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Abstract

This paper considers integer formulations of binary sets X of minimum
sparsity, i.e., the maximal number of non-zeros for each row of the cor-
responding constraint matrix is minimized. Providing a constructive
mechanism for computing the minimum sparsity, we derive sparsest
integer formulations of several combinatorial problems, including the
traveling salesman problem. We also show that sparsest formulations
are NP-hard to separate, while (under mild assumptions) there exists
a dense formulation of X separable in polynomial time.

1 Introduction

Given a non-empty set X ⊆ {0, 1}n, we call a linear system Ax ≤ b, with
A ∈ Rm×n and b ∈ Rm, an integer formulation of X if X = {x ∈ Zn :
Ax ≤ b}. In the following, we investigate the sparsity of such formulations.
Sparsity is a desirable property of integer formulations, since it often al-
lows optimization algorithms to perform faster in comparison with dense
formulations, see, e.g., Suhl and Suhl [11], Yen et al. [12] or McCormick [9].

An inequality a>x ≤ β, where a ∈ Rn and β ∈ R, is called s-sparse
if at most s entries of a are non-zero. Thus, the sparser an inequality
the smaller s. Using the notation [n] := {1, . . . , n}, we define the sparsity
function σ for a vector a ∈ Rn by σ(a) := |{ai 6= 0 : i ∈ [n]}|. By over-
loading notation, we define for a matrix A the sparsity σ(A) := max {σ(a) :
a is a row of A}, and finally, the minimum sparsity of a set X is

σ(X) := min
(A,b)
{σ(A) : Ax ≤ b integer formulation of X}.
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In particular, the minimum sparsity of X is s, if X admits an integer for-
mulation by s-sparse inequalities but not by (s− 1)-sparse inequalities.

The main result of this article is an exact combinatorial characterization
of the minimum sparsity of integer formulations of X.

In the literature, sparsity was discussed, e.g., by Dey et al. [3], who
studied the approximation of polyhedra by sparse cutting planes, and the
same authors also investigated the impact of sparse cutting planes for sparse
integer programs, see [4]. Among others, the approximation of polyhedra
using a fixed number of dense inequalities and arbitrarily many sparse ones
is investigated by Dey et al. [2] and Iroume [6].

Assumptions Throughout this article, X ( {0, 1}n denotes a non-empty
set. Moreover, we use the notation X := {0, 1}n \X to denote the comple-
ment of X within {0, 1}n.

2 Lower Bounds on Minimum Sparsity

To derive lower bounds on the number of non-zero coefficients needed in an
integer formulation of a given set X, let x̂ ∈ {0, 1}n and let N(x̂) be the
neighbors of x̂ in the 0/1-cube, i.e.,

N(x̂) := {x ∈ {0, 1}n : ‖x− x̂‖1 = 1},

where ‖·‖1 denotes the 1-norm. That is, the neighbors of x̂ are those 0/1-
points that differ from x̂ in exactly one coordinate.

Lemma 1. Let x̄ ∈ X. Then σ(X) ≥ |N(x̄) ∩X|.

Proof. Define s = |N(x̄) ∩X| and assume that s > 1, since otherwise the
statement is trivial. For the sake of contradiction assume X = {x ∈ Zn :
Ax ≤ b}, where each row of A has at most s − 1 non-zeros. Since x̄ /∈ X,
there exists an inequality a>x ≤ β in Ax ≤ b with a>x̄ > β and a>x̂ ≤ β for
all x̂ ∈ N(x̄) ∩X. Assume w.l.o.g. that a1 = a2 = · · · = an−s+1 = 0. Thus,
the remaining s− 1 entries an−s+2, . . . , an might have non-zero coefficients.
Since |N(x̄) ∩X| = s, there exists x̂ ∈ N(x̄) ∩ X such that x̄ = x̂ except
x̄i 6= x̂i for some i ∈ [n − s + 1]. But then β < a>x̄ = a>x̂ ≤ β, a
contradiction.

We demonstrate some applications of Lemma 1.
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Example 2. Let Xe and Xo be the sets of binary points that have an
even and odd number of 1-entries, respectively. Each point in Xe has its
n neighbors in Xo and vice versa. Hence, Lemma 1 implies that both Xe

and Xo need completely dense inequalities in any integer formulation.

The next example will also show that the sparsity bound derived in
Lemma 1 can be tight for every sparsity level.

