
The

Maximum Feasible Subsystem Problem

and

Vertex-Facet Incidences of Polyhedra

vorgelegt von
Dipl.-Math. Marc E. Pfetsch

aus Heidelberg

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Berichter: Prof. Dr. Günter M. Ziegler
Prof. Dr. Rolf H. Möhring

Tag der wissenschaftlichen Aussprache: 21. Oktober 2002

Berlin 2002
D 83

Acknowledgements

Thanks go out to many people. First of all, I thank Günter M. Ziegler
for making this work possible by offering me a position and giving me the
freedom to work on the things I have been interested in. Working with him,
both in research and in teaching, has always been a pleasure and I have
learned a lot in these four years.

Work on this thesis actually began during my stay at Cornell. I want
to thank Lesie E. Trotter, Jr. for his help regarding my “lost” application. I
thank him and Edoardo Amaldi for introducing me to the maximum feas-
ible subsystem problem and the fruitful joint work; the result is Chapter 1,
parts of Chapter 2, and the motivation for most investigations in this thesis.
Thanks to Edoardo for his invitation to Milan and coming to Berlin.

Thanks also go to my Berlin-coauthors: Michael Joswig, Volker Kaibel,
and Günter M. Ziegler. The results of Chapter 3 are an outcome of the
fruitful atmosphere in the Discrete Geometry Group at the TU Berlin. This
also influenced the work on Chapter 4, which is joint work with Volker Kaibel
(Mr. Pulitzer). The discussions with him have helped a lot to improve the
work and presentation of this thesis; his door and mind have always been
open. Michael Joswig actually raised the question of the “right” complexity
of the problem considered in Chapter 4 and showed me the work of Ganter
(and lots of other things). Thanks!

I also thank Prof. Rolf H. Möhring for his willingness to take the second
assessment for this thesis.

Thanks to Niko Witte for his enthusiasm in implementing and testing
the algorithms discussed in Chapter 4. Thanks also to Michael Joswig and
Ewgenij (Eugen) Gawrilow for polymake and to Ewgenij for “Eugenplot”
and technical support (“purify”!).

I am very grateful to Edoardo Amaldi, Volker Kaibel, Carsten E.M.C.
Lange, Julian Pfeifle, Marc “Vincent” Uetz, and Arnold Waßmer for their
careful reading of parts of this thesis.

I also want to thank Mr. Neighbor Christoph Eyrich (“the hardest working
man in show-biz”) for his LATEX and style/layout support.

And of course, thanks to all the nerds (former and current) of the “Discrete
Geometry” and “Combinatorial Optimization and Graph Algorithms” groups
for the lively and stimulating atmosphere. Special thanks to all the basketball
players (including Lukas). No “Meta-level” in this thesis – I promise.

Berlin, August 2002 Marc Pfetsch

iii

Contents

Acknowledgements iii

Introduction 1

1 The Maximum Feasible Subsystem Problem and
Irreducible Inconsistent Subsystems 7
1.1 Introduction . 8

1.1.1 Basic Definitions . 8
1.1.2 Applications . 10
1.1.3 Computational Complexity, Exact and Heuristical

Solution Methods . 12
1.2 Foundations of Irreducible Inconsistent Subsystems 15

1.2.1 Alternative Polyhedron 17
1.2.2 IIS Simplex Decomposition 20
1.2.3 Minimum Cardinality IISs 22

1.3 Feasible Subsystem Polytope 24
1.3.1 Independence System Polytopes 24
1.3.2 Facets of the Feasible Subsystem Polytope 28
1.3.3 Rank Facets Arising from Generalized Antiwebs 32

2 IIS-Hypergraphs 37
2.1 Basic Properties of IIS-Hypergraphs 40
2.2 Generating IIS-hypergraphs 40
2.3 Generating IIS-Transversal Hypergraphs 42

2.3.1 Non-Faces of Simplicial Complexes 46
2.3.2 Nondegenerate IIS-Hypergraphs 48

2.4 Relation to Vertex-Facet Incidence Hypergraphs 49
2.5 IIS-Hypergraph Recognition 51
2.6 Finite Excluded Minor Characterization 55

3 Vertex-Facet Incidences of Unbounded Polyhedra 65
3.1 Basic Facts . 66
3.2 Reconstructing Polyhedra from Incidences 70
3.3 Detecting Boundedness . 75

v

vi Contents

3.4 Computing the Euler Characteristic 78
3.5 Simple and Simplicial Polyhedra 81

3.5.1 0/1-Matrices with Row and Column Sum d and
Connected Graph . 82

3.5.2 Circulant Matrices . 87
3.5.3 Simple and Simplicial Polyhedra 88

4 Computing the Face Lattice of a Polytope from its
Vertex-Facet Incidences 91
4.1 Introduction . 91
4.2 The Algorithm . 94

4.2.1 The Skeleton of the Algorithm 94
4.2.2 Computing Closures 95
4.2.3 Identifying the Minimal Sets 96
4.2.4 Locating Nodes . 97
4.2.5 The Analysis . 100

4.3 Extensions . 102
4.3.1 Simple or Simplicial Polytopes 102
4.3.2 The k-Skeleton . 103
4.3.3 Computing the “Hasse Diagram without Edges” 103
4.3.4 Oriented Matroids . 104
4.3.5 Computational Experience 106

5 Branch-and-Cut for the Min IIS Cover Problem 109
5.1 Basic Techniques . 109

5.1.1 Checking for an IIS-Cover 111
5.1.2 Preprocessing . 112
5.1.3 Separation of IIS Facets 112
5.1.4 Primal Heuristics . 115

5.2 Facet-defining Inequalities . 115
5.2.1 Balas and Ng Cuts . 116
5.2.2 Gomory Cuts . 117

5.3 Computational Experience . 118
5.3.1 Numerical Issues . 118
5.3.2 Results for the Netlib Problems 120
5.3.3 Results for Random Inequality Systems 122
5.3.4 Results for Machine Learning Problems 139

Bibliography 145

Index 155

Introduction

The maximum feasible subsystem problem, Max FS for short, was introduced
to me in summer 1997. I had just arrived at Cornell University, where I
met Edoardo Amaldi and Prof. Leslie Trotter, Jr. Max FS can be stated
as follows: Given an infeasible linear inequality system, find a maximum
cardinality feasible subsystem.

One reason to take a closer look at this problem is that it has many inter-
esting applications. The two most prominent ones are in linear programming
and in machine learning. In the first, one wishes to analyze the infeasibility
of a given linear program and resolve it. This often occurs in practice if one
uses a modeling software tool and errors occur in the model or data. The
idea is that when we remove the complement of a maximum feasible subsys-
tem, the resulting system is feasible. Hence, one hopes for a small subset of
constraints that account for the infeasibility.

In the second application, one looks for a linear classifier that distin-
guishes between two classes of data. Given a test set of points in �d, each
belonging to one of the two classes, the goal is to find a hyperplane separat-
ing the two classes as good as possible, i.e., misclassifying as few points as
possible. This hyperplane then is likely to classify new data points correctly.
In most cases one cannot find a hyperplane which separates the two classes
exactly and the problem can easily be viewed as a special case of Max FS.
In fact, Max FS has many more interesting applications and the list is still
growing.

As a consequence, one wishes to efficiently solve Max FS or find a solution
that is as good as possible. However, Max FS is NP-hard (Chakravarti [41]),
which makes it unlikely that there exists a polynomial-time algorithm to
solve it. In fact, Max FS is hard to approximate (in polynomial time).
More precisely, it can be approximated within a factor 2 but it does not
admit a polynomial-time approximation scheme unless P = NP (Amaldi
and Kann [6]).

Nevertheless, one wants to solve Max FS in practice. Indeed, several
heuristics have been developed which seem to work well on special instances.
Moreover, Parker and Ryan [95] introduced an exact algorithm, which worked
successfully on a small test set. This algorithm iteratively solves set covering
problems using integer programming methods. The structure of this algo-

1

2 Introduction

rithm suggests a branch-and-cut approach to Max FS, which is currently
the method of choice to solve hard combinatorial optimization problems to
optimality. The main idea of a branch-and-cut approach is to study the poly-
tope corresponding to the problem one wants to solve, i.e., the convex hull of
all incidence vectors for feasible points of the problem. Then one uses linear
programming relaxations of this polytope with additional cutting planes and
combines them with a branch-and-bound process.

The following overview of the genesis of this thesis explains its structure.

As mentioned above, it is fundamental to study the 0/1 polytope PFS,
which is the convex hull of all incidence vectors of feasible subsystems of a
given infeasible linear inequality system Σ. Edoardo Amaldi, Leslie Trot-
ter, and I continued the polyhedral study started by Parker [94]. As every
subset of a feasible subsystem Σ is feasible again, the set of feasible subsys-
tems forms a so-called independence system. Many polyhedral results about
the corresponding 0/1 polytope PIS of (general) independence systems ex-
ist. These results carry over to PFS, since it just a special case. Hence, one
strategy for the investigation of PFS is to see what these results yield for PFS.

It turns out that, in order to get an integer programming formulation
for Max FS, one needs to find Irreducible Inconsistent Subsystems (IIS),
i.e., infeasible subsystems such that every proper subsystem is feasible. It
thus makes sense to look at IISs more closely. We found a new geometric
characterization of IISs and proved that the problem of finding a minimum
cardinality IIS is NP-hard and hard to approximate. We gave a new proof
that IISs give rise to so-called rank facets of PFS. Furthermore, we proved
that the corresponding separation problem is NP-hard. We also started to
tackle the question of recognizing IIS-hypergraphs, i.e., hypergraphs with
each node corresponds to an inequality and each hyper-edge corresponds
to an IIS. In the beginning, the idea was to construct difficult instances of
Max FS by choosing the “combinatorics” of the IISs first and then trying to
find an infeasible system which “realizes” these IISs.

Then, in Summer 1998, after my one year stay in Cornell was over, I
moved to Berlin to join the group of Günter M. Ziegler. Here, the connection
between infeasible linear inequality systems and polyhedra became clearer.
It is provided by a theorem of Gleeson and Ryan [65], which is fundamental
for most parts of this thesis. It states that the IISs of an infeasible system
are in one-to-one correspondence to the supports of vertices of an alternative
polyhedron. Hence, one can use tools for studying polyhedra in order to get
results for infeasible linear inequality systems.

In a joint work with my colleagues Volker Kaibel and Michael Joswig,
and with Günter M. Ziegler, we could settle the following problem: Given

Introduction 3

vertex-facet incidences of a polyhedron P , decide whether P is unbounded or
bounded (i.e., is a polytope). The answer can be obtained by computing the
Euler characteristic of (the order complex of) a special poset. In particular,
this result proves that no unbounded polyhedron can have the same vertex-
facet incidences as a polytope and conversely. This problem arose when
proving NP-hardness of the above mentioned IIS-hypergraph recognition
problem, i.e., the problem to decide whether a given hypergraph is an IIS-
hypergraph.

In connection with these results, it also became clear that, in general,
one cannot reconstruct the face lattice of a polyhedron, i.e., its set of faces
ordered by inclusion, from its vertex-facet incidences. The reason is that we
are missing information about unbounded edges, i.e., about the “situation
at infinity”. Another result is that the structure of polyhedra which have
circulant matrices as vertex-facet incidences can be described. We proved
that this is equivalent to the following: Every pointed d-polyhedron which
is simple (each vertex lies in d facets) and simplicial (each facet contains
d vertices) is a simplex or a polygon, if d ≥ 2. Such polyhedra arise in the
context of so-called generalized antiwebs, a large class of structures which
induce facets of PIS. This result leads to a characterization of such facets
for the special case of PFS and shows that only two very limited types of
generalized antiwebs can occur in this context.

After this, together with Volker Kaibel, we found an algorithm that com-
putes (the Hasse diagram of) the face lattice of a polytope P , given its
vertex-facet incidences, in time O(min{n, m} · α · ϕ), where n is the number
of vertices, m is the number of facets, α is the number of vertex-facet inci-
dences, and ϕ is the total number of faces of P . In fact, this algorithm works
for arbitrary atomic and coatomic lattices, if the atom-coatom incidences
are given. This makes it possible to generate the above mentioned poset for
deciding whether a polyhedron is bounded or unbounded. This poset can
be turned into an atomic and coatomic lattice. Then its Euler characteristic
can be obtained by computing the Möbius function of this lattice.

Besides all this, I implemented a branch-and-cut algorithm for Max FS.
It provides a first step towards a relatively efficient way of obtaining optimal
solutions of Max FS. The focus lies on the separation of facet-defining in-
equalities arising from IISs and on two other types of cutting planes. One
class is a special case of inequalities introduced by Balas and Ng. Further-
more, Gomory cuts were implemented. So far I could neither find other
facet-defining inequalities for PIS for which the separation problem could be
solved in polynomial time, nor special cutting planes for PFS. These lines
have to be left open for future research.

4 Introduction

Looking back at the results collected in this thesis, one should add that
Max FS is not only interesting because of its many applications, but also
because of its connections to other areas, as pointed out above. In particu-
lar, Max FS provides the motivation to study problems for polyhedra that
are interesting on their own right. Moreover, the independence system of
feasible subsystems may be an important special case of general independ-
ence systems, besides, for instance, matroids or feasible solutions to knapsack
problems.

In the above overview, I indicated that the connections between the dif-
ferent parts of the thesis and the tools used arise naturally when studying
the Max FS problem. Moreover, throughout the text a rather broad range
of themes is touched, including classical polyhedral approaches in combina-
torial optimization, computational complexity theory, polytope and polyhe-
dral theory, combinatorial topology, computational geometry, practical pro-
gramming issues, and some more. Additionally, the used techniques and
tools range from basic observations and constructions to the application of
rather advanced theorems, e.g., the universality theorem about 4-polytopes of
Richter-Gebert (see Section 2.5). I hope that the unifying theme is nonethe-
less clear and that this thesis shows the connection between its beautiful
results in different areas.

The structure of this thesis reflects the “historical” process I have de-
scribed above. Roughly put, the first chapter studies Max FS, giving the
motivation for the other chapters, in return incorporating results of these
chapters. A more detailed outline of this thesis is as follows:

Chapter 1: This chapter deals with the Max FS problem itself and with
irreducible inconsistent subsystems (IISs). We give basic definitions and
describe applications and solution methods for Max FS. We then study
IISs, providing an overview of the known results, before establishing a new
geometric characterization of IISs. It is then proved that the problem to find
an IIS of smallest cardinality is NP-hard and hard to approximate. After
that we turn to the PFS polytope. A new geometric proof of the fact that
IISs give rise to facets of PFS is given. Then generalized antiwebs are studied
and it is characterized when these structures yield facets of PFS, applying
results of Chapter 3.

Chapter 2: Here we study IIS-hypergraphs. We give an overview of
known results and then discuss how to generate an IIS-hypergraph or an
IIS-transversal hypergraph if an infeasible linear inequality system is given.
In the next section we develop tools to translate between IIS-hypergraphs and
vertex-facet incidence hypergraphs of polyhedra. Then the IIS-hypergraph

Introduction 5

recognition problem is shown to be NP-hard and finally it is proved that no
finite excluded minor characterization of (partial) IIS-hypergraphs can exist.

Chapter 3: This chapter investigates vertex-facet incidences of unbounded
polyhedra. We study under which conditions one can reconstruct the face
lattice of the polyhedron from its vertex-facet incidences and show that in
general this is impossible, even if the vertex-facet incidences satisfy several
natural restrictions. Nevertheless, we show that it is always possible to distin-
guish between vertex-facet incidences coming from polytopes and incidences
coming from unbounded polyhedra. This can be done by determining the
Euler characteristic of an appropriate complex; we then discuss the compu-
tational complexity of computing it. Finally, we show that no unbounded
simple and simplicial polyhedra exist.

Chapter 4: We present an algorithm which can compute the Hasse diagram
of the face lattice of a polytope from its vertex-facet incidences in time poly-
nomial in the size of the input and only linearly in the size of the output. We
discuss specializations of this algorithm for simple and simplicial polytopes,
to compute the k-skeleton, to compute the face lattice without the edges of
the Hasse diagram using less working space, and the application to oriented
matroids. Finally, we provide computational results of an implementation of
this algorithm.

Chapter 5: A branch-and-cut implementation for the Max FS problem
is presented. We discuss heuristics to find IISs and the types of cutting
planes that are used. We then give computational results on three different
sets of test instances: infeasible systems collected in the Netlib library, ran-
dom inequality systems, and instances arising from classification problems in
machine learning.

Throughout this thesis we assume that the reader is familiar with the
foundations of polyhedral theory, computational complexity theory, and lin-
ear and combinatorial optimization. For polyhedral/polytope theory we refer
to the book of Ziegler [115]. For computational complexity theory we refer to
the classical book by Garey and Johnson [62] and to Papadimitriou [93]. For
linear and combinatorial optimization we refer to the books by Grötschel,
Lovász, and Schrijver [69], Nemhauser and Wolsey [90], and Schrijver [107].
We furthermore assume basic knowledge about simplicial complexes, see
Ziegler [115, Chapter 8] or Björner [29].

Most pictures of polytopes in this thesis were produced using the software
tools polymake [63, 64] and JavaView [97, 98].

Chapter 1

The Maximum Feasible Subsystem Problem

and Irreducible Inconsistent Subsystems

This chapter provides a study of basic properties related to the maximum
feasible subsystem problem (Max FS), which is a combinatorial optimization
problem and can be stated as follows: Given an infeasible linear inequality
system, find a maximum cardinality feasible subsystem.

After introducing basic notions related to Max FS, we give an overview
of its applications, solution methods, and provide corresponding references
(Section 1.1). We then study Irreducible Inconsistent Subsystems (IIS) of
an infeasible linear inequality system, i.e., infeasible subsystems such that
every proper subsystem is feasible. IISs are of importance for Max FS,
since one has to remove at least one inequality out of each IIS to get a
feasible subsystem. In Section 1.2, we first summarize known results about
IISs, in particular, the very fundamental one-to-one correspondence between
the IISs of an infeasible system and the vertices of an alternative polyhedron
(Section 1.2.1). This result provides the basic connection between questions
arising in this chapter and the results of Chapter 3, in which we study vertex-
facet incidences of polyhedra. Then, in Section 1.2.2, we give a new geometric
characterization of IISs (“simplex decomposition theorem”) and deal with the
algorithmic question of finding a minimum cardinality IIS (Section 1.2.3). We
prove that this problem is NP-hard and hard to approximate.

In Section 1.3, the 0/1 polytope PFS corresponding to Max FS is studied,
which is the convex hull of all incidence vectors of feasible subsystems of a
given infeasible linear inequality system. First, PFS is introduced in the con-
text of independence system polytopes. We then give a new geometric proof
of the fact that inequalities arising from IISs are facet-defining and show
that the corresponding separation problem is NP-hard (Section 1.3.2). In
Section 1.3.3, we consider the specialization of generalized antiweb inequal-
ities, a class of facet-defining inequalities for general independence system
polytopes. We show that only very special types of these inequalities can
actually arise for PFS and characterize the cases in which they define facets.

This chapter is joint work with Edoardo Amaldi and Leslie E. Trotter, Jr.
Most parts appear in [9].

7

8 Max FS and IISs

1.1 Introduction

In this section, we give the basic definitions needed for the first two chapters.
We then briefly review many interesting applications of the Max FS problem.
After that, the current knowledge on the computational complexity of Max

FS as well as exact solution methods and heuristics are discussed.

1.1.1 Basic Definitions

Throughout this chapter, let Σ : {Ax ≤ b} be an infeasible linear inequality
system, with A ∈ �m×n and b ∈ �m.1

We study the following combinatorial optimization problem, which is
called the maximum feasible subsystem problem.

Max FS: Given an infeasible system Σ : {Ax ≤ b}, find a feasible subsys-
tem of Σ containing as many inequalities as possible.

A subsystem of Σ is feasible if and only if it does not contain a minimal
infeasible subsystem or irreducible inconsistent subsystem:

Definition 1.1. A subsystem Σ′ of an infeasible system Σ : {Ax ≤ b} is
an irreducible inconsistent subsystem (IIS), if Σ′ is infeasible and all of its
proper subsystems are feasible.

Denote the ith row of the matrix A by ai ∈ �n, 1 ≤ i ≤ m. Throughout
the text, we identify the ith inequality of the system Σ (i.e., aix ≤ bi)
with the index i. Hence, an IIS is just a subset of [m] := {1, . . . , m}. We
denote by C(Σ) ⊂ 2[m] the set of all IISs of Σ. The number of IISs can grow
exponentially with m and n (see Chakravarti [41])2. We are also interested
in the following problem.

Min IIS: Given an infeasible system Σ : {Ax ≤ b}, find a minimum car-
dinality IIS of Σ.

We need the following definition:

Definition 1.2. Let T be a subset of the inequalities of an infeasible system
Σ : {Ax ≤ b}. Then T is an IIS-transversal or IIS-cover, if T ∩ C �= ∅ for
every IIS C of Σ.

1To be able to treat such systems in a computer and for the following problems to fit
into (classical) complexity theory, we implicitly assume that the coefficients of A and b are
finitely represented wherever it is necessary, e.g. that they are rational or real algebraic
numbers; the later assumption is no restriction of generality (see Chapter 2, page 38).

2This can also be seen from Theorem 1.12, Lemma 1.10, and the fact that there exist
polytopes with exponentially many vertices in the number of facets and the dimension
(see Section 2.2).

1.1 Introduction 9

A complementary version of Max FS is: Given Σ as above, delete as few
inequalities from Σ such that the resulting system is feasible. Since we have to
remove at least one inequality from every IIS to make the system feasible, this
amounts to removing the inequalities of an IIS-transversal from Σ. Hence,
this complementary version can be formulated as follows:

Min IIS Cover: Given an infeasible system Σ : {Ax ≤ b}, find an IIS-
cover of minimum cardinality.

Min IIS Cover has the following integer programming formulation as a set
covering problem:

minimize
m∑

i=1

yi

Min IIS Cover s. t.
∑
i∈C

yi ≥ 1 ∀C ∈ C(Σ) (1.1)

yi ∈ {0, 1} 1 ≤ i ≤ m.

Of course, weighted versions of Max FS and Min IIS Cover are also im-
portant. Most of the solution methods presented in Section 1.1.3 below can
handle these cases directly or can be modified to do so. The branch-and-cut
algorithm discussed in Chapter 5 needs only slight changes to solve weighted
Min IIS Cover instances.

Moreover, in view of solving Max FS or Min IIS Cover we can without
loss of generality assume that Σ is in inequality form {Ax ≤ b}. Inequalities
of type “≥” can be reversed easily and strict inequalities can be treated
with some care. Bounds on variables (e.g., nonnegativity constraints) can
be converted to general inequalities. Moreover, any equation ax = β can be
substituted by the pair of inequalities ax ≤ β and −ax ≤ −β. Hence, any
generalized Max FS instance I with m1 equations and m2 inequalities can
obviously be reduced to a Max FS instance I ′ with 2m1 + m2 inequalities
and no equations, in which one aims at maximizing the number of such pairs
that can be simultaneously satisfied. Since any vector x satisfies at least one
inequality of each pair, an optimal solution of I contains m∗ linear relations
if and only if an optimal solution of I ′ contains m∗ + m1 inequalities. Thus,
from a computational point of view, solving such generalized instances of
Max FS with mixed systems is equivalent to solving Max FS for instances
of the form {Ax ≤ b}. Nevertheless, the branch-and-cut algorithm presented
in Chapter 5 directly solves generalized instances of Max FS.

Not all of the results of this chapter, however, can easily be extended to
mixed systems. For instance, a generalization of the simplex decomposition
characterization (Theorem 1.18) is unknown. Theorem 1.26, about facets

10 Max FS and IISs

of PFS arising from IISs, is false in the general setting, see Example 1.28.
On the other hand, all complexity results obviously carry over to the general
case, e.g., for the Min IIS problem (Theorem 1.21) and the IIS-hypergraph
recognition problem (Theorem 2.19). Note that a generalized version of the
alternative polyhedron result (Theorem 1.12) for general mixed systems is
given in Theorem 1.13.

1.1.2 Applications

Many interesting applications of Max FS/Min IIS Cover exist, for in-
stance, in linear programming, telecommunications, machine learning, ar-
tificial neural networks, image processing, speech machine translation, and
computational biology. In this section, we briefly sketch some of these appli-
cations. Of course, we do not claim that this list is complete. Let us refer to
the thesis of Amaldi [4] for a more detailed collection of applications.

A well investigated application of Max FS/Min IIS Cover is in linear
programming. Here, it arises when the LP formulation phase yields infeasible
models and one wishes to diagnose and resolve infeasibility. In most situa-
tions this cannot be done by inspection and the need for effective algorithmic
tools has become more acute since the models have become larger and larger
over the last decades. One approach to tackle this problem is to find a set of
constraints that is as small as possible such that deleting these constraints
results in a feasible system; this is just the Min IIS Cover problem. The
hope is that the number of inequalities that have to be deleted is small and
these inequalities capture the cause of the infeasibility well. This applica-
tion is discussed, for instance, in Greenberg and Murphy [67], and Parker
and Ryan [95]. Chinneck [46] gives an overview. Algorithms for it are also
mentioned in Section 1.1.3.

An application of Max FS in telecommunications is described by Rossi,
Sassano, and Smriglio [101]. Here, to plan the digital video broadcasting
network of Italy, transmitters have to be placed and their emission frequency
and power have to be chosen as to maximize the area coverage, subject
to quality constraints. A subproblem of this can be modeled as a linear
inequality system. Interference of the signals leads to areas where the digital
signal cannot be received, resulting in an infeasible system. Maximizing
the total weight of satisfied inequalities then amounts to maximize the area
coverage.

In machine learning, the application of Max FS/Min IIS Cover arises
when the goal is to find a linear classifier (a hyperplane) separating two
classes of points in �n−1. One wants to minimize the number of misclassified

1.1 Introduction 11

points in a test set, as to maximize the chances that a new point can be
correctly classified. The problem of finding such a classifier can easily be
formulated as an instance of Min IIS Cover in �n, compare Section 5.3.4
of Chapter 5. See Bennett and Bredensteiner [24], Bennett and Mangasar-
ian [25], Greer [68], Mangasarian [83], and Parker [94] for more information
and examples.

An application equivalent to finding such a linear classifier arises in ar-
tificial neural networks. The building blocks of an artificial neural network
are so-called perceptrons. A perceptron has n inputs xi ∈ � and a weight
wi ∈ � attached to each of these inputs. The perceptron is determined by
the weight vector (w1, . . . , wn) and an additional number w0 ∈ �. If an input
vector x ∈ �n is given, the output of the perceptron is 1 if

∑n
i=1 wi xi > w0

and −1 otherwise. Hence, a perceptron is just a linear classifier and the goal
in training a perceptron is to minimize the misclassified input vectors. We
refer to Amaldi [3, 4] for more information.

Max FS also appears as a subproblem in a method to solve line detection
problems in image processing. Here, one is given a black and white picture
with noise and wants to detect line segments. Any line (not going through 0)
can be defined by an equation a1x1 + a2x2 = 1, where (x1, x2) are the pa-
rameters of the line we are looking for and (a1, a2) is a point on the line. If
the matrix A has a row (a1, a2) for each black point in the picture, we get
a system Ax = �, which is usually infeasible. The set of points lying on a
common line gives rise to a feasible subsystem. This leads to the Min PFS

problem: Given an infeasible system Ax = b, partition it into a minimum
number of feasible subsystems. To solve such a problem in practice, one
replaces each equation akx = bk by the two inequalities akx ≤ bk + ε and
akx ≥ bk − ε for some ε > 0. A greedy approach to solve Min PFS consists
of finding a maximum feasible subsystem, removing it from the system, and
iterating. Using relaxation methods as a heuristic for the Max FS problem
(see Section 1.1.3) Amaldi and Mattavelli [8] obtain very good results com-
pared to other known approaches; see [8] and the references therein for more
information on this application.

An application of Max FS in speech machine translation is discussed
by Küssner and Tidhar [79]. In their approach one is given four different
speech translation programs and wants to exploit the fact that each of them
provides a good translation in different contexts to obtain a good translation
as possible. When one of these programs returns a translated sentence, it also
outputs a confidence value for the correctness of the translation. Each such
value is a number in the interval [0, 100], but values of different programs
are not directly comparable to each other. Hence, the goal is to rescale

12 Max FS and IISs

these confidence values (linearly) such that they become comparable. For
a given input sentence one then takes the translation of the program that
returned the best rescaled confidence value. The rescaling is performed as
follows. Each confidence value c(p) of a translation program p is rescaled
to a(p) · c(p) + b(p), where a(p), b(p) ∈ � have to be determined. The
programs are tested on training data and evaluated by human annotators.
For each test sentence, linear inequalities are introduced that imply that the
rescaled confidence value of the program with the best performance should
be greater than the values of the other programs. This naturally leads to
infeasible linear inequality systems and the goal is to find a(p) and b(p) for
each program p, such that the number of satisfied inequalities is maximized.

