform hypergraphs) [45], while the problem is NP-hard even
for simple graphs, i.e., for 2-uniform hypergraphs.

In this section we first introduce some terminology and discuss a property
of IIS-hypergraphs which is needed in Section 4 to investigate facets of the

3 IIS-hypergraphs 99

feasible subsystem polytope. In Subsection 3.2, the same property is used to
settle the complexity status of the problem of recognizing whether a given
hypergraph is an IIS-hypergraph.

3.1. Connection between IIS-hypergraphs and vertex-facet inci-

dences of polyhedra

Theorem 2.2 provides a connection between the combinatorial structure of
the IISs of any given infeasible system (i.e., its IIS-hypergraph) and the
vertex-facet incidences of its alternative polyhedron. To formalize this con-
nection, we need the following concepts related to finite hypergraphs.

Let H = (V, E) be a hypergraph. For E ∈ E define E := V \E to obtain
the complement hypergraph H := (V, E), where E = {E : E ∈ E}.
Definition 3.2 (see [11]). For each node v ∈ V , Sv := {E ∈ E : v ∈ E}
denotes the set of all edges of H which contain v. Then H∗ := {E , E∗},
with the edges of H as nodes and E∗ := {Sv : v ∈ V } as edges, is the dual
hypergraph of H.

It is easily verified that H∗∗ ∼= H and (E)∗ ∼= (E∗) for every edge E
of H.

Definition 3.3. Let P be a pointed polyhedron with vertex set VP . Let
F1, . . . , Fm be the facets of P and let Fi := {v ∈ VP : v ∈ Fi} be the vertex
set of facet Fi, for 1 ≤ i ≤ m. Then define H(P) := (VP , {F1, . . . ,Fm}). A
hypergraph H = (V, E) is a vertex-facet incidence hypergraph of P if H is
isomorphic to H(P).

Now we have the following relation:

Lemma 3.4. Let H = (V, E) be a finite IIS-hypergraph (over K) and H∗

be a clutter hypergraph. Let Σ : Ax ≤ b, with A ∈ Km×n and b ∈ Km,
be any infeasible system such that H(Σ) ∼= H. Then H∗ is a vertex-facet
incidence hypergraph of the alternative polyhedron corresponding to Σ.

Proof. Denote by I the set of IISs of the given Σ. According to Theorem 2.2,
the elements of I are in one-to-one correspondence with the supports of the
vertices of the alternative polyhedron

P = {y ∈ Rm : ATy = 0, bTy = −1, y ≥ 0}.
Identify V with [m] (the set of inequalities of Σ) so that E = I. Let E ∈ E
correspond to an IIS and v be the vertex of P associated with E. The
complement of the support of v is E, and it determines which faces defined
by yj = 0, 1 ≤ j ≤ m, are satisfied by v with equality, i.e., which of these

faces contain v. This means that each set E ∈ E gives the set of all faces
containing a specific vertex.

By definition, each set in E∗ coincides with the vertex set of a face defined
by yj = 0 for some 1 ≤ j ≤ m. Furthermore, each facet of P must be defined

by yj = 0 for some 1 ≤ j ≤ m. Since E∗ is a clutter, no vertex set of the
faces defined by yj = 0 contains another. Altogether this implies that each

yj = 0 defines a facet of P . Thus H∗ is a vertex-facet incidence hypergraph
of P . �

100 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

It is worth noting that the reverse direction of the previous lemma also
holds.

Lemma 3.5. Let H = (V, E) be a vertex-facet incidence hypergraph of a
polyhedron P (with a description over K) which is not a cone. Then H∗ is
an IIS-hypergraph (over K).

For completeness, the proof is given in the Appendix.
Note the slight asymmetry between the assumptions of Lemma 3.4 and

Lemma 3.5, which is due to the fact that vertex-facet incidences cannot cap-
ture all information about the face lattice of unbounded polyhedra (see the
comments at the end of Section 3). Restricting attention to hypergraphs H
such that H∗ is a clutter hypergraph yields the following result.

Corollary 3.6. Let H = (V, E) be a finite hypergraph and H∗ be a clutter
hypergraph. Then H is an IIS-hypergraph if and only if H∗ is a vertex-facet
incidence hypergraph of a polyhedron.

Proof. For IIS-hypergraphs, Lemma 3.4 guarantees the “if”-direction. If H∗

is a vertex-facet incidence hypergraph of a polyhedron P and it is a clutter
hypergraph then P cannot be a cone. Thus by Lemma 3.5, H is an IIS-
hypergraph. �

3.2. IIS-hypergraph recognition

In this subsection we address the interesting problem of recognizing IIS-
hypergraphs.

IIS-hypergraph Recognition problem over K: Given a hypergraph H,
is H an IIS-hypergraph over K?

The face lattice of a polytope P is its set of faces, ordered by inclusion,
with the meet defined by intersection. It is well-known (see, e.g., [49]) that
the face lattice of P has a rank function r(·), satisfying r(F) = dim F + 1
for every face F , and is both atomic and coatomic. Two polytopes P ⊂ Rp

and Q ⊂ Rq are affinely equivalent (denoted by P ∼= Q) if there exists an
affine map φ : Rp → Rq, which establishes a one-to-one correspondence
between points in P and Q. Two polytopes with isomorphic face lattices are
combinatorially equivalent. For the definitions of poset and (face) lattice we
again refer the reader to [49].

We prove NP-hardness of IIS-hypergraph recognition by polynomial-time
reduction from the following decision problem.

Steinitz problem over K: Given a lattice L, does there exist a polytope
P ⊂ Rd (for some d) with vertices in Kd whose face lattice is isomorphic
to L?

If the answer is affirmative, L is realizable as a polytope. In this case d
can be assumed to be the dimension of L. See [15] for related material. We
need a special lattice construction arising from hypergraphs.

Let H = (V, E) be a hypergraph. Define the poset L(H) as the set of
all intersections of sets in E , ordered by set inclusion. Furthermore, adjoin
a maximal element 1̂. Clearly, L(H) is bounded and has a meet (defined
by intersection); hence it is a lattice. Note that the size of L(H) can be

3 IIS-hypergraphs 101

exponential in the size of H. If H is a vertex-facet incidence hypergraph of
a polytope P then L is isomorphic to the face lattice of P . This follows from
the fact that all faces are determined by their vertex sets or by the facets
they are contained in.

Conversely, let L be an arbitrary ranked, atomic, and coatomic lattice.
Let V be the set of atoms of L. For each coatom F , let EF := {v ∈ V : v
is below F in L}. Then define the hypergraph H(L) := (V, {EF : F
coatom of L}). Note that, since L is atomic, H(L) is a clutter hypergraph
by construction. If L is the face lattice of a polytope, then H(L) is a vertex-
facet incidence hypergraph.

Theorem 3.7. For K ∈ {Q,A,R}, there is a polynomial-time reduction
from the Steinitz problem (over K) to the IIS-hypergraph Recognition prob-
lem (over K).

Proof. We show that for any instance of the Steinitz problem, given by an
arbitrary lattice L, we can construct in polynomial time a special instance of
the latter problem, given by a clutter hypergraph H, such that the answer
to the first instance is affirmative if and only if the answer to the second
instance is affirmative.

If L is ranked, atomic, and coatomic, take H = H(L)∗. Note that
these properties of L can be checked (Test 1) and H can be constructed
in polynomial time in the size of L, namely the number of elements. If
any of these properties fail, let H be any hypergraph which is not an IIS-
hypergraph, e.g., take H = ({1, 2, 3}, {{1, 2}, {2, 3}, {1, 3}}).

In [32] it is proved that, if H is a vertex-facet incidence hypergraph of a
d-dimensional polyhedron P , there exists a number χ̃ = χ̃(H) ∈ Z, namely
the reduced Euler characteristic of the order complex of L(H) (see e.g. [12])
such that χ̃ = (−1)d−1 if P is bounded while χ̃ = 0 if P is unbounded.
Moroever, χ̃ can be computed in polynomial time in the size of L(H). Note
that this result implies that no unbounded polyhedron and polytope can
have isomorphic vertex-facet incidence hypergraphs.

Since χ̃(H∗) can be computed in polynomial time in the size of L(H∗),
which equals the size of L. If χ̃(H∗) = 0 (Test 2), then replace H by any
hypergraph which is not an IIS-hypergraph.

The resulting H is the input to the IIS-hypergraph Recognition prob-
lem. Assume that the answer to the IIS-hypergraph Recognition of H is
affirmative, i.e., H is an IIS-hypergraph. As noted above, the atomicity of L
implies that H∗ is a clutter hypergraph. By Lemma 3.4, H∗ is a vertex-facet
incidence hypergraph of some polyhedron P .

First assume that P is a polytope. By construction, L is isomorphic to
L(H∗) = L(H(L)). Since P is a polytope, L(H∗) is isomorphic to the face
lattice of P and hence so is L, i.e., the answer to the Steinitz problem for L
is affirmative.

Now assume P is an unbounded polyhedron. Then H∗ is a vertex-facet
incidence hypergraph of an unbounded polyhedron and, according to the
above-mentioned result, we have χ̃(H∗) = 0. But in this case we replaced the
input by an instance which is not an IIS-hypergraph; this is a contradiction.

Conversely assume that the answer to the Steinitz problem for L is af-
firmative. Then there exists a polytope P such that L is isomorphic to the

102 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

face lattice of P and hence, by construction, H∗ is a vertex-facet incidence
hypergraph of P . Now P is not a cone unless P = {0}, a case which can
be easily identified and discarded. By applying Lemma 3.5 to H∗, it follows
that H is an IIS-hypergraph.

Note that since L is ranked, atomic, and coatomic, it has necessarily
passed Test 1. Furthermore, by the above-mentioned result χ̃(H∗) = ±1,
which implies that it also passed Test 2. Thus, the answer to the IIS-
hypergraph Recognition question for H is affirmative. �

Given polynomials f1, . . . , fr, g1, . . . , gs, h1, . . . , ht ∈ Z[x1, . . . , xℓ], the
problem to decide whether the polynomial system f1 = 0, . . . , fr = 0,
g1 ≥ 0, . . . , gs ≥ 0, h1 > 0, . . . , ht > 0 has a solution in Kℓ = Aℓ is called the
Existential Theory of the Reals (ETR). ETR is polynomial-time equivalent to
the Steinitz problem for 4-polytopes overA, see [42]. All polytopes realizable
over R, are realizable over A. Moreover, ETR is polynomial-time equivalent
to the Steinitz problem for d-Polytopes with d+4 vertices over A [36]. Since
ETR is easily verified to be NP-hard [13], the same is valid for the general
Steinitz problem (over A) and for the IIS-hypergraph recognition problem.

According to Theorem 2.7 of [15], for K = Q or A, deciding whether
an arbitrary polynomial f ∈ Z[x1, . . . , xℓ] has zeros in Kℓ, where ℓ is a
positive integer, is equivalent to solving the Steinitz problem for K. For
K = Q, it is not even clear whether the Steinitz problem (and therefore
the IIS-hypergraph Recognition) is decidable, since finding roots in K = Q
of a single polynomial f ∈ Z[x1, . . . , xℓ] is the unsolved rational version of
Hilbert’s 10th problem. By the quantifier elimination result of Tarski, the
problem is decidable for K = A. Note that, unlike R, A admits a finite
representation. For K = A, it is unknown whether the Steinitz problem is
in NP. See [14, 35] and references therein for this and related issues.

Finally it is worth noting that to establish the reverse direction of The-
orem 3.7 one would need to provide an appropriate input (a lattice) to the
Steinitz problem. This task appears to be difficult to achieve because we need
to consider the case of unbounded polyhedra. In fact, as shown in [32], it is
in general impossible to reconstruct the face lattice of an unbounded poly-
hedron P given a vertex-facet incidence hypergraph H of P , even when H
is a clutter hypergraph.

4. Feasible Subsystem (FS) Polytope

An independence system (E,I) is defined by a finite ground set E and a
collection of subsets I ⊆ 2E such that I ∈ I and J ⊂ I imply J ∈ I. The
subsets of E that (do not) belong to I are the so-called independent (de-
pendent) sets. An independence system can be defined by its collection of
independent sets I or, equivalently, by the collection C of all minimal depen-
dent subsets of E; i.e., any dependent subset each of whose proper subsets
are independent. To any independence system (E,I) with the collection of
circuits C, we can associate the polytope

P (I) = conv{y ∈ {0, 1}|E| : y is the incidence vector of an I ∈ I},
which will also be denoted by P (C).

4 Feasible Subsystem (FS) Polytope 103

Now consider an infeasible system Σ : {Ax ≤ b} with no single inequality
that is trivially infeasible. Let [m] = {1, . . . ,m} be the set of indices of the
inequalities in Σ. If I denotes the set of all feasible subsystems of Σ, ([m],I)
is clearly an independence system and its set of circuits C corresponds to
the set of all IISs. We denote by PFS(Σ) the Feasible Subsystem polytope,
defined as the convex hull of all the incidence vectors of feasible subsystems.