Example 3. Let Xs := {x ∈ {0, 1}n : 1>x ≤ s}, where s ∈ [n − 1].
The set Xs is the feasible region of a 0/1-knapsack problem, and we claim
that σ(Xs) = s+ 1.

Let x̄ ∈ {0, 1}n such that 1>x̄ = s+ 1. Then x̄ /∈ Xs and there are s+ 1
neighbors of x̄ in Xs. Hence, Lemma 1 implies that Xs cannot be represented
by an integer formulation that consists of s-sparse inequalities only. But Xs

admits an (s+ 1)-sparse integer formulation via box constraints and

x(I) ≤ s, I ⊆ [n], |I| = s+ 1,

where x(I) abbreviates
∑

i∈I xi.

3 Characterization of Minimum Sparsity

Lemma 1 allows to derive bounds on the sparsity of any integer formulation
ofX by a simple neighborhood argument. But this bound is not always tight.
To be able to compute the minimum sparsity of an integer formulation, we
introduce the concept of infeasible face coverings.

Definition 4. A face F of [0, 1]n is called infeasible w.r.t. X ⊆ {0, 1}n if
no integer point in F is contained in X and is called maximally infeasible
if it is infeasible and there does not exist an infeasible face F ′ of [0, 1]n

with F ( F ′.
A collection F of infeasible faces of [0, 1]n w.r.t. X is called an infeasible

face collection of X. If F is an infeasible face collection and for each x ∈ X
there exists F ∈ F such that x ∈ F , then F is called an infeasible face
covering of X. An infeasible face covering F of X is called maximal if
for each face F ∈ F there is no infeasible face F ′ of [0, 1]n with F ( F ′

and F ′ /∈ F . An infeasible face covering F is called irredundant if for
each F ∈ F there is no F ′ ∈ F with F ( F ′.

Lemma 5. Every X ⊆ {0, 1}n has a unique maximal irredundant infeasible
face covering. It consists of all maximally infeasible faces of [0, 1]n w.r.t. X.
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Proof. Let F be the collection of all infeasible faces of [0, 1]n w.r.t. X. The
collection F turns into a poset if we order the faces in F w.r.t. inclusion.
Obviously, the ⊆-maximal elements in F form a maximal irredundant in-
feasible face covering F̂ of X.

To show uniqueness, assume there exists a maximal irredundant infeasi-
ble face covering F ′ 6= F̂ . Since F ′ is maximal and covers X, F ′ contains
every maximally infeasible face of [0, 1]n. Thus, F̂ ⊆ F ′. If F̂ was a proper
subset of F ′, there would exist F ′ ∈ F ′ \ F̂ . Since F ′ /∈ F̂ , F ′ cannot
be a maximally infeasible face. Hence, there exists a maximally infeasible
face F̂ of [0, 1]n with F ′ ( F̂ . By definition of F̂ , we find F̂ ∈ F̂ . Con-
sequently, F ′ ( F̂ ∈ F̂ ⊆ F ′ showing that F ′ cannot be irredundant, a
contradiction.

We call the smallest dimension of a face in the unique maximal irredun-
dant infeasible face covering of X the maximal irredundant covering bound
of X, abbreviated as micb(X). By Lemma 5, micb(X) is the smallest di-
mension of a maximally infeasible face of [0, 1]n. In the following, we show
that micb(X) completely characterizes the sparsity of any integer formula-
tion of X.

If F and F ′ are faces of [0, 1]n, we denote by sf(F, F ′) the smallest face
of [0, 1]n that contains both F and F ′. If F ′ consists of a single vertex x
only, we write sf(F, x). Note that sf(F, F ′) can also be written as F ∨ F ′,
the join of these two faces in the face lattice of [0, 1]n.

To show the main result characterizing the minimum sparsity in Theo-
rem 8, we first need some technical lemmata.

Lemma 6. Let x̄ ∈ {0, 1}n and let F be a face of [0, 1]n. Moreover,
let a>x ≤ β be an inequality valid for [0, 1]n with a>x̄ = β. If all binary
points in {x̄} ∪ F violate the inequality a>x ≤ β′, β′ ∈ R, then all binary
points in sf(F, x̄) violate a>x ≤ β′.