In computational biology an application of Max FS arises in the con-
text of protein folding. One is given the sequence of amino acid residues
that form a given protein and wants to predict its “native” three-dimensional
structure (a folding). This is of great interest since the structure crucially
determines the chemical properties of a protein. Wagner, Meller, and El-
ber [114] describe the following approach to protein folding. The structure
of the protein is assumed to be determined by an energy potential func-
tion E(s, x) for a sequence s and three-dimensional structure (positions of
the amino acids) x. One adopts the usual assumption that the protein with
sequence s is in its “native” folding structure x∗ if and only if E(s, x∗) is
minimum over all possible structures x. The energy E is then expressed by
appropriate “basis functions” φi, such that E(s, x) =

∑
i yi φi(s, x), where

the yi are parameters to be determined. For instance, φi(s, x) could measure
the number of “contacts” between different amino acid residues that have
influence on the energy function. Using a huge database on sequences and a
program to generate misfolded structures, one introduces inequalities as to
guarantee that E(s, x) is minimized by the native structure. Since often the
data contains errors and the model and data are not good enough to iden-
tify the “native” structure, this leads to an infeasible linear inequality system
with millions of inequalities and with hundreds of variables. Solving a feas-
ible subsystem of maximum cardinality yield the parameters yi, which are
likely to determine the “native” three-dimensional structure of the protein.
Wagner, Meller, and Elber use a heuristic to find a large feasible subsystem
by repeatedly applying an interior point solver.

1.1.3 Computational Complexity, Exact and Heuristical Solution Methods

Max FS is strongly NP-hard (compare Chakravarti [41] and Johnson and
Preparata [72]). It is strongly NP-hard even when the matrix A has −1/1

1.1 Introduction 13

coefficients only (Amaldi and Kann [6]) and when A is totally unimodular
and b is integer (Sankaran [105]). It is solvable in polynomial time, however,
if [A b] is totally unimodular (see [105]). If the number of variables n is
fixed, Max FS can be solved in polynomial time by an O(n · mn/2n−1) time
algorithm of Greer [68]. If the number of constraints m is fixed, one can
enumerate all possible subsystems in polynomial time.

Max FS can be approximated within a factor 2, but it does not admit
a polynomial-time approximation scheme, unless P = NP (see Amaldi and
Kann [6]). Although Max FS and Min IIS Cover are equivalent with
respect to solving them optimally (and hence Min IIS Cover is NP-hard),
the latter is much harder to approximate: Unless P = NP , Min IIS Cover

cannot be approximated within any constant factor. It can, however, be
approximated within n + 1, where n is the number of variables (Amaldi and
Kann [7]). With respect to approximation, different versions of the problem
with varying types of the relations (i.e., “≤”, “=”, “ �=”) behave differently.
We refer to Amaldi and Kann [6, 7] for details.

Let DTIME(T (s)) denote the class of problems whose instances of size s
can be solved in deterministic time O(T (s)), where T : � → � is some
function, and write polylog m for any polynomial in log m. The assump-
tion NP � DTIME(spolylog s) is stronger than NP �= P , but it is also be-
lieved to be extremely likely; it amounts to the claim that not all problems
in NP can be solved in quasi-polynomial time. The Min IIS Cover prob-
lem cannot be approximated within a factor of 2log1−ε n, for any ε > 0, unless
NP ⊆ DTIME(spolylog s), where n is the number of variables. This was
proved by Amaldi and Kann [7], applying results of Arora, Babai, Stern, and
Sweedyk [10].

An exact algorithm to solve Min IIS Cover, based on a set cover formu-
lation, is proposed in Parker [94] and Parker and Ryan [95]. The algorithm
iteratively solves the integer program (1.1) for a partial list of IISs, using
an integer programming solver. Then either it is correctly concluded that
the optimal cover is found, or at least one uncovered IIS is found and the
process is iterated. This approach is explained in more detail in Section 5.1
of Chapter 5. Parker and Ryan tested variants differing in the method to
find uncovered IISs on a collection of infeasible LPs available in the Netlib
library (see Section 5.3.2 of Chapter 5). These problems are also used as a
test set for the heuristics described below.

In the context of linear programming, several heuristics were proposed to
solve Min IIS Cover. In order to help the modeler resolve infeasibility of
large linear inequality systems, attention was first devoted to the problem of
identifying IISs with a small and possibly minimum number of inequalities

14 Max FS and IISs

(see Greenberg and Murphy [67]), which amounts to solving or approximating
Min IIS. Chinneck [47], Chinneck and Dravnieks [49] proposed and tested
several heuristics, which are now available in commercial LP-solvers such as
CPLEX and MINOS (see Chinneck [44]). These heuristics are of greedy type.

Clearly, in the presence of many overlapping IISs, this does not provide
enough information to repair the original system. Hence, the emphasis shifted
to the application of Min IIS Cover, in hope that a minimum cardinality
IIS-cover comprises the essential information about infeasibility of the model.
Heuristics and computational results are given in Chinneck [45, 48]. The
heuristics are again greedy algorithms.

Many of the mentioned heuristics use so-called elastic programs. Here,
slack variables are introduced into an infeasible system Ax ≤ b to obtain the
feasible system: Ax−s ≤ b, s ≥ 0. Equations should be relaxed “two-sided”.
Other cases can be handled similarly. A feasible solution of such a system,
e.g., minimizing

∑m
i=1 si, can then heuristically be exploited to search for

small IIS-covers.
Going one step further, one can formulate Min IIS Cover as a 0/1-

integer program using a “big-M ” as follows:

minimize z1 + z2 · · · + zm

s. t. Ax − s ≤ b

s ≤ Mz

s ≥ 0, z ∈ {0, 1}m.

Clearly, the choice of M is delicate: It has to be large enough so that the
system is feasible and small enough not to introduce too much numerical in-
stability. See the thesis of Parker [94] for more information. He reports that
this approach has problems to even solve medium size instances in the Netlib
library (compare the results of Section 5.3.2). Nevertheless, for the applica-
tion in digital video broadcasting, explained above, the “big-M ” formulation
works reasonable, outperforming other exact approaches. One reason for this
behavior could be that in this application bounds on the variables are not
allowed to be removed in order to obtain a feasible solution.

For the application of Min IIS Cover in machine learning (see Sec-
tion 1.1.2), several heuristics were proposed which use methods from nonlin-
ear programming (Bennett and Bredensteiner [24]; Bennett and Mangasar-
ian [25]; Mangasarian [83]). Mangasarian [84] introduced an algorithm which
by Theorem 1.12 is a heuristic for Min IIS.

A class of algorithms for solving Max FS are extensions of the relaxation
method. Originally, this method was developed by Agmon [2] and Motzkin

1.2 Foundations of Irreducible Inconsistent Subsystems 15

and Schoenberg [89] to find a solution of a feasible system {Ax ≤ b}. At
iteration k, one has a current point zk ∈ �n. One then chooses i ∈ [m] such
that aizk > bi, if this is possible. The new point zk+1 is obtained as

zk+1 = zk − λ
aizk − bi

‖ai‖2
ai,

where λ ∈ (0, 2] is a chosen step length. If no violated inequality aix ≤ bi

is found, the process terminates. After each step, the violation aizk − bi is
decreased, while the violation of other inequalities may have increased.

If λ = 2 and the system is feasible and full-dimensional, this process
yields a feasible solution in a finite number of steps (although exponential
in the worst-case), see Chapter 12.3 of Schrijver [107]. If this approach is
applied to an infeasible system, it obviously can never terminate or converge.
One can, however, decrease the step length λ after every iteration. If this
decrease is sufficiently slow, the method converges. The decisions in the
algorithm can also be randomized, leading to so-called “probabilistic ther-
mal perceptron algorithms”, see Amaldi [4]. Amaldi and Hauser [5] propose
more variants, prove convergence under certain circumstances, and report on
computational experiments. Such methods rapidly find a solution satisfying
many inequalities and are insensitive to numerical instabilities. Relaxation
methods, however, have so far only be applied to the case without implicit
equations in the system. Nevertheless, many applications of Max FS are
formulated with strict inequalities and hence no implicit equations are pos-
sible. This, for instance, is the case for the applications in machine learning,
protein folding, and digital video broadcasting, presented in Section 1.1.2.

1.2 Foundations of Irreducible Inconsistent Subsystems

The known characterizations of irreducible inconsistent subsystems are based
on the following version of the Farkas lemma:

Proposition 1.3. For any system Σ : {Ax ≤ b}, either {Ax ≤ b} is feasible
or there exists y ≥ 0 such that yA = 0 and yb < 0, but not both.

Throughout this section let A′ ∈ �k×n and b′ ∈ �k; e.g., {A′x ≤ b′}
could be an infeasible subsystem of Σ.

Theorem 1.4 (Motzkin [88]). If the system {A′x ≤ b′} is an IIS then
rank(A′) = k − 1.

This immediately has the following consequence.

16 Max FS and IISs

Corollary 1.5 (Motzkin [88]). Any IIS of Σ has size at most n + 1.

Combining Proposition 1.3 and Theorem 1.4, we get the following char-
acterization of IISs, which is a strengthened version of a theorem obtained
by Fan (see van Loon [113]).

Theorem 1.6 (Fan [55]). The system {A′x ≤ b′} is an IIS if and only if
rank(A′) = k − 1 and there exists y ∈ �k, y > 0, such that yA = 0 and
yb < 0.

Van Loon characterized IISs in terms of simplex tableaus. For notational
convenience we let {Ax ≤ b} be the candidate for an IIS, where A ∈ �m×n

and b ∈ �m. For his approach, one introduces slack variables to obtain the
system Ax + s = b, s ≥ 0. For 1 ≤ i ≤ m, let Ai be the matrix obtained
by deleting row i from A. Similarly, let bi and si be the vectors obtained by
deleting the ith component of b and s, respectively. Denote by xB a subset
of m − 1 variables of x and xN the remaining ones. Let B and N be the
submatrices of Ai consisting of the columns corresponding to xB and xN ,
respectively.

Theorem 1.7 (Van Loon [113]). The system Ax + s = b, s ≥ 0 corres-
ponds to an IIS if and only if there exists a slack variable si, such that the
system can be solved with respect to si and xB, i.e., there exists yi ∈ �,
y ∈ �m−1, s ∈ �m, and xB with corresponding non-singular B, such that

si = yi − ysi

xB = B−1bi − B−1NxN − B−1si

yi < 0, y > 0 .

Van Loon further observes that one can identify an IIS in a larger infeasible
system if the simplex tableau of a phase I invocation is available. Moreover,
other IISs may be found by pivoting in this tableau. This result provided the
foundation for several approaches to use IISs as a way to analyze infeasibility
of linear programs (see also Section 1.1.3).

The following result establishes an interesting geometric property of the
polyhedra obtained by deleting any inequality from an IIS.

Theorem 1.8 (Motzkin [88]). Let Σ′ be an IIS. Then the polyhedron de-
fined by the subsystem of Σ′ obtained by removal of an arbitrary inequality
is an affine convex cone.

1.2 Foundations of Irreducible Inconsistent Subsystems 17

1.2.1 Alternative Polyhedron

There exists a simple – but far reaching – relation between the IISs of Σ and
the vertices of the following polyhedron.

Definition 1.9. Define

P (Σ) := {y ∈ �m : yA = 0, yb = −1, y ≥ 0}

to be the alternative polyhedron associated to Σ.

Two polyhedra P ⊂ �p and Q ⊂ �q are affinely equivalent (which is denoted
by P ∼= Q), if there exists an affine map φ : �p → �q which establishes a
one-to-one correspondence between points in P and Q. Any pointed poly-
hedron Q that is not a cone can be expressed as an alternative polyhedron,
which is affinely equivalent to Q.

Lemma 1.10. Let P be a d-dimensional pointed polyhedron with m facets
which is not a polyhedral cone. Then there exists A ∈ �m×(m−d−1), b ∈ �m,
such that the polyhedron

P ′ = {y ∈ �m : yA = 0, yb = −1, y ≥ 0}

is affinely equivalent to P , and all inequalities yj ≥ 0, 1 ≤ j ≤ m, define
facets of P ′.

Proof. The proof uses standard techniques.
Without loss of generality, we can assume that P is full-dimensional

(otherwise find implicit equations by linear programming and use these to
eliminate variables). Furthermore, we can assume that P is represented by
{x ∈ �d : Dx ≤ d}, where each inequality defines a facet of P (redundant
inequalities can again be removed using linear programming). Since P is
pointed, D has full rank and hence P can be represented as:{

x ∈ �d

∣∣∣∣ (
D1

D2

)
x ≤

(
d1

d2

)}
,

where D1 is a non-singular d×d matrix, D2 is an (m−d)×d matrix, d1 ∈ �d,
and d2 ∈ �m−d. Apply the affine transformation x �→ D−1

1 (d1 − u), where
u := d1 − D1x ∈ �d, to obtain:(

D1

D2

)
D−1

1 (d1 − u) ≤
(

d1

d2

)
⇔

(
−I

−D2D
−1
1

)
u ≤

(
0

d2 − D2D
−1
1 d1

)
.

18 Max FS and IISs

Setting d′ := d2 − D2D
−1
1 d1 and D′ := −D2D

−1
1 ∈ �(m−d)×d gives

P ∼= {u ∈ �d : D′u ≤ d′, u ≥ 0}.

Clearly, all inequalities define facets. The usual introduction of slack vari-
ables s ∈ �m−d yields

P ∼= {(u, s) ∈ �d ×�m−d : D′u + Is = d′, u ≥ 0, s ≥ 0}.

All inequalities define facets and the matrix [D′ I] has size (m − d) × m.
Since P is not a cone, d′ �= 0. Therefore, d′ has at least one nonzero

component, say the last one. By adding multiples of the last row to the
other rows of [D′ I |d′], we can eliminate all other nonzero components of d′.
The resulting system with matrix [A′ A′′] and right hand side (0, . . . , 0, α),
with α �= 0, clearly defines an affinely equivalent polyhedron. Let AT denote
the matrix [A′ A′′] without the last row and let b be the last row of [A′ A′′]
divided by −α (in order to scale the right hand side to −1). We then have
A ∈ �m×(m−d−1), b ∈ �m, and

P ∼= P ′ := {y ∈ �m : yA = 0, yb = −1, y ≥ 0},

where each inequality yj ≥ 0 defines a facet for j = 1, . . . , m. Since only
affine transformations were applied, P ′ is affinely equivalent to P .

Remark 1.11. Starting from a (rational) description of P , all transforma-
tions used in the proof of Lemma 1.10 can be applied in polynomial time
(in the size of P). Furthermore, if P is described with coefficients in some
subfield K of �, e.g., K = �, the resulting description has coefficients in K
as well. This will be used later (see Section 2.4).

We now come to the key relation between IISs and (supports of) vertices
of the alternative polyhedron. Recall that the support of a vector y ∈ �m,
denoted by supp y, is the set of indices of its nonzero components, i.e.,
supp y := {i ∈ {1, . . . , m} : yi �= 0}.

Theorem 1.12 (Gleeson and Ryan [65]). The index sets of IISs of Σ are
exactly the supports of vertices of the alternative polyhedron P (Σ).

Proof. We provide a new proof for convenience of the reader.
Let Σ′ : {A′x ≤ b′} be an IIS of size k of Σ : {Ax ≤ b}. W. l. o. g. we can

assume that Σ′ consists of the first k rows of Σ. Since Σ′ is infeasible, by the
Farkas lemma (Proposition 1.3) there exists y = (y′,0) ≥ 0 with y′ ∈ �k,
such that ATy = 0 and yb < 0. Since Σ′ is minimally infeasible, it follows

1.2 Foundations of Irreducible Inconsistent Subsystems 19

that y′ > 0. We want to show that there exists a vertex v of P (Σ) whose
support indexes the rows of Σ′, i.e., supp v = {1, . . . , k}.

By Minkowski’s theorem (see, e.g., Nemhauser and Wolsey [90, Chap-
ter I.4] or Schrijver [107, Chapter 8]), there exist vertices v1, . . . , vs of P (Σ)
and generators r1, . . . , rt of extreme rays of P (Σ) such that

y = λ1 v1 + · · · + λs vs + µ1 r1 + · · · + µt rt

for appropriate

λ1, . . . , λs > 0 with λ1 + · · · + λs = 1 and µ1, . . . , µt > 0.

It is possible that t = 0. Since vi, rj ≥ 0 and λi, µj > 0, it follows that
supp vi ⊆ supp y for all i = 1, . . . , s. In fact, we have supp vi = supp y, since
otherwise Σ′ would not be minimal by the Farkas lemma. Hence, v1 has the
properties we looked for.

For the converse direction let y be a vertex of P (Σ) and let the sub-
system Σ′ be indexed by the support of y. By the Farkas lemma it follows
that Σ′ is infeasible. Assume that Σ′ is not minimally infeasible and let Σ′′ be
an IIS strictly contained in Σ′. By the above direction, there exists a vertex v
of P (Σ) such that the support of v indexes the rows of Σ′′. Hence, we have
supp v ⊂ supp y. But then more inequalities of P (Σ) would be satisfied at
equality at v than at y, and hence y cannot be a vertex.

Since the support of each vertex is unique for polyhedra in equality form,
the correspondence holds between the IISs of Σ and the vertices of P (Σ).
See also Example 2.25 on page 58 for an illustration of Theorem 1.12. This
theorem can be extended (Parker [94], Parker and Ryan [95]) as follows:
Theorem 1.13. Let {Cx ≤ c, Dx = d, � ≤ x ≤ u} be an infeasible
system. The sets of indices of irreducible inconsistent subsystems of this
system are exactly the supports of vertices of the polyhedron

{(y, v, w, z) : yC + vD + w − z = 0
yc + vd + wu − z� = −1
y, w, z ≥ 0, v free}.

Furthermore, Theorem 1.12 can also be stated in terms of rays (see Parker
and Ryan [95]) and elementary vectors.
Definition 1.14. An elementary vector of a subspace L ⊆ �m is a nonzero
vector y ∈ L which has minimal support (w. r. t. inclusion). In other words,
if x ∈ L and supp x ⊂ supp y then x = 0.
Corollary 1.15 (Greenberg [66]). The set S ⊆ [m] is an IIS of the sys-
tem Σ if and only if there exists an elementary vector y in the subspace
L := {y ∈ �m : yA = 0} with yb < 0 and y ≥ 0 such that S = supp y.

20 Max FS and IISs

1.2.2 IIS Simplex Decomposition

In this section, we provide a new geometric characterization of IISs. For
notational convenience we consider the case where Σ : {Ax ≤ b} is itself an
IIS. Again, we assume A ∈ �m×n and b ∈ �m. Let S ⊆ [m] := {1, . . . , m}
and denote by AS the |S| × n matrix consisting of those rows of A that are
indexed by S. Let Ai := A[m]\{i} denote the (m − 1) × n submatrix of A
obtained by removing the ith row of A. Similarly, let bi := b[m]\{i} be the
(m − 1)-dimensional vector b with ith component removed.

We first need the following result, which strengthens the condition of
necessity in Theorem 1.6.

Lemma 1.16. Let {Ax ≤ b} be an IIS with m ≥ 2 inequalities. Then Ai

has linearly independent rows, for all 1 ≤ i ≤ m; i.e., rank Ai = m − 1.

Proof. According to Proposition 1.3, there exists y > 0 such that yA = 0
and yb = −1 (by scaling yb < 0). Suppose some proper subset of rows is
linearly dependent; i.e., there exists z, such that zA = 0, zb ≥ 0 (without
loss of generality) and some zk = 0.

If there exists j with zj > 0, consider (y − εz)A = 0, (y − εz)b ≤ −1,
where ε = min{yi/zi : 1 ≤ i ≤ m, zi > 0} > 0 (and y is as above).
Then y − εz ≥ 0, at least one additional component of y − εz is 0, and
the Farkas lemma (Proposition 1.3) contradicts the fact that the system is
minimal infeasible (since y − εz satisfies the requirements).

If z ≤ 0, then −z ≥ 0, −zA = 0, and −zb ≤ 0. Provided that −zb < 0,
setting y = −z in the Farkas lemma leads to a contradiction of minimality.
If −zb = 0, then setting ε = min{ yi/(−zi) : 1 ≤ i ≤ m, −zi > 0} > 0
in (y + εz)A = 0, (y + εz)b = −1 leads to a contradiction as above.

Corollary 1.17. Let Σ : {Ax ≤ b} be an infeasible system (with m ≥ 2
inequalities). Then Σ is an IIS if and only if rank Ai = m−1 for i = 1, . . . , m.

Proof. If Σ is an IIS then rank Ai = m − 1 by Lemma 1.16.
Now let rank Ai = m − 1 for i = 1, . . . , m. Assume that Σ is not an IIS,

i.e., there exists a proper subsystem Σ′ : {A′x ≤ b′} of Σ that is infeasible.
Then A′ has full rank, which is a contradiction to Theorem 1.4.

We have the following simplex decomposition result for IISs:

Theorem 1.18. The system {Ax ≤ b} is an IIS if and only if {Ax = b}
does not have a solution and {x ∈ �n : Ax ≥ b} = L + Q, where L is the
lineality subspace {x ∈ �n : Ax = 0}, Q is an (m − 1)-simplex, and each
vertex of Q is a solution for a subsystem {Aix = bi}, 1 ≤ i ≤ m.3

3If m = 1, the system {A1x = b1} is empty and hence has a solution (see Remark 1.19).

1.2 Foundations of Irreducible Inconsistent Subsystems 21

x1 x2Q

L

x1 x2

Q

L

x3

Figure 1.1: Two pictures illustrating Theorem 1.18 in dimensions n = 2 and n = 3. The
IISs corresponding to Ax ≤ b are indicated by the halfspaces with arrows pointing inward.
If the halfspaces are turned around, the resulting polyhedron can be written as the sum of
a simplex Q (indicated by the dotted segment and grey area, respectively) and a lineality
space L (indicated by the dashed lines).

Proof. (⇒) Clearly, {Ax = b} does not have a solution.
To see the feasibility of {Ax ≥ b}, delete the ith constraint aix ≥ bi to

obtain the equality system {Aix = bi}. By Lemma 1.16, this system has a
solution xi (which is not necessarily unique). Then we have aixi > bi, other-
wise xi would satisfy {Ax ≤ b}. Applying the polyhedral decomposition
theorem, it follows that P := {x ∈ �n : Ax ≥ b} �= ∅ can be written
as P = K + Q, where K = {x ∈ �n : Ax ≥ 0} is its recession cone
and Q ⊆ P is a polytope, generated by minimal nonempty faces of P (see,
e.g., Schrijver [107, Chapter 8]).

If x̂ satisfies Ax̂ ≥ 0 and aix̂ > 0 for the ith row ai of A then, for
sufficiently large λ > 0, the vector xi − λx̂ satisfies A(xi − λx̂) ≤ b and
the original system {Ax ≤ b} would be feasible. Therefore, aix̂ = 0 for
all 1 ≤ i ≤ m and every x̂ ∈ K. Hence, K = L := {x ∈ �n : Ax = 0}.

Each minimal face of P is given by changing a maximal set of inequalities
into equalities (in our context, all but one relation). Thus, we can take
Q = conv{x1, . . . , xm}, where xi is obtained by solving {Aix = bi}, as
above. Assume, for the sake of contradiction, that xi is affinely dependent
on the other m − 1 points. Then there exist λ1, . . . , λi−1, λi+1, . . . , λm ∈ �,
such that

xi =
∑
j �=i

λjxj with
∑
j �=i

λj = 1.

22 Max FS and IISs

From the beginning of the proof, we know aixi > bi, but also

aixi = ai(
∑
j �=i

λjxj) =
∑
j �=i

λj(a
ixj) =

∑
j �=i

λjbi = bi,

which is a contradiction. Hence Q is the convex hull of m affinely independent
points, i.e., an (m − 1)-simplex.
(⇐) If the system {Ax ≤ b} is infeasible, then the minimality is obvious,
because the simplex conditions on Q imply that every proper subsystem has
an equality solution.

To show that {Ax ≤ b} is infeasible, assume for the sake of contradiction
that x̂ ∈ {x ∈ �n : Ax ≤ b} �= ∅ and x̂ satisfies a maximal number of
these relations with equality. Since {Ax = b} is assumed to be infeasible,
we have Ax̂ �= b, i.e., there exists i ∈ {1, . . . , m} with aix̂ < bi. Let
x1, . . . , xm be the vertices of Q, such that xi is a solution of {Aix = bi}.
Similarly, since {Ax = b} is infeasible, we have aixi > bi. Thus, we can set
λ = (aixi− bi)/(a

ixi−aix̂) with 0 < λ < 1, so that ai(λx̂+(1−λ)xi) = bi.
But then at λx̂ + (1 − λ)xi more relations of {Ax ≤ b} hold with equality
than at x̂, contradicting the choice of x̂.

Remark 1.19. We have the following special cases of Theorem 1.18.
If m = 1, any IIS consists of one inequality 0x ≤ α with α < 0. Hence,

we have L = {x ∈ �n : 0x = 0} = �n. The vertex for the 0-simplex Q
is unconstrained. Therefore, we can take an arbitrary v ∈ �n. We get that
{x ∈ �n : 0x ≥ α} = �n = L + v, as claimed.

If m = n+1, then A has n+1 rows. Assuming A to be of full column rank,
it follows that L = {x ∈ �n : Ax = 0} = {0}, Q = conv {x1, . . . , xn+1} is
an n-simplex and {x ∈ �n : Ax ≥ b} = {0} + Q.

Remark 1.20. According to the above proof, among all possible solutions xi

of the corresponding subsystems {Aix = bi}, for 1 ≤ i ≤ m, we can take
the representatives of the minimal nonempty faces of {Ax ≤ b} that lie
in L⊥, the orthogonal complement of L; i.e., Q ⊂ L⊥ (see Figure 1.1). By
Lemma 1.16, we know that {x ∈ �n : Aix = bi} = xi + L, where L is the
lineality space of the system {Ax ≥ b}.

1.2.3 Minimum Cardinality IISs

We now turn to the complexity status of Min IIS, the problem to find a
minimum cardinality IIS. We prove that Min IIS is not only NP-hard to
solve optimally, but also hard to approximate. This settles an issue left open
by Chinneck and Dravnieks [49], Greenberg and Murphy [67], and Parker

1.2 Foundations of Irreducible Inconsistent Subsystems 23

and Ryan [95]. Remember that DTIME(T (s)) denotes the class of problems
whose instances of size s can be solved in deterministic time O(T (s)). It is
generally believed that NP � DTIME(spolylog s), see Section 1.1.3.

Theorem 1.21. Let Σ be an infeasible linear inequality system. Then, as-
suming P �= NP , no polynomial-time algorithm is guaranteed to yield an
IIS of Σ whose cardinality is at most c times larger than the minimum one,
for any constant c ≥ 1. In particular, Min IIS is NP-hard.

Furthermore, assuming NP � DTIME(spolylog s), Min IIS cannot be ap-
proximated within a factor 2log1−ε m, for any ε > 0, where m is the number
of inequalities of Σ.

Proof. We proceed by reduction from the following problem: Given a feasible
linear system Dz = d, with D ∈ �m′×n′ and d ∈ �m′ , find a solution z
satisfying all equations with as few nonzero components as possible. Amaldi
and Kann [7] proved that this problem is hard to approximate within the
same type of factors, but with m replaced by the number of variables n′.
Note that the above nonconstant factor grows faster than any polylogarithmic
function, but slower than any polynomial function.

For each instance of the latter problem which has an optimal solution
containing s nonzero components, we construct a particular instance of the
Min IIS problem with a minimum cardinality IIS containing s+1 inequalities.
Given any such instance (D, d), consider the system

[D −D −d]

z+

z−

z0

 = 0, (0 0 −1)

z+

z−

z0

 < 0,

z+

z−

z0

 ≥ 0. (1.2)

Since the strict inequality implies z0 > 0, the system Dz = d has a solution
with s nonzero components if and only if (1.2) has one with s + 1 nonzero
components. Applying Corollary 1.15, (1.2) has such a solution if and only
if the system DT

−DT

−d

x ≤

 0
0
−1

 (1.3)

has an IIS of cardinality s + 1. Since (1.3) is the alternative system of (1.2),
the Farkas lemma (Proposition 1.3) implies that exactly one of these two
is feasible. As (1.2) is feasible, (1.3) must be infeasible. Thus, (1.3) is a
particular instance of Min IIS with m = 2n′ + 1 inequalities in n = m′

variables.