Before investigating this polytope, let us recall some definitions and facts
regarding general independence system polytopes. The rank function is de-
fined by r(S) = max{|I| : I ⊆ S, I ∈ I} for all S ⊆ E. For any S ⊆ E, the
rank inequality for S is

∑
e∈S ye ≤ r(S), which is clearly valid for P (I). A

subset S ⊆ E is closed if r(S ∪ {t}) ≥ r(S)+1 for all t ∈ E−S and nonsep-
arable if r(S) < r(T) + r(S − T) for all T ⊂ S, T 6= ∅. For any set S ⊆ E,
S must be closed and nonseparable for the corresponding rank inequality
to define a facet of P (I). These conditions generally are only necessary,
but sufficient conditions can be stated using the following concept [33]. For
S ⊆ E, the critical graph GS(I) = (S,F) is defined as follows: (e, e′) ∈ F ,
for e, e′ ∈ S, if and only if there exists an independent set I such that I ⊆ S,
|I| = r(S) and e ∈ I, e′ /∈ I, I − e + e′ ∈ I. It is shown in [33] that if S is
a closed subset of E and the critical graph GS(I) of I on S is connected,
then the corresponding rank inequality induces a facet of the polytope P (I).
(See also the references in [16].)

We now turn to the feasible subsystem polytope. According to well-
known facts about independence system polytopes, PFS(Σ) is full-dimen-
sional if and only if there are no trivially infeasible inequalities in Σ. More-
over, the inequalities yi ≥ 0 are facet defining for all 1 ≤ i ≤ m, and it is
easy to verify that for each i the inequality yi ≤ 1 defines a facet of PFS(Σ)
if and only if there is no IIS of cardinality 2 that includes the ith inequality
of Σ.

4.1. Rank facets arising from IISs

In fact, Parker [39] began an investigation of the polytope associated to the
Min IIS Cover problem, considering it as a special case of the general set
covering polytope (see also references in [16]). Since there is a simple corre-
spondence between set covering polytopes and the associated independence
system polytopes [33], the results in [39] can be translated so that they apply
to PFS(Σ).

From now on, we assume that all IISs are nontrivial, i.e., they are of
cardinality greater or equal to two. Let S be an arbitrary IIS of Σ, with
ASx ≤ bS its associated subsystem. Then the rank inequality

∑

i∈S

yi ≤ r(S) = |S| − 1

is called an IIS-inequality. Because the corresponding covering inequality∑
i∈S yi ≥ 1 is proved to be facet defining in [39], we have:

Theorem 4.1. Every IIS-inequality defines a (rank) facet of PFS(Σ).

We give a geometric proof (based on the above-mentioned sufficient condi-
tions [33] and our IIS simplex decomposition result) in the following, which

104 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

is simpler than that of [39] and which provides additional insight into the
IIS structure.

Proof. It is easy to verify that IIS-inequalities are valid for PFS(Σ). Since
the critical graph corresponding to any IIS is clearly connected (in fact, a
complete graph), we just need to show that the index set of every IIS is
closed.
a) First consider the case of maximal IISs defined by subset S ⊆ E, i.e., with
|S| = n + 1, where E is the index set of the entire system Σ.

x1

x2x3

K1

K2K3

d1

d2d3

1

23

x̂

Figure 2: Illustration of the proof of Theorem 4.1.

For each i ∈ S, consider the unique xi = A−1
S\{i}bS\{i}. By the proof

of Theorem 2.7, we know that x1, . . . ,xn+1 are affinely independent. If we
define di := (xi − x̂) for all i, 1 ≤ i ≤ n + 1, where x̂ := 1

n+1

∑n+1
i=1 xi is

the barycenter of the xi’s, then d1, . . . ,dn+1 are also affinely independent.

Clearly
∑n+1

i=1 di = 0 and the di’s generate Rn. Since each xi satisfies
exactly n of the n + 1 inequalities in ASx ≤ b with equality and for the
ith one aixi > bi (otherwise S would be feasible), we have x̂ ∈ {x ∈ Rn :
ASx ≥ bS}. In other words, x̂ satisfies the reversed inequalities of the IIS.
In fact, x̂ is an interior point of the above “reversed” polyhedron.

According to Theorem 2.5, deleting any inequality from an IIS yields a
feasible subsystem that defines an affine cone. For maximal IISs, we have
n + 1 affine cones Ki := xi + K ′

i, where K ′
i = {x ∈ Rn : AS\{i}x ≤ 0} for

1 ≤ i ≤ n + 1. Note that the ray generated by di passing through xi, i.e.,
Ri := {x ∈ Rn : x = xi + αdi, α ≥ 0}, is contained in Ki because we have

AS\{i}(αdi) = αAS\{i}(x
i − x̂) = α(bS\{i} − AS\{i}x̂) ≤ 0,

where we used the fact that AS\{i}x̂ ≥ bS\{i}. To show that the maximal IIS

defined by S is closed, we consider an arbitrary inequality ãx ≤ b̃ with ã 6= 0

and verify that H := {x ∈ Rn : ãx ≤ b̃} has a nonempty intersection with
at least one of the Ki’s, 1 ≤ i ≤ n + 1. This implies, in particular, that for
any inequality index t ∈ E−S we have rank(S ∪{t}) = rank(S)+1 = n+1,
which means that the IIS under consideration is closed.

4 Feasible Subsystem (FS) Polytope 105

Since d1, . . . ,dn+1 generate Rn and
∑n+1

i=1 di = 0, we have

n+1∑

i=1

ãdi = ã(

n+1∑

i=1

di) = 0

and therefore ã 6= 0 implies that we cannot have ãdi = 0 ∀i, 1 ≤ i ≤ n + 1.
Thus there exists at least one i, such that ãdi < 0. But this implies that
Ri ∩ H 6= ∅. In other words, Ki ∩ H 6= ∅ and this proves the theorem for
maximal IISs.

b) The result can be easily extended to non-maximal IISs, i.e., with |S| <
n+1. From Theorem 2.7 we know that P := {x ∈ Rn : ASx ≥ bS} = L+Q
with Q ⊆ L⊥. Since P is full-dimensional (the barycenter of Q is an interior
point), n = dim P = dim L + dim Q and dimQ = rank(AS) = |S| − 1 < n
imply that dim L ≥ 1.

Two cases can arise:
i) If the above-mentioned ã belongs to the linear hull of the rows of AS

denoted by lin({ai : i ∈ S}) = L⊥, then since dim L⊥ = dim Q, we can
apply the above result to L⊥.

ii) If ã 6∈ lin({ai : i ∈ S}) = L⊥, then the projection of H= := {x ∈ Rn :

ãx = b̃} onto L⊥ yields all of L⊥ and therefore H = {x ∈ Rn : ãx ≤ b̃}
must have a nonempty intersection with all the cones corresponding to the
maximal consistent subsystems of {ASx ≤ bS}. �

It is worth emphasizing that closedness of every IIS makes the feasible
subsystem polytope quite special among all independence system polyhedra,
since the circuits of a general independence system need not be closed. For
example, consider the independent system defined by stable sets of nodes in
a simple graph; here the circuits correspond to the edges of the graph and it
is clear that these circuits are not necessarily closed (it suffices to consider
any K3 in the graph).

We now turn to the IIS-inequality Separation problem, which is
defined as follows:

Given an infeasible system Σ and an arbitrary vector y ∈ Rm, show
that y satisfies all IIS-inequalities or find at least one violated by y.

In view of the trivial valid inequalities, we can assume that y ∈ [0, 1]m. More-
over, we may assume with no loss of generality, that the nonzero components
of y correspond to an infeasible subsystem of Σ.

Proposition 4.2. The separation problem for IIS-inequalities is NP-hard.

Proof. We proceed by polynomial-time reduction from the decision version
of the Min IIS problem, which is NP-hard according to Theorem 2.8. Given
an infeasible system Σ : {Ax ≤ b} with m inequalities, n variables and a
positive integer K with 1 ≤ K ≤ n + 1, does it have an IIS of cardinality at
most K?

Let (A, b) and K define an arbitrary instance of the above decision prob-
lem. Consider the particular instance of the separation problem given by the
same infeasible system together with the vector y such that yi = 1−1/(K+1)
for all i, 1 ≤ i ≤ m.

106 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

Suppose that Σ has an IIS of cardinality at most K which is indexed
by the set S. Then the corresponding IIS-inequality

∑
i∈S yi ≤ |S| − 1 is

violated by the vector y because
∑

i∈S

yi =
∑

i∈S

(1 − 1

K + 1
) = |S| − |S|

K + 1
> |S| − 1,

where the strict inequality is implied by |S| ≤ K. Thus the vector y can be
separated from PFS(Σ).

Conversely, if there exists an IIS-inequality violated by y, then
∑

i∈S

yi = |S| − |S|
(K + 1)

> |S| − 1

implies that the cardinality of the IIS defined by S is at most K.
Therefore, the original infeasible system Σ contains an IIS of cardinality

at most K if and only if some IIS-inequality is violated by the given vector y.
�

4.2. Rank facets arising from generalized antiwebs

In [33] the concept of generalized antiwebs, which generalize cliques, odd
holes and antiholes to independence systems, is introduced. Necessary and
sufficient conditions are also established for the corresponding rank inequal-
ities to define facets of the associated independence system polytope.

Let m, t, q be integers such that 2 ≤ q ≤ t ≤ m, let E = {e0, . . . , em−1}
be a finite set, and define for each i ∈ M := {0, . . . ,m − 1} the subset
Ei = {ei, . . . , ei+t−1} (where the indices are taken modulo m) formed by t
consecutive elements of E. An (m, t, q)-generalized antiweb on E is the
independence system having the following family of subsets of E as circuits:

AW(m, t, q) = {C ⊆ E : C ⊆ Ei for some i ∈ M, |C| = q}.
Define P (AW(m, t, q)) to be the polytope of the independence system de-
fined by AW(m, t, q) and AW(m, t) := AW(m, t, t). Note that the case
t = q = 1 would correspond to m trivially infeasible inequalities, e.g.,
0x ≤ −1.

As mentioned in [33], AW(m, t, q) corresponds to generalized cliques
when m = t, to generalized odd holes when q = t and t does not divide m,
and to generalized antiholes when m = qt + 1.

In this section we determine under which circumstances generalized anti-
webs give rise to rank facets of the form

∑
i∈S yi ≤ r(S) of PFS(Σ). Defining

the hypergraph H(AW(m, t, q)) := (E, AW(m, t, q)), the first question is:
for which values of m, t, and q is H(AW(m, t, q)) an IIS-hypergraph?

Lemma 4.3. If H(AW(m, t, q)) is an IIS-hypergraph then t = q.

Proof. Suppose that q < t holds, and consider E1, an arbitrary circuit C ∈
AW(m, t, q) with C ⊆ E1, and an arbitrary element e ∈ E1\C. By definition
of AW(m, t, q), any cardinality q subset of E1 is a circuit. This must be true
in particular for all subsets containing e and q−1 elements of C. But then C
cannot be closed because r(C ∪ {e}) = r(C) and thus we have a contradiction
to the fact that all IISs are closed (consequence of Theorem 4.1). �

4 Feasible Subsystem (FS) Polytope 107

To provide a characterization of IIS-hypergraphs arising from generalized
antiwebs, we need the following result that is proved using topological argu-
ments.

Proposition 4.4 (Joswig, Kaibel, Pfetsch, Ziegler [32]). Let 1 < k < m
be integers. Then H(AW(m,k)) is a vertex-facet incidence hypergraph of a
polyhedron P if and only if P is a simplex or a polygon.

Together with Lemma 3.4 and Lemma 4.3 we obtain:

Proposition 4.5. H(AW(m, t, q)) is an IIS-hypergraph if and only if t = q
and

(1) t = m or
(2) t = m − 2.

Proof. Lemma 4.3 implies that necessarily t = q. Now assume that H :=
H(AW(m, t)) is an IIS-hypergraph. If t = m, we have a single IIS of size m.
Therefore assume t < m.

Since t < m, H∗ is a clutter hypergraph and hence, by Lemma 3.4,
H∗ is a vertex-facet incidence hypergraph of a polyhedron P . We have
that AW(m, t) ∼= AW(m,k) with k := m − t > 0 and H(AW(m,k))∗ ∼=
H(AW(m,k)). Hence H(AW(m,k)) is a vertex-facet incidence hypergraph
of P . Since 2 ≤ t < m we have 0 < k < m − 1. Furthermore k > 1 because
H(AW(m, 1)) can only be a vertex-facet hypergraph if m = k = 1, and this
case is excluded by 1 < t < m.

By Proposition 4.4, P is a polygon; i.e., k = 2 (t = m−2). Note that the
case of a simplex (k = m − 1) cannot arise. Clearly, examples of infeasible
inequality systems exist for all possible values of the above parameters. This
proves sufficiency. �

This proposition implies that only two types of generalized antiwebs
can arise as induced hypergraph of IIS-hypergraphs. In particular, the only
generalized cliques that can occur are those with t = m, namely those cor-
responding to single IISs. For generalized odd holes the only cases that can
arise are those with t = m − 2. Finally, all generalized antiholes are ruled
out since m = tq + 1 ⇔ m = (m − 2)2 + 1, which is never satisfied.

To determine in which cases facets arise from generalized antiwebs, we
need the two following results.

Lemma 4.6 (Laurent [33]). The valid inequality
∑

e∈E ye ≤ ⌊m(q − 1)/t⌋
(rank inequality) arising from a generalized antiweb defines a facet of the
independence system polytope P (AW(m, t, q)) if and only if t = m or t does
not divide m(q − 1).

Note that the right hand side of the above inequality is the rank of the
independence system defined by AW(m, t, q) (see [33]).