Proof. Since flipping/permuting coordinates has no impact on the sparsity
of an inequality, we may assume w.l.o.g. that x̄ = 1. The proof proceeds
via induction on n. If n = 1, the statement is trivially fulfilled. In the
inductive step, consider all facets Fi = {x ∈ [0, 1]n : xi = 1}, i ∈ [n],
of [0, 1]n that contain x̄. If F is a subset of any of these facets, the induction
hypothesis can be used to show the statement, since each facet is an (n−1)-
dimensional cube. Otherwise, for every Fi, the face F contains a vertex
of [0, 1]n that is not contained in Fi. For this reason, there exists S ⊆ [n]
such that F = {x ∈ [0, 1]n : xi = 0, i ∈ S}, where S = ∅ is possible.
Hence, 0 ∈ F .
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Since a>x̄ = β by assumption, a>x̄ = a>1 = β. Thus, ai ≥ 0 holds
for all i ∈ [n], because a>x ≤ β is valid for [0, 1]n. This means that a>y ≤
a>x′ ≤ a>x̄ for all x′ ∈ {0, 1}n. Since y ∈ F and F violates a>x ≤ β′

by assumption, the statement follows by β′ < a>y ≤ a>x′ for all x′ ∈
{0, 1}n.

Now we are able to connect sparsity and faces of [0, 1]n.

Lemma 7. Let F be a face of [0, 1]n and let a>x ≤ β be an inequality
with a>x̄ > β for all x̄ ∈ F . If every face F ′ of [0, 1]n with F ( F ′ contains
a point that satisfies a>x ≤ β, then the vector a has at least n − dim(F )
non-zero entries. Furthermore, there is an inequality ā>x ≤ β̄ such that the
binary points that violate this inequality are exactly the binary points in F
and such that ā has exactly n− dim(F ) non-zero entries.

Proof. Let F be an (n − k)-dimensional face of [0, 1]n and suppose every
face F ′ of [0, 1]n with F ( F ′ contains a point x′ that satisfies a>x′ ≤ β. By
convexity of [0, 1]n, there also exists x′ ∈ F ′∩{0, 1}n with a>x′ ≤ β. W.l.o.g.
we may assume F = {x ∈ [0, 1]n : xi = vi, i ∈ [k]} for some v ∈ {0, 1}k.

Consider the faces Fj ⊇ F of [0, 1]n, j ∈ [k], that are defined by dropping
constraint xj = vj from the definition of F . By assumption, each Fj contains

a binary point yj /∈ F satisfying a>yj ≤ β. By construction, yjj = 1 −
vj holds. Let zj ∈ {0, 1}n be the point that coincides with yj except in
coordinate j. Then, zj ∈ F . Since, for all j ∈ [k], a>yj ≤ β and a>zj > β,
we conclude that aj 6= 0 for every j ∈ [k]. Hence, σ(a) ≥ k = n− dim(F ).

To prove the second part of the lemma, let ā ∈ Rn be defined by

āi =


1, if i ∈ [k] and vi = 1,

−1, if i ∈ [k] and vi = 0,

0, otherwise.

for every i ∈ [n], and define

β̄ = max {ā>x : x ∈ [0, 1]n} and

β′ = max {ā>x : x ∈ {0, 1}n \ F}.

Then, argmax {ā>x : x ∈ [0, 1]n} = F and thus β̄ > β′. Consequently,
ā>x ≤ β′ is an inequality which is violated by exactly those binary points
that are contained in F . Moreover, ā has exactly k = n− dim(F ) non-zero
entries.
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This allows us to completely characterize the minimum sparsity of an
integer formulation of X.

Theorem 8. For a non-trivial set X ⊆ {0, 1}n it holds that σ(X) = n −
micb(X).

Proof. To prove the assertion, we first show that each integer formulation
of X contains an inequality with at least n − micb(X) non-zero entries.
Afterwards, we construct an integer formulation all of whose inequalities
are (n−micb(X))-sparse to prove that this bound is tight.

To show the first part, let a>x ≤ β be an inequality valid for conv(X)
that cuts off at least one point x̄ ∈ X and denote the set of all such a by A.
Consider the face

Fa := {x ∈ [0, 1]n : xi = 1 if ai > 0 and xi = 0 if ai < 0, i ∈ [n]}

of [0, 1]n, which coincides with argmax {a>x : x ∈ [0, 1]n}. Note that σ(a) =
n− dim(Fa).