24 Max FS and IISs

This polynomial-time reduction preserves the objective function value
modulo an additive unit constant. Hence, we obtain the same type of non-
approximability factors for Min IIS.

A problem similar to Min IIS is that of determining minimum witnesses of
infeasibility in a network with demands and supplies at the nodes. Aggarwal,
Ahuja, Hao, and Orlin [1] proved that this problem is NP-hard.

1.3 Feasible Subsystem Polytope

In this section, we study the feasible subsystem polytope PFS, i.e., the convex
hull of all characteristic vectors of feasible subsystems of a given infeasible lin-
ear inequality system Σ : {Ax ≤ b} (where as usual A ∈ �m×n and b ∈ �m).
We derive the following results about the facial structure of this polytope:
First, we give a new proof of the fact that IISs give rise to facets of PFS and
prove that the corresponding separation problem is NP-hard (Section 1.3.2).
Since every subsystem of a feasible system is again feasible, the set of feasible
subsystems of Σ forms a so-called independence system. Generalized anti-
webs are structures often leading to facets of the polytopes corresponding to
independence systems. In Section 1.3.3, we investigate generalized antiwebs
in our context and characterize when they give rise to facets of PFS. For this,
results of Chapter 2 and 3 are incorporated. It turns out that only two very
specific types of generalized antiwebs can occur.

1.3.1 Independence System Polytopes

Given a finite groundset S and a collection of subsets I ⊆ 2S, the pair (S, I)
is a (finite) independence system, if I ∈ I and J ⊂ I imply J ∈ I. There
exist many other names for this concept, which arises in different areas, e.g.,
abstract simplicial complex, hereditary structure (hypergraph), and order
ideal (in posets). In independence systems, a set belonging to I is called
independent and a subset of S that does not belong to I is called dependent.
The rank of a subset S ′ ⊆ S is defined by r(S ′) := max{|I| : I ⊆ S ′, I ∈ I}.
The rank of the independence system (S, I) is r(S). An independence system
can be given by:

(i) its independent sets I,
(ii) its maximal independent sets, the bases,
(iii) its collection of dependent sets,
(iv) its minimal dependent sets C, the circuits,
(v) its rank function r : 2S → �.

1.3 Feasible Subsystem Polytope 25

Here, maximal and minimal are meant with respect to inclusion. All of the
above descriptions are equivalent, i.e., from each of the above representations
one can compute any other. This is clearly the case for (i) and (ii), as well as
for (iii) and (iv). The remaining equivalences follow easily from three facts:
The set S ′ ⊆ S is independent if and only if r(S ′) = |S ′|. A set S ′ ⊆ S is
independent if and only if it contains no circuit. The set S ′ is dependent if
and only if it is not contained in any base.

To any independence system (S, I) we can associate the independence
system polytope

PIS(I) := conv{y ∈ {0, 1}|S| : y is the incidence vector of a set I ∈ I},

which we usually abbreviate by PIS if it is clear from the context to which
independent system it belongs. Sometimes we also write PIS(C) for PIS(I),
where C is the collection of circuits of I. The polytope PIS is closely related
to the set covering polytope

PSC(C) := conv{y ∈ {0, 1}|S| :
∑
i∈C

yi ≥ 1 for all C ∈ C}.

Again, we usually write PSC if it is clear which circuits C refers to. A more
standard description of PSC is {y ∈ {0, 1}|S| : My ≥ �}, where � denotes
the vector of all ones and the |C| × |S| matrix M has the incidence vectors
of the sets in C as rows.

A little thought shows that y ∈ PIS if and only if z = � − y ∈ PSC. As
this is an affine transformation, facets of PIS correspond to facets of PSC and
vice versa. Hence, a facet-defining inequality for one polytope can be easily
transformed to a facet-defining inequality for the other polytope.

As a special case of independence systems we have stable sets (independ-
ent sets) in a graph, with corresponding polytope PST. Similarly, we have
the vertex covers in a graph, with corresponding polytope PVC, as a spe-
cial case of set covering problems. The above relation between PIS (PST)
and PSC (PVC) then translates to the statement that the complement of a
stable set is a vertex cover and conversely.

More about the structure of PIS and PSC and algorithms to solve related
optimization problems can be found in the references of the annotated bib-
liography of Ceria, Nobili, and Sassano [40]. An overview of known results
about the facial structure is also given by Borndörfer [35]. Cornuéjols [51]
discusses conditions under which the LP relaxation of PSC is integral, i.e.,
has only integral vertices.

Consider the infeasible system Σ : {Ax ≤ b} and (as usual) identify each
inequality of Σ with its index in [m] := {1, . . . , m}. If I(Σ) denotes the

26 Max FS and IISs

set of all feasible subsystems of Σ, ([m], I(Σ)) is clearly an independence
system, and the set of circuits C(Σ) is the set of all IISs. We denote by
PFS(Σ) := PIS(I(Σ)) (or PFS for short) the feasible subsystem polytope, which
is the convex hull of all the incidence vectors of feasible subsystems of Σ. The
set covering polytope PSC(C(Σ)) becomes the IIS-covering polytope, denoted
by PIISC = PIISC(Σ), when restricted to this special independence system
(see Equation (1.1)).

Clearly, to solve (weighted) versions of Max FS and Min IIS Cover,
one has to optimize a linear function over PFS and PIISC, respectively. Hence,
in order to apply polyhedral solution methods like branch-and-cut one should
investigate the structure of these polytopes. Before doing so, we need to recall
some more definitions and facts regarding (general) independence system
polytopes.

Let (S, I) be an independence system. For any S ′ ⊆ S, the rank inequality
for S ′ is ∑

s∈S′

ys ≤ r(S ′) , (1.4)

which is clearly valid for PIS. A subset S ′ ⊆ S is closed if

r(S ′) < r(S ′ ∪ {t}) for all t ∈ S \ S ′,

and nonseparable if

r(S ′) < r(T) + r(S ′ \ T) for all T ⊂ S ′, T �= ∅.

The following result is well known.

Lemma 1.22. Let (S, I) be an independence system such that {s} ∈ I for
all s ∈ S. If the rank inequality (1.4) for S ′ ⊆ S defines a facet of PIS(I),
then S ′ is closed and nonseparable.

Proof. By assumption each single element of the groundset is independent.
Therefore, PIS contains the |S|+1 affinely independent vectors 0, e1, . . . , e|S|
and hence is full-dimensional.

If S ′ is not closed, there exists t ∈ S \ S ′ such that r(S ′ ∪ {t}) = r(S ′).
Then the inequality ∑

s∈S′∪{t}

ys ≤ r(S ′ ∪ {t}) = r(S ′)

is clearly valid for PIS and dominates (1.4). Since PIS is full-dimensional, it
follows that (1.4) cannot define a facet.

1.3 Feasible Subsystem Polytope 27

1 2

3

4

56

Figure 1.2: Critical graph of Example 1.24.

If S ′ is separable (i.e., not nonseparable), there exists T ⊂ S ′, T �= ∅
with r(S ′) = r(T) + r(S ′ \ T). But then (1.4) is the sum of the inequalities∑

s∈T

ys ≤ r(T) and
∑

s∈S′\T

ys ≤ r(S ′ \ T),

which both dominate it. Hence, (1.4) cannot define a facet, since PIS is
full-dimensional.

In general, the condition that S ′ has to be closed and nonseparable is
only necessary, but sufficient conditions can be stated using the following
concept (see Laurent [80]). For S ′ ⊆ S, the critical graph GS′(I) = (S ′, E)
w. r. t. S ′ is defined as follows: {s, t} ∈ E, for s, t ∈ S ′, if and only if there
exists an independent set I such that I ⊆ S ′, |I| = r(S ′), and s ∈ I, t /∈ I,
I − s + t ∈ I.

Theorem 1.23 (Laurent [80], Sassano [106]). Let (S, I) be an inde-
pendence system such that {s} ∈ I for all s ∈ S. If S ′ is a closed subset
of S and the critical graph GS′(I) is connected, then the corresponding rank
inequality (1.4) induces a facet of PIS(I).

Example 1.24. Cornuéjols and Sassano [52] state an example due to John
Hooker which shows that this condition is not necessary: Consider the in-
dependence system with groundset S := {1, 2, . . . , 6} and which has the
following circuits:

{1, 3}, {1, 5}, {1, 6}, {2, 3}, {2, 4, 5}, {2, 4, 6}, {3, 4, 5, 6}.
The maximal independent sets are:

{1, 2, 4}, {3, 4, 5}, {3, 4, 6}, {2, 5, 6}, {3, 5, 6}, {4, 5, 6}.
The critical graph GS is given in Figure 1.2. Hence, GS is not connected
and S is (trivially) closed. But one can check, e.g., using polymake [63, 64],
that y1 + y2 + y3 + y4 + y5 + y6 ≤ 3 defines a facet of PIS.

To date, no characterization of the cases when a rank inequality is facet-
defining is known.

28 Max FS and IISs

1.3.2 Facets of the Feasible Subsystem Polytope

We now turn our attention to the feasible subsystem polytope. Parker [94]
began an investigation of PIISC. Using well-known facts about independ-
ence system polytopes he obtained the following results, which are translated
to PFS by the above mentioned transformation.

Lemma 1.25 (Parker [94]).
(a) PFS(Σ) is full-dimensional if and only if there are no IISs of cardinality

one in Σ. (See proof of Lemma 1.22.)
(b) The inequality yi ≥ 0 defines a facet of PFS(Σ) for 1 ≤ i ≤ m if and

only if {i} is not an IIS of cardinality one.
(c) For each i, 1 ≤ i ≤ m, the inequality yi ≤ 1 defines a facet of PFS(Σ) if

and only if there is no IIS in Σ of cardinality one or two including i.

In a preprocessing step, IISs of cardinality one, i.e., single inequalities of the
form 0x ≤ −α with α > 0, can easily be detected and removed. Since
the solution of Max FS can then be adjusted accordingly, we agree on the
following for the rest of this chapter.

Assumption. The system Σ contains no IIS of cardinality one.

We turn to facets arising from IISs. Let C ∈ C(Σ) be an arbitrary IIS of Σ,
with ACx ≤ bC as its associated subsystem. The rank inequality (1.4) takes
the form: ∑

i∈C

yi ≤ r(C) = |C| − 1,

which is referred to as an IIS-inequality in the following. The corresponding
covering inequality

∑
i∈C yi ≥ 1 for PIISC is proved to be facet-defining in [94].

Hence, we have:

Theorem 1.26 (Parker [94]). Every IIS-inequality defines a (rank) facet
of PFS(Σ).

Proof. It is easy to verify that IIS-inequalities are valid for PFS(Σ).
For every IIS C, each subset I of size |C| − 1 is independent (feasible).

Hence, if {t} = C \ I, then I − s+ t is independent for every s ∈ I. It follows
that the critical graph GC is a complete graph and therefore connected. The
next proposition shows that every IIS is closed, which finishes the proof by
Theorem 1.23.

1.3 Feasible Subsystem Polytope 29

Proposition 1.27. Let A ∈ �m×n, b ∈ �m, and let Σ : {Ax ≤ b} be an
infeasible system. Then every IIS C ⊆ [m] is closed in the independence
system ([m], I(Σ)) arising from the feasible subsystems of Σ.

This proposition clearly follows from Theorem 1.26 (as proved in [94])
and Lemma 1.22. We give a new geometric proof (based on Theorem 1.18),
which provides additional insight into the structure of IISs.

Proof. (a) First consider the case of a maximal IIS C, i.e., |C| = n + 1 > 1.
For each i ∈ C, consider the unique solution xi of AC\{i}x = bC\{i}. By the
proof of Theorem 1.18, we know that x1, . . . , xn+1 are affinely independent.
Define the barycenter of x1, . . . , xn+1:

x̂ :=
1

n + 1

n+1∑
i=1

xi,

and define di := (xi − x̂) for all i, 1 ≤ i ≤ n + 1. Then d1, . . . , dn+1 are
also affinely independent. Clearly,

∑n+1
i=1 di = 0 and the di’s generate �n

(see Figure 1.3). Since each xi satisfies exactly n of the n + 1 inequalities
in {ACx ≤ bC} with equality and for the ith one aixi > bi (otherwise C
would be feasible), we have x̂ ∈ {x ∈ �n : ACx ≥ bC}; i.e., x̂ satisfies
the reversed inequalities of the IIS C. In fact, x̂ is an interior point of the
polyhedron {x ∈ �n : ACx ≥ bC}.

According to Theorem 1.8, deleting any inequality from an IIS yields
a feasible subsystem that defines an affine (convex) cone. In our case, we

x1

x2x3

K1

K2K3

d1

d2d3

1

23

x̂

Figure 1.3: Illustration of the proof of Proposition 1.27.

30 Max FS and IISs

have n + 1 affine cones Ki := xi + K ′
i, where K ′

i = {x ∈ �n : AC\{i}x ≤ 0}
for 1 ≤ i ≤ n+1. The ray Ri := {x ∈ �n : x = xi +λ di, λ ≥ 0}, generated
by di and passing through xi, is contained in Ki, because for any λ ≥ 0 we
have:

AC\{i}(λ di) = λ AC\{i}(xi − x̂) = λ (bC\{i} − AC\{i}x̂) ≤ 0,

where we used the fact that AC\{i}x̂ ≥ bC\{i}.
Consider an arbitrary inequality ax ≤ α with a �= 0. We will verify that

the halfspace H := {x ∈ �n : ax ≤ α} has a nonempty intersection with Ki

for some i (1 ≤ i ≤ n + 1). In particular, if ax ≤ α is the ith inequality
of Σ and is not contained in C, i.e., i ∈ [m] \ C, then C ∪ {i} contains a
feasible system of size |C| = (|C| − 1) + 1 = r(C) + 1. Therefore, it follows
that r(C ∪ {i}) = |C| > r(C), which proves that C is closed.

Since
∑n+1

i=1 di = 0, it follows that

n+1∑
i=1

adi = a(
n+1∑
i=1

di) = 0.

Because d1, . . . , dn+1 generate �n and a �= 0, there exists i, 1 ≤ i ≤ n + 1,
such that adi �= 0. Thus, there also exists at least one i such that adi < 0.
But this implies that Ri∩H �= ∅. In other words, Ki∩H �= ∅, which proves
the proposition for maximal IISs.

(b) Consider the case of a non-maximal IIS C, i.e., |C| < n+1. It follows from
Theorem 1.18 and Remark 1.20 that P := {x ∈ �n : ACx ≥ bC} = L + Q
with Q ⊆ L⊥, where L = {x ∈ �n : ACx = 0} is a linear space and Q
is a polytope generated by |C| affinely independent points. Since P is full-
dimensional (the vertex-barycenter of Q is an interior point, unless C is an
IIS of cardinality one, a case which we excluded), we have n = dim P =
dim L + dim Q. Because dim Q = |C| − 1 < n, this implies that dim L ≥ 1.

Two cases can arise:
(i) If the above mentioned a is contained in lin{ai : i ∈ C} = L⊥, the

linear hull of the rows of AC , then we can project H onto L⊥. Since
dim L⊥ = dim Q, the IIS C projected to L⊥ is maximal and the above
result applies (see Figure 1.3).

(ii) If we have a /∈ lin{ai : i ∈ C} = L⊥, the projection of the hyperplane
H= := {x ∈ �n : ax = α} onto L⊥ yields all of L⊥. Therefore,
H = {x ∈ �n : ax ≤ α} has a nonempty intersection with all the
cones corresponding to maximal consistent subsystems of {ACx ≤ bC}.

This finishes the proof.

1.3 Feasible Subsystem Polytope 31

Remark. In general independence systems not all circuits have to be closed.
For example, consider the independent system defined by stable sets in a
simple graph. Here, the circuits correspond to the edges of the graph, which
are not necessarily closed: consider any triangle in the graph.

Example 1.28. In the more general case where we also allow equations in
the system Σ, the generalization of Proposition 1.27 is false. The definition
of PFS and IISs easily carry over to this case. If equations are allowed, then
IISs are not necessarily closed. Consider the following system in �2:

(1) x1 ≤ 0
(2) x2 ≤ 0
(3) x1 + x2 = 1
(4) x1 + x2 ≥ 2.

The first three inequalities {1, 2, 3} form an IIS. The inequalities {3, 4} and
{1, 2, 4} also form IISs. Hence, there exists no subset of three inequalities
which is feasible, i.e., the IIS {1, 2, 3} is not closed. Using polymake [63, 64]
one can easily check with this example that the generalization of Theo-
rem 1.26 is false, too.

We now turn to the following problem:

IIS-inequality separation problem: Given an infeasible system Σ and an
arbitrary vector y ∈ �m, show that y satisfies all IIS-inequalities or find at
least one violated by y.

In view of this problem, we can assume that y ∈ [0, 1]m. Moreover, we
may assume without loss of generality that the nonzero components of y
correspond to an infeasible subsystem of Σ.

Proposition 1.29. The separation problem for IIS-inequalities is NP-hard.

Proof. We proceed by polynomial-time reduction from the decision version
of the Min IIS problem, which is NP-complete according to Theorem 1.21.
This decision version is: Given an infeasible system Σ : {Ax ≤ b} with m
inequalities, n variables, and a positive integer K with 1 ≤ K ≤ n+1, does Σ
have an IIS of cardinality at most K?

Let (A, b, K) be an arbitrary instance of the above decision problem.
Consider the particular instance of the separation problem given by the same
infeasible system together with the vector y such that yi = 1− 1/(K +1) for
all i, 1 ≤ i ≤ m.

32 Max FS and IISs

Suppose that Σ has an IIS C of cardinality at most K. Then the corres-
ponding IIS-inequality

∑
i∈C yi ≤ |C|−1 is violated by the vector y, because∑

i∈C

yi =
∑
i∈C

(
1 − 1

K + 1

)
= |C| − |C|

K + 1
> |C| − 1,

where the strict inequality is implied by |C| ≤ K. Thus, the vector y can be
separated from PFS.

Conversely, if there exists an IIS-inequality violated by y, then∑
i∈C

yi = |C| − |C|
(K + 1)

> |C| − 1

implies that the cardinality of C is at most K. Therefore, Σ has an IIS of
cardinality at most K if and only if some IIS-inequality is violated by the
given vector y.

1.3.3 Rank Facets Arising from Generalized Antiwebs

Laurent [80] introduced generalized antiwebs, which generalize cliques, odd
holes, and antiholes in graphs to independence systems. Necessary and suffi-
cient conditions were also established for the corresponding rank inequalities
to define facets of PIS.

Let m, t, q be integers such that 2 ≤ q ≤ t ≤ m, let S = {s0, . . . , sm−1}
be a finite set, and define for each i ∈ M := {0, . . . , m − 1} the subset
Si = {si, . . . , si+t−1} (where the indices are taken modulo m) formed by t
consecutive elements of S. An (m, t, q)-generalized antiweb on S is the inde-
pendence system having the following family of subsets of S as circuits:

AW(m, t, q) = {C ⊆ S : C ⊆ Si for some i ∈ M, |C| = q}.

See Figure 1.4 on page 36 for an example.
Let PIS(AW(m, t, q)) be the polytope of the (m, t, q)-generalized anti-

web and define AW(m, t) := AW(m, t, t). Note that the case t = q = 1
would correspond to m trivially infeasible inequalities, e.g., 0x ≤ −1. The
circuit-element incidence matrix of AW(m, t) is just an (m, t)-circulant (see
Section 3.5.2).

As observed in [80], AW(m, t, q) corresponds to generalized cliques when
m = t, to generalized odd holes when q = t and t does not divide m, and to
generalized antiholes when m = q t + 1.

In this section we determine under which circumstances generalized anti-
webs give rise to rank facets of the form

∑
i∈S′ yi ≤ r(S ′) of PFS(Σ). Define

1.3 Feasible Subsystem Polytope 33

the hypergraph H(AW(m, t, q)) := (S, AW(m, t, q)), which has S as node
set and the sets in AW(m, t, q) as edges; see Chapter 2 for a definition of
hypergraphs. A hypergraph (S, E) is an IIS-hypergraph, if the nodes in S
correspond to the inequalities of an infeasible linear inequality system and
the edges in E correspond to the (sets of inequalities of) IISs of this system
(cf. Definition 2.1).

The first question we consider is: For which values of m, t, and q is the
hypergraph H(AW(m, t, q)) an IIS-hypergraph?

Lemma 1.30. If H(AW(m, t, q)) is an IIS-hypergraph then t = q.

Proof. Suppose that q < t. Consider an arbitrary circuit C ∈ AW(m, t, q)
that is contained in S1 and an arbitrary element s ∈ S1 \ C. By definition
of AW(m, t, q), any cardinality q subset of S1 is a circuit. In particular, this
is true for all subsets containing s and q − 1 elements of C. But then C
cannot be closed because r(C ∪ {s}) = r(C) and we have a contradiction to
the fact that all IISs are closed (Proposition 1.27).

Together with Lemma 2.16 of Chapter 2 and Proposition 3.28 of Chapter 3,
we obtain the following result. In fact, proving this proposition was a moti-
vation for the investigations of parts Chapter 2 and 3.

Proposition 1.31. H(AW(m, t, q)) is an IIS-hypergraph if and only if
t = q and

(i) t = m − 2 or
(ii) t = m.

Proof. Lemma 1.30 implies that necessarily t = q. Now assume H(AW(m, t))
is an IIS-hypergraph. If t = m, we have a single IIS of size m. Therefore
assume t < m.

In order to apply Lemma 2.16, we need the following concepts, which are
defined more formally in Section 2.4 of Chapter 2. Let H = (S, E) be a
hypergraph. Define the complement hypergraph H := (S, (S \ E : E ∈ E))
of H. Let E∗ be a distinct node for every edge E of H and for any node s ∈ S
of H let E∗

s := {E∗ : s ∈ E, E ∈ E}. We can then define the dual
hypergraph H∗ := ({E∗ : E ∈ E}, (E∗

s : s ∈ S)) of H, which has the nodes
corresponding to the edges of H as nodes and the sets E∗

s as edges. If M is the
edge-node incidence matrix of H, then the corresponding incidence matrix
of H is the matrix obtained by exchanging zeros and ones. The incidence
matrix of H∗ is just the transposed incidence matrix of M . See Figure 1.4
for an example. The hypergraph H is isomorphic to a hypergraph H ′, if the
rows and columns of the incidence matrix of H ′ can be permuted so that the
result equals the incidence matrix of H; compare the definition in Chapter 2.

34 Max FS and IISs

If we set H := H(AW(m, t)), then H is isomorphic to H(AW(m, k))
with k := m − t > 0. Furthermore, we have that H(AW(m, k))∗ is isomor-
phic to H(AW(m, k)) again. Therefore, H∗ = H(AW(m, t))∗ is isomorphic
to H(AW(m, k)).

Since t < m, H∗ is a clutter hypergraph (no edge contains any other edge).
By Lemma 2.16, H∗ is a vertex-facet incidence hypergraph of a polyhedron P ,
i.e., there exists a polyhedron P , such that the nodes of H∗ correspond to
the vertices of P and the edges correspond exactly to the vertex sets of facets
of P . It follows that H(AW(m, k)) is a vertex-facet incidence hypergraph
of P . Since 2 ≤ t < m, we have 0 < k < m − 1. Furthermore k > 1,
because H(AW(m, 1)) can only be a vertex-facet hypergraph if m = k = 1,
and this case is excluded by 2 ≤ t < m. Then by Proposition 3.28, P is a
polygon, i.e., k = 2 (t = m−2). Note that the simplex case, where we would
have k = m − 1, cannot arise.

Clearly, for all possible values of the above parameters, examples of in-
feasible inequality systems exist, which proves sufficiency.

This proposition implies that only two types of generalized antiwebs can arise
as induced hypergraphs of IIS-hypergraphs. In particular, the only general-
ized cliques that can occur are those with m = t, namely those corresponding
to single IISs. For generalized odd holes the only cases that can arise are
those with t = m−2. Finally, all generalized antiholes are ruled out since the
equation m = q t + 1 holds if and only m = (m − 2)2 + 1 (if t = q = m − 2),
or m = m2 + 1 (if t = q = m). Both equations are never satisfied.

To determine in which cases facets arise from generalized antiwebs, we
need the following results:

Lemma 1.32 (Laurent [80]). The inequality
∑

s∈S ys ≤ �m(q − 1)/t� aris-
ing from a generalized antiweb is valid and defines a facet of the independ-
ence system polytope PIS(AW(m, t, q)) if and only if m = t or t does not
divide m(q − 1).

Note that the right hand side of the above inequality is the rank of the
independence system defined by AW(m, t, q) (see [80]) and hence it is a rank
inequality.

Let C be the circuits of an independence system (S, I). For any S ′ ⊆ S,
let CS′ = {C ∈ C : C ⊆ S ′} denote the family of circuits contained in S ′.

Lemma 1.33 (Laurent [80]). The rank inequality
∑

s∈S′ ys ≤ r(S ′) in-
duces a facet of PIS(C) if and only if S ′ is closed and it induces a facet
of PIS(CS′).

1.3 Feasible Subsystem Polytope 35

Altogether, we obtain the following characterization of the rank facets of
PFS that can arise from generalized antiwebs.

Theorem 1.34. Let Σ be an infeasible inequality system with m inequalities
and let C be the IISs of Σ. Let S ⊆ [m] and assume CS = AW(|S|, t) for
some 2 ≤ t ≤ |S|. The rank inequality∑

e∈S

ye ≤
⌊
|S|(q − 1)

t

⌋
(1.5)

defines a facet of PFS(Σ) if and only if q = t and one of the following holds
(i) t = |S| (IIS-inequality)
(ii) S is closed, t = |S| − 2, and t �= 2 (i.e., |S| �= 4).

Proof. By Proposition 1.31, there are two cases where AW(|S|, t) can arise
as an induced hypergraph of an IIS-hypergraph (i.e., as a deletion minor, see
Section 2.6). By Lemma 1.30, in both cases necessarily q = t.

t = |S| : In this case AW(|S|, t) consists of a single circuit (IIS). Since, by
Proposition 1.27, S is closed, this gives (together with Lemma 1.33) another
proof that rank facets arising from IISs define facets.

t = |S| − 2 : By Lemma 1.32, inequality (1.5) defines a facet for the poly-
tope PIS(CS) = PIS(AW(|S|, t)) if and only if t does not divide

|S|(t − 1) = (t + 2)(t − 1) = t2 + t − 2.

Clearly, this can only be the case if t = 1 (which is not feasible) or t = 2.
Therefore by Lemma 1.33, inequality (1.5) defines a facet of PFS if and only
if S is closed and t �= 2.

Example 1.35. Figure 1.4 gives an example of an infeasible system with five
inequalities in dimension 2 (see also [96]). Its IISs form an AW(5, 3). The
inequalities are indexed by 0, 1, 2, 3, 4. In the corresponding polytope PFS(Σ)
the variables are numbered likewise. Its full description is given by the fol-
lowing facets:
◦ Trivial bounds: 0 ≤ yi ≤ 1, for 0 ≤ i ≤ 4.
◦ The IIS-inequalities:

∑
i∈S′ yi ≤ 2 for S ′ = {0, 1, 2}, {1, 2, 3}, {2, 3, 4},

{3, 4, 0}, {4, 0, 1}.
◦ The rank inequality y0 + y1 + y2 + y3 + y4 ≤ 3, arising from the unique

generalized antiweb.

36 Max FS and IISs

0

1

2

3

4

s0 s1 s2 s3 s4

S0 1 1 1

S1 1 1 1

S2 1 1 1

S3 1 1 1

S4 1 1 1

S∗
0 S∗

1 S∗
2 S∗

3 S∗
4

E∗
s0

1 1 1

E∗
s1

1 1 1

E∗
s2

1 1 1

E∗
s3

1 1 1

E∗
s4

1 1 1

Figure 1.4: Top: An infeasible linear inequality system, whose IISs {0, 1, 2}, {1, 2, 3},
{2, 3, 4}, {3, 4, 0}, and {4, 0, 1} form a generalized antiweb AW(5, 3). The arrows point into
the corresponding halfspaces. Bottom left: Edge-node incidence matrix of H(AW(5, 3)).
Bottom right: Edge-node incidence matrix of the dual hypergraph H(AW(5, 3))∗, ac-
cording to the notation of the proof of Proposition 1.33. This matrix is the transpose of the
matrix to the left. The incidence matrix of the complement hypergraph is a vertex-facet
incidence matrix of a polygon.