Let C be the set of circuits of an independence system I over the ground
set [m]. For any S ⊆ [m], let CS = {C ∈ C : C ⊆ S} denote the family of
circuits of I induced on S.

Lemma 4.7 (Laurent [33]). The rank inequality
∑

e∈S ye ≤ r(S) induces a
facet of P (C) if and only if S is closed and it induces a facet of P (CS).

108 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

0

1

2

3

4

e0 e1 e2 e3 e4

E0 1 1 1

E1 1 1 1

E2 1 1 1

E3 1 1 1

E4 1 1 1

E0 E1 E2 E3 E4

S0 1 1 1

S1 1 1 1

S2 1 1 1

S3 1 1 1

S4 1 1 1

Figure 3: Left: an infeasible linear inequality system, whose IISs {0, 1, 2}, {1, 2, 3},
{2, 3, 4}, {3, 4, 0}, and {4, 0, 1} form a generalized antiweb AW(5, 3). Top right: inci-
dence matrix of H(AW(5, 3)) according to the notation of Section 3. Bottom right:
incidence matrix of the dual hypergraph H(AW(5, 3))∗. This matrix is the transpose
of the above matrix. Clearly, the incidence matrix of the complement hypergraph is a
vertex-facet incidence matrix of a polygon.

Altogether we obtain the following characterization of the rank facets of
PFS(Σ) that can be induced by generalized antiwebs.

Theorem 4.8. Let Σ be an infeasible inequality system with m inequalities
and C be the IISs of Σ. Let S ⊆ [m] and assume CS = AW(|S|, t) for some
2 ≤ t ≤ |S|. The rank inequality

∑

e∈S

ye ≤
⌊ |S|(q − 1)

t

⌋
(3)

defines a facet of PFS(Σ) if and only if t = q and one of the following holds

(1) t = |S| (IIS-inequality)
(2) S is closed, t = |S| − 2 and t 6= 2.

Proof. By Proposition 4.5, there are only two cases in which AW(|S|, t)
can arise as an induced hypergraph of an IIS-hypergraph (in both of them
necessarily t = q).

i) Case t = |S|: AW(|S|, t) consists of a single circuit (IIS). Since Theo-
rem 4.1 implies that S is closed, this gives (together with Lemma 4.7)
another proof that the rank facets arising from IISs define facets.

ii) Case t = |S| − 2: By Lemma 4.6, inequality (3) defines a facet for
P (AW(|S|, t)) if and only if t does not divide |S|(t−1) = (t+2)(t−1) =
t2+t−2. Clearly this can only be the case if t = 1 (which is not feasible)
or t = 2. Therefore by Lemma 4.7, inequality (3) defines a facet of
PFS(Σ) if and only if S is closed and t 6= 2.

This proves the theorem. �

5 Concluding Remarks 109

Example 4.9. Figure 3 shows an infeasible system with m = 5 inequalities
in dimension n = 2 (see also [41]). Its IISs form an AW(5, 3). The inequal-
ities are indexed by 0, 1, 2, 3, 4. In the corresponding PFS(Σ) polytope the
variables are numbered likewise. Its full description is given by the following
facets:

◦ Trivial bounds: 0 ≤ yi ≤ 1 for 0 ≤ i ≤ 4.
◦ The IIS-inequalities:

∑
i∈S yi ≤ 2 for S = {0, 1, 2}, {1, 2, 3}, {2, 3, 4},

{3, 4, 0}, {4, 0, 1}.
◦ The rank inequality y0 + y1 + y2 + y3 + y4 ≤ 3 arising from the unique

generalized antiweb.

5. Concluding Remarks

A question that naturally arises is whether our results are also valid for more
general (mixed) linear systems with equality as well as inequality relations.
Since any equation ax = b can be substituted by the pair of inequalities
ax ≤ b and −ax ≤ −b, any generalized Max FS instance I with m1

equations and m2 inequalities can obviously be reduced to a usual Max FS

instance I ′ with 2m1 + m2 inequalities, in which one aims at maximizing
the number of such pairs of inequalities that can be simultaneously satisfied.
Clearly, since any vector x satisfies at least one inequality out of each pair,
an optimal solution of I contains m∗ linear relations if and only if an optimal
solution of I ′ contains m∗ + m1 inequalities. Thus, from a computational
point of view, generalized instances of Max FS with mixed systems can be
dealt with a polyhedral approach based, among others, on the facet-defining
inequalities discussed in this paper. Not all of the above results, however, can
be easily generalized to mixed systems. In particular, it is still open whether
the simplex decomposition characterization (Theorem 2.7) can be extended.
On the other hand, the complexity results regarding Min IIS (Theorem 2.8)
and the IIS-hypergraph Recognition problem (Theorem 3.7) obviously hold
for this generalized class of instances. Note also that generalized versions of
the alternative polyhedron result (Theorem 2.2) for general mixed systems
or mixed systems (LPs) where all inequalities are nonnegativity constraints
are given in [40].

In this paper we have investigated structural and algorithmic properties
of IISs, IIS-hypergraphs, and of the feasible subsystem polytope PFS(Σ). On
the structural and geometric side, we have: provided a new characterization
of IISs, given a new proof of the fact that all IISs are closed, and shown that
only two very specific types of generalized antiwebs (generalized cliques and
odd holes) can arise as induced hypergraphs of an IIS-hypergraph. In par-
ticular, the only generalized cliques that can occur are those corresponding
to single IISs. The above results imply that the feasible subsystem polytope
PFS(Σ) admits only a very limited type of rank facets induced by generalized
antiwebs. This is in sharp contrast with other known independence system
polytopes related to graphical problems, such as the maximum cardinality
stable set problem in a graph, for which a wealth of such rank facets have
been extensively studied. On the algorithmic side, we have established that:
finding smallest cardinality IISs is very hard to approximate, IIS-hypergraph

110 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

recognition is NP-hard and IIS rank facets cannot be separated in polynomial
time, unless P = NP.

Interesting open questions include: What is the computational complex-
ity of separating inequalities arising from generalized antiwebs? Do other
PFS-specific rank facets exist? Does the polytope PFS admit higher order
facets besides the ones studied in [9] with 0, 1, 2 coefficients?

Acknowledgements

The authors would like to thank Michael Joswig, Volker Kaibel and Günter
M. Ziegler for helpful discussions. We are also grateful to the anonymous
referees for useful comments that improved the paper.

Appendix

To prove Lemma 3.5 of Section 3.1, we first need to verify the following.

Claim. Let P be a d-dimensional pointed polyhedron which has a descrip-
tion over K and is not a polyhedral cone. Let m be the number of facets.
Then there exists a polyhedron

P ′ =
{
y ∈ Rm : ATy = 0, bTy = −1, y ≥ 0

}
,

where A ∈ Km×(m−d−1) and all inequalities yj ≥ 0, 1 ≤ j ≤ m, define facets,
which is affinely (and hence combinatorially) equivalent to P .

Proof. By projection onto the affine hull of P we can assume, without loss
of generality, that P is full-dimensional. Moreover, it can be represented as
P = {x ∈ Rd : Cx ≤ c}. Since P has a minimal description over K,
C ∈ Km×d and each inequality defines a facet. The resulting polyhedron is
affinely equivalent to P and can be represented as:

{
x ∈ Rd

∣∣∣∣
(

C1

C2

)
x ≤

(
c1

c2

)}
,

where C1 is a full-rank d×d matrix (P is pointed), C2 is an (m−d)×d matrix,
c1 ∈ Kd, and c2 ∈ Km−d. Now apply the (bijective) affine transformation
x 7→ C−1

1 (c1 − u), where u := c1 − C1x ∈ Rd and get:
(

C1

C2

)
C−1

1 (c1 − u) ≤
(

c1

c2

)
⇔

(−I
−C2C

−1
1

)
u ≤

(
0

c2 − C2C
−1
1 c1

)
.

Setting c′ := c2 − C2C
−1
1 c1 and C ′ := −C2C

−1
1 ∈ K(m−d)×d gives

P ∼= {u ∈ Rd : C ′u ≤ c′, u ≥ 0}.
Clearly, all inequalities define facets. The usual introduction of slack vari-
ables s ∈ Rm−d yields

P ∼=
{

(u, s) ∈ Rd ×Rm−d : C ′u + Is = c′, u ≥ 0, s ≥ 0

}
,

in which all inequalities still define facets and the matrix [C ′ I] has size
(m − d) × m.

Since P is not a cone, we must have c′ 6= 0. Therefore c′ has at least one
nonzero component; assume it is the last one. By adding multiples of the

5 References 111

last row to the other rows of [C ′ I | c′], we can eliminate all other nonzero
components of c′. The resulting system with matrix [A′ A′′] and right hand
side (0, . . . , 0, α)T, with α 6= 0, is clearly affinely equivalent. We denote
by AT the matrix [A′ A′′] without the last row and by bT the last row of
[A′ A′′] divided by −α (in order to scale the right hand side to −1). Then

A ∈ Km×(m−d−1), b ∈ Km and

P ∼= P ′ :=
{
y ∈ Rm : ATy = 0, bTy = −1, y ≥ 0

}
,

where each inequality yj ≥ 0 defines a facet for j = 1, . . . ,m. Since only
affine transformations were applied, P ′ is affinely equivalent to P . �

Proof of Lemma 3.5. According to the claim, there exists a polyhedron P ′

affinely equivalent to P , where

P ′ =
{
y ∈ Rm : ATy = 0, bTy = −1, y ≥ 0

}
.

Each face of P ′ defined by yj = 0 is a facet, 1 ≤ j ≤ m. Now V corresponds
to the vertices of P and hence P ′. If one identifies V with the set of vertices
of P ′, then each set of E is the vertex set of a facet of P ′. Moreover, each
set E∗ ∈ E∗ is the set of facets which contain a specific vertex v of P ′.
If we identify [m] with the set of facets, E∗ is the support of v. Thus,
by Theorem 2.2, {Ax ≤ b} is an infeasible system whose IISs correspond
bijectively to the sets in E∗. �

References

[1] C. C. Aggarwal, R. K. Ahuja, J. Hao, and J. B. Orlin, Diagnos-
ing infeasibilities in network flow problems, Math. Programming 81 (1998),
pp. 263–280.

[2] E. Amaldi, From finding maximum feasible subsystems of linear systems to
feedforward neural network design, PhD thesis, Dep. of Mathematics, EPF-
Lausanne, October 1994.

[3] E. Amaldi, P. Belotti, and R. Hauser, Randomized relaxation meth-
ods for the maximum feasible subsystem problem, in Proc. 11th International
Conference on Integer Programming and Combinatorial Optimization (IPCO),
Berlin, M. Jünger and V. Kaibel, eds., LNCS 3509, Springer-Verlag, Berlin
Heidelberg, 2005, pp. 249–264.

[4] E. Amaldi and V. Kann, The complexity and approximability of finding
maximum feasible subsystems of linear relations, Theoret. Comput. Sci. 147

(1995), pp. 181–210.
[5] E. Amaldi and V. Kann, On the approximability of minimizing nonzero

variables or unsatisfied relations in linear systems, Theoret. Comput. Sci. 209

(1998), pp. 237–260.
[6] E. Amaldi and M. Mattavelli, The MIN PFS problem and piecewise linear

model estimation, Discrete Appl. Math. 118 (2002), pp. 115–143.
[7] E. Amaldi, M. E. Pfetsch, and L. E. Trotter, Jr., Some structural and

algorithmic properties of the maximum feasible subsystem problem, in Pro-
ceedings of the 10th Integer Programming and Combinatorial Optimization
conference (IPCO’99), G. Cornuéjols, R. Burkard, and G. Woeginger, eds.,
Springer-Verlag, 1999, pp. 45–59. Lecture Notes in Comput. Sci. 1610.

112 On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs

[8] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approx-
imate optima in lattices, codes, and systems of linear equations, J. Comput.
Syst. Sci. 54, no. 2 (1997), pp. 317–331.

[9] E. Balas and S. M. Ng, On the set covering polytope: All the facets with
coefficients in {0,1,2}, Math. Programming 43 (1989), pp. 57–69.

[10] K. P. Bennett and E. Bredensteiner, A parametric optimization method
for machine learning, INFORMS J. Comput. 9 (1997), pp. 311–318.

[11] C. Berge, Graphs and Hypergraphs, North-Holland, 2nd ed., 1976.
[12] A. Björner, Topological methods, in “Handbook of Combinatorics,” Vol. II,

R. Graham, M. Grötschel, and L. Lovász, eds., North-Holland, 1995, pp. 1819–
1872.

[13] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M.
Ziegler, Oriented Matroids, Encyclopedia of Mathematics and its Applica-
tions, Cambridge University Press, 2nd ed., 1999.

[14] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Com-
putation, Springer-Verlag, 1997.

[15] J. Bokowski and B. Sturmfels, Computational Synthetic Geometry,
no. 1355 in Lecture Notes in Math., Springer-Verlag, 1989.

[16] S. Ceria, P. Nobili, and A. Sassano, Set covering problem, in Annotated
Bibliographies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli, and
S. Martello, eds., John Wiley, 1997, ch. 23.

[17] N. Chakravarti, Some results concerning post-infeasibility analysis, Eur. J.
Oper. Res. 73 (1994), pp. 139–143.

[18] J. W. Chinneck, Computer codes for the analysis of infeasible linear pro-
grams, J. Oper. Res. Soc. 47 (1996), pp. 61–72.