Since a>x ≤ β separates x̄ from conv(X), it separates at least one point
in Fa. Hence, all points in Fa are cut off. Moreover, let F be a maximal face
of [0, 1]n that is completely cut off by a>x ≤ β. On the one hand, if Fa ⊆ F ,
then

dim(F ) ≥ dim(Fa). (1)

On the other hand, if Fa 6⊆ F , then a>x ≤ β cuts off sf(F, Fa) by apply-
ing Lemma 6 to all points of Fa. Thus, all points in sf(F, Fa) have to be
infeasible, which is a contradiction to the maximality of F . Consequently,
all maximal infeasible faces of [0, 1]n that are cut off by a>x ≤ β contain Fa
and fulfill (1).

Let F ? denote a maximal infeasible face of [0, 1]n of minimal dimension.
Then,

max
a∈A

σ(a) = max
a∈A

(n− dim(Fa))
(1)

≥ max
a∈A

(n− dim(F ?)) = n−micb(X),

which proves the proposed lower bound.
To prove the theorem, it suffices to construct an integer formulation

all of whose inequalities are (n − micb(X))-sparse. Let F be the maximal
irredundant infeasible face covering of X. To construct the desired integer
formulation, we take the box constraints x ∈ [0, 1]n to guarantee that each
feasible point is contained in the hypercube. Note that each such constraint
is 1-sparse. Now it suffices to cut off the infeasible faces of [0, 1]n w.r.t. X.
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By Lemma 7, each face F ∈ F can be cut off by an inequality that has
exactly n − dim(F ) non-zero left-hand side coefficients. If we take these
inequalities for all faces in F , we have ensured that we cut off each point
inX since F is a maximal infeasible face covering. These inequalities are (n−
micb(X))-sparse, which proves the assertion.

Remark 9. Since the normal cone of any face of [0, 1]n contains a vector
in {0,±1}n, there always exists a sparsest integer formulation of any non-
trivial X ⊆ {0, 1}n all of whose left-hand side coefficients are contained in
{0,±1}.

We now apply Theorem 8 to investigate whether there exist sparse formu-
lations for several combinatorial optimization problems. First, we consider
the solution set of the traveling salesman problem (TSP), which is to find a
weight minimal Hamiltonian cycle in an undirected graph.

Theorem 10. Let Kn = (V,E) be the complete undirected graph with n ≥ 5
nodes and let X ⊆ {0, 1}E be the set of incidence vectors of Hamiltonian
cycles in Kn. It holds that σ(X) = n− 2.

Proof. To be able to apply Theorem 8, we have to analyze the binary points
that are not contained in X. To this end, we construct for each infeasible
binary point x a certificate, i.e., fixings of variables that ensure infeasibility
of x, of minimum size. The following situations cover all possible cases of
infeasibility: The graph G′ induced by edges e ∈ E with xe = 1

◦ contains a subgraph isomorphic to K1,3,
◦ contains a connected component that is a path graph,
◦ is the empty graph,
◦ contains an induced subgraph which is a cycle of length less than |V |.

In the first case, a certificate of infeasibility is given by fixing the three
edges of K1,3 to 1, because this implies that there is a node in a solution
with degree at least 3. In the second and third case, there is a node v
of G′ whose degree is at most 1. Thus, by fixing n − 2 pairwise different
edges incident to v to 0, we obtain a certificate of infeasibility of size n− 2,
since this enforces that v has at most degree 1 in any solution. Finally, in
the fourth case, every node has degree 2 and if the solution is infeasible, a
subtour contains at most n− 3 nodes. Fixing the corresponding n− 3 edges
to 1 generates a certificate of infeasibility.

Thus, for each infeasible x ∈ {0, 1}E , there exists a certificate of infeasi-
bility of size at most n− 2. Therefore, each infeasible point is contained in
an infeasible face of [0, 1]n of dimension at least |E| − n+ 2. To be able to
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apply Theorem 8, we have to show that there is indeed an infeasible binary
point for which no certificate of size less than n − 2 exists. To see this,
consider the infeasible point x = 0. If at most n− 3 variables are fixed to 0,
a Hamiltonian cycle exists on the remaining edges by Ore’s Theorem [10],
which guarantees the existence of a Hamiltonian cycle if for every pair of
distinct non-adjacent nodes the sum of their degrees is at least the number
of nodes. Consequently, a minimum size certificate of infeasibility for the
zero vector has size n− 2, and Theorem 8 implies the assertion.

Note that the minimum sparsity of the TSP for n = 4 is 3, because the
certificate for aK1,3 subgraph has size 3, which is larger than the bound n−2.
For n = 3, however, Theorem 10 holds, since K3 does not contain a K1,3

subgraph.
The technique used in the proof of Theorem 10 can be used to show that

other formulations are as sparse as possible.