Chapter 2

IIS-Hypergraphs

In this chapter we investigate IIS-hypergraphs, i.e., hypergraphs whose nodes
correspond to the inequalities of some infeasible inequality system Σ and
whose edges correspond to the IISs of Σ (see Definition 1.1). Hence we look
beyond the properties of a single IIS at the structure of all IISs of Σ.

First, we review known results about IIS-hypergraphs and discuss how
to generate the IIS-hypergraph corresponding to Σ (Sections 2.1 and 2.2).
Closely related are IIS-transversal hypergraphs, which are discussed in Sec-
tion 2.3. In Section 2.4, applying Theorem 1.12, we examine the relation of
IIS-hypergraphs to vertex-facet incidences of polyhedra. These results are
fundamental for Section 1.3.3, where we study facets of the polytope PFS(Σ),
the convex hull of all incidence vectors of feasible subsystems of Σ. In the
last two sections of this chapter (Sections 2.5 and 2.6), the recognition of
IIS-hypergraphs is discussed. Parts of this chapter appear in [9].

Before defining IIS-hypergraphs (Definition 2.1), we need some notation. Let
H = (S, E) be a finite hypergraph, i.e., S is a finite set and E is a family
of subsets of S.1 The elements of S are the nodes and the sets in E are
the edges of H. All hypergraphs in this thesis will be finite and multiple
edges are allowed. We do not require that

⋃
(E ∈ E) = S. If there are

no multiple edges in H we sometimes write the edge family as a set. H is
called a clutter hypergraph, if no set of E contains any other set of E , i.e.,
E is a clutter. Usually, clutter hypergraphs are called simple hypergraphs.
A hypergraph is nonempty, if it contains a nonempty edge. A hypergraph
H = (S, E) is isomorphic to a hypergraph H ′ = (S ′, E ′) if there exists a
bijection π : S → S ′ and a bijection τ : E → E ′ such that

τ(E) = {π(e) : e ∈ E} for all E ∈ E .

This relation is denoted by H ∼= H ′.
We refer to Berge [26] for hypergraph terminology and theory.

1We write the elements of a family in parentheses, e.g., E = (E1, . . . , Ek). Further, we
use E ∈ E to mean that there exists i such that E = Ei, where we distinguish between
different elements of E , e.g., (E ∈ E) = (E1, . . . , Ek).

37

38 IIS-Hypergraphs

In this chapter, let K denote any subfield of �. The most interesting
cases occur if K is one of �, �, or �. Recall that � denotes the real alge-
braic numbers, that is, all real numbers that are roots of nonzero polynomials
with integer coefficients. Unlike �, every number in � can be finitely rep-
resented (cf. Lovász [82]). Moreover, by the quantifier elimination result of
Tarski, each polyhedron can be realized with coefficients in � only. By The-
orem 1.12, we can restrict attention to inequality systems with coefficients
in �. We will implicitly do so in the following, if we speak about complexity
or computational results.

As in Chapter 1, let Σ : {Ax ≤ b} be an infeasible inequality system,
with A ∈ �m×n and b ∈ �m. Remember that we usually identify the ith
inequality with i and that C(Σ) denotes the set of all IISs of Σ. Also keep in
mind that |C(Σ)| can be exponential in m and n (see Sections 1.1.1 and 2.2).

Definition 2.1. A hypergraph H = (S, E), with m := |S| nodes, is an
IIS-hypergraph of rank r (over K) if there exists an infeasible inequality sys-
tem Σ : {Ax ≤ b}, with A ∈ Km×n (for some n), rank(A) = r, and b ∈ Km,
such that H is isomorphic to the hypergraph H(Σ) := ({1, 2, . . . , m}, C(Σ)).
The hypergraph H is an IIS-hypergraph (over K) if H is an IIS-hypergraph
of rank r for some r ≥ 0.

In this definition, infeasibility is meant with respect to �. K is only import-
ant for the coefficients.

It turns out that some hypergraphs are only IIS-hypergraphs over some
ordered subfield of �, while this is not the case for other subfields. For
instance, there exists a well known example of an 8-polytope with 12 ver-
tices due to Perles, which is not “realizable” with rational coordinates, but
by definition with real coordinates; see Section 5.5 of Grünbaum [70] and
Example 6.21 in Ziegler [30]. Richter-Gebert found a 4-polytope with 33
vertices with the same property (see Section 9.2 of [99]). By Lemma 2.17,
each such example produces a hypergraph that is an IIS-hypergraph over �,
but not over �.

At this point we should make some comments about the rank of an IIS-
hypergraph.

Example 2.2. The hypergraph H = ({1, 2, 3, 4}, {{1, 2}, {3, 4}}) is an IIS-
hypergraph of rank 2 (and hence an IIS-hypergraph), but not of rank 1 (see
Figure 2.1).

Remark 2.3. In general, an IIS-hypergraph H does not uniquely determine
its rank. To see this, consider the following construction starting as in Ex-
ample 3.4.

39

1 2 3 4

1

2

3 4

Figure 2.1: Illustration of Example 2.2. Left: Trying to realize H with rank r = 1, which
always leads to at least one additional edge (IIS); in this case {1, 4}. Right: Realization
of H with r = 2. Each arrow points into its corresponding halfspace.

Take Q to be a 1-simplex, C1 to be a 3-dimensional cone with 4 facets,
and C2 to be a 4-dimensional cone with 4 facets. Then P1 := Q×C1 is of di-
mension 4, and P2 := Q×C2 is of dimension 5. Both have two vertices, m = 6
facets, and isomorphic vertex-facet incidences. Since P1 and P2 are not cones,
by Lemma 1.10 they can be transformed to polyhedra P ′

1 and P ′
2, respectively,

which are in the form of an alternative polyhedron as in Definition 1.9. Let
Σ1 : {A1x ≤ b1} and Σ2 : {A2x ≤ b1} be the corresponding infeasible sys-
tems of P ′

1 and P ′
2, respectively (see Theorem 1.12). Then A1 contains one

column with rank(A1) = 1, and A2 is the zero matrix. This agrees with the
general condition that m − dim(P (Σ)) = rank([A b]), where Σ : {Ax ≤ b}
is an infeasible system and A has m rows. These computations can easily be
performed with polymake [63, 64].

By Lemma 2.17 Σ1 and Σ2 have isomorphic IIS-hypergraphs, but the
ranks of the constraint matrices are different. We furthermore note that P ′

1 is
not simple (degenerate), while the description of P ′

2 is nondegenerate and P ′
2

is therefore simple.

We need the following definition:

Definition 2.4. Let Σ : {Ax ≤ b} be an infeasible system. The IIS-
hypergraph H(Σ) is nondegenerate if the alternative polyhedron P (Σ) as
in Definition 1.9 is nondegenerate.

The examples in Remark 2.3 show that the nondegeneracy property depends
on the concrete infeasible system Σ, i.e., this property is not preserved under
isomorphism between IIS-hypergraphs.

According to hypergraph terminology, Min IIS Cover, defined in Sec-
tion 1.1.1, amounts to finding a minimum cardinality (hypergraph) transver-
sal of H(Σ), i.e., a subset of nodes having nonempty intersection with every
edge of the IIS-hypergraph H(Σ) (see also Section 2.3).

40 IIS-Hypergraphs

2.1 Basic Properties of IIS-Hypergraphs

Ryan [103, 104] began the investigation of the structure of IIS-hypergraphs
(over�). IIS-hypergraphs (with no trivial IISs of cardinality one) turn out to
be bicolorable, i.e., their nodes can be partitioned into two subsets so that nei-
ther subset contains an edge (IIS), see Greenberg [66] and Ryan [103]. Hence,
each of the two subsets corresponds to a feasible subsystem. This also shows
that Max FS has a 2-approximation (compare Section 1.1.3). Bicolorability,
however, does not imply that a hypergraph is an IIS-hypergraph (see [103] for
an example); in general many different such bipartitions exist. Because they
are bicolorable, IIS-hypergraphs form a hypergraph class generalizing bipar-
tite graphs, but do not share many properties with other such known classes.
See, for instance, the figure in [104] that summarizes how IIS-hypergraphs
fit into Berge’s hierarchy of hypergraphs generalizing bipartite graphs.

The structure of 2-uniform IIS-hypergraphs, i.e., where each edge has
size 2, can be characterized as follows. They are bipartite [103]. Moreover,
following [103], call a bipartite graph G = (A ∪̇B, E) linearly orderable if
there exist orderings (a1, a2, . . . , as) and (b1, b2, . . . , bt) of the nodes in A
and B, respectively, such that {ai, bj} ∈ E implies that {ai, bj+1} ∈ E and
{ai−1, bj} ∈ E, for all 2 ≤ i ≤ s, 1 ≤ j ≤ t − 1.

Theorem 2.5 (Ryan [103]). A hypergraph is a 2-uniform IIS-hypergraph
if and only if it is a linearly orderable bipartite graph.

For 2-uniform hypergraphs (i.e., graphs) the minimum transversal problem
is the vertex cover problem. For bipartite graphs, this problem can be solved
in polynomial time (by König’s Theorem it suffices to compute a maximum
matching). Hence, a minimum transversal of a 2-uniform IIS-hypergraph can
be found in polynomial time. Moreover, the greedy algorithm (successively
remove nodes of maximum degree among the currently uncovered edges)
always yields an optimal solution in this case (see Ryan [103]).

2.2 Generating IIS-hypergraphs

The problem to generate the IIS-hypergraph H(Σ), given the infeasible sys-
tem Σ, is by Theorem 1.12 and Lemma 1.10 equivalent to the following
problem (which is Problem 1 in [77]).

Vertex enumeration problem: Given a polyhedron P described by an
linear inequality system, list all vertices of P (without repetition).

Let d = dim(P) and m be the number of inequalities in the description
of P . We assume that P is pointed, i.e., it has at least one vertex. It is

2.2 Generating IIS-hypergraphs 41

well known that the number of vertices can be exponential (Ω(m�d/2�)) in the
number of inequalities (e.g., dual cyclic polytopes). Therefore the number
of IISs can be exponential in the number of inequalities of Σ, as well (see
also Chakravarti [41]). Hence, we are interested in a polynomial total time
algorithm to solve this problem, i.e., an algorithm whose running time can be
bounded by a polynomial in the sizes of the input and the output (in contrast
to a polynomial-time algorithm whose running time would be bounded by a
polynomial just in the input size). Note that the notion of “polynomial total
time” only makes sense with respect to problems which explicitly require the
output to be nonredundant. One of the most important open questions in
computational geometry is whether there exists a polynomial total time al-
gorithm for the vertex enumeration problem. See Seidel [109] for an overview
and Avis, Bremner, and Seidel [13] for a discussion of the complexity of most
known types of algorithms for the vertex enumeration problem.

For fixed d, Chazelle [43] found an O
(
m�d/2�) polynomial-time algorithm

for the vertex enumeration problem, which is optimal by the upper bound
theorem of McMullen [85]. There exist algorithms which are faster than
Chazelle’s algorithm for small numbers of vertices n, e.g., an algorithm of
Chan [42] with running time O

(
m log n + (mn)1−1/(�d/2�+1) polylog m

)
.

For general d, the reverse search method of Avis and Fukuda [14] solves
the vertex enumeration problem for simple polyhedra in polynomial total
time, using working space (without space for output) bounded polynomially
in the input size. An algorithm of Bremner, Fukuda, and Marzetta [37]
solves the problem in polynomial total time for simplicial polytopes. Note
that these algorithms need a vertex of P to start from.

The following generalization of our situation was considered by Gurvich
and Khachiyan [71]. Let P = {P1, P2, . . . , Pm} be a system of polyhedra
in �n and let Pi1 , Pi2, . . . , Pik (1 ≤ i1 < i2 < · · · < ik ≤ m) be a subsystem
of P . This subsystem is called a feasible subsystem with respect to P , if
Pi1 ∩ Pi2 ∩ · · · ∩ Pik �= ∅, otherwise the system is infeasible with respect
to P . As before, we are interested in maximal feasible and minimal infeasible
subsystems.

As a special case, the vertex enumeration problem appears twice. Once
by the relation via the alternative polyhedron, discussed above, since enu-
merating all IISs of an infeasible linear inequality system Σ is just a special
case of enumerating all minimal infeasible subsystems w. r. t. P (if P consists
of the halfspaces given by Σ). On the other hand, if P is the collection of
all facets of a pointed polyhedron, then every maximal feasible subsystem
w. r. t. P corresponds to a vertex. Gurvich and Khachiyan [71] proved that
it is coNP-complete to decide whether a collection of maximal feasible sub-
systems w. r. t. P or a collection of minimal infeasible subsystems w. r. t. P

42 IIS-Hypergraphs

is complete. Hence, unless P = NP , there exists no polynomial total time
algorithm to enumerate the maximal feasible or the minimal infeasible sub-
systems with respect to P .

2.3 Generating IIS-Transversal Hypergraphs

Definition 2.6. Let H = (S, E) be a hypergraph. A subset T of S is a
hypergraph transversal of H, if T ∩E �= ∅ for all E ∈ E . Define tr(H) to be
the transversal hypergraph, i.e., the hypergraph that has S as its nodes and
the minimal transversals (w. r. t. inclusion) of H as its edges.2

One can assume w. l. o. g. that H is a clutter hypergraph, since it suffices to
take the maximal edges w. r. t. inclusion of H. Furthermore, trH is always
a clutter hypergraph. Under these conditions, tr(tr(H)) = H.

Definition 2.7. Let Σ be an infeasible inequality system and H(Σ) the cor-
responding IIS-hypergraph (see Definition 2.1). The hypergraph tr(H(Σ)) is
called the IIS-transversal hypergraph of Σ.

The elements of tr(H(Σ)) are called minimal IIS-transversals or minimal
IIS-covers ; compare also the definition in Section 1.1.1.

Example 2.8. The sizes of the hypergraphs H(Σ) and tr(H(Σ)) can be very
different: For instance, take the infeasible system given by the inequalities
xi ≤ 0 and xi ≥ 1 for i = 1, 2 . . . , k, where k is any fixed positive integer. This
system has k IISs and 2k minimal IIS-transversals. Its alternative polyhedron
(see Definition 1.9) is a (k − 1)-dimensional simplex.3

Conversely, consider the infeasible system determined by

x1 + · · · + xk−1 ≥ 1, x1 + · · · + xk−1 ≥ 2

xi ≤ 0, xi ≤ −1 for i = 1, 2, . . . , k − 1.

This system has 2k IISs, which are all of size k: They consist of one of xi ≤ 0
or xi ≤ −1 for each i = 1, 2, . . . , k−1 and one of the first two inequalities. It
has k IIS-transversals, all of size 2, namely either the first two inequalities or
both xi ≤ 0 and xi ≤ −1, for each i = 1, 2, . . . , k− 1. In fact, the alternative
polyhedron of this example is a k-dimensional cube (see Definition 1.9 and
Example 2.25).4

2The collection of edges of tr(H) is sometimes called the blocker of H.
3It can be described as: { (x, x′) ∈ �2k : �x = 1, x = x′, x ≥ 0, x′ ≥ 0 }. For

each i = 1, . . . , k, one of xi ≥ 0 and x′
i ≥ 0 is redundant.

4The alternative polyhedron of the system {�x ≥ 1, �x ≥ 1, x ≤ 0, x ≤ 0 } is the
k-dimensional 0/1-cube.

2.3 Generating IIS-Transversal Hypergraphs 43

12

3

4

5

Figure 2.2: Realization of the hypergraph H discussed in Example 2.9. The arrows point
into the corresponding halfspace.

Hence, as it was the case for the generation of all IISs, we are interested
in an polynomial total time algorithm to generate all IIS-transversals. It is
unknown if such an algorithm exists.

A question that comes to mind in this context is whether IIS-transversal
hypergraphs are IIS-hypergraphs (and conversely). If this was the case and
the corresponding infeasible system would be at hand or could be efficiently
computed, we could use the approach of the previous section and apply vertex
enumeration algorithms to generate the IIS-transversal hypergraph. The
next example, however, shows that the answer to this question is negative.

Example 2.9. Consider the hypergraph H with nodes {1, 2, 3, 4, 5} and the
following edges: {2, 5}, {3, 4}, {1, 2, 3}. H is an IIS-hypergraph, which is
demonstrated by the realization of H shown in Figure 2.2.

The minimal transversal hypergraph tr(H) of H has {2, 3}, {2, 4}, {3, 5},
and {1, 4, 5} as its edges. It cannot be an IIS-hypergraph, since the hyper-
planes corresponding to 2, 3, 4, and 5 would have to be parallel (implied
by the first three edges), but the last edge {1, 4, 5} forces 4 and 5 not to be
parallel.

Conversely, H cannot be an IIS-transversal hypergraph: Otherwise the
equation H = tr(tr(H)) implies that tr(H) has to be an IIS-hypergraph, but
this cannot be the case as we just observed.

Let Σ : {Ax ≤ b} be an infeasible inequality system, where A ∈ �m×n

and b ∈ �m. The IIS-transversal hypergraph corresponding to Σ can be
generated as follows, although not in polynomial total time. We consider the

44 IIS-Hypergraphs

12

3

4

5

C1

C2

C3

C4

Figure 2.3: Oriented hyperplane arrangement taken from Figure 2.2, with shaded cells
Ci = C(([5] \ T−

i , T−
i)) for i = 1, 2, 3, 4, where T−

1 = {2, 3}, T−
2 = {2, 4}, T−

3 = {3, 5},
and T−

4 = {1, 4, 5}. These cells correspond to minimal IIS-transversals.

affine oriented hyperplane arrangement given by the inequalities of Σ. For
each point z ∈ �n define

S+(z) := {i ∈ [m] : aiz < bi},
S=(z) := {i ∈ [m] : aiz = bi},
S−(z) := {i ∈ [m] : aiz > bi},

where ai is the ith row of A.
The set S−(z) is just the subset of inequalities of Σ that are violated

by the point z. Hence, if we remove the inequalities in S−(z) from Σ, we
obtain a feasible system. Therefore, each z ∈ �n corresponds to an IIS-
transversal S−(z). Let T := (T+, T−) be a partition of the set of inequal-
ities [m] and define C(T) := {z ∈ �n : S+(z) = T+, S−(z) = T−}. We
call C(T) a cell if it is nonempty. Clearly, C(T) is the interior of an (possibly
unbounded) polyhedron. Then an IIS-transversal S ⊆ [m] corresponds to the
cell C(([m] \ S, S)).

Let B(T) ⊆ [m] be the inequalities that define the boundary of C(T).
If we take z ∈ C(T) and if B(T) = T+, starting from z we cannot leave
the closure of C(T) without violating more inequalities, i.e., T− is a minimal
IIS-transversal. Hence, if Σ contains no implicit equations, minimal IIS-
transversals correspond to cells C(T) such that B(T) = T+; see Figure 2.3.

If we are given Σ, containing no implicit equations, we can generate the
IIS-transversal hypergraph by first generating all cells with the reverse search
algorithm by Avis and Fukuda [15] and then find the ones that correspond

2.3 Generating IIS-Transversal Hypergraphs 45

to minimal IIS-transversals. In fact, the tree algorithm of Greer [68] com-
putes all cells that correspond to minimal IIS-transversals; he calls such cells
hills, as they correspond to local optima w. r. t. the objective function count-
ing the inequalities satisfied by a point z ∈ �n. This algorithm runs in
O(n · mn/2n−1) time and also works if Σ contains implicit equations. For
fixed dimension n, both are are polynomial-time algorithms.

Given the infeasible system Σ : {Ax ≤ b} and a (partial) list of IISs and
minimal IIS-transversals of Σ, an algorithm of Gurvich and Khachiyan [71]
produces a new IIS or IIS-transversal or concludes that none exists in subex-
ponential time: ko(log k) if k is the sum of the number of known IISs and
IIS-transversals.

With respect to counting minimal IIS-transversals only, we have the fol-
lowing result:

Proposition 2.10. Given an infeasible system Σ : {Ax ≤ b}, counting the
number of minimal IIS-transversals is #P-complete.

Proof. Let D = (V, A) be a directed graph. A feedback arc set of D is
a subset A′ of the arcs such that (V, A \ A′) contains no directed cycle.
Schwikowski and Speckenmeyer [108] prove that computing the number of
minimal feedback arc sets of a directed graph is #P-complete.

Sankaran [105] introduced the system Σ : {xu − xv ≤ −1 : (u, v) ∈ A},
which is feasible if and only if D contains no directed cycle. He proved that
if Σ is infeasible, then IIS-transversals for Σ correspond to feedback arc sets
of D. It directly follows that counting the number of minimal IIS-transversals
is #P-complete.

If the input is the IIS-hypergraph H(Σ) (and no geometrical information),
the problem to compute the IIS-transversal hypergraph of Σ can be reduced
to the following.

Hypergraph transversal problem: Given a hypergraph H, generate its
transversal hypergraph tr(H).

This problem has lots of applications, most of them in computer sci-
ence, see Eiter and Gottlob [54] for many examples. One interesting applica-
tion is to generate the minimal non-faces of a simplicial complex, which are
needed to compute the Stanley-Reisner ring, cf. Stanley [110] (see below for
the special case where the simplicial complex is shellable). The hypergraph
transversal problem is closely related to the

Hypergraph transversal completeness problem:
Given a hypergraph H and T ⊆ tr(H), either decide that T = tr(H) or
compute T ∈ tr(H) \ T .

46 IIS-Hypergraphs

If one can solve the hypergraph transversal completeness problem in poly-
nomial time then one can solve the hypergraph transversal problem in poly-
nomial total time and conversely (the back direction follows from a standard
simulation argument). Many interesting problems, for which no polynomial-
time algorithm could be found (despite numerous efforts), can be reduced to
the hypergraph transversal completeness problem. Therefore, it is assumed
that this problem is “hard” (see Bioch and Ibaraki [28]). It is, however, un-
likely to be NP-hard, since there exists a subexponential ko(log k) algorithm
of Fredman and Khachiyan [57], where k is the size of the input, i.e., the sum
of the sizes of H and of T . Many special cases of the hypergraph transversal
completeness problem are solvable in polynomial time. For instance, this is
the case if the sizes of the edges are bounded (by a constant) or if the degree
of each node is bounded (i.e., the number of edges that contain a node is
bounded), see Eiter and Gottlob [54].

Ryan [104] showed that one can generate the IIS-transversal hypergraph
in polynomial time, if the IIS-hypergraph H(Σ) is nondegenerate, i.e., if
the alternative polyhedron P (Σ) is nondegenerate. For this, she first shows
that in this case there exist only polynomially many minimal transversals in
the size of H(Σ) and then gives an algorithm which generates all minimal
transversals. The proof, however, is a bit complicated and (without expla-
nation) implicitly uses a dual shelling of P (Σ). We will give a new proof of
this result in Section 2.3.2, since it is simpler and gives insight into the struc-
ture of nondegenerate IIS-hypergraphs, but we first have to treat non-faces
of shellable simplicial complexes.

2.3.1 Non-Faces of Simplicial Complexes

A (finite abstract) simplicial complex is a finite hypergraph (V, ∆) with no
multiple edges that has the property that G ⊂ F ∈ ∆ implies that G ∈ ∆.
The elements of V are called vertices, the elements of ∆ are the faces, and a
set S ⊆ V with S /∈ ∆ is a non-face of (V, ∆). If the vertex set V is clear
from the context, we call the simplicial complex itself ∆. The dimension
of a face F ∈ ∆ is dim F := |F | − 1 and the dimension of the complex ∆
is dim ∆ := max{dim F : F ∈ ∆}. The inclusion-wise maximal elements
of ∆ are called facets. The simplicial complex is pure if all facets have the
same dimension. We refer to Björner [29] for more information; note that
in contrast to this reference we allow ∅ ∈ ∆ and that facets are defined
differently.

A simplicial complex ∆ with s facets is shellable, if there exists an ordering
of its facets F1, F2, . . . , Fs, such that the following property holds. For every

2.3 Generating IIS-Transversal Hypergraphs 47

index i and k with 1 ≤ i < k ≤ s, there exists j with 1 ≤ j < k and x ∈ Fk

such that Fi ∩Fk ⊆ Fj ∩Fk = Fk −{x}. Such an ordering is called a shelling
order. See Björner and Wachs [31] and Ziegler [115] for more information.
This definition does not require ∆ to be pure, but we will only use it for pure
simplicial complexes. We need the following Lemma, which was proved by
Volker Kaibel.

Lemma 2.11. Let (V, ∆) be a shellable simplicial complex with s facets.
Then (V, ∆) has at most s · |V | minimal non-faces.

Proof. Let F1, F2, . . . , Fs be a shelling order of the facets of (V, ∆). For
k = 1, . . . , s, define ∆k := {S ⊆ V : ∃ i ≤ k such that S ⊆ Fi}. Then
(V, ∆k) is a simplicial complex.

We show by induction on k that the number of minimal non-faces of
(V, ∆k) is at most k · |V |. For k = 1, the number of non-faces of (V, ∆1)
is |V \ F1| ≤ |V |. Hence, for the following assume k > 1.

Define the so-called restriction set Rk := {v ∈ Fk : Fk − {v} ∈ ∆k−1}.
For every set G ∈ ∆k \ ∆k−1, we have Rk ⊆ G ⊆ Fk (see Proposition 2.5
of Björner and Wachs [31] or Section 8.3 in Ziegler [115]). We show that by
adding all subsets of Fk to ∆k−1 (and hence obtaining (V, ∆k)), at most |V |
new minimal non-faces are introduced (while others are lost). Assume that S
is a new minimal non-face in (V, ∆k), which was not minimal in (V, ∆k−1).
Clearly, S is a non-face in (V, ∆i) for every i ≤ k.

We claim that Rk ⊂ S. Since S is not minimal in (V, ∆k−1), there exists a
set S ′ ⊂ S which is a minimal non-face in (V, ∆k−1). But since S is minimal,
S ′ is a face in ∆k. Because S ′ ∈ ∆k \∆k−1, it follows that Rk ⊆ S ′. Therefore
we have Rk ⊆ S ′ ⊂ S, as claimed.

We have S � Fk (otherwise S would be a face in ∆k), Rk ⊂ S, and
Rk ⊆ Fk. Consider any v ∈ S \Rk. Since S is a minimal non-face of (V, ∆k),
the set S − {v} is a face of ∆k. But S − {v} ⊇ Rk and since ∆k−1 does not
contain Rk, S−{v} is not a face in ∆k−1. Therefore, S−{v} ⊆ Fk and hence
S \Fk = {v}, which implies that v is unique, i.e., S = Rk ∪ {v}. This proves
that Rk ∪ {v} are the only candidates for new non-faces when proceeding
from (V, ∆k−1) to (V, ∆k); and there are at most |V | of them.

In contrast to this result, the number of facets need not be polynomially
bounded in the number of non-faces and vertices of a shellable simplicial com-
plex. For instance, take the boundary complex (V, ∆) of the d-crosspolytope
as a simplicial complex, which is shellable since boundary complexes of sim-
plicial polytopes are shellable (see Section 8.2 of Ziegler [115]). It has 2d
vertices and d non-faces (the “diagonals”), but 2d facets.

48 IIS-Hypergraphs

If a shelling is available, the proof of Lemma 2.11 immediately suggests
a polynomial-time algorithm for computing the minimal non-faces. This
yields a polynomial-time algorithm for the hypergraph transversal problem
if a shelling of the hypergraph is available, i.e., if we know a shelling of
the simplicial complex whose facets are the edges of the hypergraph (if it is
shellable at all).

Boros, Crama, Ekin, Hammer, Ibaraki, and Kogan [36] prove a result
similar to Lemma 2.11 and provide a polynomial-time algorithm for comput-
ing the minimal non-faces. They first define a shellable disjunctive normal
form and then work in terms of (monotone) boolean functions.

Consider the problem to decide whether a simplicial complex ∆ given by
the list of its facets is shellable. The complexity status of this problem is
open, even if the input is the set of all faces of ∆ (see Problem 34 of [77]). If
we are given an ordering of the facets of ∆, it is easy to test whether this is
a shelling order in polynomial time. Hence, the former problem is in NP .

2.3.2 The Transversal Hypergraph of Nondegenerate IIS-Hypergraphs

We return to the case of computing the IIS-transversal hypergraph for an
infeasible inequality system whose alternative polyhedron is nondegenerate.
Let Σ : {Ax ≤ b} be an infeasible system, where as usual A ∈ �m×n and
b ∈ �m. Let P = {y ∈ �m : yA = 0, yb = −1, y ≥ 0} be the alternative
polyhedron of Σ (Definition 1.9). Assume that P is nondegenerate. For a
vertex v of P , let F (v) be the indices of facets of P that contain v. Since P
is nondegenerate, each inequality yj ≥ 0 (1 ≤ j ≤ m) defines a facet and P
is simple, i.e., |F (v)| = dim P for all vertices v of P . Furthermore, every
k-subset of F (v) defines a unique face of dimension dim(P) − k. Let ∆(P)
be the simplicial complex with {1, 2, . . . , m} as vertex set and F (v) for every
vertex v of P as facets. Then ∆(P) (with an adjoined top element 1̂) is anti-
isomorphic to the face lattice of P . Hence, every set in ∆(P) corresponds to
a (unique) face of P . If P is a polytope, ∆(P) is isomorphic to the boundary
complex of the polar of P . We need a simple Lemma of Ryan.