[19] J. W. Chinneck, An effective polynomial-time heuristic for the minimum-
cardinality IIS set-covering problem, Ann. Math. Artificial Intelligence 17

(1996), pp. 127–144.
[20] J. W. Chinneck, Finding a useful subset of constraints for analysis in an

infeasible linear program, INFORMS J. Comput. 9, no. 2 (1997), pp. 164–174.
[21] J. W. Chinneck, Fast heuristics for the maximum feasible subsystem problem,

INFORMS J. Comput. 13, no. 3 (2001), pp. 210–223.
[22] J. W. Chinneck and E. Dravnieks, Locating minimal infeasible constraint

sets in linear programs, ORSA J. Comput. 3 (1991), pp. 157–168.
[23] K. Fan, On systems of linear inequalities, in Linear Inequalities and Related

Systems, H. W. Kuhn and A. W. Tucker, eds., no. 38 in Ann. of Math. Stud.,
Princeton University Press, NJ, 1956, pp. 99–156.

[24] M. Frean, A “thermal” perceptron learning rule, Neural Comput. 4, no. 6
(1992), pp. 946–957.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to
the theory of NP-completeness, W. H. Freeman and Company, San Francisco,
1979.

[26] J. Gleeson and J. Ryan, Identifying minimally infeasible subsystems of in-
equalities, ORSA J. Comput. 2, no. 1 (1990), pp. 61–63.

[27] H. J. Greenberg, Consistency, redundancy, and implied equalities in linear
systems, Ann. Math. Artificial Intelligence 17 (1996), pp. 37–83.

[28] H. J. Greenberg and F. H. Murphy, Approaches to diagnosing infeasible
linear programs, ORSA J. Comput. 3 (1991), pp. 253–261.

[29] R. Greer, Trees and Hills: Methodology for Maximizing Functions of Sys-
tems of Linear Relations, Ann. Discrete Math. 22, Elsevier science publishing
company, Amsterdam, 1984.

5 References 113

[30] J. Håstad, Some optimal inapproximability results, J. of ACM 48 (2001),
pp. 798–859.

[31] D. S. Johnson and F. P. Preparata, The densest hemisphere problem,
Theoret. Comput. Sci. 6 (1978), pp. 93–107.

[32] M. Joswig, V. Kaibel, M. E. Pfetsch, and G. M. Ziegler, Vertex-facet
incidences of unbounded polyhedra, Adv. Geom. 1, no. 1 (2001), pp. 23–36.

[33] M. Laurent, A generalization of antiwebs to independence systems and their
canonical facets, Math. Programming 45 (1989), pp. 97–108.

[34] O. L. Mangasarian, Misclassification minimization, J. Global Optim. 5,
no. 4 (1994), pp. 309–323.

[35] B. Mishra, Computational real algebraic geometry, in Handbook of Discrete
and Computational Geometry, J. Goodman and J. O’Rouke, eds., CRC Press,
1997, ch. 29.

[36] N. E. Mnëv, The universality theorems on the classification problem of config-
uration varieties and convex polytopes varieties, in Topology and Geometry –
Rohlin Seminar, O. Y. Viro, ed., no. 1346 in Lecture Notes in Math., Springer-
Verlag, 1988, pp. 527–543.

[37] T. S. Motzkin, Beiträge zur Theorie der Linearen Ungleichungen, PhD the-
sis, University of Basel, 1933.

[38] Netlib Repository. available at http://www.netlib.org.
[39] M. Parker, A set covering approach to infeasibility analysis of linear program-

ming problems and related issues, PhD thesis, Dep. of Mathematics, University
of Colorado at Denver, 1995.

[40] M. Parker and J. Ryan, Finding the minimum weight IIS cover of an infeas-
ible system of linear inequalities, Ann. Math. Artificial Intelligence 17 (1996),
pp. 107–126.

[41] M. E. Pfetsch, Examples of generalized antiweb facets. Electronic Geometry
Models, No. 2000.09.029, available at http://www.eg-models.de, 2000.

[42] J. Richter-Gebert, Realization Spaces of Polytopes, no. 1643 in Lecture
Notes in Math., Springer-Verlag, 1996.

[43] F. Rossi, A. Sassano, and S. Smriglio, Models and algorithms for terres-
trial digital broadcasting, Ann. Oper. Res. 107 (2001), pp. 267–283.

[44] J. Ryan, Transversals of IIS-hypergraphs, Congr. Numer. 81 (1991), pp. 17–22.
[45] J. Ryan, IIS-hypergraphs, SIAM J. Discrete Math. 9 (1996), pp. 643–653.
[46] J. Sankaran, A note on resolving infeasibility in linear programs by constraint

relaxation, Oper. Res. Lett. 13 (1993), pp. 19–20.
[47] M. Tamiz, S. Mardle, and D. Jones, Detecting IIS in infeasible linear

programmes using techniques from goal programming, Comput. Oper. Res. 23,
no. 2 (1996), pp. 113–119.

[48] J. N. M. van Loon, Irreducibly inconsistent systems of linear inequalities,
Eur. J. Oper. Res. 8 (1981), pp. 282–288.

[49] G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995.
Revised edition 1998.

http://www.netlib.org
http://www.eg-models.de

Paper 6

Branch-And-Cut for the

Maximum Feasible Subsystem

Problem

Marc E. Pfetsch

Branch-And-Cut for the Maximum Feasible Subsystem Problem1

SIAM J. Optimization 19 (2008), no. 1, pp. 21–38

Abstract. This paper presents a branch-and-cut algorithm for the NP-hard
maximum feasible subsystem problem: For a given infeasible linear inequal-
ity system, determine a feasible subsystem containing as many inequalities
as possible. The complementary problem, where one has to remove as few
inequalities as possible in order to make the system feasible, can be formu-
lated as a set covering problem. The rows of this formulation correspond
to irreducible infeasible subsystems, which can be exponentially many. It
turns out that the main issue of a branch-and-cut algorithm for Max FS is
to efficiently find such infeasible subsystems. We present three heuristics for
the corresponding NP-hard separation problem and discuss cutting planes
from the literature, such as set covering cuts of Balas and Ng, Gomory cuts,
and {0, 1

2}-cuts. We furthermore compare a heuristic of Chinneck and a
simple greedy algorithm. The main contribution of this paper is an exten-
sive computational study on a variety of instances arising in a number of
applications.

1. Introduction

In the maximum feasible subsystem problem (Max FS), we are given an in-
feasible linear inequality system Σ : {Ax ≤ b}, with A ∈ Rm×n, b ∈ Rm,
and have to find a feasible subsystem containing as many inequalities as

1Supported by the DFG Research Center Matheon in Berlin

115

116 Branch-And-Cut for the Maximum Feasible Subsystem Problem

possible. This NP-hard combinatorial optimization problem has a num-
ber of interesting applications in a wide range of fields, for instance, in lin-
ear programming [29, 31, 36], statistical discriminant analysis and machine
learning [4, 19, 43], telecommunications [54], and computational biology [61].
Additional applications and a survey can be found in [4] and [5], respectively.

The complementary problem of Max FS amounts to removing as few
inequalities of Σ as possible so that the resulting system is feasible. To
achieve feasibility, one has to remove at least one inequality from each ir-
reducible infeasible subsystem (IIS), i.e., an infeasible subsystem of Σ for
which every proper subsystem is feasible. Introducing a binary variable yi

for each inequality of Σ, the complementary problem can be formulated as
a set covering problem and is therefore called Min IIS Cover:

min
∑m

i=1 yi

s.t.
∑

i∈I yi ≥ 1 for all IISs I

y ∈ {0, 1}m.

(1)

Since the number of IISs can be exponential in the size of the system Σ (see
Chakravarti [28] and Pfetsch [53]), IISs have to be generated dynamically in
order to solve this formulation of Min IIS Cover efficiently.

Clearly, the set of all inequalities not contained in a solution of Max FS

form a solution of Min IIS Cover and vice versa. Hence, these two problems
are equivalent when solving to optimality and are both strongly NP-hard,
see Johnson and Preparata [39], Sankaran [58], and Chakravarti [28]. In
terms of approximability, however, they differ: Max FS does not admit a
polynomial-time approximation scheme, unless P = NP, but there exists a
2-approximation, see Amaldi and Kann [9]. Min IIS Cover is harder to
approximate: Unless P = NP, it cannot be approximated within any constant
factor, see Amaldi and Kann [10].

In this paper, we present a branch-and-cut approach for Max FS via
formulation (1) for Min IIS Cover. A key issue of this approach is to
find violated IIS-inequalities, i.e., the inequalities arising from IISs in (1).
The corresponding separation problem is NP-hard, and we present three
heuristics for it (see Section 3.2). Two of these methods either generate a
feasible solution for Min IIS Cover or a (hopefully violated) IIS-inequality.
As long as no feasible solution has been generated, the process is iterated,
which often produces many useful IIS-inequalities. The additional benefit
are reasonably good primal solutions, which can be improved by a simple
greedy algorithm. This combination leads to an effective primal heuristic.
Additionally, we examine the application of inequalities of Balas and Ng [18]
for set covering problems, {0, 1

2}-cuts, and Gomory cuts.
The emphasis of this paper is on an extensive computational study of the

branch-and-cut implementation. Our aim is to show the potential and the
limits of such an approach by performing tests on three problem sets: random
infeasible inequalities systems (Section 4.2), problems arising in digital video
broadcasting (Section 4.3), and classification problems (Section 4.4).

The theoretical foundation for our approach appears in Amaldi, Pfetsch,
and Trotter [12], where algorithmic and geometric questions concerning IISs

2 Alternative Solution Approaches 117

are studied and the feasible subsystem polytope is investigated. (The poly-
hedral results carry over to the polytope for Min IIS Cover by a simple
affine transformation.) The work presented here is an improved version of
part of the author’s Ph.D. thesis [53].

In the literature so far, only two exact approaches towards Min IIS

Cover appeared. Parker and Ryan [52] discuss an iterative approach that
generates IISs in each step and then solves an integer program. This ap-
proach turns out to be impractical for harder instances. Codato and Fis-
chetti [33] present a branch-and-cut algorithm for Min IIS Cover in a
more general context. We discuss these approaches in more detail in the
next section. Our algorithm improves upon both methods and is currently
the best available exact approach (see Section 4).

The outline of this paper is as follows. In Section 2 we review solution
approaches for Max FS. In Section 3 we describe the main ingredients of our
branch-and-cut implementation. We discuss a way to check the feasibility
of solutions for Min IIS Cover, three methods to separate IIS-inequalities,
primal heuristics, preprocessing, branching, inequalities by Balas and Ng,
and further used cutting planes. In Section 5 we extensively test the im-
plementation on the above mentioned problem sets. We close with some
conclusions in Section 5.

We use the following notation. We define [n] := {1, . . . , n} for n ∈ N
and typeset vectors in bold font. For a set S ⊆ [n] and a vector x ∈ Rn,
define

x(S) =
∑

i∈S

xi .

The support of a vector x ∈ Rn is supp(x) := {i ∈ [n] : xi 6= 0}. By 1 we
denote a vector of all ones of appropriate dimension.

2. Alternative Solution Approaches

In this section we give a short overview of solution approaches for Max FS

and Min IIS Cover.
In the context of linear programming, attention was first devoted to the

problem of identifying IISs with a small and possibly minimum number of
inequalities (see Greenberg and Murphy [36]; Chinneck [30]; Chinneck and
Dravnieks [32]). The goal is to help the modeler resolve infeasibility of large
linear programs. Since minimum cardinality covers of IISs reveal essential
information about infeasibility of the model and are often smaller than IISs,
emphasis has shifted towards their identification. Chinneck [29, 31] devel-
oped heuristics for Max FS/Min IIS Cover and provided computational
results, see Section 4.4. These heuristics are extended greedy algorithms.

For the application of Min IIS Cover to classification problems (see
Section 4.4), several heuristics were proposed, based on nonlinear program-
ming formulations of Max FS (Bennett and Bredensteiner [19]; Bennett and
Mangasarian [20]; Mangasarian [43]).

An exact integer programming approach for Min IIS Cover appeared
in Parker [51] and Parker and Ryan [52]. Their idea is to consider the
formulation in (1) with a partial list of IISs. If there exist IISs that are not

118 Branch-And-Cut for the Maximum Feasible Subsystem Problem

covered by a solution to this formulation, they are added and the process is
iterated. Otherwise, an optimal solution to Min IIS Cover is found. Parker
and Ryan discuss several methods to generate IISs at each step and consider
heuristics for solving the set covering problem (only the last instance has to
be solved exactly).

We reimplemented a basic version of their algorithm, where the set cov-
ering problems are solved to optimality. This implementation turned out
to be inferior to our branch-and-cut implementation: it could not solve in-
stances within one hour, solved by our branch-and-cut approach within a
few minutes. We therefore refrained from performing further experiments.

There is a straightforward mixed integer programming formulation for
Min IIS Cover containing a binary variable with a “big-M ” for each of the
inequalities of Σ, so that an inequality is relaxed when the corresponding
binary variable is 1. This formulation has the typical numerical problems of
big-M formulations and is in general inefficient for Max FS, see Parker [51].
If there are fixed bounds on the variables, however, one can obtain a tight
formulation. This leads to a quite efficient approach, see Rossi, Sassano, and
Smriglio [54] and Codato and Fischetti [33]. In fact, Codato and Fischetti
proposed a general way of removing the “big-M ” from this type of formula-
tions and apply it to classification instances. In this context, it leads to the
formulation (1) and their solution method is in fact a branch-and-cut method
for Min IIS Cover, independent from our approach. Computational results
show that their approach is faster compared to the big-M formulation. In
Section 4.4 we compare our implementation with their approach.