Lemma 11. Let G = (V,E) be an undirected graph and let δ(S) ⊆ E denote
the cut induced by S ⊆ V . If the sets

XC := {x ∈ {0, 1}E : x(δ(S)) ≥ 1, ∅ 6= S ( V },
XM := {x ∈ {0, 1}E : x(δ({v})) = 1, v ∈ V },

Xk := {x ∈ {0, 1}V×[k] :

k∑
i=1

xvi = 1, v ∈ V,

xui + xvi ≤ 1, i ∈ [k], {u, v} ∈ E}

of incidence vectors of connected subgraphs, perfect matchings, and k-color-
ings, respectively, are non-empty, then

σ(XC) = max
S⊆V
|δ(S)|, σ(XM ) = max

v∈V
|δ({v})|, σ(Xk) = k.

Proof. Since the above integer formulations are as sparse as stated in the
lemma, it suffices to show that no sparser formulations exist. As for the
proof of Theorem 10, we will state infeasible points for which no certificate
of smaller size exists. Further details will be omitted. For XC consider the
point x(δ(S)) = 0 with some maximal cut δ(S), for XM consider x(δ({v})) =
0 with some node v ∈ V of maximal degree and finally for Xk consider
xvi = 0 for some node v ∈ V and all i ∈ [k].

Remark 12. In some cases, sparse integer formulations of X describe the
convex hull conv(X) completely: Let GX = (VX , EX) be the subgraph of
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the graph of [0, 1]n induced by VX = X. Let F be the maximal irredundant
infeasible face covering of X and let F ∈ F with k = n − dim(F ). There
exists a vector v ∈ {0, 1}k and a map σ : [k] → [n] such that F = {x ∈
[0, 1]n : xσ(i) = vi, i ∈ [k]}. Let āF be the vector defined by

āF,j =


1, if j = σ(i), vi = 1 for some i ∈ [k],

−1, if j = σ(i), vi = 0 for some i ∈ [k],

0, otherwise.

for j ∈ [n]. Provided that each connected component of GX is a cycle of
length greater than 4 or a path, Cornuéjols and Lee [1] proved that conv(X) is
completely described by box constraints and inequalities ā>Fx ≤ βF , where F ∈
F and βF an appropriately chosen scalar.

Finally, we show that it is hard to compute the minimum sparsity of an
integer formulation or to separate inequalities of such formulations.

Theorem 13. Computing σ(X) for X ⊆ {0, 1}n is NP-hard, even if X
corresponds to the independent sets of a graphic matroid.

Proof. Let G = (V,E) be an undirected simple graph and let X ⊆ {0, 1}E
correspond to the independent sets of a graphic matroid ofG, i.e., X contains
the incidence vectors of cycle free edge sets in G. Let x̄ ∈ {0, 1}E \X, and
let F be an infeasible face of [0, 1]E . If x̄ is the incidence vector of an induced
cycle C of G,

FC := conv({x ∈ {0, 1}E : xe = 1, e ∈ E with x̄e = 1})

is a face of [0, 1]E that contains only infeasible binary points including x̄. All
the faces FC , where C is an induced cycle of G form the maximal irredundant
infeasible face covering of X, since every infeasible point contains an induced
cycle. If a point does not contain any induced cycle, it is contained in the
incidence vector of a tree and is therefore feasible. Thus, the dimension of
each maximal infeasible face of [0, 1]E that contains x̄ is at least |E|−|C| for
the longest induced cycle C encoded by x̄. Hence, computing the minimum
sparsity of an integer formulation of X is equivalent to computing the length
of a longest induced cycle in G by Theorem 8 and the definition of FC .
Computing the maximum length of an induced cycle is NP-hard, see Garey
and Johnson [5, Problem GT23].

In general, formulations with minimum sparsity areNP-hard to separate
as the following example of a knapsack set shows.
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Example 14. Let X be the feasible set of a binary knapsack problem.
Similar to the proof of Theorem 13, one can show that the faces

FC := conv({x ∈ {0, 1}n : xi = 1 for all i ∈ C}),

for every minimal cover C of X, form the maximal irredundant infeasible
face covering of X. Since the sparsity of the cover inequality for a minimal
cover C equals n− dim(FC), an integer formulation with minimum sparsity
of X is given by box constraints and all minimal cover inequalities for X.
Separating this integer formulation is (weakly) NP-hard, see Klabjan et
al. [8].