Lemma 2.12 (Ryan [103]). Let Σ be an infeasible system with m inequal-
ities and P be its alternative polyhedron. A minimal IIS-transversal T ⊆ [m]
corresponds to a minimal set of faces of P defined by yj ≥ 0, j ∈ T that have
an empty intersection and conversely.

In our situation, we want to compute the minimal sets of facets of P that
have empty intersection. Each such set corresponds to a minimal subset
S ⊆ [m] with the property that S /∈ ∆(P), i.e., S is a non-face of ([m], ∆(P)).

2.4 Relation to Vertex-Facet Incidence Hypergraphs 49

Therefore, to apply Lemma 2.11 and enumerate all minimal IIS-transversals,
we need a shelling of ∆(P).

The boundary of a simplicial polytope is a simplicial complex, which is
shellable by a famous result of Bruggesser and Mani [38] (see also Section 8.2.
of Ziegler [115]). Here we are in the dual situation, but have to consider
unbounded simple polyhedra, too. Nonetheless, the same ideas can be used
to show that ∆(P) is shellable, as follows. The linear objective function given
by c = (ε, ε2, . . . , εn), for some ε > 0, defines a linear ordering on the vertices
(IISs) of P , since c is in general position w. r. t. the vertices of P , if ε is small
enough. If the vertices of P are v1, v2, . . . , vs, sorted by increasing objective
value w. r. t. c, then F (v1), F (v2), . . . , F (vs) is a shelling order of ∆(P) (see
Ball and Provan [21]).

The only known way to efficiently generate a shelling is by using geom-
etry as just explained. In fact, this defines an abstract objective function
(Problem 17 of [77]). Hence, we either assume that we are given H(Σ) to-
gether with P , from which we can efficiently compute a shelling of ∆(P) as
above, or we are given H(Σ) together with a shelling of ∆(P). Applying
Lemma 2.11 and Theorem 1.12 yields:

Theorem 2.13 (Ryan [104]). Let Σ be an infeasible system with m in-
equalities and P be its alternative polyhedron. If P is nondegenerate, then
the number of minimal transversals is at most m×
, if
 is the number of IISs
(vertices of P). Furthermore, if we are given a shelling of ∆(P), tr(H(Σ))
can be computed in polynomial time in the size of Σ and
.

Since
 can be exponential in the size of Σ, even for simple polyhedra (see
Section 2.2), this result does not show that Min IIS Cover is solvable in
polynomial time for systems whose alternative polyhedron is nondegenerate.
In fact, it seems to be open whether Min IIS Cover is hard for these cases.
All NP-hardness proofs for Min IIS Cover that we know of construct
systems that are not of this type.

2.4 Relation to Vertex-Facet Incidence Hypergraphs

Theorem 1.12 provides a connection between the structure of the IISs of
any given infeasible system and the vertex-facet incidences of its alternative
polyhedron. In this section, we investigate this relation on a combinatorial
level. This is used in the next section to address the problem of recognizing
whether a given hypergraph is an IIS-hypergraph. The techniques used here
are also fundamental for Section 2.6 and Section 1.3.3. We need the following
concepts for hypergraphs.

50 IIS-Hypergraphs

Let H = (S, E) be a hypergraph. For E ∈ E define E := S \E to obtain
the complement hypergraph H := (S, E), where E := (E : E ∈ E).

Definition 2.14 (see Berge [26]). Let H = (S, E) be a hypergraph. The
dual hypergraph H∗ of H contains a distinct node E∗ corresponding to each
edge E ∈ E and has the family E∗ := (E∗

s : s ∈ S) as edges, where for
all s ∈ S, E∗

s := {E∗ : s ∈ E, E ∈ E}.

This operation corresponds to the transposition of the edge-node inci-
dence matrix of H. See Figure 1.4 on page 36 for an example. One can
easily verify that H∗∗ ∼= H and (H)∗ ∼= (H∗).

Definition 2.15. Let P be a pointed polyhedron with vertex set V . Let
F1, . . . , Fm be the facets of P and let vert(F) := {v ∈ V : v ∈ F} be the ver-
tex set of a face F of P . A hypergraph H = (S, E) is a vertex-facet incidence
hypergraph of P , if H is isomorphic to H(P) := (V, (vert(F1), . . . , vert(Fm))).
A hypergraph H is a vertex-facet incidence hypergraph (of dimension d), if it
is a vertex-facet incidence hypergraph of a polyhedron P (of dimension d).

Note that in IIS-hypergraphs there may exist nodes that are not contained in
any edge, which is not possible for vertex-facet incidence hypergraphs (except
for 0-dimensional polytopes).

Recall that K is a subfield of �. We have the following relation:

Lemma 2.16. Let Σ : {Ax ≤ b} be an infeasible system, where A ∈ Km×n

and b ∈ Km. If H(Σ)∗ is a clutter hypergraph, then it is a vertex-facet
incidence hypergraph of the alternative polyhedron corresponding to Σ with
a description over K.

Proof. According to Theorem 1.12, the IISs (elements of C(Σ)) are the sup-
ports of the vertices of the alternative polyhedron

P = {y ∈ �m : yA = 0, yb = −1, y ≥ 0}.

Let C ∈ C(Σ) be an IIS, and let v be the vertex of P associated with C. The
complement of the support of v is C; and it determines which inequalities
yj ≥ 0, 1 ≤ j ≤ m, are satisfied by v with equality. Hence, C is the set
of all faces defined by these inequalities containing v. It follows that each
set in (C(Σ))∗ = C(Σ)∗ corresponds to the vertex set of a face defined by
yj ≥ 0 for some 1 ≤ j ≤ m. Furthermore, for each facet of P there exists j

(1 ≤ j ≤ m) such that yj ≥ 0 defines this facet. Since C(Σ)∗ is a clutter,
no vertex set of a face of this type contains another. Altogether this implies
that each yj ≥ 0 defines a facet of P . Thus, H(Σ)∗ is a vertex-facet incidence
hypergraph of P .

2.5 IIS-Hypergraph Recognition 51

The reverse direction is as follows:

Lemma 2.17. Let H = (V, F) be a nonempty vertex-facet incidence hyper-
graph of a pointed polyhedron P (with a description over K) that is not a
cone. Then H∗ is an IIS-hypergraph (over K).

Proof. Since P is not a cone, by Lemma 1.10, there exists a polyhedron
P ′ = {y ∈ �m : yA = 0, yb = −1, y ≥ 0} which is affinely equivalent
to P and each face of P ′ defined by yj ≥ 0 is a facet (1 ≤ j ≤ m). By
Remark 1.11, we have A ∈ Km×n and b ∈ Km for appropriate n and m. We
can identify V with the set of vertices of P ′ and each set of F is the vertex
set of a facet of P ′. An edge F of H∗ corresponds to the set of facets which
contain a specific vertex v of P ′, i.e., F = F∗

v = {G∗ : v ∈ G, G ∈ F}.
If we identify [m] with the set of facets, F is the support of v. Thus, by
Theorem 1.12, {Ax ≤ b} is an infeasible system whose IISs are in one-to-one
correspondence with the edges of H∗.

Note the slight asymmetry between the assumptions of Lemma 2.16 and
Lemma 2.17, which is due to the fact that vertex-facet incidences cannot
capture all information about the face lattice of unbounded polyhedra (see
Section 3.2). Restricting attention to hypergraphs H for which H∗ is a
nonempty clutter hypergraph yields the following result.

Corollary 2.18. Let H = (S, E) be a finite hypergraph such that H∗ is a
nonempty clutter hypergraph. Then H is an IIS-hypergraph if and only if H∗

is a vertex-facet incidence hypergraph of a polyhedron.

Proof. An IIS-hypergraph H is isomorphic to H(Σ) for some infeasible sys-
tem Σ. By Lemma 2.16, H∗ ∼= H(Σ)∗ is a vertex-facet incidence hypergraph.

If H∗ is a vertex-facet incidence hypergraph of a polyhedron P and it is
a clutter hypergraph, then P cannot be a cone, unless P = {0} (which is
excluded since in this case H∗ would have no edges). Thus by Lemma 2.17,
H is an IIS-hypergraph.

2.5 IIS-Hypergraph Recognition

In this subsection we address the problem of recognizing IIS-hypergraphs,
which was first raised by Ryan [104].

IIS-hypergraph recognition problem over K: Given a hypergraph H,
is H an IIS-hypergraph over K?

We prove NP-hardness of this problem by polynomial-time reduction
from the Steinitz problem for polytopes defined below.

52 IIS-Hypergraphs

We follow the definitions and terms of posets and lattices in Ziegler [115].
The face lattice of a polytope P is its set of faces, ordered by inclusion, with
the meet defined by intersection. It is well-known that the face lattice of P
has a rank function r(·), satisfying r(F) = dim F +1 for every face F , and is
both atomic and coatomic (see [115]). Two polytopes with isomorphic face
lattices are combinatorially equivalent.

Steinitz problem over K: Given a lattice L, does there exist a polytope
P ⊂ �d (for some d) with vertices in Kd such that the face lattice of P is
isomorphic to L?

If the answer is affirmative, L is realizable as a polytope. In this case d
can be assumed to be the rank of L minus 1. See Bokowski and Sturmfels [34]
for related material.

We need a special lattice construction arising from hypergraphs. Consider
an arbitrary hypergraph H = (S, E). Define the poset L(H) as the set of
all nonempty intersections of sets in E , ordered by inclusion. Furthermore,
adjoin a minimal element 0̂ and a maximal element 1̂ to L(H). Since L(H)
is bounded and has a meet (defined by intersection), it is a lattice. Note
that the size of L(H), i.e., its number of elements, can be exponential in the
size of H. If H is a vertex-facet incidence hypergraph of a polyhedron P ,
we exactly have L(H) = V̂(P) (defined in Section 3.3). Moreover, if P is a
polytope, L(H) is isomorphic to the face lattice of P . This follows from the
fact that all faces of P are determined by their vertex sets and also by the
set of facets they are contained in.

Conversely, consider an arbitrary ranked, atomic, and coatomic lattice L.
Then let V be the set of atoms of L and for each coatom F , define the
set EF := {v ∈ V : v is below F in L}. Further define the hypergraph
H(L) := (V, {EF : F coatom of L}). Note that, since L is atomic, H(L) is
a clutter hypergraph by construction. If L is the face lattice of a polytope,
then H(L) is a vertex-facet incidence hypergraph.

Finally we can prove the main reduction used for the proof of NP-
hardness of the IIS-hypergraph recognition problem.

Theorem 2.19. For any subfield K of �, there is a polynomial-time Turing
reduction from the Steinitz problem (over K) to the IIS-hypergraph recog-
nition problem (over K).

Proof. We show that for any instance of the Steinitz problem, given by a
lattice L, we can construct in polynomial time a special instance of the IIS-
hypergraph recognition problem, given by a clutter hypergraph H, such that
the answer to L is affirmative if and only if the answer to H is affirmative.

2.5 IIS-Hypergraph Recognition 53

If L is realizable as a polytope P , it is isomorphic to the face lattice
of P and hence necessarily ranked, atomic, and coatomic. Furthermore, by
Theorem 3.11 and Equation (3.2) we have that χ̃(V(P)) = µ(V̂(P)) = µ(L)
is nonzero5, where µ(L) is the Möbius function of L (see (3.1) of Section 3.3).
These conditions are used as follows.

First perform Test 1: Check whether L is ranked, atomic, and coatomic.
This test can be performed in polynomial time in |L|. If L passes the test,
take H = H(L)∗, which can be constructed in polynomial time in |L|. If L
fails the test, let H be any hypergraph which is not an IIS-hypergraph, e.g.,
take H = ({1, 2, 3}, ({1, 2}, {2, 3}, {1, 3})).

Then perform Test 2: Compute µ(L) in polynomial time in |L| (see Corol-
lary 3.12) and check whether it is nonzero. If µ(L) = 0, then replace H by
any hypergraph which is not an IIS-hypergraph. The resulting H after both
tests is the input to the IIS-hypergraph recognition problem.

To prove correctness, assume that the answer to the IIS-hypergraph
recognition problem for H is affirmative, i.e., H is an IIS-hypergraph. In
this case, L passed both tests. As noted above, the atomicity of L implies
that H(L) = H∗ is a clutter hypergraph. By Lemma 2.16, H∗ is a vertex-facet
incidence hypergraph of a polyhedron P . By construction, L(H∗) = L(H(L))
is isomorphic to L (since L is atomic and coatomic).

First assume that P is a polytope. Then L(H∗) is isomorphic to the face
lattice of P and hence so is L, i.e., the answer to the Steinitz problem for L
is affirmative.

Second, if P is an unbounded polyhedron, then H∗ is a vertex-facet inci-
dence hypergraph of an unbounded polyhedron and hence, by Theorem 3.11,
it follows that µ(L(H∗)) = χ̃(V̂(P)) = 0. Since L(H∗) is isomorphic to L,
we have µ(L) = 0. But in this case we replaced the input by an instance
which is not an IIS-hypergraph; a contradiction. This proves that if H is an
IIS-hypergraph then L is the face lattice of a polytope.

Conversely, assume that the answer to the Steinitz problem for L is af-
firmative. Then there exists a polytope P such that L is isomorphic to the
face lattice of P and hence, by construction, H∗ is a vertex-facet incidence
hypergraph of P . The polytope P is not a cone unless P = {0}, a case which
can be easily identified and discarded (see also Corollary 2.18). By applying
Lemma 2.17 to H∗, it follows that H is an IIS-hypergraph.

Given a set of polynomials f1, . . . , fr, g1, . . . , gs, h1, . . . , ht ∈ �[x1, . . . , xl],
5The question of how to (efficiently) distinguish between polytopes and polyhedra from

their vertex-facet incidences triggered the investigations of Section 3.3. In particular, at
first, it was not even clear whether a polytope and an unbounded polyhedron could have
the same vertex-facet incidences.

54 IIS-Hypergraphs

the problem to decide whether the polynomial system f1 = 0, . . . , fr = 0,
g1 ≥ 0, . . . , gs ≥ 0, h1 > 0, . . . , ht > 0 has a solution in K l = �l is called
the Existential theory of the reals (ETR). ETR is polynomial-time equiva-
lent to the Steinitz problem for 4-polytopes over � (Richter-Gebert [99]).
(All polytopes realizable over �, are realizable over �.) Moreover, ETR is
polynomial-time equivalent to the Steinitz problem for d-Polytopes with d+4
vertices over � (Mnëv [87]). Since ETR is easily verified to be NP-hard6,
the same is true for the general Steinitz problem over �, and we obtain:

Corollary 2.20. The IIS-hypergraph recognition problem over � is NP-
hard.

Richter-Gebert’s result shows that the Steinitz problem is NP-hard for fixed
dimension (d = 4), while Mnëv’s result shows that the recognition prob-
lem for IIS-hypergraphs of fixed rank is NP-hard (by polarity the Steinitz
Problem is NP-hard for m = d + 4 facets, i.e., the rank is r = m − d = 4).

According to Theorem 2.7 of Bokowski and Sturmfels [34], for K = �

or K = �, deciding whether an arbitrary polynomial f ∈ �[x1, . . . , xl] has
zeros in K l, where l is a positive integer, is equivalent to solving the Steinitz
problem for K. Remember that there exist polytopes, which cannot be real-
ized with rational coefficients (see the beginning of this chapter). For K = �,
it is not even clear whether the Steinitz problem (and therefore the IIS-
hypergraph recognition problem) is decidable, since finding roots in K = �
of a single polynomial f ∈ �[x1, . . . , xl] is the unsolved rational version of
Hilbert’s 10th problem. Reduction of a system of polynomial (in)equalities
to an equation involving only one polynomial can be achieved by standard
methods, see, e.g., Section 2.3 of Bokowski and Sturmfels [34]. By the quan-
tifier elimination result of Tarski, the problem is decidable for K = �.
For K = �, it is unknown whether the Steinitz problem is in NP . See Blum,
Cucker, Shub, and Smale [33], Björner, Las Vergnas, Sturmfels, White, and
Ziegler [30], Mishra [86], and references therein for this and related issues.

Let us discuss two more aspects of the above results. First note the
asymmetry in the size of the input between the Steinitz problem and the
IIS-hypergraph recognition problem. For the latter, a hypergraph storing the
combinatorics of the IISs as input seems natural. For the Steinitz problem,
however, we could take the vertex-facet incidences (instead of a lattice) as the
input. This version of the Steinitz problem is clearly NP-hard. A reduction

6ETR subsumes the following NP-complete problem (see Schrijver [107, Chapter 18]):
Given a ∈ �

� and β ∈ �, does ax = β have a 0/1-solution x? One equation in the
polynomial system of the corresponding instance for ETR is ax − β = 0. Furthermore,
for each i = 1, . . . , �, we include x2

i − xi = 0 as an equation. These equations force each
xi to be 0 or 1.

2.6 Finite Excluded Minor Characterization 55

as in Theorem 2.19 for this case could not be obtained in this thesis. The
reason being that the computational complexity of deciding boundedness
of a polyhedron given vertex-facet incidences is unknown. Moreover, it is
unknown whether computing the Euler characteristic of a simplicial complex
(given the vertex-facet incidences) is NP-hard. See Section 3.4 for further
comments.

On the other hand, to provide a reduction leading to a complexity result as
in Corollary 2.20, it suffices to consider polyhedra P with dim P = 4 or with
dim(P)+4 vertices. In these cases the sizes of the face lattices are polynomi-
ally bounded in the size of a vertex-facet incidence matrix. By Corollary 3.12
we can decide boundedness of such polyhedra P in polynomial time in the
size of its vertex-facet incidences. This provides an NP-hardness proof of the
IIS-hypergraph recognition problem by reduction from the Steinitz problem
with vertex-facet incidences as input.

To establish the reverse direction of Theorem 2.19, one would need to
provide an appropriate input (a lattice) to the Steinitz problem. This task
appears to be difficult, because we need to consider the case of unbounded
polyhedra. In fact, as discussed in Section 3.2 (see Figure 3.6 and Figure 3.7),
it is in general impossible to reconstruct the face lattice of an unbounded
polyhedron P from a vertex-facet incidence hypergraph H, even if H is a
clutter hypergraph and dim(P) = 4.

2.6 Finite Excluded Minor Characterization

Continuing the study of IIS-hypergraphs, it is a natural question whether
there exists a finite excluded minor characterization of IIS-hypergraphs. We
will give a possible notion of a minor below. The class of IIS-hypergraphs,
however, is not closed under this minor definition. Nevertheless, we will
define partial IIS-hypergraphs, which are closed under this definition. Then,
we will see that there cannot exist a finite excluded minor characterization
of this class, applying similar results for polytopes.

Let H = (S, E) be a hypergraph and s ∈ S be a node of H. We consider
two operations on H. First, we obtain the hypergraph H \ s by deletion of s,
which has S−{s} as nodes and the family (E ∈ E : s /∈ E) as edges. Second,
H/s is the hypergraph (S−{s}, (E−{s} : E ∈ E , s ∈ E)), which is obtained
by contraction of s.7 These operations (as defined here) are natural in the

7Note that there exist other definitions of the contraction H/s, e.g., the hypergraph
with S − {s} as nodes and the minimal (w. r. t. inclusion) elements of {E − {s} : E ∈ E}
as the edges. See Cornuéjols [51], where this definition arises naturally in the context of
the set covering problem. This definition is unsuitable in our context.

56 IIS-Hypergraphs

sense that they “almost” preserve the property of being an IIS-hypergraph,
as we will see in Proposition 2.23 below. To prove this, we need two technical
lemmas and the following constructions. Let E ∈ E be an edge. Then H|E,
the hypergraph H restricted to E, is the hypergraph with node set E and
(E∩E ′ : E ′ ∈ E , E ′ �= E) as edges. Similarly, we let H|E be the hypergraph
with nodes S \ E and the following edges ((S \ E) ∩ E ′ : E ′ ∈ E , E ′ �= E).
Both constructions can produce empty edges and are not necessarily clutter
hypergraphs, even if H is a clutter hypergraph. This cannot happen for
deletion and contraction, unless {s} is an edge of H and s is contracted.

Lemma 2.21. Let H = (S, E) be a hypergraph and H∗ = (E , E∗) be its
dual hypergraph (see Definition 2.14). Then for s ∈ S and the corresponding
edge E∗

s = {E∗ : s ∈ E, E ∈ E} of the dual, we have the following:

(a) (H/s)∗ ∼= H∗|E∗
s

(b) (H\s)∗ = H∗|E∗
s

Proof. The proof is technical but straightforward. For notational conveni-
ence, we write S − s for S − {s} and use Es := (E ∈ E : s ∈ E) for s ∈ S.

(a) (H/s)∗ = (S − s, (E − s : E ∈ Es))∗

= ({(E − s)∗ : E ∈ Es}, ({(E − s)∗ : E ∈ Es ∩ Et} : t ∈ S − s))

∼= ({E∗ : E ∈ Es}, ({E∗ : E ∈ Es ∩ Et} : t ∈ S − s))

= (E∗
s , (E∗

s ∩ E∗
t : t ∈ S − s)) = H∗|E∗

s
.

(b) (H\s)∗ = (S − s, (E : E /∈ Es))∗

= ({E∗ : E /∈ Es}, ({E∗ : E /∈ Es, E ∈ Et}, t ∈ S − s))

= (E∗ \ E∗
s , (E∗

t \ E∗
s : t ∈ S − s))

= (E∗ \ E∗
s , ((E∗ \ E∗

s) ∩ E∗
t : t ∈ S − s)) = H∗|E∗

s .

Note that in the contracted or deleted dual hypergraph (many) empty edges
may appear, e.g., if Es ∩ Et = ∅.

Lemma 2.22. Let H = (S, E) be a hypergraph and E be an edge. Then we
have H|E = H|E.

2.6 Finite Excluded Minor Characterization 57

Proof. Here, we have to be careful in what context the complement operator
is applied.

H|E = (E, (E ∩ E ′ : E ′ ∈ E , E ′ �= E))

= (E, (E \ (E ∩ E ′) : E ′ ∈ E , E ′ �= E))

= (E, (E \ E ′ : E ′ ∈ E , E ′ �= E))

= (E, ((S \ E ′) ∩ E : E ′ ∈ E , E ′ �= E))

= (E, (E ′ ∩ E : E ′ ∈ E , E ′ �= E))

= (S \ E, (E ′ ∩ (S \ E) : E ′ ∈ E , E ′ �= E)) = H|E.

The first application of the complement operator is with respect to the vertex
set E and all others are with respect to S.
Proposition 2.23. Let H = (S, E) be an IIS-hypergraph and s a node of H.

(i) H/s is not necessarily an IIS-hypergraph, but can be completed to an
IIS-hypergraph by adding edges.

(ii) If H\s is nonempty then it is an IIS-hypergraph.
Proof. Let Σ be an infeasible linear inequality system corresponding to H.
(i) If there exists no edge (IIS) containing s, then H/s has no edges and
hence is not an IIS-hypergraph. Therefore, H/s is not necessarily an IIS-
hypergraph.

By Lemma 2.21 and Lemma 2.22, we have (H/s)∗ = H∗|E∗
s

= H∗|E∗
s . Let

P = {y ∈ �m : yA = 0, yb = −1, y ≥ 0} be the alternative polyhedron
of Σ (see Definition 1.9), where m is the number of nodes of H. As in the
proof of Lemma 2.16, it follows that H∗ is a vertex-face incidence hypergraph
of P , i.e., if we identify its nodes with the vertices of P , every edge is the
vertex set of a face defined by an inequality yj ≥ 0 for some 1 ≤ j ≤ m.
The family Es = (E ∈ E : s ∈ E) includes all IISs that contain inequality s.
In H∗, E∗

s is an edge which is the set of vertices of P that lie on the face F
corresponding to s. Hence, E∗

s is the set of vertices not on F . Therefore, the
hypergraph H∗|E∗

s is the restriction to the set of vertices (IISs) that do not lie
on F , i.e., the deletion of F (and all vertices on it). Removing the inequality
corresponding to F from the description of P deletes the vertices on F and
may produce new vertices (IISs). Therefore, H∗|E∗

s can be completed to a
vertex-face incidence hypergraph K∗ by adding nodes (vertices). Again as
in the proof of Lemma 2.16, it follows that K is an IIS-hypergraph, which
extends H/s by added edges.
(ii) If we delete s from H, this corresponds to deleting inequality s and all
edges (IISs) that contain s from Σ. If there remains at least one edge, then
the result is again an IIS-hypergraph, otherwise the system is feasible.

58 IIS-Hypergraphs

Figure 2.4: Illustration of the contraction operation (Proposition 2.23, Remark 2.24).
A regular 3-cube (left) and a perturbed 3-cube (right) are shown as solid parts. Both
are combinatorially equivalent, but the results after deleting the right facet, shown in
dark grey, are combinatorially not isomorphic. The 1-skeleton (graph) of the result after
deletion is indicated by the black edges and the light grey vertices. On the left we get an
unbounded polyhedron and on the right a polytope with two new vertices; compare also
Figure 2.6.

This operation also is the restriction H∗|E∗
s

to the face corresponding to s
in the alternative polyhedron (see Definition 1.9). Hence, as in part (i), the
result also follows from Lemma 2.21 (a) and the fact that H|E = H|E, which
can be shown similar to the proof of Lemma 2.22.

Remark 2.24. The completion in Proposition 2.23 (ii) is not unique, but
depends on the geometry of the polyhedron P . Take, for example, the regular
3-cube and a perturbed 3-cube as in Figure 2.4. Deleting the facet to the
right results in two combinatorially different polytopes.

Example 2.25. To give a more “concrete” feeling for the situation, we pro-
vide explicit coordinates for the perturbed 3-cube in Figure 2.4 and a con-
traction operation on the corresponding IIS-hypergraph.

The perturbed 3-cube P can be written as

{z ∈ �3 : z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, z1 ≤ 1, z2 ≤ 1, 1
2
z1 + z3 ≤ 1} . (2.1)

By introducing slack variables, then subtracting the last equation from the
first two, and multiplying the last row by −1, we get the following description
of P :

{y ∈ �6 :

1
2

0 −1 1 0 −1

−1
2

1 −1 0 1 −1

−1
2

0 −1 0 0 −1

y =

 0

0

−1

 , y ≥ 0} .

2.6 Finite Excluded Minor Characterization 59

1

2

3

4

5

6

Figure 2.5: Infeasible system corresponding to the perturbed 3-cube on the right of
Figure 2.4, see Example 2.25. Arrows point into the corresponding halfspaces.

We have transformed P to P ′ := {y ∈ �m : yA = 0, yb = −1, y ≥ 0},
which is in the alternative polyhedron form of Definition 1.9, where

A :=

(1
2

0 −1 1 0 −1

−1
2

1 −1 0 1 −1

)T

and b := (−1
2
, 0, −1, 0, 0, −1)T .

Hence, by Theorem 1.12, the corresponding infeasible system {Ax ≤ b} is
the following (see Figure 2.5):

(1) 1
2
x1−1

2
x2 ≤−1

2

(2) x2 ≤ 0
(3) −x1− x2 ≤−1
(4) x1 ≤ 0
(5) x2 ≤ 0
(6) −x1− x2 ≤−1.

The IISs are: {1, 2, 3}, {1, 2, 6}, {1, 3, 5}, {1, 5, 6}, {2, 4, 6}, {2, 3, 4}, {4, 5, 6},
and {3, 4, 5}. The corresponding IIS-hypergraph H has these sets as edges
and {1, 2, . . . , 6} as nodes. As claimed by Theorem 1.12, the IISs are the
supports of the vertices of P ′. If the facets of P are numbered in the order
in which the corresponding defining inequalities appear in (2.1), we get a
one-to-one correspondence to the facets of P ′.

Let us now contract element 4 in H. This corresponds to deleting the face
defined by z1 ≤ 1 of P . Hence, we have to delete the first row and fourth
column of AT and the fourth component of b, to get:

{y ∈ �5 : (−1
2
, 1, −1, 1, −1) y = 0, (−1

2
, 0, −1, 0, −1) y = −1, y ≥ 0}.