Versions of the classical relaxation method of Agmon [3] and Motzkin and
Schoenberg [47] for solving linear inequality systems can be applied to min-
imize the sum of violations in infeasible linear inequality systems. Random-
ized variants of this method were proposed by Amaldi [4] to solve Max FS.
Amaldi and Hauser [8] and Amaldi, Belotti, and Hauser [6] establish prob-
abilistic convergence guarantees to an optimal solution of Max FS under
appropriate conditions. Computational results for digital video broadcast-
ing data, classification instances, and huge systems arising in computational
biology are given in [6].

Amaldi, Bruglieri, and Casale [7] propose a two-step heuristic in which
first a linearization of an exact bilinear formulation of Max FS is used to
derive a feasible subsystem. In the second step, a reduced problem is solved
to optimality in order to identify inequalities that can be added to the first
system while preserving feasibility. This turns out to be competitive with
respect to the method of Codato and Fischetti and CPLEX applied to the
“big-M ” formulation for the whole system.

3. Ingredients for Branch-and-Cut

In the following we assume that the reader is familiar with the branch-and-
cut approach. More information can be found in Nemhauser and Wolsey [48],
Padberg and Rinaldi [50], Thienel [60], and Caprara and Fischetti [26]. A
description and computational study of Gomory cuts is given in Balas, Ceria,
Cornuéjols, and Natraj [17].

3 Ingredients for Branch-and-Cut 119

Recall that we are given the infeasible system Σ : {Ax ≤ b}, where
A ∈ Rm×n and b ∈ Rm. Depending on the application, mandatory variable
bounds can be present, i.e., these bounds may not be removed for obtaining
a feasible system (see Sections 4.3 and 4.4). This can easily be dealt with in
the branch-and-cut approach. Furthermore, weighted versions of Min IIS

Cover are easy to handle, too.
Without loss of generality we can restrict attention to inequality systems

in the form of Σ: Clearly, bounds on variables and “greater or equal” inequal-
ities can be transformed to this format. Equations can be replaced by a pair
of opposing inequalities. Since any point satisfies at least one inequality out
of each pair, an optimal solution to the new instance contains m∗ + mE in-
equalities if and only if an optimal solution to the original instance with m∗

linear relations exists; here mE is the number of equations. Thus, from a
computational point of view, it suffices to handle systems in the form of Σ.
Polyhedral results for the two cases, however, may differ, see [12, 53] for
more information.

To simplify notation, we identify an inequality of Σ with its index. Then
S(Σ) := [m] is the set of constraints of Σ. With this notation, I ⊆ S(Σ) is
an IIS of Σ if and only if all proper subsets of I are feasible. We call a set
C ⊆ S(Σ) an IIS-cover if it intersects every IIS of Σ.

In the rest of this section we give a more detailed account of the main
aspects of our implementation: the recognition problem for IIS-covers, the
separation problem of IIS-inequalities, pool handling, primal heuristics, pre-
processing, branching, and further cutting planes.

3.1. Recognition Problem for IIS-Covers

We consider the following fundamental problem: Given a subset C ⊆ S(Σ),
check whether it is an IIS-cover and if this is not the case generate a witness,
i.e., an IIS which is not covered. Our approach is based on the following
theorem.

Theorem 3.1 (Gleeson and Ryan [35]). Let Σ : {Ax ≤ b} be an infeas-
ible system. Then the IISs of Σ are in one-to-one correspondence with the
supports of the vertices of the polyhedron

P (Σ) := {y ∈ Rm : yTA = 0, yTb = −1, y ≥ 0 }.
Note that the vertices of P (Σ) are uniquely defined by their supports. This
theorem is strongly related to the Farkas lemma, which states that P (Σ) 6= ∅

if and only if Σ is infeasible, see e.g. Schrijver [59]. The polyhedron P (Σ) is
called the alternative polyhedron of Σ.

To apply Theorem 3.1, we define for S ⊆ S(Σ) the polyhedron

PS(Σ) := {y ∈ P (Σ) : yi = 0, i ∈ S },
which might be empty. We need the following fact:

Lemma 3.2 (Parker and Ryan [52]). The set C ⊆ S(Σ) is an IIS-cover if
and only if PC(Σ) = ∅.

Proof. The system defining P (Σ), in which all variables indexed by C are
removed, has no solution if and only if PC(Σ) = ∅. By the Farkas lemma,

120 Branch-And-Cut for the Maximum Feasible Subsystem Problem

the former is the case if and only if Σ with inequalities indexed by C removed
is feasible, i.e., C is an IIS-cover. �

Recognizing whether C ⊆ S(Σ) is an IIS-cover is then easy: In the case
of PC(Σ) = ∅, by Lemma 3.2, C is an IIS-cover. Otherwise, let v be a
vertex of PC(Σ). Then supp(v) ∩ C = ∅, which shows that supp(v) is an
IIS that is uncovered (by Theorem 3.1). This provides a polynomial time
algorithm for the problem, since finding a vertex of a polyhedron can be done
in polynomial time, see Grötschel, Lovász, and Schrijver [37]. Note that by
Theorem 3.1 and Lemma 3.2, PC(Σ) always has a vertex if it is nonempty.

This recognition test in fact suffices for a rudimentary branch-and-cut
algorithm, since we can now test feasibility of a vector y ∈ {0, 1}m for (1)
by testing whether supp(y) is an IIS-cover.

3.2. Separation of IIS-Inequalities

IIS-inequalities play a prominent role in the formulation (1) for Min IIS

Cover. In fact, it can be shown that the inequality arising from the IIS I
defines a facet of the polytope

PIISC = conv{y ∈ {0, 1}m : y(S) ≥ 1 for all IISs S },
as long as |I| > 1, see Amaldi, Pfetsch, and Trotter [12]. Therefore, the
following separation problem for IIS-inequalities is of crucial importance:
Given a vector y∗ ∈ [0, 1]m, check whether there exists an IIS I so that its
corresponding inequality is violated by y∗, i.e., y∗(I) < 1. The recognition
problem for IIS-covers is a special case, where y∗ is the incidence vector of
the set to be tested. In the general case, however, we have the following.

Proposition 3.3 (Amaldi, Pfetsch, and Trotter [12]). The separation prob-
lem for IIS-inequalities is NP-hard.

In this section, we therefore present three heuristics for the separation
problem. All of these heuristics may fail to produce a violated IIS-inequality.

The heuristics build on the following reformulation of the separation
problem: Compute

λ := min{y∗(S) : S = supp(v), v vertex of P (Σ) }. (2)

If λ < 1, by Theorem 3.1, supp(v) provides an IIS whose IIS-inequality is
violated; otherwise no such IIS exists (we define λ = ∞ if P (Σ) = ∅).

3.2.1. Method 1: “Single”

The first quite intuitive idea to separate an IIS-inequality, already used by
Parker and Ryan [52], is to approximate (2) by the following LP:

min{ (y∗)Tp : p ∈ P (Σ) }.
A vertex solution provides an IIS, whose corresponding inequality is not
necessarily violated, but in practice it often is.

This method only generates one IIS at a time. We also experimented with
solving the above LP by the simplex algorithm and then testing whether the
support of each vertex on the path to the optimum is an IIS whose inequality

3 Ingredients for Branch-and-Cut 121

is violated. In our experiments this variant was inefficient and will not be
considered further.

3.2.2. Method 2: “Extend”

We extend method 1 as follows. Let S be the support of y∗. Applying
Lemma 3.2, we can check whether S is an IIS-cover by finding a vertex
solution of

min{ (y∗)Tp : p ∈ PS(Σ) },
if there exists one. If the LP is feasible, the result gives us a vertex which
corresponds to an IIS, otherwise we found an IIS-cover, i.e., a primal solution
for Min IIS Cover.

This approach can be iterated when S is not an IIS-cover. Let I be the
IIS obtained in this case. We enlarge S greedily by an element of I and
iterate. In our implementation, we choose an element of I that is contained
in the maximal number of IISs we have found so far. At termination this
yields an IIS-cover. This procedure is related to a primal heuristic proposed
by Ryan [57].

The IISs found by this approach have several nice properties. First, the
new IISs are different from all IISs that were known before the run, if the
current solution y∗ of the LP-relaxation satisfies y∗(I) ≥ 1 for each pre-
viously found IIS I. This follows since at least one element of each I is
contained in S, and hence I cannot be generated again. Second, the corres-
ponding inequalities are always violated, since they have empty intersection
with S ⊇ supp(y∗), i.e., y∗(I) = 0 < 1 for each produced IIS I. Third, by
construction of the set S, the generated IISs are pairwise different.

This method turns out to be quite effective for generating many violated
IIS-inequalities. Furthermore, we obtain a primal solution in each run, which
can be improved to very good solutions, see Section 3.4. When the current
LP-relaxation contains many cuts, however, the support of y∗ tends to be
large and often is already an IIS-cover or close to one, and the method cannot
produce new IISs; this often happens in the deeper regions of the branch-
and-bound tree. This might even be desirable, since this saves time for high
depths. Nevertheless, this situation can be changed as indicated by the next
method.

3.2.3. Method 3: “Round”

The idea of method 2 can be further extended by using the fact that an
arbitrary set S can be used at the start. In the extension, we choose α ∈ [0, 1]
and initially let S := {i : y∗i ≥ α}. In the implementation we start with
α = 0.1 and then increase α by 0.1 until S is not an IIS-cover (in this case
the above procedure is started). We terminate with a failure if α exceeds 0.6.

The fact that S is smaller for larger α has two effects: First, the number
of steps needed to greedily obtain an IIS-cover is larger and hence the number
of generated IISs is increased. Second, the method also computes IISs in the
deeper regions of the tree.

Again, in each step an IIS is generated, which is not covered by S,
except in the last step where we obtain an IIS-cover. In contrast to method

122 Branch-And-Cut for the Maximum Feasible Subsystem Problem

“extend”, the generated IISs are not necessarily new and their corresponding
inequalities may not be violated by y∗.

3.3. Pool for IIS-Inequalities

The above three methods tend to produce many IISs, which we store in a
pool. It turned out that the best performance of the algorithm is achieved
by checking the pool for violated inequalities in every node of the tree. Of
course, the pool should be as small as possible without losing important
inequalities. Therefore, the pool is equipped with an aging mechanism which
removes IISs whose inequality has not been active for some time.

The computational results presented in Section 4 indicate that only a
small fraction of the total number of IISs needs to be generated by our
branch-and-cut implementation; indeed, for larger problems there are far too
many IISs to be enumerated completely, cf. Table 2 in Section 4.2. Hence,
the size of the pool can be relatively small.

3.4. Primal Heuristics

Chinneck [31] proposed a greedy heuristic for Min IIS Cover, which we
use as an initial primal heuristic. The basic tool is a so-called elastic LP in
which the inequalities Σ : {Ax ≤ b} are relaxed by adding slack variables
and the sum of violations is minimized:

min 1Ts

Ax − s ≤ b

s ≥ 0.

Starting with S = ∅, in each iteration S ⊆ S(Σ) is enlarged by an inequal-
ity that yields the largest drop in the elastic LP objective, if its objective
coefficient is set to 0. The method stops once the objective is 0, i.e., S is a
Min IIS Cover. To speed up the solution, in each iteration only inequali-
ties from a candidate set are checked. Chinneck proposes a measure based
on the violation and dual variables to generate the candidate set. We refer
to [31] for the details.

For a heuristic running in the tree, we use a primal heuristic that greed-
ily decreases the size of a given IIS-cover until a minimal one is obtained.
We start this heuristic from IIS-covers produced by the separation meth-
ods in Section 3.2, if available (otherwise we use a simple rounding heuris-
tic). We start with C being an IIS-cover to be improved. We consider each
element from C in the order of increasing fractional value of the current
LP-solution y∗. We remove an element if the remaining set is an IIS-cover
(which is checked by the method in Section 3.1).

3.5. Preprocessing

In a preprocessing step we search for small IISs. Such small IISs are of
interest since their corresponding IIS-inequalities provide “strong” cuts and
are hard to find by other methods.

3 Ingredients for Branch-and-Cut 123

We first check for IISs of cardinality one, e.g., 0x ≤ −1. Then we
check for IISs that involve one inequality and bounds on the variables (if
present). Such IISs often occur when variable bounds are mandatory, see
e.g. Section 4.4. In this case, a single inequality might be infeasible with the
bounds and counts as an IIS. Furthermore, we look for IISs of cardinality
two, which are easy to find by comparing their normal vectors and right hand
sides. Identifying other types of IISs would require higher computational
effort.

3.6. Branching

As a branching rule, we apply reliability branching, introduced by Achter-
berg, Koch, and Martin [2]. It performs strong branching on a subset of
the variables, which are chosen based on their so-called pseudo costs during
branching. If in strong branching one of the child nodes turns out to be
infeasible, the corresponding variable is fixed to the complementary value; if
both children are infeasible the current node can be pruned.

We also experimented with constraint branching rules. For instance, we
used the well-known rule of Ryan and Foster [56]. This rule was superior
to a simple variable branching, but inferior to reliability branching both in
terms of computation time and the number of branch-and-bound nodes. We
therefore selected reliability branching for all tests.