4 Separation of Dense Formulations

In the previous section, we have seen that sparse formulations are NP-hard
to separate in general. By dropping the sparsity requirement, it is possible
to find tractable, i.e., polynomial time separable, formulations with {0,±1}-
coefficients on the left-hand side of many 0/1-problems. To see this, we
make use of the concept of infeasibility cuts: Given a set X ⊆ {0, 1}n and a
point x̄ ∈ X, the infeasibility or no-good cut w.r.t. x̄ is given by∑

i : x̄i=0

xi +
∑

i : x̄i=1

(1− xi) ≥ 1. (2)

Observe that this inequality is completely dense.
The only binary point that violates this inequality is x̄. Thus, the box

constraints and infeasibility cuts for all infeasible binary points define an in-
teger formulation of X with coefficients in {0,±1}. Obviously, the tractabil-
ity of these inequalities depends on the way X is given. For example, if |X|
is small and can be enumerated explicitly, (2) yields a polynomial size inte-
ger formulation. The following theorem gives a sufficient condition on when
the formulation by infeasibility cuts is tractable.

Theorem 15. Consider some 0/1-problem that defines XI ⊆ {0, 1}n(I)

for each instance I, and let the membership problem for XI be solvable
in polynomial time in n. Then the integer formulation given by (2) for
every x̄ ∈ {0, 1}n(I) \XI and the bounds 0 ≤ x ≤ 1 is tractable in n.

Proof. Since the box constraints 0 ≤ x ≤ 1 can be separated in linear time,
it suffices to show that the separation problem for (2) and x? ∈ [0, 1]n can
be solved in polynomial time.
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Note that the left-hand side of (2) is ‖x̄− x‖1. To solve the separa-
tion problem of infeasibility cuts for X, we solve the auxiliary problem
minx̂∈{0,1}n‖x̂− x?‖1 first. Obviously,

x̂i =

{
0, if x?i ≤ 1

2 ,

1, otherwise,

is a solution of this problem and it can be computed in linear time.
If ‖x̂− x?‖1 ≥ 1, the point x? cannot violate (2) for any x̄ ∈ {0, 1}n.

Hence, x? lies inside the integer formulation of X via infeasibility cuts.
Otherwise, ‖x̂− x?‖1 < 1, and we are done if x̂ ∈ X, because the infeasibility
cut for x̂ is violated by x?. Thus, we can assume in the following that x̂ ∈ X.

Assume now that ‖x̄− x̂‖1 ≥ 2. Then plugging x? into (2) yields∑
i : x̄i=0

x?i +
∑

i : x̄i=1

(1− x?i ) = ‖x̄− x?‖1

=‖(x̄− x̂) + (x̂− x?)‖1 ≥ ‖x̄− x̂‖1︸ ︷︷ ︸
≥2

−‖x̂− x?‖1︸ ︷︷ ︸
<1

> 1.

Thus, (2) cannot be violated in this case. It therefore suffices to check at
most n + 1 points x̄ ∈ {0, 1}n with ‖x̄− x̂‖1 ≤ 1. Thus, we call the mem-
bership problem for each of these points and check whether (2) is violated
by x? if x̄ is infeasible.

Since every X ⊆ {0, 1}n admits an integer formulation via infeasibility
cuts, Theorem 15 shows that there always exist a completely dense formu-
lation that can be separated efficiently, provided the membership problem
is efficiently solvable. Exemplary applications of this result are many com-
binatorial problems like the traveling salesman, longest path, stable set, or
max-cut problem, which are all NP-hard but have a polynomial time solv-
able membership problem.

5 Sparsification by Additional Variables

Theorem 8 shows that general sets X ⊆ {0, 1}n may not admit sparse integer
formulations due to the structure of X. If we allow to introduce additional
variables, i.e., we lift the formulation of X to an extended space, we will
see below that X always admits a 3-sparse formulation. In fact, this re-
sult does not exclusively hold for binary sets but for arbitrary polyhedrally
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representable sets. A mixed-integer set X ⊆ Rn × Zq is polyhedrally repre-
sentable if there exists a polyhedron P ⊆ Rn+q with X = P ∩ (Rn × Zq).
An inequality description Ax ≤ b of P is called a mixed-integer formulation
of X.