60 IIS-Hypergraphs

If we keep the original numbering of the inequalities, the corresponding in-
feasible system is:

(1) −1
2
x ≤−1

2

(2) x ≤ 0
(3) −x ≤−1
(5) x ≤ 0
(6) −x ≤−1.

The IISs are: {1, 2}, {1, 5}, {2, 3}, {3, 5}, {2, 6}, {5, 6}, as is easily seen.
The contracted hypergraph H/4 has {1, 2, 3, 5, 6} as nodes and {2, 6}, {2, 3},
{5, 6}, {3, 5} as edges. Hence, if we add the edges {1, 2} and {1, 5}, which
correspond to the two new vertices on the right of Figure 2.4, we again
obtain an IIS-hypergraph. In fact, H/4 is itself an IIS-hypergraph: The
corresponding alternative polyhedron is the unbounded one on the left of
Figure 2.4.

Remark 2.26. An exponential number of edges might be necessary to com-
plete H/s to an IIS-hypergraph. For instance, take the polar of a so-called
dwarfed polytope, constructed by Avis, Bremner, and Seidel [13], as the al-
ternative polyhedron.

Proposition 2.23 shows that if we contract a node of an IIS-hypergraph, the
result is not necessarily an IIS-hypergraph, but can be completed to one.
We therefore define a partial IIS-hypergraph to be a hypergraph that may be
completed to an IIS-hypergraph by adding edges (IISs). A hypergraph that is
obtained by sequential contractions and deletions of nodes of a hypergraph H
is called a minor of H. It follows from Proposition 2.23 that every minor
of a partial IIS-hypergraph is again a partial IIS-hypergraph (except if it is
empty). Since these operations just correspond to taking submatrices of the
incidence matrices, the resulting hypergraph does not depend on the order
of the operations.

Our question from the beginning of this section can now be phrased as
follows: Do there exist finitely many hypergraphs M1, M2, . . . , Mk, such that
a hypergraph H is a partial IIS-hypergraph if and only if H does not have a
minor isomorphic to some Mi? The answer is negative (see Theorem 2.29).
This result is obtained by translating a result for vertex-facet incidences of
polytopes obtained by Richter-Gebert. We need the following proposition to
state it.

Proposition 2.27. Let H = (V, F) be a vertex-facet incidence hypergraph
of a polytope P and let v ∈ V be a vertex. Then

2.6 Finite Excluded Minor Characterization 61

Figure 2.6: Illustration of the deletion operation in Proposition 2.27. A regular octahe-
dron (left) and a perturbed octahedron (right). They are combinatorially equivalent, but
the results after deleting the top vertex are combinatorially not isomorphic. The results
are the solid parts, where the new facets are shown in dark grey. See also Figure 2.4.

(i) H/v is a vertex-facet incidence hypergraph of a polytope.

(ii) H \ v is not necessarily a vertex-facet incidence hypergraph of a poly-
tope, but can be completed to one by adding edges (facets).

Proof. Statement (i) is true since the vertex-facet incidence hypergraph of
the vertex figure at v is isomorphic to the hypergraph H/v.

Deleting a vertex “cuts a hole” into the boundary of P (all incident facets
are deleted). Taking the convex hull over the rest of the vertices produces a
polytope P ′, which coincides with P on the part not incident to v and has
new facets “filling the hole”. This proves (ii).

Note that Proposition 2.27 is not quite the dual version of Proposition 2.23.
Proposition 2.27 only works for polytopes, where we always get new edges
(facets), while in Proposition 2.23 we allowed unbounded polyhedra, for
which it can happen that no new vertices appear, see Figures 2.4 and 2.6.

As for IIS-hypergraphs, we define a partial vertex-facet incidence hyper-
graph (of a polytope) as a hypergraph that can be completed to a vertex-
facet incidence hypergraph (of a polytope) by adding edges. Theorem 9.4.3 of
Richter-Gebert [99] implies that there does not exist a finite excluded minor
characterization of partial vertex-facet incidence hypergraphs of polytopes;
we translate it to hypergraph language.

Theorem 2.28 (Richter-Gebert [99]). For each even n ∈ � there exists
a hypergraph Hn = (Vn, Fn), with more than n nodes, such that:

62 IIS-Hypergraphs

(a) Each Hn defines a so-called non-polytopal combinatorial 3-sphere. That
is, Hn is not a partial vertex-facet incidence hypergraph of a polytope,
and the order complex of the “intersection” lattice L(Hn) (see Section 2.5
and 3.3) is a 3-dimensional PL-sphere.

(b) For every v ∈ Vn, the contracted hypergraph Hn/v is a vertex-facet
incidence hypergraph of a 3-polytope.

(c) For every v ∈ Vn, the hypergraph Hn\v, obtained by deleting v, can be
completed (by adding edges) to a vertex-facet incidence hypergraph of
a 4-polytope, i.e., is a partial vertex-facet incidence hypergraph.

Part (b) follows since the contraction of a vertex v corresponds to computing
the vertex figure at v. This produces a combinatorial 2-sphere and hence is
polytopal, i.e., can be realized as a 3-polytope by Steinitz’s theorem.

We arrive at the wanted result:

Theorem 2.29. There exists no finite excluded minor characterization of
partial IIS-hypergraphs.

Proof. Suppose there exist hypergraphs M1, . . . , Mk, such that any hyper-
graph H is a partial IIS-hypergraph if and only if there exists no Mi that
is isomorphic to a minor of H. Hence, M1, . . . , Mk are not partial IIS-
hypergraphs.

Consider the hypergraph H∗
n corresponding to Hn of Theorem 2.28. The

hypergraph H∗
n is not an IIS-hypergraph, for assume this would be the case.

Then by Lemma 2.16, Hn would be a vertex-facet incidence hypergraph of
a polyhedron, since Hn is a clutter hypergraph. By Theorem 2.28 (a), Hn

is not a vertex-facet incidence hypergraph of a polytope. Furthermore, by
Theorem 3.11, it cannot belong to an unbounded polyhedron, since the order
complex of L(Hn) is a sphere (and hence χ̃(L(Hn)) �= 0). It also follows
from this argument that Hn cannot be a partial vertex-facet incidence hyper-
graph of a polyhedron and hence H∗

n cannot be a partial IIS-hypergraph by
Lemma 2.17.

On the other side, by Theorem 2.28 (b) and (c), every (nonempty) minor
of H∗

n is a partial IIS-hypergraph.
By assumption, there exists i such that Mi is a minor of H∗

n. By taking n
large enough, we can assume that H∗

n is not isomorphic to one of M1, . . . , Mk.
But every (nonempty) minor of H∗

n is a partial IIS-hypergraph and hence Mi

is a partial IIS-hypergraph, which is a contradiction.

Remark 2.30. Consider the problem to decide whether a partial vertex-
facet incidence hypergraph H of a polytope is complete, i.e., a vertex-facet
incidence hypergraph of a polytope. Joswig and Ziegler [75] give an example

2.6 Finite Excluded Minor Characterization 63

which shows that the dimension is essential for the answer to this problem,
i.e., the example is complete if the dimension is 3, while it is not if the
dimension is 4. Let d be the dimension in which we want to test complete-
ness. First compute L(H) (see Section 2.5). If L(H) is not ranked, atomic,
or coatomic, H is not complete. Now check whether d = r(L(H)) − 1; if
not, H is not complete. Next compute the reduced (d − 1)-homology group
H̃d−1(Γ(H); K), where K is any field. Γ(H) is the so-called cross-cut com-
plex of H, the simplicial complex which has the edges of H as facets and the
nodes of H as vertices. If H̃d−1(Γ(H); K) �= 0 then H is complete (see Joswig
and Ziegler [75]). This condition tests if there is a “hole” in the boundary
of the complex. It is an open question whether there is an efficient way to
test completeness, i.e., whether there exists a polynomial-time algorithm in
the size of H or in the size of L(H). On the other hand, H̃d−1(Γ(H); K) can
be computed in polynomial time w. r. t. the size of Γ(H), which is in general
much larger than the size of L(H) – see also Problem 33 of [77].

Let H be a partial IIS-hypergraph. It is not clear how to test if H is an IIS-
hypergraph, i.e., H is complete. The above mentioned way cannot directly
be translated to IIS-hypergraphs, since IIS-hypergraphs can correspond to
unbounded polyhedra and therefore testing for “holes” in the boundary does
not help.

Remark 2.31. It is unknown whether one can test in polynomial time if
a hypergraph of fixed size is a minor of a given hypergraph. Since it is
also unknown if completeness of a partial IIS-hypergraph can be tested in
polynomial time, we cannot conclude that Theorem 2.29 follows from the
NP-hardness of recognizing IIS-hypergraphs (Corollary 2.20).

Note that our minor definition is not directly related to the usual defi-
nition of a minor of a graph. It is therefore unclear whether the following
result would help to solve the above minor detection problem for hyper-
graphs: Robertson and Seymour [100] describe a polynomial-time algorithm
that tests whether a given fixed graph is a minor of some other graph.

Chapter 3

Vertex-Facet Incidences of

Unbounded Polyhedra

In the previous two chapters we often came across the relation between an
infeasible linear inequality system Σ and its corresponding alternative polyhe-
dron (Theorem 1.12). In Chapter 2, we were interested in the “combinatorial
interplay” of the irreducible inconsistent subsystems (IISs) of Σ. More pre-
cisely, we studied IIS-hypergraphs, where a hypergraph is an IIS-hypergraph
if its nodes correspond to the inequalities of an infeasible linear inequality
system and its edges correspond to the IISs of this system. Hence, IIS-
hypergraphs capture the “intersection properties” of IISs. In Chapter 2, the
above relation directly led to the development of tools to translate between
IIS-hypergraphs and vertex-facet incidence hypergraphs of polyhedra. In this
chapter we will take a closer look at the incidences of possibly unbounded
polyhedra.

For a polytope P , every (proper) face of P is the convex hull of the vertices
it contains, and it is also the intersection of the facets that contain it. Thus,
the combinatorial structure of P , i.e., its face lattice, is entirely determined
by its vertex-facet incidences. What are the differences when considering not
necessarily bounded polyhedra?

The combinatorics of unbounded polyhedra has received only little atten-
tion up to now. Some exceptions are the articles of Klee [78], Billera and
Lee [27], Barnette, Kleinschmidt, and Lee [22], and Lee [81], which extend
the lower bound and upper bound theorem for polytopes to general (sim-
ple) polyhedra. The main tool used in these papers are polytope pairs, i.e.,
a polytope with a distinguished face. Applying a projective transformation
that sends this face to infinity, we have the situation of a geometrically given
unbounded polyhedra with a distinguished face “at infinity”.

But what can really be said/detected/reconstructed if only the the vertex-
facet incidences are given and no data about the situation “at infinity”?

After introducing notation and some basic facts about unbounded poly-
hedra in Section 3.1, we discuss these questions in Section 3.2. Several con-
ditions for the possibility to reconstruct the face lattice of an unbounded
polyhedron are given and their limits are shown by examples. It turns out

65

66 Vertex-Facet Incidences

that for many cases such a reconstruction is not possible. The second main
result of this chapter (in Section 3.3) will be that one can, however, detect
from a vertex-facet incidence matrix whether the polyhedron under consid-
eration is bounded or not. In Section 3.4 we discuss algorithmic issues of
this detection method. Thirdly (in Section 3.5), we discuss the “unbounded
version” of a very basic lemma about polytopes. Indeed, Exercise 0.1 of [115]
asks one to prove that any d-polytope that is both simplicial (every facet has
d vertices) and simple (every vertex is on d facets) must either be a simplex
or a polygon (d = 2). But how about unbounded polyhedra? We prove that
a polyhedron of dimension at least 2 that is both simple and simplicial (with
the definitions as given here) cannot be unbounded. As a byproduct, we
obtain a characterization of those polyhedra that have circulant vertex-facet
incidence matrices. It is this characterization which triggered the investiga-
tions in this chapter, as it was needed when considering generalized antiwebs,
whose incidences are just circulant matrices (see Section 1.3.3).

This chapter is joint work with Michael Joswig, Volker Kaibel, and Günter
M. Ziegler. Most parts appear in [74].

3.1 Basic Facts

In this section we fix some notation for this chapter. Generally, P denotes a
d-polyhedron with m facets and n vertices. We will always assume that P is
pointed (i.e., it has at least one vertex) and that d ≥ 1. In particular, these
conditions imply n ≥ 1 and m ≥ d ≥ 1.

In this chapter, it will be more convenient to encode vertex-facet inci-
dences in a matrix rather than in a hypergraph (compare Definition 2.15). A
0/1-matrix A = (afv) ∈ {0, 1}m×n is a vertex-facet incidence matrix of P , if
the vertices and facets of P can be labeled by {1, . . . , n} and {1, . . . , m}, re-
spectively, such that afv = 1 if and only if the vertex with label v is contained
in the facet with label f . We will usually identify vertices and facets with
their label. We have that A is a vertex-facet incidence matrix if and only if
it is the edge-node incidence matrix of a vertex-facet incidence hypergraph
(see Definition 2.15).

Any (unbounded) polyhedron P can be projectively transformed to a
polytope. We denote by P any such projectively equivalent polytope. If P is
unbounded, then we denote the image of the face at infinity, the so-called far
face, by F∞. The face F∞ is the unique maximal element among the faces
of P that are not images of faces of P under the projective transformation
mapping P to P . If P is bounded, then we define F∞ = ∅. Figure 3.1
illustrates a three-dimensional example.

3.1 Basic Facts 67

1

2

3

4

5

6
1

2

3

4

5

6

7

Figure 3.1: Left: Unbounded 3-polyhedron P ; all unbounded edges are parallel.
Right: Projectively transformed into P . Vertex 7 is the far face F∞.

1 2 3 4 5 67

1 2 7 1 4 7 2 5 7 1 2 3 4 5 7 1 3 4 6 2 3 5 6 4 5 6

1 7 2 7 1 2 4 7 5 7 1 4 1 3 2 5 2 3 4 5 3 6 4 6 5 6

Figure 3.2: Face poset F(P) for the example given in Figure 3.1, where the solid part is
F(P). The dashed lines indicate incidences to the far face, which is the vertex labeled 7.

1 23 4 56

1 2 3 1 3 4 6 2 3 5 6 4 5 6

1 2 1 41 3 2 52 3 4 53 6 4 6 5 6

Figure 3.3: The poset V(P) for the example given in Figure 3.1.

68 Vertex-Facet Incidences

a

b

c

d

ab cd

b c d

a db d c d

Figure 3.4: Example of an unbounded 3-polyhedron P (left), whose vertex poset V(P)
(right) is not graded. The dashed line and grey vertices indicate the far face.

Let F(P), the face poset of P , be the set of non-trivial faces of P (ex-
cluding ∅ and P itself), ordered by inclusion. The face poset F(P) arises
from the face poset F(P) by removing the far face F∞ (and all its faces).
While F(P) is independent of the actual choice of P , in general it depends
on the geometry of P , not only on its combinatorial structure; e.g., in the
example of Figure 3.1, we get a higher dimensional far face if the unbounded
edges are not all parallel. Figure 3.2 shows the two posets F(P) and F(P)
for the example in Figure 3.1.

The poset V(P) = {vert(F) : F non-trivial face of P} (where vert(F)
is the set of vertices of F) will play an important role. It can be computed
from any vertex-facet incidence matrix A ∈ {0, 1}m×n of P , since it is the set
of all nonempty intersections of the subsets of {1, . . . , n} defined by the rows
of A. If we adjoin an artificial top element 1̂ and bottom element 0̂ to V(P),
we get the lattice L(H) from Section 2.5, where H is the hypergraph defined
by A, i.e., A is the edge-node incidence matrix of H. Figure 3.3 shows V(P)
for the example given in Figure 3.1. In general V(P) is not graded, as can be
seen by the example in Figure 3.4, which was constructed by Volker Kaibel.

In Figure 3.4 and the following examples, a three-dimensional polyhedron
is visualized by its graph, where the far face is indicated by a dashed circuit,
surrounding the other parts. Alternatively, one can “see” the polyhedron as
“capped”, i.e., cut by an appropriate hyperplane (indicated by the dashed
lines) and then projected to two dimensions. Hence, the pictures show pro-
jections of 3-polytopes. By Steinitz’s theorem an abstract graph is the graph
of a 3-polytope if and only if it is simple, three-connected, and planar (see
Richter-Gebert [99] and Ziegler [115]). Therefore, it is easy to check that the
examples provided in the following indeed describe 3-polyhedra.

3.1 Basic Facts 69

Let the graph ΓP of P be the graph on the vertices of P defined by the
bounded one-dimensional faces of P , i.e., ΓP is the subgraph of the graph
of P that is induced by those vertices of P that are not contained in F∞. In
the following, we call the bounded one-dimensional faces of P edges, while
unbounded one-dimensional faces are called extremal rays. Two vertices of P
are connected by an edge of P if and only if there is a face of P which contains
exactly these two vertices. Since we can compute V(P) from the vertex-facet
incidences of P , we can compute ΓP from these incidences, as well. We will
use the following fact.

Lemma 3.1. For every polyhedron P , the graph ΓP is connected. Moreover,
all faces of P induce connected subgraphs of ΓP .

Proof. First assume that P is unbounded. Since P is pointed, it can be
written as {x ∈ �n : Ax ≤ b, x ≥ 0}. In this form, it can be cut by a
halfspace H := {x : hx ≤ h0} to obtain a polytope and such that hv < h0

for all vertices v ∈ vertP . We can assume w. l. o. g. that h is in general
position. Let F := {x : hx = h0} ∩ P be the new facet. The vector h
defines a linear functional such that each vertex of P has a lower value than
every vertex of F . Let u be the (unique) minimum of this functional. By the
correctness of the simplex algorithm, there exists a path from any vertex v
of P to u that does not meet any of the vertices on F . Hence, ΓP is connected.
By a similar argument, it follows that each face of P induces a connected
subgraph.

If P is bounded, choose an arbitrary h in general position and let u be the
minimum of the corresponding functional. Again by the correctness of the
simplex algorithm there exists a path from any vertex v to u and hence ΓP

is connected.

In fact, Balinski’s theorem shows that the graph of a d-polytope is d-con-
nected (see Theorem 3.14 in Ziegler [115]). For an unbounded polyhedron P ,
however, the example of a Cartesian product of a polyhedral cone with a
segment shows that it is possible for ΓP to be only 1-connected.

Let P be a pointed d-polyhedron (d ≥ 1). Then, P is called simple if
every vertex of P is contained in precisely d facets (or, equivalently, if pre-
cisely d edges and extremal rays are incident to each vertex). Furthermore,
P is called simplicial if every facet of P has exactly d vertices. These no-
tions generalize the well-known notions simple and simplicial for polytopes
to polyhedra. While this generalization is standard for simple polyhedra, it is
not common for simplicial polyhedra. Thus, it seems to be worth mentioning
that simplicial unbounded polyhedra form a non-trivial class of polyhedra,
as is seen by the following examples.

70 Vertex-Facet Incidences

Figure 3.5: If the bottom face of this example is moved to infinity, we obtain a simplicial
unbounded 3-polyhedron.

Examples 3.2. By a modification of the construction of a prism, every sim-
plicial d-polytope (with d ≥ 2) can be made the far face of a simplicial
unbounded (d + 1)-polyhedron (compare Figure 3.5):

For d ≥ 2, take an arbitrary simplicial d-polytope Q and consider the
prism P over Q. Denote by Q′ the counterpart of Q in P . Let F1, F2, . . . , Fm

be the facets of Q and let F ′
i be the opposite face of Fi in Q′ for i = 1, 2, . . . , m.

The faces Fi and F ′
i lie in a unique hyperplane Hi, which defines a facet

of P . Let v̂i and v̂′
i be the vertex barycenters of Fi and F ′

i , respectively.
Let αi > 0, for i = 1, . . . , m, be values to be determined later. Obtain the
point vi by pulling v̂i a distance αi away from v̂′

i on the line through v̂i

and v̂′
i. Then vi still lies in Hi. Let P̂i be the convex hull of P and the

points v1, v2, . . . , vi. The vertices of P̂i are v1, v2, . . . , vi and the vertices
of P . Let Vi be the union of {v1, v2, . . . , vi} with the set of vertices of Q.
We can choose each αi such that vi lies in general position with respect
to Vi−1, i.e., vi does not lie in a common hyperplane with d + 1 pairwise
different points of Vi−1 (this only excludes a finite number of positions for vi).
Furthermore, each hyperplane Hi defines a facet F̂i of P̂i, which has 2d + 1
vertices: d vertices of Fi and F ′

i , respectively, and the vertex vi. Therefore,
all facets of P̂i except F̂1, F̂2, . . . , F̂i and maybe Q′ are simplices. Apply a
projective transformation to P̂m moving Q′ to infinity to yield the unbounded
polyhedron P̃ . This transforms the facets F̂1, F̂2, . . . , F̂m to unbounded facets
of P̃ and removes d vertices from each. The combinatorics of all other facets
of P̂m (except Q′) is not changed. Therefore, P̃ is simplicial.

3.2 Reconstructing Polyhedra from Vertex-Facet Incidences

In this section, we investigate several conditions under which it is possible
to reconstruct the face poset F(P) from the vertex-facet incidences of an
(unbounded) d-dimensional polyhedron P . It turns out that these conditions

3.2 Reconstructing Polyhedra from Incidences 71

are quite diverse and do not yield a complete characterization.
The first question is whether one can compute the dimension of P from

its incidences. Given any vertex-facet incidence matrix of a pointed d-poly-
hedron P , it is easy to decide whether d ∈ {1, 2}. Furthermore, if d ∈ {1, 2},
one can immediately read off F(P) from the vertex-facet incidences. Thus,
for the rest of this section we restrict our attention to d-polyhedra with d ≥ 3.

The example of polyhedral cones shows that reconstructing F(P) from
the vertex-facet incidences of a d-polyhedron P with d ≥ 4 is impossible in
general, even if additionally the dimension d is specified. Furthermore, the
same example demonstrates that it is, in general, impossible to detect the
dimension of a d-polyhedron from its vertex-facet incidences for d ≥ 3. For
d = 3, however, these dimensional ambiguities occur for cones only.

Proposition 3.3. Given a vertex-facet incidence matrix of a d-polyhedron P
with d ≥ 3, it is possible to decide whether d = 3 or d ≥ 4, unless P is a
cone with more than three facets.

Proof. If P is a cone with three facets (i.e., we have n = 1 and m = 3), then
clearly d = 3 holds. If P is not a cone, then it must have at least two vertices.
Thus, by Lemma 3.1, P has at least one edge (which can be determined from
the vertex-facet incidences of P). This edge is contained in precisely two
facets of P if d = 3; otherwise, it is contained in more than two facets.

In dimensions larger than three, cones are not the only polyhedra for which
one cannot determine the dimension from the vertex-facet incidences.

Example 3.4. For instance, let Q be some q-polytope and let C be a cone
with m ≥ 3 facets. Then P = Q × C will be a polyhedron of dimension
q + dim C, whose vertex-facet incidences only depend on Q and m. For
every d with q + 3 ≤ d ≤ q + m, there exists a d-polyhedron that has the
same vertex-facet incidences as P . In particular, dimensional ambiguities
already occur for 4-polyhedra not being cones.

These Cartesian products, however, are also “cone-like” in the sense that they
do not have any bounded facet.

Proposition 3.5. Given a vertex-facet incidence matrix of a d-polyhedron P
that has a bounded facet, one can determine d. Furthermore, one can decide
from the vertex-facet incidences of P whether it has a bounded facet or not.

Proof. If P has a bounded facet, then the maximum length of a chain in V(P)
is d−1, thus one can compute d from V(P) in this case. Corollary 3.13 proves
the second statement of the proposition.

72 Vertex-Facet Incidences

Figure 3.6: Example of two combinatorially different 3-polyhedra with isomorphic vertex-
facet incidence matrices. The figures indicate the graphs (1-skeleta).

Having these results in mind, we now turn to the question under what
conditions it is possible to reconstruct the face lattice of a polyhedron given
its vertex-facet incidences. As noted above, one can see from the example of
polyhedral cones that in general the combinatorial structure of an unbounded
polyhedron is not determined by its incidences. A d-dimensional cone may
have the combinatorial structure of any (d − 1)-dimensional polytope (via
homogenization); but from its vertex-facet incidences one can only read off
its number of facets. The point is that, for unbounded polyhedra, the com-
binatorial information is based not only on the vertex-facet incidences, but
also on the incidences of extremal rays and facets. For cones, nearly the entire
information is contained in the latter incidences. The lattice-theoretic reason
for such ambiguities is that the face lattice of an unbounded polyhedron is
only coatomic, but not atomic.

Nevertheless, Propositions 3.3 and 3.5 might suggest to ask if the en-
tire combinatorial structure of a d-polyhedron can be reconstructed from its
vertex-facet incidences if d = 3 or if P has a bounded facet. However, the
example given in Figure 3.6 shows that both conditions do not suffice. The
crucial feature of the example is that one can reflect the “lower” parts in the
drawings without affecting the vertex-facet incidences, while this changes the
face poset: In contrast to the left polyhedron, the right one has two adjacent
unbounded facets that contain three vertices each. For three-dimensional
polyhedra this is more or less the only kind of ambiguity that can arise.

Proposition 3.6. Let P be a 3-polyhedron for which ΓP is 2-connected.
Then the face poset F(P) can be computed from the vertex-facet incidences
of P .

3.2 Reconstructing Polyhedra from Incidences 73

Proof. One can compute ΓP from the vertex-facet incidences of P and there-
fore the graph of each facet of P . If all the graphs of facets are cycles, then P
is bounded and the statement is correct. Otherwise, consider the paths that
are the graphs of the unbounded facets of P . Due to the 2-connectedness
of ΓP , there is (up to reorientation) a unique way to arrange these paths as
a cycle going around the “finite” part of P . From this cycle, it is easy to
determine the incidences of extremal rays and facets of P , which then allow
to reconstruct the entire combinatorial structure of P .

In larger dimensions, however, it is not true that higher connectedness of ΓP

for a polyhedron P is a sufficient condition for the possibility to reconstruct
its combinatorial structure from its vertex-facet incidences. Figure 3.7 shows
Schlegel diagrams of two unbounded 4-polyhedra which have been capped to
obtain a 4-polytope (see also [73]). The new facet obtained by this construc-
tion is the outer Egyptian pyramid, i.e., the facet the Schlegel diagram is
based on. The two original polyhedra have the same vertex-facet incidences
and a 3-connected graph ΓP , but their face posets are different (e.g., the right
polyhedron has one extremal ray more than the left one).

In order to construct the examples, we start with the Cartesian product Q
of a three-dimensional pyramid over a square and a ray. Thus, Q is a four-
dimensional polyhedron with one bounded facet (a three-pyramid over a
square), one facet which is an infinite prism over a square, and four facets
that are infinite prisms over triangles. Let v be the vertex which comes from
the top of the pyramid. From v one single extremal ray emanates. To create
the example on the right of Figure 3.7, we slightly tilt one of the facets that
meet in v; this does not change the vertex-facet incidences of the polyhedron,
but creates a second extremal ray that emanates from v. To make the vertex
sets of facets a clutter, i.e., no such set contains another, and to ensure that
the convex hull of the vertices is full-dimensional, we additionally cut off two
opposite vertices of the base of the pyramid.

Figure 3.7: Schlegel diagrams illustrating two 4-polyhedra P1 and P2 which have the
same vertex-facet incidences, but different face posets.

74 Vertex-Facet Incidences

The examples illustrated in Figures 3.6 and 3.7 show that “cone-like” poly-
hedra are not the only polyhedra whose face poset cannot be reconstructed
from their vertex-facet incidences (not even in dimensions three and four).
Hence, “cone-like” polyhedra are not (extreme) examples of rather exotic un-
bounded polyhedra for which one obviously does not have any chance to
reconstruct the combinatorial structure from their vertex-facet incidences,
while this might be possible for all “reasonable” polyhedra. To make this a
bit more precise we note that a cone is a quite degenerate polyhedron with
respect to several criteria: (i) its set of vertices does not have the same dimen-
sion as the whole polyhedron, (ii) it does not have any bounded facet, and
(iii) all its facets have the same set of vertices. The polyhedra in both of the
above examples, however, are quite different with respect to these criteria.
In fact, each of them has a full-dimensional vertex set (i.e., the convex hull
of the vertices is full-dimensional), bounded facets, and the property that no
two facets have the same vertex set. Furthermore, in the four-dimensional
example, the vertex sets of the facets even form an clutter.

Nevertheless, any ambiguities in reconstructing the face poset of an un-
bounded polyhedron from its vertex-facet incidences arise from some degen-
eracy of P .