3.7. Inequalities for Set Covering

Many facet-defining inequalities for the set covering polytope have been in-
vestigated, see Ceria, Nobili, and Sassano [27] and Borndörfer [22]. However,
few (problem-specific) polynomial time separable inequalities for set cover-
ing are known. For many classes of inequalities the complexity status is
unknown, but is likely to be NP-hard.

We experimented with the aggregated cycle cuts of Borndörfer and Weis-
mantel [23, 24]. Unfortunately, on our test problems their separation heuris-
tic almost never found a violated inequality. It remains as an interesting
open problem to identify problem specific inequalities for Min IIS Cover.

A class of inequalities for set covering that we use in our implementation
were proposed by Balas and Ng [18]. To describe these inequalities, consider
the set covering polytope PSC(D) = conv{y ∈ {0, 1}m : Dy ≥ 1}, where
D = (dij) ∈ {0, 1}k×m. Assume ay ≥ β, with a ∈ Zm and β ∈ Z, defines
a facet of PSC(D). It is well known that if β > 0 then a ≥ 0, and if β = 1
then a is a row of D (see, e.g., [18]).

Balas and Ng showed that for every facet defining inequality ay ≥ 2
with a ∈ Zn, there exists a set S ⊆ [k] such that a = aS , where

aS
j =

0 if dij = 0 for all i ∈ S,

2 if dij = 1 for all i ∈ S,

1 otherwise

for j = 1, . . . ,m.

These inequalities can also be obtained by a Chvátal-Gomory rounding pro-
cedure. Furthermore, Balas and Ng discuss conditions under which aSy ≥ 2
defines a facet of PSC(D).

124 Branch-And-Cut for the Maximum Feasible Subsystem Problem

The separation problem for these inequalities is NP-hard, see Amaldi and
Pfetsch [11]. However, when the size of S is fixed, the separation problem
can be solved in polynomial time by enumeration. In our implementation
we enumerate sets S of cardinality three and check whether the inequali-
ties aSy ≥ 2 are violated by the current LP-solution. Note that sets S of
cardinality two are uninteresting, since in this case aSx ≥ 2 is the sum of
two IIS-inequalities and hence is never violated, if the IIS-inequalities are
satisfied.

Additionally, we try to strengthen these cuts: If an inequality is vio-
lated, we greedily enlarge the set S as long as the violation of the resulting
inequality increases. See Section 4 for computational results.

3.8. General Purpose Inequalities

In our computational experiments we used Gomory cuts as implemented in
SCIP; see the books of Nemhauser and Wolsey [48] or Schrijver [59] for a
description.

We further used {0, 1
2}-cuts introduced by Caprara and Fischetti [25].

Codato and Fischetti [33] identified these cuts as important for solving Min

IIS Cover. We implemented these cuts along the lines of Hansen, Labbé,
and Schindl [38]. See also Andreello, Caprara, and Fischetti [13] for a com-
putational study of {0, 1

2}-cuts. Note that in our implementation {0, 1
2}-cuts

are only produced for set covering and nonnegativity inequalities; in partic-
ular, they do not depend on {0, 1

2}-cuts produced earlier.
We also experimented with mixed integer rounding cuts (CMIR) (see

Marchand and Wolsey [44]) and strengthened Chvátal-Gomory cuts (see
Letchford and Lodi [42]) as they are implemented in SCIP. The results were,
however, discouraging and we therefore do not present them.

4. Computational Results

In this section we discuss computational results of our branch-and-cut im-
plementation for Min IIS Cover. The algorithm was implemented in C++

and uses version 0.90 of the framework SCIP (Solving Constraint Integer
Programs) by Achterberg [1]. CPLEX 10.11 is used as the basic LP solver.
The computations were performed on a 3.4 GHz Pentium 4 machine with
3 GB of main memory and 1 GB cache running Linux. All instances used in
the following can be obtained from the web page [45].

We use best-first search as a node selection scheme and the branching
rule explained in Section 3.6. All separation routines are called only every
tenth level of the tree, except that the pool of IIS-inequalities is checked in
every node of the tree. In nodes in which cuts are separated, we proceed until
no more violated cuts can be found. SCIP chooses among the generated cuts
according to an orthogonality measure, see for instance Andreello, Caprara,
and Fischetti [13]. We perform reduced cost fixing at every node of the tree.

Before presenting computational results, we want to discuss the influence
of the limited precision used for solving LPs. The basic question that has to
be repeatedly answered in our context is whether a given system is infeasible
or not. Today’s LP solvers are tuned towards quickly finding an optimal

4 Computational Results 125

solution of a feasible LP. Sometimes their bases are not really optimal, but
this only has a negligible effect on the objective function value, see Koch [41].
When checking infeasibility, however, small errors can lead to completely
wrong decisions. The answer depends on the particular instance, the solution
method of the LP solver, its parameters, e.g. the precision (usually around
10−6), and often also the preprocessing and starting basis. Being aware
of the possibility that we might produce wrong results, as a safeguard, we
confirmed that the final solution is really an IIS-cover for the original system.

Currently, using exact LP solvers, like the ones included in lrs [15] or
cdd [34] is computationally too expensive. In the future, codes that use
dynamically adjusted precision might help, see Applegate, Cook, Dash, and
Espinoza [14].

4.1. The Netlib Problems

The Netlib library [49] contains a well known set of 29 infeasible linear in-
equality systems. We do not report results on these data since these instances
all can be solved within seconds, except for numerical difficulties with the
problem gran. They were also solved to optimality by Parker [51] and Parker
and Ryan [52]; for more computational results on these problems see Chin-
neck [31] and Pfetsch [53].

4.2. Random Problems

We consider random inequality systems to compare different cut strategies in
the branch-and-cut implementation. We used difficult random instances that
nevertheless can be solved within approximately one hour of computation
time. In contrast, the instances discussed in the following sections vary
highly in size and complexity: most are either solved within seconds or
cannot be solved to optimality in reasonable time.

The infeasible random inequality systems are generated follows: Each
coefficient and the right hand side was chosen to be a random integer in the
range −100 to 100. We generated five instances for each of the combinations
(5, 100), (10, 80), (15, 80), (20, 90), (25, 90), where the first component is the
dimension n of the space and the second one is the number m of inequalities.
Each system turned out to be infeasible (this almost always happens as soon
as m > 2 · n, see Motzkin [46]) and is almost completely dense. Note that
all the instances in the following sections are dense as well.

The alternative polyhedra in Theorem 3.1 of these random systems are
nondegenerate with high probability. It is currently unknown, whether Max

FS and Min IIS Cover restricted to such systems are NP-hard.
We first compare the three different strategies to separate IIS-inequalities

of Section 3.2. Table 1 provides a comparison of methods “single” (Sec-
tion 3.2.1), “extend” (Section 3.2.2), and “round” (Section 3.2.3). Columns
“nodes” give the average number of nodes in the branch-and-bound tree,
“time” are the average CPU times in seconds, and “IISs” give the average
number of IISs found during the optimization; here averages are taken over
the five instances of each size. To eliminate the influence of primal heuristics
we initialized all runs with the optimal solution.

126 Branch-And-Cut for the Maximum Feasible Subsystem Problem

Table 1: Results of the branch-and-cut algorithm on random inequality systems for
different IIS separation strategies. The numbers are averages over five instances of each
size. The last line gives the averages over each column.

single extend round

n m nodes time IISs nodes time IISs nodes time IISs

5 100 70473.0 1050.64 8781.0 120371.4 1808.71 5281.4 16913.8 564.44 11034.8

10 80 167970.8 1226.45 10298.4 174302.6 1689.26 8450.4 79086.6 996.51 14491.8

15 80 214004.0 1509.72 53419.8 255933.0 1984.60 44825.8 106119.0 1465.16 62151.0

20 90 50029.0 276.05 22354.8 59117.8 337.11 15869.0 28699.0 317.22 23418.0

25 90 169868.2 1185.81 99728.6 243568.6 1534.17 80400.4 77147.0 1235.41 155331.4

∅: 134469.0 1049.73 38916.5 170658.7 1470.77 30965.4 61593.1 915.75 53285.4

Table 2: The number of IISs found by method “round” for random problems and the
total number of IISs.

n m found total

5 30 11 1986
5 40 101 44816
5 50 520 204833
5 60 526 614853
5 70 453 1818718

Among the three IIS-inequality separation versions method “round” out-
performs methods “single” and “extend” in the number of nodes and in the
total computation time, although method “single” is sometimes a bit faster.
Method “round” also generates the highest number of IISs. Based on this
result, we decided to use method “round” in the following experiments.

Table 2 shows the total number of IISs and the number of IISs found by
method “round” for small random instances generated in the same manner
as above. By Theorem 3.1, the IISs correspond to vertices of the alternative
polyhedron. We enumerated the vertices with lrs [15]. Since the alternative
polyhedra are nondegenerate, the IISs can be generated in time polynomial
in the input and output size, see Avis and Fukuda [16]. Note that for general
polyhedra this is not possible, unless P = NP, see Khachiyan et al. [40].

We could not enumerate or count the IISs for larger instances. From
Table 2, however, it can be expected that the total number of IISs for the
instances used in Table 1 is much higher. We conclude that the branch-
and-cut implementation only needs a small part of the total set of IISs (the
number of IISs for instance (5, 70) is two orders of magnitudes larger than
the average number of IISs found by any of the variants in Table 1).

Table 3 lists computational results for all combinations of method “round”
with Balas/Ng cuts (BaNg), Gomory cuts (Gom.), and {0, 1

2}-cuts. The val-
ues are averages over all 25 instances. Column “root” gives the dual bound
after the root node. The last three columns list the number of cuts found for
the respective methods. Again, we initialize the algorithms with the optimal
solution. All cuts are separated every 10 levels of the tree.

The studied combinations on average reduce the number of nodes with
respect to the method “round” alone; the best combination in this respect
are Balas/Ng and Gomory cuts. Furthermore, all combinations, except

4 Computational Results 127

Table 3: Results of the branch-and-cut algorithm on random inequality systems for
different cut generation strategies; all variant use method “round” as a basis. Given are
the average values over all 25 instances.

type nodes time root # BaNg # Gom. #{0, 1

2
}

round 61593.1 915.75 6.54 0.0 0.0 0.0
BaNg 58796.4 1054.39 6.80 6134.0 0.0 0.0
Gom. 58434.7 1164.56 7.00 0.0 10440.6 0.0
{0, 1

2
} 61479.1 957.37 6.54 0.0 0.0 43.0

BaNg & Gom. 57911.9 1298.49 7.22 6955.3 10234.8 0.0
BaNg & {0, 1

2
} 60197.0 1080.89 6.78 5738.6 0.0 31.0

Gom. & {0, 1

2
} 58852.8 1158.42 7.01 0.0 10441.2 56.8

all 60092.7 1365.63 7.19 6699.5 10335.6 46.2

Table 4: Results of method “round” for random instances with m = 80 inequalities.
Column “Opt” gives the average optimal solution values. All entries are averages over five
instances.

n nodes time IISs root opt

5 2029.4 32.26 3527.8 12.23 21.8
10 79086.6 996.51 14491.8 6.88 15.8
15 106119.0 1465.16 62151.0 4.56 11.8
20 7408.0 56.18 5743.4 2.69 5.8
25 16472.6 132.79 20884.0 2.43 6.8

∅: 42223.1 536.58 21359.6 5.76 12.4

{0, 1
2}-cuts, improve the root dual bound with respect to the basic version.

The studied methods, however, increase the CPU time needed. The main
slowdown comes from the fact that the intermediate LPs become harder to
solve. The corresponding separation times are acceptable, however: the av-
erage separation times for the version that uses all three methods are: 1.8%
(BaNg), 17.0% (Gomory), 1.0% ({0, 1

2}). We conclude that the basic version
“round” alone is fastest on random systems.

Table 4 shows average results for method “round” on random instances
with m = 80 inequalities. It can be observed that the optimal values of
the random problems tend to decrease when increasing the dimension. This
often makes the problems more tractable. But of course, the solution of the
intermediate LPs over the alternative polyhedron is more time consuming.

4.3. Digital Video Broadcasting Problems

In this section we present results for problems arising in an application of
Max FS in telecommunications, which is described by Rossi, Sassano, and
Smriglio [54]. Here, to plan the digital video broadcasting (DVB) network
of Italy, transmitters have to be placed and their emission frequency and
power have to be chosen as to maximize the area coverage, subject to quality
constraints. A subproblem of this can be modeled as a linear inequality
system. Interference of the signals leads to areas where the digital signal
cannot be received, resulting in an infeasible system. Maximizing the total
weight of satisfied inequalities then amounts to maximize the area coverage.

128 Branch-And-Cut for the Maximum Feasible Subsystem Problem

Table 5: Results for the DVB instances in Section 4.3 with method “round”. The Column
labeled “[6]” lists the names of the instances as used in Amaldi et al. [6].

name [6] m nodes time IISs root dual best gap

dvb1 dvb2 1044 503 103.6 3064 166.4 174.0 174 0.0
mfs_UHF_P4_1 dvb1 642 1 2.3 86 104.0 104.0 104 0.0
mfs_UHF_P4_3 dvb3 1717 539 599.72 5414 174.2 183.0 183 0.0
mfs_UHF_P4_4 – 1174 68049 196514.41 1002912 90.3 115.2 124 7.6

Linearizing the model leads to numerically challenging problems. The
coefficients take values between 10−11 and 1011, and the resulting LPs are
very instable. We tackled the problems by scaling the original instances
before starting the branch-and-cut algorithm. This helps, but nevertheless
leaves hard problems. Without scaling, however, the algorithm terminated
early with a completely wrong solution.