Proposition 16. Let X ⊆ Rn × Zq be polyhedrally representable and let
Ax ≤ b be a mixed-integer formulation of X with m inequalities. Then there
exists a mixed-integer formulation of X all of whose inequalities are 3-sparse
with O(m(n+ q)) variables and constraints.

Proof. Consider an inequality a>x ≤ β in the given formulation with s ≥ 4
non-zero coefficients and assume w.l.o.g. that the first s coefficients are non-
zero. We introduce artificial variables y1, . . . , ys−2 and the following s − 1
additional constraints: Define y1 := a1x1 + a2x2 and yk = yk−1 + ak+1xk+1

for each k ∈ {2, . . . , s− 2}, as well as ys−2 + asxs ≤ β. Then the additional
constraints have at most three non-zero coefficients, and a point (x, y) is
feasible for this set of constraints if and only if x fulfills a>x ≤ β.

If X admits a mixed-integer formulation (in its original or in an extended
space) of polynomial size, an immediate consequence of Proposition 16 is
that X admits a 3-sparse mixed-integer formulation of polynomial size in
an extended space. Since the feasible region XI ⊆ {0, 1}n(I) for each in-
stance I of a 0/1-problem whose membership problem is in NP admits an
extended mixed-integer formulation of size polynomial in n(I), see Kaibel
and Weltge [7, Proposition 2], every such problem admits a 3-sparse mixed-
integer formulation of polynomial size. Thus, many combinatorial problems
including the traveling salesman or max-cut problem are sparsely repre-
sentable.

6 Conclusion and Outlook

We exactly characterized the maximum sparsity of inequalities that allows
to define an integer formulation of X ⊆ {0, 1}n and we proved that sparsest
formulations are NP-hard to separate in general. Complementing this re-
sult, we showed that the densest possible formulation via infeasibility cuts
is always separable in polynomial time, provided the membership problem
for X is polynomial time solvable. Moreover, it is possible to derive sparse
formulations in an extended space.

Another interesting topic is to investigate the size of sparse integer for-
mulations. Knapsack problems, for example, admit an integer formulation
consisting of box constraints and an additional completely dense (knapsack)
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inequality. Replacing the knapsack inequality by a family of sparse inequal-
ities typically increases the size of an integer formulation drastically. An
upper bound on the number of non-trivial inequalities in a sparsest formula-
tion is given by the number of maximally infeasible faces of [0, 1]n w.r.t. X,
but this bound may not be tight. The investigation of this topic will be left
for future research.
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cube that have a small Chvátal rank, Mathematical Programming, 172 (2018).

[2] S. S. Dey, A. Iroume, and M. Molinaro, Some lower bounds on sparse
outer approximations of polytopes, Operations Research Letters, 43 (2015),
pp. 323–328.

[3] S. S. Dey, M. Molinaro, and Q. Wang, Approximating polyhedra with
sparse inequalities, Mathematical Programming, 154 (2015), pp. 329–352.

[4] , Analysis of sparse cutting planes for sparse MILPs with applications to
stochastic MILPs, Mathematics of Operations Research, 43 (2017), pp. 304–
332.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman & Co., 1979.

[6] A. Iroume, Sparsity in Integer Programming, PhD thesis, Georgia Institute
of Technology, 2017.

[7] V. Kaibel and S. Weltge, Lower bounds on the sizes of integer programs
without additional variables, Mathematical Programming, 154 (2014), pp. 407–
425.

[8] D. Klabjan, G. L. Nemhauser, and C. A. Tovey, The complexity of cover
inequality separation, Operations Research Letters, 23 (1998), pp. 35–40.

[9] S. T. McCormick, Making sparse matrices sparser: Computational results,
Mathematical Programming, 49 (1990), pp. 91–111.

[10] O. Ore, Note on Hamilton circuits, The American Mathematical Monthly, 67
(1960), p. 55.

13



[11] L. M. Suhl and U. H. Suhl, A fast LU update for linear programming,
Annals of Operations Research, 43 (1993), pp. 33–47.

[12] I. E.-H. Yen, K. Zhong, C.-J. Hsieh, P. K. Ravikumar, and I. S.
Dhillon, Sparse linear programming via primal and dual augmented coor-
dinate descent, in Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.,
Curran Associates, Inc., 2015, pp. 2368–2376.

14


	Introduction
	Lower Bounds on Minimum Sparsity
	Characterization of Minimum Sparsity
	Separation of Dense Formulations
	Sparsification by Additional Variables
	Conclusion and Outlook