Theorem 3.7. Let P be a simple polyhedron. Then F(P) can be computed
from the vertex-facet incidences of P .

Proof. Let v be a vertex of a simple d-polyhedron P and let F1, . . . , Fd be
the facets of P that contain v. The edges and extremal rays containing v are
precisely the sets ⋂

i∈{1,...,d}\{i0}

Fi for i0 = 1, . . . , d.

Since we can compute the (finite) edges of P from a vertex-facet incidence
matrix, we can also (combinatorially) deduce the extremal rays of P and
the information which ray is contained in which facets. From that we can
compute the entire face poset of P .

The example of cones shows that without dimension information one can (in
general) not decide from the vertex-facet incidences of a polyhedron whether
it is simple.

The example in Figure 3.8 shows that an analogous result to Theorem 3.7
for simplicial polyhedra does not exist; the two simplicial polyhedra in the
figure are combinatorially different, but have isomorphic vertex-facet inci-
dences. This relies on the fact that that one can flip the “outer parts” around

3.3 Detecting Boundedness 75

Figure 3.8: Two unbounded combinatorially different simplicial 3-polyhedra that have
isomorphic vertex-facet incidence matrices.

the center vertex without changing the vertex-facet incidences (up to iso-
morphism). In general, the notion of a simplicial polyhedron is weaker than
simpliciality for polytopes. For instance, there is no duality notion for (the
face lattices of) unbounded polyhedra, so that simple and simplicial are not
symmetrical by duality.

All algorithms described in this section can be implemented such that
their running time is bounded by a polynomial in |V(P)|.

To summarize the results in this section: We presented large classes of
(unbounded) polyhedra whose combinatorial structure can be reconstructed
from their vertex-facet incidences, as well as several examples of polyhedra
for which this is not possible. Unfortunately, these results do not yield a
characterization of the class of those polyhedra that allow such reconstruc-
tions.

3.3 Detecting Boundedness

In this section, we show that, given the vertex-facet incidences of a pointed
polyhedron P , one can decide whether it is bounded or not. It turns out
that this only depends on the Euler characteristic of (the order complex
of) V(P), which can be computed via the Möbius function of V(P). We refer
to Björner [29] for terminology and facts of combinatorial topology used in
this section.

Let Π be a finite poset. Recall that the order complex ∆(Π) of Π is the
finite simplicial complex of all chains in Π. In the following, when applying

76 Vertex-Facet Incidences

terminology from topology in the context of finite posets such as Π, we refer
to ‖∆(Π)‖ (i.e., any geometric realization of ∆(Π), endowed with its standard
topology); e.g., if ‖∆(Π)‖ is a sphere, we say that Π is a sphere.

It is well-known that the order complex ∆(F(P)) of the face poset of a
bounded d-polytope P is isomorphic (as a simplicial complex) to the barycen-
tric subdivision of the boundary ∂P of P . In particular, the topological type
of F(P) is as follows.

Lemma 3.8. If P is a d-polytope, then F(P) is homeomorphic to the (d−1)-
sphere.

Remember that an unbounded (pointed) polyhedron P can be projec-
tively transformed to a polytope P . We then can consider F(P) as the
sub-poset of F(P) consisting of all faces of P that are not contained in F∞.
Thus, we will identify ∆(F(P)) with the sub-complex of ∆(F(P)) that is
induced by all chains {F}, where F is a face of P with F � F∞.

Lemma 3.9. If P is an unbounded (pointed) polyhedron, then F(P) is con-
tractible.

Proof. By Lemma 3.8, ‖∆(F(P))‖ is homeomorphic to a sphere. The faces
of P are the vertices of ∆(F(P)), since they are the one-element chains
in F(P). The induced subcomplexes A = ∆(F(P)) and B = ∆(F(F∞))
cover all vertices of ∆(F(P)). By using barycentric coordinates, it is seen
that ‖∆(F(P))‖\‖B‖ retracts onto ‖A‖. Thus, ‖A‖ has the same homotopy
type as ‖∆(F(P))‖ \ ‖B‖, where the latter is a simplicial sphere minus an
induced ball. Hence, F(P) is contractible.

These two lemmas allow to distinguish between the face posets of bounded
and unbounded polyhedra. Of course, there are simpler ways to decide
whether a face poset belongs to a bounded or to an unbounded polyhe-
dron, e.g., checking if every rank one element (edge) is a join of two rank
zero elements (vertices). In general, however, we cannot reconstruct the face
poset of a polyhedron P from its vertex-facet incidences (see Section 3.2).
Instead, we are interested in criteria allowing to distinguish between bounded
and unbounded polyhedra that can be computed from V(P). It turns out
that Lemmas 3.8 and 3.9 can be exploited for this.

Lemma 3.10. Let P be a pointed polyhedron. Then the face poset F(P) is
homotopy equivalent to the poset V(P).

Proof. Consider the poset maps φ : F(P) → V(P), mapping a face F of P
to vertF , and ψ : V(P) → F(P), mapping the vertex set S of a face to

3.3 Detecting Boundedness 77

the minimal face (w. r. t. inclusion) containing S. Both φ and ψ are order
preserving. Moreover, we have φ(ψ(S)) = S and ψ(φ(F)) ⊆ F . Hence,
f(F) := ψ(φ(F)) is an order preserving map from F(P) into itself, such
that f(F) ⊆ F . Using the order homotopy theorem, F(P) is homotopy
equivalent to the image f(F(P)) (see Björner [29, Corollary 10.12]). In
fact, we have f(f(F)) = f(F) and f(F(P)) is a strong deformation retract
of F(P). This proves the lemma, since ψ is a poset isomorphism from V(P)
onto ψ(V(P)) = ψ(φ(F(P))) = f(F(P)).

The reduced Euler characteristic of (the order complex of) a poset Π is
denoted by χ̃(Π), i.e.,

χ̃(Π) =
D∑

i=−1

(−1)i fi(∆(Π)),

where fi(∆(Π)) is the number of i-faces of ∆(Π), and D is the dimension
of ∆(Π).

By collecting these pieces, we get the following result:

Theorem 3.11. Let P be a pointed polyhedron. Then P is bounded if and
only if χ̃(V(P)) �= 0.

Proof. The reduced Euler characteristic of a (d − 1)-sphere equals (−1)d−1,
while the reduced Euler characteristic of a contractible space vanishes. Thus
the claim follows from Lemma 3.8, Lemma 3.9, and Lemma 3.10.

In particular, this result shows that a polytope and an unbounded polyhedron
cannot have isomorphic vertex-facet incidence matrices.

As an example, consider the case where the unbounded polyhedron P has
a face F which contains all vertices of P . Then ∆(V(P)) is a cone over F ,
i.e., the facets of ∆(V(P)) (maximal chains in V(P)) all contain the vertex F ;
in particular, ∆(V(P)) is contractible and thus χ̃(V(P)) = 0.

The reduced Euler characteristic of the poset V(P) can be computed ef-
ficiently as follows. By adjoining an artificial top element 1̂ and an artificial
bottom element 0̂, the poset V(P) becomes a lattice V̂(P) (see also Sec-
tion 2.5). Note that we also adjoin 1̂ in the case where V(P) already has a
top element corresponding to a face containing all vertices of P .

For every element S ∈ V̂(P), define the Möbius function, see Rota [102]
and Stanley [111], by

µ(S) =

1 if S = 0̂ ,

−
∑
S′⊂S

µ(S ′) otherwise. (3.1)

78 Vertex-Facet Incidences

The Möbius number µ(V(P)) := µ(V̂(P)) = µ(1̂) of V(P) can be computed
in time bounded polynomially in |V(P)|. It is well-known (see Rota [102]
and Stanley [111, 3.8.6]) that

µ(V(P)) = χ̃(V(P)). (3.2)

This proves the following complexity result:

Corollary 3.12. There is an algorithm that, given a vertex-facet incidence
matrix of a polyhedron P , decides if P is bounded. Its running time is
bounded by a polynomial in |V(P)|.

See Theorem 3.14 for a version with concrete running time estimates.

Actually, Theorem 3.11 allows to infer even more from the vertex-facet
incidences of a polyhedron P . Once we have computed V(P), we can also
determine V̂(F) for every facet F of P (since we know vertF for every facet F

of P). This is the interval between 0̂ and vertF in the lattice V̂(P), where
we have to add an additional top element 1̂.

Corollary 3.13. There is an algorithm that, given a vertex-facet incidence
matrix of a polyhedron P , decides which facets of P are bounded. Its running
time is bounded by a polynomial in |V(P)|.

3.4 Computing the Euler Characteristic

From a computational point of view, the main question left open in the last
section is the complexity of computing the Euler characteristic of V(P). We
first give a sharpened result of Corollary 3.12.

Theorem 3.14. Given a vertex-facet incidence matrix of a polyhedron P ,
such that the collection of vertex sets of facets form a clutter, the Euler char-
acteristic χ̃(V(P)) of V(P) can be computed in O(min{n, m} · α · ϕ) time,
where n is the number of vertices, m is the number of facets, α is the number
of vertex-facet incidences of P , and ϕ is the size of V(P).

Proof. We first note that under this condition V̂(P) is an atomic and co-
atomic lattice. It is coatomic by construction, since each face (element
of V̂(P)) is the intersection (meet) of the vertex sets of the facets (coatoms).
Furthermore, each face is described by its vertex set, i.e., V̂(P) is atomic. As
noted in Remark 4.7, Algorithm 1 of Chapter 4 can compute the Hasse di-
agram of any atomic and coatomic lattice from its atom-coatom incidences.
Translated to the case of V̂(P), its running time is O(min{n, m} · α · ϕ),

3.4 Computing the Euler Characteristic 79

where n is the number of atoms (vertices), m is the number of coatoms
(facets), α is the number of coatom-atom incidences, and ϕ is the size of the
lattice.

Again by equation (3.2), it suffices to compute the Möbius function
of V̂(P), as defined in equation (3.1). This can be done in O(min{n, m} · ϕ)
time as follows. Starting at the bottom node 0̂, perform a breadth-first search
on the Hasse diagram of V̂(P), which has size at most O(min{n, m} · ϕ). Ini-
tially, we set µ(0̂) = 1 and for each node F �= 0̂ we let µ(F) = 0. When
processing node F , we distribute the current value µ(F) to each of its neigh-
bors, that is, for a neighbor G ⊃ F (i.e., there exists an edge (F, G) in the
Hasse diagram) µ(G) is updated to µ(G) − µ(F). When all nodes are pro-
cessed, µ(1̂) stores the Möbius function of V̂(P). In fact, in each node F ,
µ(F) gives the value of the Möbius function of F . This shows that we can
compute µ(V(P)) = χ̃(V(P)) in a total time of O(min{n, m} · α · ϕ).

Remark 3.15. If the clutter condition in Theorem 3.14 is violated, then P
cannot be bounded. Nonetheless, the Euler characteristic of V(P) can be
computed by taking the inclusionwise maximal elements in the collection of
vertex sets of facets and applying Theorem 3.14. Since the face lattices of
polyhedra are coatomic the collection of sets of facets containing a vertex
always forms a clutter.

It is an open question whether one can compute χ̃(V(P)) without enu-
merating the Hasse diagram, or to be more specific, in polynomial time in
the size of the incidences. This leads to the following considerations.

Let a vertex-facet incidence matrix of a polyhedron P be given. Define
the simplicial complex Γ(P) having the vertex sets of facets of P as its
facets. The complex Γ(P) is a so-called cross-cut complex; compare also
Section 2.6. We have that ∆(V(P)) and Γ(P) are homotopy equivalent by
the nerve theorem, see [29, Theorem 10.7]. Hence, to compute χ̃(V(P)) one
can compute χ̃(Γ(P)), i.e., we are faced with the following problem:

Euler Characteristic of Simplicial Complexes: Given a simplicial com-
plex ∆ with vertex set [n] that is defined by its facets F1, . . . , Fm ⊆ [n],
compute the reduced Euler characteristic χ̃(∆).

Here we defined [n] := {1, . . . , n}. The complexity of this problem is cur-
rently unknown. Hence, the question is whether one can compute χ̃(∆) in
polynomial time in n and m. See also Problem 31 of [76].

We note the following easy fact for future reference:

Lemma 3.16. If the problem to compute the Euler characteristic of a simpli-
cial complex given by its facets is NP-hard, then it is hard for pure simplicial
complexes.

80 Vertex-Facet Incidences

Proof. Let F1, . . . , Fm be the facets of a simplicial complex ∆ with vertex
set [n]. Let d := dim(∆) be the dimension of ∆. If there exists a facet Fj

with dim(Fj) < d, we can construct a second simplicial complex ∆′ with
vertex set [n+1] defined by the facets F1, . . . , Fj−1, Fj∪{n+1}, Fj+1, . . . , Fm.
Since for each face F ⊆ Fj of size i, F ∪ {n + 1} ∈ ∆′ is a face of size i + 1,
it follows that

fi+1(∆
′) = fi+1(∆) +

(
|Fj|
i + 1

)
for i = 0, 1, . . . , d − 1.

Hence, this yields:

χ̃(∆′) = −1 +
d∑

i=0

(−1)ifi(∆
′) = −1 +

d∑
i=0

(−1)i

(
fi(∆) +

(
|Fj|
i

))

= −1 +
d∑

i=0

(−1)ifi(∆) +
d∑

i=0

(−1)i

(
|Fj|
i

)
= χ̃(∆) + 0.

By performing at most m · d ≤ m · n such constructions we arrive at a pure
simplicial complex ∆̃ with χ̃(∆) = χ̃(∆̃).

Since the Euler characteristic is determined by the number of faces of
the simplicial complex, one can ask whether it is possible to compute the
f -vector of ∆ in polynomial time in n and m and then compute the Euler
characteristic from it. The next proposition shows that this is unlikely.

Proposition 3.17. Let ∆ be a pure simplicial complex with vertex set [n],
defined by its facets F1, . . . , Fm. Then the problem to compute fi(∆) for
some i ≥ 1 is #P-complete.

Proof. The following problem is in NP : Given a set S ⊆ [n] of size i, decide
whether S ∈ ∆? The number of times the answer to a “guess” S is “yes”
is exactly fi(∆). Hence the corresponding counting problem is in #P (see
Garey and Johnson [62] for a definition).

To prove #P-hardness, consider an instance of the Stable Set problem,
i.e., a simple graph G = (V, E) and an integer K. A stable set in G is
a subset S of V such that S contains no edge of G, i.e., if {u, v} ∈ E
then u /∈ S or v /∈ S. The corresponding counting problem is to compute the
number S≥(K) of stable sets of size at least K. This problem is #P-hard:
It is well known that counting the vertex covers of size at most K is #P-
complete (see [62, p. 169]). Since a set V ′ ⊆ V is a vertex cover if and only
if V \V ′ is a stable set, the claim follows. Let S=(k) be the number of stable
sets of size k. Clearly, it suffices to compute S=(n), S=(n− 1), . . . , S=(K) to

3.5 Simple and Simplicial Polyhedra 81

compute S≥(K). It follows that the problem to compute S=(K) is #P-hard
(in fact, #P-complete).

Let n be the number of vertices and m be the number of edges of G.
Let V be the vertex set of a simplicial complex ∆ that is defined by the
minimal non-faces e ∈ E. Clearly, S ⊆ V is a stable set in G if and only
if S ∈ ∆. Hence, to solve the Stable Set problem, we just have to ask if
dim(∆) + 1 ≥ K. Since we can compute dim(∆) by computing fi(∆) for at
most n values of i, it follows that computing fi(∆) is #P-hard.

We now construct a simplicial complex ∆ (the dual complex), which is
given by its facets. Define ∆ by the facets V \ e for each edge e ∈ E.
Note that ∆ is pure. We have that a set S ⊆ V is a face of ∆ if and only
if S := V \S is not a face of ∆. Hence, fi(∆)+ fn−i−1(∆) =

(
n

i+1

)
. It follows

that one can efficiently compute fi(∆) from fn−i−1(∆), which completes the
proof.

Proposition 3.17 strengthens the result in [76, Problem 32] to pure simplicial
complexes. To our knowledge no other proof of this fact appeared in the
literature. Bayer and Stillman [23] use a similar idea as above to prove that
computing the codimension of a monomial ideal in the ring of polynomials
k[x1, . . . , xn] (for some field k) is NP-hard.

If the number i is fixed, one can enumerate all
(

n
i+1

)
faces of dimension i

in polynomial time and hence solve the problem of computing fi(∆) in poly-
nomial time.

3.5 Simple and Simplicial Polyhedra

In this section, we generalize the following well known fact about polytopes
to not necessarily bounded polyhedra: A polytope which is both simple and
simplicial is a simplex or a polygon (see Ziegler [115, Exercise 0.1]). We will
prove the following theorem.

Theorem 3.18. For d ≥ 2, every simple and simplicial d-polyhedron is a
simplex or a polygon. In other words, if d ≥ 2, then unbounded simple and
simplicial polyhedra do not exist.

For d = 0, there are no unbounded polyhedra, and all one-dimensional poly-
hedra are simple and simplicial. Hence, we restrict our attention to the
case d ≥ 2 for the rest of this section.

If the dimension is known, simplicity as well as simpliciality are already
determined by the vertex-facet incidences of a polyhedron (see Section 3.1).
The first part of the proof of Theorem 3.18 considers 0/1-matrices M with

82 Vertex-Facet Incidences

exactly d ones in each row and column – a class which includes the vertex-
facet incidence matrices of simple and simplicial polyhedra. It is shown that
the graph ΓM , which is a natural generalization of the graph ΓP of a poly-
hedron P , is either a complete graph or a cycle, if it is connected. Under
this condition, the matrix M is isomorphic to a circulant matrix (see Sec-
tion 3.5.2). In Section 3.5.3, we deduce that every simple and simplicial
polyhedron has a circulant vertex-facet incidence matrix. The proof of The-
orem 3.18 is then completed by showing that no unbounded d-polyhedron
(with d ≥ 2) can have a circulant vertex-facet incidence matrix.

Furthermore, Propositions 3.27 and 3.28 yield characterizations of those
polyhedra that have circulant vertex-facet incidence matrices. The motiva-
tion for this characterization arose in the context of generalized antiwebs,
whose incidence matrices are circulant matrices, see Section 1.3.3. In fact, it
was this characterization from which Theorem 3.18 was deduced.

3.5.1 0/1-Matrices with Row and Column Sum d and Connected Graph

Throughout this section, let M be a 0/1 matrix of size m × n that has
exactly d ≥ 2 ones in each row and in column. Double counting yields that
necessarily n = m. Hence, in the following we assume that M is of size n×n.
Let ΓM be the graph with node set C := {0, 1, . . . , n − 1}, corresponding to
the columns of M , and an edge between nodes i and j, if columns i and j differ
in exactly two rows (have exactly d − 1 ones in common rows). Throughout
this section, we assume that ΓM is connected. We then have n > d (otherwise
either ΓM is not connected or n = d = 1).

Under this assumption, we investigate the structure of M in this section.
It will turn out that ΓM must be a cycle or a complete graph. It will follow
from this fact that M is isomorphic to the circulant matrix M(n, d), defined
in Section 3.5.2 below.

Matrices like M arise as the vertex-facet incidence matrices of simple
and simplicial polyhedra, which is our main motivation for studying such
matrices. In this case, we have ΓM

∼= ΓP , which is connected by Lemma 3.1.
The reader might keep these examples in mind when reading the following
proofs. In [74], the proof of Theorem 3.18 is formulated entirely in terms
of polyhedra. The part of the proof given in this section is slightly more
general: It works for arbitrary matrices M as above, which requires a more
elaborate proof of Lemma 3.24.

Denote, as above, by C := {0, 1, . . . , n− 1} the set of columns of M (the
nodes of ΓM) and by R := {0, 1, . . . , n− 1} the set of rows of M . For S ⊆ C
let R(S) be the set of all rows of M that have a one in each column of S.

3.5 Simple and Simplicial Polyhedra 83

0
0

1

1

2

2

3

3

4
5
6
7

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7
8
9

10

Figure 3.9: Left: Illustration of Lemma 3.20 for d = 5, S = {0, 1, 2, 3}, � = 3, and
δ(S) = {0, . . . , 7}. Ones are indicated by the dark gray areas; zeros are not shown. Right:
Illustration of Lemma 3.21 for d = 5, |S| = 5; here, S = {1, 2, 3, 4, 5} and R(S) = {5}.

Likewise, for S ⊆ R let C(S) be the set of columns of M that have a one
in each row of S. This means that {c, c′} is an edge in ΓM if and only
if |R({c, c′})| = d − 1. For c ∈ C, we often abbreviate R({c}) by R(c) and
similarly for C(·).

Lemma 3.19. No two rows of M are the same.

Proof. Suppose that there are two rows r1, r2 ∈ R of M (r1 �= r2) such
that C(r1) = C(r2) =: S. Because n > d > 1 and ΓM is connected, there
must be a column c /∈ S that is a neighbor of some node c′ ∈ S in ΓM . Hence,
we have |R({c, c′})| = d−1. Since |R(c′)| = d and r1, r2 ∈ R(c′) ⊇ R({c, c′}),
it follows that r1 ∈ R({c, c′}) or r2 ∈ R({c, c′}), which in both cases yields a
contradiction to c /∈ S.

For S ⊆ C, define δ(S) ⊆ R to be the set of those rows of M that have a one
in at least one column in S.

Lemma 3.20. Let S ⊆ C with |S| > 0. Then |δ(S)| ≥ min{n, d + |S| − 1}.

Proof. If |δ(S)| = n, the claim is obviously correct. Therefore, assume that
|δ(S)| < n. Since ΓM is connected, the nodes in C \ S = {z1, . . . , zr}
(where r = n− |S|) can be ordered such that zi+1 is adjacent to some vertex
of Si := S ∪ {z1, . . . , zi} for each i ∈ {0, . . . , r − 1} (additionally, we de-
fine Sr = S∪{z1, . . . , zr}). Clearly, |δ(Si)| ≤ |δ(Si−1)|+1, for i = 0, . . . , r−1,
since column zi has d − 1 ones in common rows with some column in Si−1

and hence δ can increase by at most one.

84 Vertex-Facet Incidences

Define
 to be the last index i such that |δ(Si)| = |δ(Si−1)| + 1, i.e.,

is the last index for which we encounter a new row (
 is well-defined due
to |δ(S)| < n). Since this row must have d − 1 ones in columns from C \ S�,
we have r −
 ≥ d − 1, which yields n −
 ≥ d + |S| − 1.

Furthermore, we have |δ(S)|+
 ≥ n, since at least one column in S� has a
one in each row (S� covers the rows). Hence, |δ(S)| ≥ n−
 ≥ d+ |S|−1.

For S ⊆ C let ΓM (S) be the subgraph of ΓM induced by S.

Lemma 3.21. Let S ⊂ C with 0 < |S| ≤ d, such that ΓM (S) is connected.
Then |R(S)| = d − |S| + 1 holds.

Proof. Since ΓM (S) is a connected subgraph of the connected graph ΓM

(which has n > d nodes), there is a chain ∅ ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cd

with C|S| = S, such that |Ci| = i and ΓM (Ci) is connected for all i.
For every 1 < i ≤ d, the node c with Ci \Ci−1 = {c} is connected to some

node c′ ∈ Ci−1. From |R(c′) \ R(c)| = 1, we infer |R(Ci−1) \ R(c)| ≤ 1 and
thus |R(Ci)| ≥ |R(Ci−1)| − 1. Together with |R(C1)| = d (since each column
has d ones) and |R(Cd)| ≤ 1 (by Lemma 3.19), this implies |R(Ci)| = d−i+1
for all 1 ≤ i ≤ d.

The next lemmas show that ΓM has a very special structure.

Lemma 3.22. If ΓM contains a cycle of size k > d, then ΓM is the cycle
itself or a complete graph on n = d + 1 nodes.

Proof. Let (c0, . . . , ck−1, c0) be a cycle of size k > d in ΓM . Without loss of
generality, the cycle is elementary, i.e., c0, c1, . . . , ck−1 are pairwise different.
In this proof, all indices are taken modulo k. For 0 ≤ i ≤ k − 1 define the
set Ci := {ci, . . . , ci+d−1} of size d. Clearly, ΓM(Ci) is connected, since it
contains part of the cycle. By Lemma 3.21, there exists exactly one row ri

with R(Ci) = {ri}. Conversely, we have C(ri) = Ci, since there are d
ones in each row. Hence, the rows r0, . . . , rk−1 are pairwise distinct. This
means that R(ci) = {ri−d+1, . . . , ri} (since we have d ones in each column).
Therefore, every column that is adjacent to one of the columns c0, . . . , ck−1

must have a one in at least one (more precisely, d−1) of the rows r0, . . . , rk−1

and thus lies in {c0, . . . , ck−1}. Since ΓM is connected, this implies n = k. For
n = d + 1, this immediately yields that ΓM is a complete graph on n = d + 1
nodes, while for n > d + 1 one finds that ΓM is the cycle (c0, . . . , ck−1, c0)
(since, in this case, |R({ci, cj})| = d − 1 if and only if j ≡ i ± 1 mod k).

Lemma 3.23. If ΓM contains a cycle of length k ≤ d, then ΓM is a complete
graph on n = d + 1 nodes.

3.5 Simple and Simplicial Polyhedra 85

Proof. Let (c0, . . . , ck−1, c0) be a cycle in ΓM of length k ≤ d. Then for
i = 1, . . . , k − 1 define C̃i = {c0, . . . , ci}. Taking all indices modulo k, we
have |R({ci, ci+1})| = d − 1 for each i. Hence, there are rows ri and si with

R(ci) \ R(ci+1) = {ri} and R(ci+1) \ R(ci) = {si} .

It follows that

R(C̃k−1) = R(C̃0) \ {s0, . . . , sk−1} . (3.3)

If ΓM is not complete, we have n > d + 1 and we infer from Lemma 3.20
that |δ(C̃2)| ≥ d + 2, which implies s0, s1 /∈ R(C̃0) (with s0 �= s1). Due
to {r0, . . . , rk−1} = {s0, . . . , sk−1}, Equation (3.3) implies

|R(C̃k−1)| ≥ |R(C̃0)| − (k − 2) = d − k + 2 ,

contradicting Lemma 3.21.

By the above two lemmas, ΓM cannot contain any cycles, unless it is complete
or a cycle itself. Thus, we are left with the case of ΓM not containing any
cycles at all.

Lemma 3.24. ΓM cannot be a tree.

Proof. (a) We first consider the case that the induced graph ΓM(C(r)) is
connected for every r ∈ R. Assume ΓM is a tree. Let c ∈ C be a column of
degree one in ΓM and let {r1, r2, . . . , rd} = R(c) be the rows where column c
has ones. Since ΓM is connected, there exists (exactly) one edge to another
column c′. W. l. o. g., let R({c, c′}) = {r2, . . . , rd}. But then ΓM (C(r1)) is
not connected, which is a contradiction.

(b) Consider the case that there exists r ∈ R such that ΓM(C(r)) is not
connected. We will first show that ΓM(C(r)) has at most two connected
components for every r ∈ R. This is always true under our assumptions
on M and ΓM . After that, we will derive a contradiction if ΓM is a tree.

Let ΓM(C(r)) be disconnected and let S1, . . . , Sm ⊆ C be its connected
components. Define the set Ur := C \C(r). Since ΓM is connected, for every
pair 1 ≤ i �= j ≤ m there exists a path connecting Si and Sj that uses only
nodes of Ur, except for the end nodes. Let P = (p0, p1, . . . , pk−1) be the
shortest one among these paths. Observe that p0 ∈ Si, pk−1 ∈ Sj, and k ≥ 3
(otherwise we would have an edge between Si and Sj). In each step on the
path from p0 to pk−1, δ(P) can increase by at most one. Because r /∈ R(pk−2)
(since pk−2 ∈ Ur), but r ∈ R(pk−1), δ(P) cannot increase in the last step.
Since |δ({p0})| = d, we have δ(P) ≤ d + k − 2.

86 Vertex-Facet Incidences

p0

p1

p2

p3

pk−2

pk−1

Si

Sj

S�

The induced graph ΓM(P) is connected and hence, by Lemma 3.20,
δ(P) ≥ min{n, d+k−1}. Therefore, we have d+k−2 ≥ n, i.e., k ≥ n−d+2.
The graph ΓM(C(r)) has d nodes, two of which are on P . It follows that P
contains all of the nodes outside C(r), i.e., {p1, p2, . . . , pk−2} = Ur. Hence,
we have d + k − 2 = n.