We could compute optimal solutions for the smallest instances used in
Amaldi, Belotti, and Hauser [6] and Amaldi, Bruglieri, and Casale [7], see
Table 5. Here, column “dual” gives the final lower bound, “best” denotes the
value of the best primal solution obtained (i.e. the primal bound), and “gap”
is the gap between the dual bound and primal bound in percent, computed
as (best − dual)/dual · 100.0. The dimension of these instances is always 487
and the variable bounds (0 ≤ x ≤ 1) are mandatory. We separate {0, 1

2}-cuts
every 10th level of the tree. Our primal heuristic of Section 3.4 is run every
40th level. Note that these instances can be solved faster using the “big-M ”
formulation (resulting in the same optimal solution values), see [6, 7].

4.4. Classification Problems

One of the historically first applications of Min IIS Cover is the design
of linear classifiers, see Amaldi [4], Mangasarian [43], Bennett and Breden-
steiner [19], and Rubin [55].

In this application, one is given m points p1, . . . ,pm in RN , each belong-
ing to one of two possible classes P1 and P2, i.e., P1 and P2 partition the set
{p1, . . . ,pm}. Each of the N components of the points stores a measurement
of an attribute (or feature) relevant for the concrete application. The goal
is to strictly separate these points in RN by an oriented hyperplane defined
by ax ≤ β, with a ∈ RN and β ∈ R. The points in P1 should satisfy the
inequality ax < β and the points in P2 should satisfy ax > β. Hence, we are
looking for (a, β) ∈ Rn, with n := N + 1 so that the number of misclassified
points

|{p ∈ P1 : ap ≥ β}| + |{p ∈ P2 : ap ≤ β}|
is minimized. This minimization is performed in order to maximize the
chance that a new point can be correctly classified. Note that with this
formulation points in {x : ax = β} are counted twice (the models can be
modified to eliminate this).

In the following we will discuss two equivalent ways to model this problem
via Min IIS Cover and present computational results for different datasets.
In the first model no bounds on the variables are present, while in the second
all variables are bounded except one.

4 Computational Results 129

Table 6: Characteristics of the classification instances. Column “N” lists the number
of attributes. The column labeled m⋆ gives the number of original data sets and m the
number of data sets remaining after removing incomplete ones. The right most column
gives additional notes, e.g., the name of the instance in the UCI database.

name N m m⋆ Notes

breast-cancer 9 683 699 breast-cancer-wisconsin
bupa 6 345 345 liver-disorders
echo 8 61 132 echocardiogram
glass 9 214 214 type 2 vs. others
heart 13 297 303 heart-disease (Cleveland)
ionosphere 34 351 351
iris.1 4 150 150 Versicolor vs. others
iris.2 4 150 150 Virginica vs. others
new-thyroid 5 215 215 normal vs. others
pima 8 768 768 Pima-indians-diabetes
tic-tac-toe 9 958 958
wpbc 32 194 198 Wisconsin breast-cancer database

For the first model we use variables (a, β) ∈ Rn and the following in-
equalities

pa − β

{
< 0 if p ∈ P1

> 0 if p ∈ P2
for each p ∈ {p1, . . . ,pm}.

Since (a, β) are unbounded we can scale them to obtain

pa − β

{
≤ −1 if p ∈ P1

≥ 1 if p ∈ P2
for each p ∈ {p1, . . . ,pm}.

Of course, any other positive value instead of 1 can be taken in order to
obtain a numerically more stable system.

The second model is due to Rubin [55]. It uses variables a ∈ RN and β,
γ ∈ R in the following system:

pa − β + γ ≤ 0 if p ∈ P1

pa − β − γ ≥ 0 if p ∈ P2

−1 ≤ a ≤ 1
γ ≥ 0.001.

Hence, the coefficients of the normal vector a are bounded to lie within the
interval [−1, 1], while β is unbounded. Of course, the lower bound 0.001
for γ can be replaced by any positive number. For instances arising from
this model the variable bounds are mandatory.

Note that in both models it might happen that the systems are feasible,
i.e., the points are completely separable (in which case we only need to solve
one linear program).

In our first test we use the first model and classification data from the
UCI Repository of Machine Learning Databases (Blake and Merz [21]). The
problem characteristics are given in Table 6. For some instances we had
to remove incomplete data sets. A complete description of the instances is

130 Branch-And-Cut for the Maximum Feasible Subsystem Problem

Table 7: Results of the branch-and-cut algorithm for the classification instances.

name nodes time IISs root dual best gap Chi

breast-cancer 313 2.88 359 7.2 11.0 11 0.0 11
bupa 9669 18000.11 179562 43.2 59.6 83 39.3 83
echo 2 0.05 89 6.0 6.0 6 0.0 6
glass 36859 18000.00 99833 18.5 32.7 36 10.0 41
heart 51274 18000.02 122000 12.8 23.5 29 23.6 30
ionosphere 2465 38.59 3967 2.4 6.0 6 0.0 6
iris.1 845 12.45 623 19.1 25.0 25 0.0 25
iris.2 1 0.01 2 0.0 1.0 1 0.0 1
new-thyroid 2 0.09 147 11.0 11.0 11 0.0 11
pima 1522 18000.18 64166 68.2 75.6 148 95.7 148
tic-tac-toe 50691 5167.03 19850 60.9 86.0 86 0.0 93
wpbc 56657 18000.00 739494 3.5 8.7 13 48.7 13

available at the UCI Repository. Most of these twelve instances are also used
by Chinneck [31] for testing his heuristic for Max FS/Min IIS Cover.

Table 7 lists the results of the branch-and-cut implementation on these
instances with method “round” of Section 3.2.3. The computation time was
limited to five hours (18000 sec.). The columns have the same meaning as
in Sections 4.2 and 4.3.

Column “Chi” gives results obtained by the heuristic of Chinneck, see
Section 3.4; its running times are negligible and therefore not listed. Our
implementation found the same solutions as Chinneck [31], except for the
instances glass and wpbc, for which Chinneck obtained solutions of size 39
and 10, respectively. Our primal heuristic described in Section 3.4 is run
every tenth level. It could improve the initial solutions for models glass,
heart, and tic-tac-toe. We conclude that the heuristic of Chinneck gener-
ates very good starting solutions, while our primal heuristic sometimes helps
to find better solutions.

The results of Table 7 show that most instances are quite hard to solve
and about half of them could not be solved within the time bound of five
hours. Because of their size, only few nodes could be processed.

We also conducted experiments with the same data but, using the second
model instead of the first. Intuitively this should result in better numerical
properties of the LPs that have to be solved during the algorithm. The results
are, however, comparable to the ones shown in Table 7, and we therefore do
not present them here.

Table 8 compares the gaps of the different cut strategies. The table only
displays instances for which the optimal solutions could not be found within
five hours. It turns out that all variants find the same final primal solutions,
although at different times during the computation. Note that this actually
compares the interplay of cutting strategies and our primal heuristic. On
the average, the smallest gaps are produced by taking Gomory cuts, then
method “round”, Gomory and {0, 1

2}-cuts, {0, 1
2}-cuts alone, Balas/Ng cuts,

Balas/Ng cuts and Gomory cuts, Balas/Ng cuts and {0, 1
2}-cuts, and finally

all cuts together. The main reason why all cuts together produce the worst
results (on average) is that this combination could explore the fewest number

5 Conclusions 131

Table 8: Classification problems: Comparison of the gaps of different variants of cutting
planes. Only instances for which a positive gap after five hours remains are shown. The
notation is as in Table 3. The last line contains the averages over each column.

BaNg BaNg Gom.
name round BaNg Gom. {0, 1

2
} Gom. {0, 1

2
} {0, 1

2
} all

bupa 39.3 46.7 40.0 41.9 44.0 45.0 41.5 45.5
glass 10.0 12.7 10.0 10.6 12.2 12.7 9.8 12.4
heart 23.6 23.8 22.6 24.2 25.4 25.2 27.8 26.0
pima 95.7 101.8 95.0 98.6 103.2 101.4 94.1 105.4
wpbc 48.7 47.8 44.6 49.8 49.0 49.0 45.6 50.5

∅: 43.5 46.6 42.4 45.0 46.7 46.7 43.8 48.0

of nodes. We conclude that the additional cutting planes do not yield a big
improvement over method “round” alone. Although Gomory cuts produce
the smallest gaps, the studied cutting planes do not seem to be crucial to
solve these instances.

Our second test set consists of data from Codato and Fischetti [33] and
uses the second model. The data again originate from the UCI Reposi-
tory of Machine Learning Databases, but are preprocessed in way we could
not reconstruct. Hence, the results for these instances and the instances
of Table 6 may not be comparable (there are three instances which seem
to arise from the same original data: breast-cancer ↔ breast-cancer-2,
iris.1 ↔ iris-150, wpbc ↔ WPBC194). Instances Breast-Cancer-2 and
Breast-Cancer-400 seem to be different to the ones used in Codato and
Fischetti [33].

Table 9 shows the results of method “round” on these instances. The
notation is as in Table 3. Note that here the dimension is n = N + 2,
because we use the second model. Most of the instances could be solved
within a few seconds. This is the first time that the complete set could be
solved to optimality: no optimal solution to the harder instances (Flags-169,
Horse-colic-185, Horse-colic-253, and Solar-flare-1066) was previ-
ously available. Our implementation solves all instances except these four
in under a minute. Although we worked on a faster computer, it seems
therefore fair to say that our code considerably improves upon the results of
Codato and Fischetti [33].

5. Conclusions

In this paper we described a branch-and-cut implementation for the Max

FS/Min IIS Cover problem, which is the best exact method currently
available. The findings of the extensive computational results can roughly
be summarized as follows: With respect to the implementation, the best cut-
ting plane strategy is to find as many (violated) IIS-inequalities as possible.
Additionally applying Balas/Ng, Gomory, or {0, 1

2}-cuts does not signifi-
cantly help to improve the performance: On random instances they do not
improve the running time, but usually help to reduce the number of nodes.
Gomory cuts only slightly help to reduce the gaps for classification instances
and the other cuts do not improve the gap.

132 Branch-And-Cut for the Maximum Feasible Subsystem Problem

Table 9: Classification Problems: Results of the branch-and-cut algorithm for the prob-
lems of Codato and Fischetti with method “round”.

name n m nodes time IISs root opt

Balloons-76 7 76 1 0.02 59 10.0 10
BCW-367 12 367 110 0.97 252 5.5 8
BCW-683 12 683 71 1.70 235 6.8 10
Breast-Cancer-2 11 683 352 2.21 322 7.0 11
Breast-Cancer-400 20 400 2 0.08 116 24.0 24
Bridges-132 14 132 299 3.44 1563 20.2 23
BusVan-437 20 437 237 1.72 353 3.0 6
BusVan-445 20 445 605 5.53 750 3.3 8
BusVan-447 20 447 2334 37.65 4187 4.4 10
BV-OS-282 20 282 214 1.39 338 3.0 6
BV-OS-376 20 376 969 12.03 1361 4.2 9
Chorales-107 8 107 951 9.57 1187 21.4 27
Chorales-116 8 116 1022 19.85 1981 17.2 24
Chorales-134 8 134 1198 50.99 4008 20.8 30
Credit-300 17 300 13 0.93 222 5.9 8
Flag-169 31 169 7621 209.63 17276 3.5 9
Glass-163 12 163 15 0.64 158 10.9 13
Horse-Colic-151 28 151 231 2.25 540 2.2 5
Horse-Colic-185 28 183 69155 886.10 61414 3.6 10
Horse-Colic-253 28 253 273389 7938.84 308862 4.8 13
House-Votes84-435 18 435 56 0.68 200 4.0 6
Iris-150 7 150 1017 6.58 1011 11.7 18
Lymphography-142 20 142 21 0.24 131 2.9 5
Mech-analysis-107 10 107 1 0.04 83 7.0 7
Mech-analysis-137 9 137 757 5.83 890 11.6 18
Mech-analysis-152 10 152 900 32.05 3042 13.0 21
Monks-tr-115 8 115 917 16.24 1570 20.9 27
Monks-tr-122 8 122 4 0.45 267 11.2 13
Monks-tr-124 8 124 489 5.91 1187 18.1 24
Opel-Saab-76 20 76 1111 9.28 1756 2.9 7
Opel-Saab-80 20 80 241 2.01 512 3.0 6
Opel-Saab-83 20 83 2113 25.05 3904 3.2 8
Opel-Saab-84 20 84 572 7.06 1318 3.3 7
Pb-gr-txt-198 12 198 147 1.09 267 7.7 11
Pb-hl-pict-277 12 277 178 1.61 314 6.7 10
Pb-pict-txt-444 12 444 2 0.12 79 7.0 7
Postoperative-88 10 88 1 0.12 209 16.0 16
Solar-flare-323 14 323 3 0.71 478 37.2 38
Solar-flare-1066 14 1066 2292 787.64 14960 227.3 243
Water-treat-206 40 206 41 1.43 204 1.7 4
Water-treat-213 40 213 288 8.04 845 2.2 5
WPBC-194 36 194 172 3.21 468 2.2 5

With respect to the problem data, the considered instances vary highly
in their properties and difficulty. Depending on the particular data, quite
large instances can be solved to optimality, but there are also relatively small
instances which turn out to be extremely hard to solve. As shown by the
DVB problems, one has to be careful with numerically instable instances.

An interesting open issue is the existence of problem specific cutting
planes and whether they can be efficiently separated. Another question is

5 References 133

whether other valid inequalities for the set covering problem could be helpful
to improve the performance of the implementation.

Acknowledgments

The author thanks Tobias Achterberg for help with the SCIP implementation
and Edoardo Amaldi and Les Trotter for helpful discussions. Furthermore, he
thanks Edoardo Amaldi and Pietro Belotti for providing the DVB instances
of Section 4.3, and Gianni Codato and Matteo Fischetti for the data used in
Section 4.4.

References

[1] T. Achterberg, SCIP – A framework to integrate constraint and mixed in-
teger programming, Report 04-19, Zuse Institute Berlin, 2004. Available online
at http://www.zib.de/Publications/abstracts/ZR-04-19/.

[2] T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Oper.
Res. Lett. 33, no. 1 (2005), pp. 42–54.

[3] S. Agmon, The relaxation method for linear inequalities, Can. J. Math. 6

(1954), pp. 382–392.
[4] E. Amaldi, From Finding Maximum Feasible Subsystems of Linear Systems

to Feedforward Neural Network Design, PhD thesis, EPF-Lausanne, 1994.
[5] E. Amaldi, The maximum feasible subsystem problem and some applications,

in Modelli e Algoritmi per l’Ottimizzazione di Sistemi Complessi, A. Agnetis
and G. D. Pillo, eds., Pitagora Editrice, Bologna, 2003, pp. 31–69.

[6] E. Amaldi, P. Belotti, and R. Hauser, Randomized relaxation meth-
ods for the maximum feasible subsystem problem, in Proc. 11th International
Conference on Integer Programming and Combinatorial Optimization (IPCO),
Berlin, M. Jünger and V. Kaibel, eds., LNCS 3509, Springer-Verlag, Berlin
Heidelberg, 2005, pp. 249–264.

[7] E. Amaldi, M. Bruglieri, and G. Casale, A two-phase relaxation-based
heuristic for the maximum feasible subsystem problem, Computers and Oper-
ations Research (2007). To appear.

[8] E. Amaldi and R. Hauser, Boundedness theorems for the relaxation method,
Math. Oper. Res. 30, no. 4 (2005), pp. 1–17.

[9] E. Amaldi and V. Kann, The complexity and approximability of finding
maximum feasible subsystems of linear relations, Theor. Comput. Sci. 147,
no. 1–2 (1995), pp. 181–210.

[10] E. Amaldi and V. Kann, On the approximability of minimizing nonzero
variables or unsatisfied relations in linear systems, Theor. Comput. Sci. 209,
no. 1–2 (1998), pp. 237–260.

[11] E. Amaldi and M. E. Pfetsch, Separation problems for set covering, 2005.
Manuscript.

[12] E. Amaldi, M. E. Pfetsch, and L. E. Trotter, Jr., On the maximum
feasible subsystem problem, IISs, and IIS-hypergraphs, Math. Program. 95,
no. 3 (2003), pp. 533–554.

[13] G. Andreello, A. Caprara, and M. Fischetti, Embedding cuts in a
branch&cut framework: a computational study with {0, 1

2
}-cuts, INFORMS J.

Comput. 19, no. 2 (2007), pp. 229–238.
[14] D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, Exact solu-

tions to linear programming problems, Oper. Res. Lett. (2007). To appear.

http://www.zib.de/Publications/abstracts/ZR-04-19/

134 Branch-And-Cut for the Maximum Feasible Subsystem Problem

[15] D. Avis, lrs home page. Available at: http://cgm.cs.mcgill.ca/~avis/C/
lrs.html.

[16] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl.
Math. 65, no. 1–3 (1996), pp. 21–46.

[17] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, Gomory cuts revis-
ited, Oper. Res. Lett. 19, no. 1 (1996), pp. 1–9.

[18] E. Balas and S. M. Ng, On the set covering polytope: I. All the facets with
coefficients in {0, 1, 2}, Math. Program. 43, no. 1 (1989), pp. 57–69.

[19] K. P. Bennett and E. J. Bredensteiner, A parametric optimization
method for machine learning, INFORMS J. Comput. 9, no. 3 (1997), pp. 311–
318.

[20] K. P. Bennett and O. L. Mangasarian, Neural network training via lin-
ear programming, in Advances in optimization and parallel computing, P. M.
Pardalos, ed., North-Holland, Amsterdam, 1992, pp. 56–67.

[21] C. L. Blake and C. J. Merz, UCI repository of machine learning databases,
1998. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.

[22] R. Borndörfer, Aspects of Set Packing, Partitioning, and Covering, PhD
thesis, TU Berlin, 1998.

[23] R. Borndörfer and R. Weismantel, Set packing relaxations of some in-
teger programs, Math. Program. 88 (2000), pp. 425–450.

[24] R. Borndörfer and R. Weismantel, Discrete relaxations of combinatorial
programs, Discrete Appl. Math. 112, no. 1–3 (2001), pp. 11–26.

[25] A. Caprara and M. Fischetti, {0, 1

2
}-Chvátal-Gomory cuts, Math. Prog.

74, no. 3 (1996), pp. 221–235.
[26] A. Caprara and M. Fischetti, Branch-and-cut algorithms, in Annotated

Bibliographies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli, and
S. Martello, eds., John Wiley & Sons, Chichester, 1997, ch. 4, pp. 45–63.

[27] S. Ceria, P. Nobili, and A. Sassano, Set covering problem, in Annotated
Bibliographies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli, and
S. Martello, eds., John Wiley & Sons, Chichester, 1997, ch. 23, pp. 415–428.

[28] N. Chakravarti, Some results concerning post-infeasibility analysis, Eur. J.
Oper. Res. 73 (1994), pp. 139–143.

[29] J. W. Chinneck, An effective polynomial-time heuristic for the minimum-
cardinality IIS set-covering problem, Ann. Math. Artif. Intell. 17, no. 1–2
(1996), pp. 127–144.

[30] J. W. Chinneck, Finding a useful subset of constraints for analysis in an
infeasible linear program, INFORMS J. Comput. 9, no. 2 (1997), pp. 164–174.

[31] J. W. Chinneck, Fast heuristics for the maximum feasible subsystem problem,
INFORMS J. Comput. 13, no. 3 (2001), pp. 210–223.

[32] J. W. Chinneck and E. W. Dravnieks, Locating minimal infeasible con-
straint sets in linear programs, ORSA J. Comput. 3, no. 2 (1991), pp. 157–168.

[33] G. Codato and M. Fischetti, Combinatorial Benders’ cuts, in Proc. 10th
International Conference on Integer Programming and Combinatorial Opti-
mization (IPCO), New York, D. Bienstock and G. Nemhauser, eds., LNCS
3064, Springer-Verlag, Berlin Heidelberg, 2004, pp. 178–195.

[34] K. Fukuda, cdd home page. Available at: http://www.cs.mcgill.ca/

~fukuda/soft/cdd_home/cdd.html.
[35] J. Gleeson and J. Ryan, Identifying minimally infeasible subsystems of in-

equalities, ORSA J. Comput. 2, no. 1 (1990), pp. 61–63.
[36] H. J. Greenberg and F. H. Murphy, Approaches to diagnosing infeasible

linear programs, ORSA J. Comput. 3, no. 3 (1991), pp. 253–261.

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html

5 References 135

[37] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer-
Verlag, Heidelberg, 2nd ed., 1993.

[38] P. Hansen, M. Labbé, and D. Schindl, Set covering and packing formu-
lations of graph coloring: algorithms and first polyhedral results, tech. report,
GERAD, 2005.

[39] D. S. Johnson and F. P. Preparata, The densest hemisphere problem,
Theor. Comput. Sci. 6 (1978), pp. 93–107.

[40] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich,
Generating all vertices of a polyhedron is hard, in Proc. of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, ACM
Press, 2006, pp. 758–765.

[41] T. Koch, The final Netlib-LP results, Oper. Res. Lett. 32, no. 2 (2004),
pp. 138–142.

[42] A. N. Letchford and A. Lodi, Strengthening Chvátal-Gomory cuts and
Gomory fractional cuts, Oper. Res. Lett. 30, no. 2 (2002), pp. 74–82.

[43] O. L. Mangasarian, Misclassification minimization, J. Glob. Optim. 5, no. 4
(1994), pp. 309–323.

[44] H. Marchand and L. Wolsey, Aggregation and mixed integer rounding to
solve mips, Operations Research 49, no. 3 (2001), pp. 363–371.

[45] Maximum Feasible Subsystem Home Page. Available online at: http://
www.elet.polimi.it/res/maxfs/.

[46] T. S. Motzkin, The probability of solvability of linear inequalities, in Selected
papers, D. Cantor, B. Gordon, and B. Rothschild, eds., Contemporary Math-
ematicians, Birkhäuser, Boston Basel Stuttgart, 1983, pp. 116–120.

[47] T. S. Motzkin and I. J. Schoenberg, The relaxation method for linear
inequalities, Can. J. Math. 6 (1954), pp. 393–404.

[48] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimiza-
tion, John Wiley & Sons, New York, 1988.

[49] Netlib Repository. available at http://www.netlib.org.
[50] M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution

of large-scale symmetric traveling salesman problems, SIAM Rev. 33, no. 1
(1991), pp. 60–100.

[51] M. Parker, A Set Covering Approach to Infeasibility Analysis of Linear Pro-
gramming Problems and Related Issues, PhD thesis, University of Colorado at
Denver, 1995.

[52] M. Parker and J. Ryan, Finding the minimum weight IIS cover of an infeas-
ible system of linear inequalities, Ann. Math. Artif. Intell. 17, no. 1–2 (1996),
pp. 107–126.

[53] M. E. Pfetsch, The Maximum Feasible Subsystem Problem and Vertex-Facet
Incidence of Polyhedra, PhD thesis, TU Berlin, 2002.

[54] F. Rossi, A. Sassano, and S. Smriglio, Models and algorithms for terres-
trial digital broadcasting, Annals of Operations Research 107 (2001), pp. 267–
283.

[55] Rubin, Solving mixed integer classification problems by decomposition, Ann.
Oper. Res. 74 (1997), pp. 51–64.

[56] D. M. Ryan and B. A. Foster, An integer programming approach to sched-
uling, in Computer scheduling of public transport: Urban passenger vehicle
and crew scheduling, A. Wren, ed., North-Holland, Amsterdam, 1981.

[57] J. Ryan, Transversals of IIS-hypergraphs, in Proc. 22nd Southeast Conf. on
Combinatorics, Graph Theory, and Computing, Baton Rouge, Congr. Numer-
antium 81, 1991, pp. 17–22.

http://www.elet.polimi.it/res/maxfs/
http://www.elet.polimi.it/res/maxfs/
http://www.netlib.org

136 Branch-And-Cut for the Maximum Feasible Subsystem Problem

[58] J. K. Sankaran, A note on resolving infeasibility in linear programs by con-
straint relaxation, Oper. Res. Letters 13 (1993), pp. 19–20.

[59] A. Schrijver, Theory of Linear and Integer Programming, John Wiley &
Sons, Chichester, 1986.

[60] S. Thienel, ABACUS – A Branch-And-CUt System, PhD thesis, Universität
zu Köln, 1995.

[61] M. Wagner, J. Meller, and R. Elber, Solving huge linear programming
problems for the design of protein folding potentials, Math. Program. 101

(2004), pp. 301–318.

	Introduction
	1. Symmetries in Integer Programs
	2. Line Planning
	3. Morse Matchings
	4. Maximum Feasible Subsystem Problem

	Paper 1. Packing and Partitioning Orbitopes
	1. Introduction
	2. Orbitopes: General Definitions and Basic Facts
	3. Packing and Partitioning Orbitopes for Cyclic Groups
	4. Packing and Partitioning Orbitopes for Symmetric Groups
	5. Concluding Remarks
	References

	Paper 2. Orbitopal Fixing
	1. Introduction
	2. Orbitopes
	3. The Geometry of Fixing Variables
	4. Fixing Variables for Orbitopes
	5. Computational Experiments
	6. Concluding Remarks
	References

	Paper 3. A Column-Generation Approach to Line Planning in Public Transport
	1. Introduction
	2. Related Work
	3. Line-Planning Model
	4. Column Generation
	5. Computational Results
	6. Conclusions
	References

	Paper 4. Computing Optimal Morse Matchings
	1. Introduction
	2. Discrete Morse Functions and Morse Matchings
	3. Properties of Morse Matchings
	4. Hardness of Optimal Morse Matchings
	5. An IP-Formulation
	6. Computational Results
	References

	Paper 5. On the Maximum Feasible Subsystem Problem, IISs and IIS-hypergraphs
	1. Introduction
	2. Irreducible Infeasible Subsystems
	3. IIS-hypergraphs
	4. Feasible Subsystem (FS) Polytope
	5. Concluding Remarks
	Appendix
	References

	Paper 6. Branch-And-Cut for the Maximum Feasible Subsystem Problem
	1. Introduction
	2. Alternative Solution Approaches
	3. Ingredients for Branch-and-Cut
	4. Computational Results
	5. Conclusions
	References