Assume for the sake of contradiction that m ≥ 3 and let 1 ≤
 ≤ m,

 �= i, and
 �= j. Let P ′ be a path from Si to S�. Clearly, P ′ uses only nodes
from P and C(r), otherwise P would not contain all nodes outside C(r).
Hence, there exists an edge from some node p ∈ {p1, . . . , pk−2} to a node
of S�. By the choice of P as the shortest path joining the two connected
components, we have that p = pk−2. By symmetry, it follows that k = 3
and hence n = d + 1. But then ΓM = Kn, a contradiction since we assumed
that ΓM (C(r)) was disconnected.

So far, we proved that ΓM(C(r)) has at most two connected components
for every r ∈ R. Assume that ΓM is a tree and hence ΓM(C(r)) is a forest.
Because ΓM has n − 1 edges and each edge “appears” in d − 1 rows, double-
counting the edges of the tree ΓM yields:

(n − 1) · (d − 1) =
∑
r∈R

er,

where er is the number of edges in ΓM (C(r)). Let A be the set of rows r for
which ΓM (C(r)) is disconnected. Since ΓM (C(r)) is a forest on d nodes, it
has exactly d−1 edges if it is connected and d−2 edges if it is not connected,
because we have at most two connected components. Therefore,∑

r∈R

er = (d − 1) · (n − |A|) + (d − 2) · |A|,

from which |A| = d−1 follows. Hence, there exist d−1 graphs ΓM(C(r)) that
are disconnected (with two connected components). For each r ∈ A, no leaf

3.5 Simple and Simplicial Polyhedra 87

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

Figure 3.10: Illustration of the circulant matrix M(12, 5).

of ΓM can be in Ur. Therefore, each leaf of ΓM has to be contained in C(r)
for every r ∈ A. It follows that any two leaves of ΓM are contained in d − 1
common rows. But then they should be adjacent in ΓM . Contradiction.

Altogether this proves the following:

Proposition 3.25. Let M be a 0/1 matrix of size n × n that has exactly
d ≥ 2 ones in each row and in each column. If ΓM is connected, then it is an
n-cycle or a complete graph on n = d + 1 nodes.

3.5.2 Circulant Matrices

Let n, d be integers satisfying 1 ≤ d ≤ n. The (n, d)-circulant M(n, d) is the
(n× n)-matrix with 0/1 entries whose coefficients mij (i, j ∈ {0, . . . , n− 1})
are defined as follows:

mij =

{
1 if j ∈ {i, i + 1 mod n, . . . , i + d − 1 mod n}
0 otherwise.

See Figure 3.10 for an example. For d ≥ 1, the (d+1, d)-circulant is a vertex-
facet incidence matrix of the d-simplex, and for n ≥ 3, the (n, 2)-circulant is
a vertex-facet incidence matrix of the (2-dimensional) n-gon.

Two matrices M and M ′ are isomorphic if there exist permutations of
the rows and columns of M such that the result equals M ′.

Proposition 3.26. Let M be a 0/1 matrix of size n×n that has exactly d ≥ 2
ones in each row and in each column. Then M is isomorphic to the circulant
matrix M(n, d) if and only if ΓM is connected.

88 Vertex-Facet Incidences

Proof. If M is isomorphic to M(n, d), then clearly ΓM is connected, since
ΓM

∼= ΓM(n,d) and ΓM(n,d) is connected.
For the converse assume that ΓM is connected. By Proposition 3.25,

ΓM either is a complete graph on n = d + 1 nodes, or it is a cycle. In
the first case, M is the complement of a permutation matrix, which can be
transformed to M(n, d) by a suitable permutation of its rows.

In the second case, assume that the columns of M are ordered according
to the cycle ΓM , beginning at an arbitrary node. Let mrc be the entry of M
in row r and column c. Then call two positions (r, j) and (r, k) in M mates
if k ≡ j ± 1 (mod n) and mrj = mrk = 1, for r ∈ R, j, k ∈ C. Walking
around the cycle ΓM , we find that the total number of mates in M is n·(d−1),
because we have n edges and every edge is “contained” in precisely d−1 rows.
Since every row of M has only d ones, it follows that in each row the ones
must appear consecutively (modulo n). Denote by s(r) the starting position
of the block of ones in row r ∈ R. By Lemma 3.19, there are no equal rows
in M . Hence, s defines a permutation of the rows of M which determines
how to transform M to M(n, d).

3.5.3 Simple and Simplicial Polyhedra

We turn to the structure of simple and simplicial polyhedra, applying the
results of the previous sections.

Proposition 3.27. A polyhedron P is simple and simplicial if and only if
it has a circulant M(n, d) as a vertex-facet incidence matrix. In this case,
dim(P) = d.

Proof. First assume that P has M(n, d) (1 ≤ d ≤ n) as a vertex-facet in-
cidence matrix. The cases d = 1 (implying n ∈ {1, 2}) and d = n (which
implies d = n = 1) are trivial. Therefore, let 2 ≤ d < n. Obviously, it suf-
fices to show dim(P) = d. To each row r ∈ R of M(n, d) there corresponds a
facet Fr of P . For 0 ≤ r ≤ d−1 define Gr = F0∩· · ·∩Fr. Clearly, Gr ⊇ Gr+1

holds for 0 ≤ r < d − 1. Due to vertGr = vertF0 ∩ vertF1 ∩ · · · ∩ vertFr

it follows that vertGr ⊃ vertGr+1 and therefore Gr ⊃ Gr+1. Then the
chain F0 = G0 ⊃ G1 ⊃ · · · ⊃ Gd−1 is (decreasing) of length d − 1 in the face
poset of P . Hence we have dim P ≥ d. Since each vertex must be contained
in at least dim(P) facets, it follows that dim(P) ≤ d (each vertex of P is
contained in precisely d facets).

For the converse, assume that P is a simple and simplicial d-polyhedron.
The case d = 1 is checked easily. Thus, assume d ≥ 2. Every vertex-facet
incidence matrix M of P is a 0/1-matrix of size m×n, with exactly d ones in

3.5 Simple and Simplicial Polyhedra 89

each row and column. Double counting again yields m = n. Furthermore, ΓM

is connected by Lemma 3.1. By Proposition 3.26, M is isomorphic to M(n, d)
and hence P has M(n, d) as a vertex-facet incidence matrix.

The following result finishes the proof of Theorem 3.18 (via Proposi-
tion 3.27).

Proposition 3.28. If a polyhedron P has the circulant M(n, d) (2 ≤ d < n)
as a vertex-facet incidence matrix, then n = d+1 (P is a d-simplex) or d = 2
(P is an n-gon).

Proof. If n = d + 1, then M(n, d) is a vertex-facet incidence matrix of a
d-simplex. By Theorem 3.11, P cannot be unbounded, and thus it must be
a d-simplex itself. Therefore, in the following we will assume n > d + 1.

Let us first treat the case d + 1 < n < 2d − 1. Consider the facets F
and F ′ corresponding to rows 0 and n − d + 1, respectively. If we identify
the vertices of P with the column indices {0, . . . , n− 1} of M(n, d), then the
vertex set of the face G = F ∩ F ′ is {0} ∪ {n − d + 1, . . . , d − 1}, where
{n − d + 1, . . . , d − 1} �= ∅ (due to n < 2d − 1). By Propositions 3.27,
3.26, and 3.25, ΓP is an n-cycle (due to n > d + 1). Neither vertex 1 nor
vertex n − 1, which are the only neighbors of 0 in ΓP , are contained in G.
We conclude that the subgraph of ΓP induced by G is disconnected, which
is a contradiction to Lemma 3.1.

Hence, we can assume n ≥ 2d − 1. Taking all indices modulo n, we have

V(P) =
{
{r, r + 1, . . . , r + s − 1} : r ∈ {0, . . . , n − 1}, s ∈ {1, . . . , d}

}
.

This means that V(P) consists of all (cyclic) intervals of {0, . . . , n− 1} with
at least one and at most d elements. We will compute the Möbius function µ
(see Section 3.3) of the lattice V̂(P) (that arises by adding artificial top and
bottom elements 1̂ and 0̂ to V(P)). Let µ(s) := µ({0, 1, . . . , s − 1}), for
each s ∈ {1, . . . , d}; note that {0, . . . , s − 1} ∈ V(P). Obviously, for every
element F ∈ V(P) with |F | = s we have µ(F) = µ(s). In particular, one
readily deduces from (3.1) that µ(1) = −1 and µ(2) = −(1+2·(−1)) = 1. For
3 ≤ s ≤ d, we then infer by induction µ(s) = −(1+s·(−1)+(s−1)·(+1)) = 0.
We finally calculate

µ(V(P)) = µ(1̂) = −(1 + n · (−1) + n · (+1)) = −1,

which by (3.2) and Theorem 3.11 implies that P is bounded (and, hence, an
n-gon).

(Alternatively, one could derive from the nerve lemma [29, Theorem 10.7]
that V(P) is homotopy equivalent to a circle for n ≥ 2d − 1, and thus, P
must be a polygon.)

Chapter 4

Computing the Face Lattice of a Polytope

from its Vertex-Facet Incidences

In this chapter, we deal with the computational complexity of the problem
to compute (the Hasse diagram of) the face lattice of a polytope P , if vertex-
facet incidences of P are given.

We give an algorithm that constructs the Hasse diagram of the face lattice
of a polytope P from its vertex-facet incidences in time O(min{n, m} · α · ϕ),
where n is the number of vertices, m is the number of facets, α is the number
of vertex-facet incidences, and ϕ is the total number of faces of P . In most
cases this is faster than previously known methods. The algorithm can be
applied to other atomic and coatomic lattices, if the atom-coatom incidences
are given. This is used in Section 3.4 to distinguish between the vertex-facet
incidences of polytopes and unbounded polyhedra.

In the first section we give a brief introduction to the problems and terms
important for this chapter. Section 4.2.1 contains a rough sketch of the al-
gorithm, which is followed by a more detailed description in Sections 4.2.2,
4.2.3, and 4.2.4. In Section 4.2.5 we analyze the algorithm. For simple or sim-
plicial polytopes this algorithm can be specialized to run in time O(d · α · ϕ),
a case we deal with in Section 4.3.1. A variant that computes the k-skeleton
appears in Section 4.3.2. Furthermore, in Section 4.3.3, a version that needs
significantly less memory is described that enumerates just the faces together
with their dimensions (i.e., without the edges of the Hasse diagram). Finally,
a modification of the algorithm that computes the face lattice of an oriented
matroid from its cocircuits (Section 4.3.4) is explained.

Most parts of this chapter are joint work with Volker Kaibel and appear
in [76].

4.1 Introduction

Let P be a d-dimensional polytope (d-polytope). We again let F(P) be the
set of non-trivial faces of P (excluding ∅ and P itself), ordered by inclusion
(compare Section 3.1). We denote by F̂(P) the poset F(P) with an artificial

91

92 Computing the Face Lattice of a Polytope

top element 1̂ and an artificial bottom element 0̂ adjoined. Then F̂(P) is
a graded, atomic, and coatomic lattice, the face lattice of P (see also Sec-
tion 2.5). In particular, each face can be identified with its set of vertices
(F̂(P) is atomic) or the set of facets it is contained in (F̂(P) is coatomic). In
this chapter, we usually identify a face with its vertex set. Define ϕ := |F̂(P)|
and denote by L the Hasse diagram (as an abstract graph) of the face lattice.
Hence, L is a directed rooted acyclic graph whose nodes correspond to the
elements of F̂(P). If
H ,
G are nodes in L and H, G ∈ F̂(P) are the corres-
ponding faces of P , then there is an arc (
H ,
G) in L if and only if H ⊂ G
and dim(G) = dim(H) + 1.

We consider the following (compare Problem 13 in [77]):

Combinatorial face lattice enumeration problem: Given a vertex-facet
incidence matrix of a polytope P , construct the Hasse diagram L of the face
lattice.

See Section 3.1 for a definition of a vertex-facet incidence matrix, which we
repeat in Section 4.2 below.

By definition, L is unlabeled. Nevertheless, it might be desired to label
each node of L corresponding to a face F with the set of (indices of) ver-
tices contained in F , the set of (indices of) facets containing F , or with the
dimension of F .

Fukuda and Rosta [59] gave an algorithm to compute the face lattice
of a d-polytope P , which runs in O(min{n, m} · d · ϕ2) time, where m is
the number of facets and n is the number of vertices of P . This algorithm
can easily be turned into an algorithm for the combinatorial face lattice
enumeration problem with the same asymptotic running time.

Since ϕ can be exponential in n and m (consider the d-simplex, for in-
stance), it is desirable to have an algorithm whose running time depends
only linearly on ϕ (and polynomially on n and m). The main result of this
chapter is such an algorithm.

Connected with the combinatorial face lattice enumeration problem is the
following problem (compare Problem 5 in [77]).

Geometric face lattice enumeration problem: Given a polytope P de-
scribed by inequalities, compute the face lattice of P .

There are algorithms for this problem whose running time depends only lin-
early on ϕ, e.g., Fukuda, Liebling, and Margot [58]. In our context, however,
no geometric data are available.

Ganter [61] described an algorithm which, given the incidences of atoms
and coatoms of a general atomic and coatomic lattice L, enumerates all elem-
ents of L in lexicographic order, where each element is identified with the set

4.1 Introduction 93

of atoms below it (which are ordered arbitrarily). Specialized to our situation,
one obtains an algorithm that computes the vertex sets of the faces of P in
O(min{n, m} · α · ϕ) steps, where α is the number of vertex-facet incidences
of P . Note that d · max{n, m} ≤ α ≤ n · m, in particular, α is bounded
polynomially in n and m. This algorithm, however, does not compute the
inclusion relations between the faces, i.e., the edges of the Hasse diagram
of the face lattice. Of course, once all (vertex sets of) faces are computed,
one may construct the Hasse diagram in an obvious way afterwards, but this
would require a number of steps which is quadratic in the total number ϕ of
faces.

Inspired by Ganter’s algorithm, we developed the (quite different) algo-
rithm presented in this chapter, which computes the entire Hasse diagram in
the same running time of O(min{n, m} · α · ϕ), see Theorem 4.6. It requires
O(ϕ · min{n, m}) memory (without output storage). In our algorithm, the
vertex set of each face or the set of facets it is contained in, as well as its
dimension, is readily available (or can be computed without increasing the
asymptotic running time). Of course, this may increase the (output) storage
requirements significantly.

Fukuda and Rosta [59] also considered the combinatorial face lattice enu-
meration problem for the special case of simple or simplicial polytopes. They
presented an algorithm that computes the face lattice of a simple or simpli-
cial polytope in O(d · ϕ) steps, provided that in addition to the vertex-facet
incidences an acyclic orientation of the graph of the polytope is given that
induces precisely one sink on every nonempty face. Such an orientation is
called a good orientation or abstract objective function orientation (AOF)
(see Section 2.3.2). Unfortunately, no polynomial-time algorithm is known
that computes a good orientation of a simple polytope P – neither if P is
given by its vertex-facet incidences nor if it is specified by its whole face
lattice (compare Problem 17 of [77]).

For simple or simplicial polytopes, our algorithm can be specialized such
that it computes the Hasse diagram of the face lattice in O(d · α · ϕ) steps
from the vertex-facet incidences, where no good orientation is required (see
Section 4.3.1).

The basic concepts from the theory of algorithms and data structures
that play a role in this chapter can be found in any corresponding textbook
(e.g., in the one by Cormen, Leiserson, Rivest, and Stein [50]).

Throughout this chapter, our running time estimates refer to the uniform
time measure, i.e., every arithmetic operation/comparison takes one unit of
time. However, we decided to let our statements on memory requirements
refer to the bit model, since this reflects the “real” situation more closely, e.g.,
this introduces a term min{n, m} into the estimates of the working space.

94 Computing the Face Lattice of a Polytope

4.2 The Algorithm

Define m to be the number of facets and n the number of vertices of the
d-polytope P . Let A = (afv) ∈ {0, 1}m×n be a vertex-facet incidence matrix
of P . Hence the facets of P can be identified with F := {1, . . . , m} and
its vertices can be identified with V := {1, . . . , n}, such that afv = 1 if
facet f contains vertex v, and afv = 0 otherwise. Denote by α the number
of vertex-facet incidences, i.e., the number of ones in A. For S ⊆ V , define
F(S) := {f ∈ F : afs = 1 for all s ∈ S}, the set of facets containing all
vertices of S. For T ⊆ F , define V(T) := {v ∈ V : atv = 1 for all t ∈ T}, the
set of vertices contained in all facets of T .

For S ⊆ V , the set cl(S) := V(F(S)) is the (vertex set of) the smallest
face of P containing S (in lattice theoretic terms, the join of the elements
in S). One can check easily that this defines a closure map on the subsets
of V , i.e., for all S, S ′ ⊆ V we have:

S ⊆ cl(S), cl(cl(S)) = cl(S), S ⊆ S ′ ⇒ cl(S) ⊆ cl(S ′).

The faces of P correspond exactly to the closed sets of V with respect to this
closure map (i.e., sets S ⊆ V with cl(S) = S). Our algorithm crucially relies
on the fact that closures can be computed fast (see Section 4.2.2).

4.2.1 The Skeleton of the Algorithm

The strategy is to build up the Hasse diagram L of the face lattice from
bottom (∅) to top (P). Consequently, L is initialized with the single face ∅
and then enlarged iteratively by adding out-neighbors of nodes that have
already been constructed. We will say that a face has been seen, once its
corresponding node in L has been constructed.

During the algorithm, we keep a set Q containing those faces that we
have seen so far, but for which we have not yet inserted their out-arcs into
the Hasse diagram. At each major step, we remove a face H from the set Q
and construct the set G of all faces G with H ⊂ G and dim(G) = dim(H)+1.
For each face G ∈ G we check whether it has already been seen. If this is
not the case, then a new node in L representing G is constructed, and G is
added to Q. In any case, an arc from the node corresponding to H to the
node corresponding to G is inserted into L. See Figure 4.1 for an illustration
of the algorithm.

In order to compute the set G, we exploit the fact that G consists of
the inclusion minimal faces among the ones that properly contain H. Since
the face lattice of a polytope is atomic, each face G ∈ G must be of the

4.2 The Algorithm 95

form H(v) := cl(H ∪ {v}) for some vertex (atom) v; in particular, the Hasse
diagram has at most n · ϕ arcs. Thus, we first construct the collection H of
all sets H(v), v ∈ V \H, and then compute G as the set of inclusion minimal
sets of H.

Computing H(v) for some v ∈ V \ H requires determining a closure.
In Section 4.2.2, we describe a method to perform this task in O(α) steps.
Determining the inclusion minimal sets in the collection H clearly could
be done in O(n3) steps by pairwise comparisons, since H has at most n
elements, each of size at most n. In Section 4.2.3 we show that this can even
be performed in O(n2) time.

Another crucial ingredient is a data structure, described in Section 4.2.4,
that allows us to locate the node in L representing a given face G or to assert
that G has not yet been seen. This can be performed in O(α) steps.

A summary of the analysis of the time complexity of the algorithm, along
with a pseudo-code description of it, is given in Section 4.2.5.

4.2.2 Computing Closures

In order to be able to compute closures fast, we store the incidence matrix A
in a sorted sparse format both in a row and column based way. For each

Figure 4.1: Illustration of the Hasse diagram L during a run of Algorithm 1 on the face
lattice of the polytope on the right of Figure 3.1 on page 67. Unseen vertices are white,
vertices in Q are marked grey, and the vertices completely processed are black. Black
edges are already inserted in L, the other edges are dotted.

96 Computing the Face Lattice of a Polytope

vertex v ∈ V , the elements in F({v}) ⊆ {1, . . . , m} are stored increasingly
in a list. Similarly, for each facet f ∈ F , we store the sorted set V({f})
in a list. This preprocessing can be performed in O(n · m) time (which
is dominated by O(n · α) and thus does not influence the estimate of the
asymptotic running time in Proposition 4.5 below). The sorted sparse format
uses O(α · log max{n, m}) storage.

Whenever we want to compute the closure of a set S ⊆ V , the first step
is to compute F(S), i.e., the intersection of the lists F({v}), v ∈ S. Since
the intersection of two sorted lists can be computed in time proportional to
the sum of the lengths of the two lists and because the intersection of two
lists is at most as long as the shorter one, F(S) can be computed in time
O

(∑
v∈S|F({v})|

)
⊆ O(α). Similarly, V(T) can be computed in time O(α)

for a set T ⊆ F .

Lemma 4.1. The closure cl(S) of a set S ⊆ V can be computed in O(α)
steps (provided that the vertex-facet incidence matrix is given in the sorted
sparse format).

4.2.3 Identifying the Minimal Sets

Suppose that H ⊂ V is a face of P and let H be the collection of the
faces H(v) := cl(H ∪ {v}) ⊆ V , for v ∈ V \ H.

Our procedure to identify the set G of minimal sets in the collection H
starts by assigning a label candidate to each vertex in V \ H. Subsequently,
the label candidate of each vertex will either be removed or replaced by a
label minimal. We keep the following three invariants: For each vertex v
that is labeled minimal we have H(v) ∈ G; if two different vertices v and w
both are labeled minimal, then we have H(v) �= H(w); G is contained in the
set of all H(v) for which v is labeled minimal or candidate. Clearly, if no
vertex is labeled candidate anymore, the set of vertices labeled minimal is in
one-to-one correspondence to G via H(·).

Suppose there is still some v labeled candidate available. If H(v) \ {v}
contains some vertex w, then we have H(w) ⊆ H(v), because H(w) is the
intersection of all faces containing H and w, and one of these faces is H(v).
Hence, if w is labeled minimal or candidate, we remove the label candidate
from v; if there exists no such w, we label v minimal.

It follows by induction that the three invariants are satisfied throughout
the procedure. Moreover, at each major step (choosing a candidate v) the
number of candidate labels decreases by one. Since each such step takes O(n)
time, the entire procedure has complexity O(n2).

4.2 The Algorithm 97

Lemma 4.2. The set G of inclusion minimal sets in H = {H(v) : v ∈ V \H}
can be identified in O(n2) steps.

4.2.4 Locating Nodes

During the algorithm, we have to keep track of the faces that we have seen so
far and the corresponding nodes in L. To this end, we maintain a special data
structure, the face tree. In this data structure, a face S = {s1, . . . , sk} ⊆ V
(with s1 < · · · < sk) is represented by the lexicographically smallest set
C(S) ⊆ S that generates S, i.e., cl(C(S)) = S. We call C(S) the canonical
spanning set of the face S. The map C(·) is one-to-one; its inverse map is
the closure map. See also Table 4.1 and Example 4.4 below.

The set C(S) can be computed efficiently as follows. For k = 1 and k = 2,
set C(S) := S. For k ≥ 3, C(S) is computed iteratively: Initialize C(S)
with the set {s1, s2}; at each iteration extend C(S) by the smallest si such
that cl(C(S)) ⊂ cl(C(S) ∪ {si}). Note that |C(S)| ≤ dim(S) + 1 ≤ d + 1.
Recall that we stored the vertex-facet incidences in the sorted sparse format
(see Section 4.2.2). Similarly to the method for computing closures, this
computation can be performed in O(α) steps, since just the intersections
F({s1}) ∩ · · · ∩ F({si}), i = 1, . . . , k, have to be computed iteratively. Then,
C(S) is obtained as the set of those si for which the intersection becomes
smaller.

We now explain the structure of the face tree. Its arcs are directed away
from the root. They are labeled with vertex numbers, such that no two arcs
leaving the same node have the same label and on every directed path in
the tree the labels are increasing. Via the sets of labels on the paths from
the root, the nodes of the tree correspond to the sorted sets C(S) for the
faces S ⊆ V that are on the path to some face S ′ (i.e., C(S) ⊆ C(S ′)) that
has already been accessed. In particular, the root node represents the face ∅.
Each node has a pointer to the corresponding node of L. By construction,
the depth of the tree is bounded by d + 1.

Suppose we want to find the node
S corresponding to some face S ⊆ V in
the part of L that we have already constructed or to assert that this face has
not yet been seen. We first sort S (a subset of {1, . . . , n}) increasingly in O(n)
steps (by counting or bucket sort, see [50, Chap. 8]) and compute C(S)
in O(α) steps. Then, starting from the root, we proceed (as long as possible)
downwards in the face tree along arcs labeled by the successive elements
of C(S). Either we find an existing node in the tree which corresponds to S,
or we have to introduce new labeled arcs (and nodes) into the tree until we
have constructed a node representing S.

98 Computing the Face Lattice of a Polytope

Table 4.1: List of faces H(v) for the 4-cube given in Figure 4.2, where H = {5} and
v ∈ {0, . . . , 15} \ {5}. See Example 4.4 and Figure 4.3.

v H(v) C(H(v))

0 {0, 1, 4, 5} {0, 1, 4}
1 {1, 5} {1, 5}
2 {0, 1, 2, 3, 4, 5, 6, 7} {0, 1, 2, 4}
3 {1, 3, 5, 7} {1, 3, 5}
4 {4, 5} {4, 5}
6 {4, 5, 6, 7} {4, 5, 6}
7 {5, 7} {5, 7}
8 {0, 1, 4, 5, 8, 9, 12, 13} {0, 1, 4, 8}
9 {1, 5, 9, 13} {1, 5, 9}

10 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} {0, 1, 2, 4, 8}
11 {1, 3, 5, 7, 9, 11, 13, 15} {1, 3, 5, 9}
12 {4, 5, 12, 13} {4, 5, 12}
13 {5, 13} {5, 13}
14 {4, 5, 6, 7, 12, 13, 14, 15} {4, 5, 6, 12}
15 {5, 7, 13, 15} {5, 7, 13}

In the latter case, it might be necessary to construct an entire new path
in the tree. The definition of the canonical spanning sets C(S) ensures that
all “intermediate nodes” on that path will correspond to canonical spanning
sets of faces as well. Hence, the number of nodes in the face tree always
will be bounded by ϕ, the total number of faces of the polytope. The faces
represented by intermediate nodes will be seen later in the algorithm. Con-
sequently, the corresponding pointers to L are set to nil for the meantime.
Later in the algorithm, when we are searching for the face represented by such
a tree-node for the first time, the nil-pointer will indicate that this face is
not yet represented in L. The nil-pointer is then replaced by a pointer to a
newly created node representing the face in L.

In any case, since the face tree has depth at most d+1 and the out-degree
of each node is at most n, we need a total time of O(n + α + (d + 1) · n) =
O(α) to either locate or create the tree-node representing a certain face.

Lemma 4.3. Using the face tree, it is possible to locate or create the node
in L representing a face in O(α) steps (provided the vertex-facet incidence
matrix is stored in the sorted sparse format).

Example 4.4. Figure 4.2 shows a Schlegel diagram of the 4-cube and Fig-
ure 4.3 part of a face tree during a run of Algorithm 1.

4.2 The Algorithm 99

0
1

2
3

4
5

6
7

8 9

10 11

12
13

14
15

Figure 4.2: Schlegel diagram of the 4-cube used in Example 4.4.

0

1

1

2

3

4

4

4 5

5

5

5

6

7

8

8

9

9 12

12

13

13

Figure 4.3: Illustration of the face tree during a run of Algorithm 1 for the face lattice
of the 4-cube, see Figure 4.2. The requests to the face tree are the sets C(H(v)) as they
appear in Table 4.1. See also the notes in Example 4.4.

100 Computing the Face Lattice of a Polytope

As in every run of Algorithm 1, first the face ∅ is considered. The
sets H(v), for H = ∅ and v ∈ V , are exactly the vertices 0, 1, . . . , 15.

We assume that the next face is vertex H := {5} and H(v) is computed
for all v ∈ V \ {5}. This results in 15 faces, which are shown in Table 4.1
together with the corresponding sets C(H(v)).

To illustrate the face tree, Figure 4.3 shows the result if all faces of
Table 4.1 are requested in turn. Of course, in an actual execution of Al-
gorithm 1 the face tree is larger (e.g., it includes nodes for all vertices).

In the description given above, we have assumed that for each node in the
face tree the out-arcs are stored in a list which is searched linearly for a certain
label when walking down the tree. Of course, one can store the set of out-arcs
in a balanced search tree (see, e.g., [50, Chap. 13]), allowing to perform the
search for a certain label in logarithmic time. After computing C(S) for a
face S (in O(α) time), this allows to locate or create the node corresponding
to S in the face tree in O((d + 1) · log n) steps. The total running time
remains O(α); nevertheless this might speed up the algorithm in practice.

Instead of using the face tree, one can also store the faces in a balanced
search tree. Again, the faces are represented by their canonical spanning sets,
which are ordered lexicographically. Once C(S) is computed for a face S,
searching S can be performed in O((d + 1) · log ϕ) ⊆ O((d + 1) · min{n, m})
steps (since ϕ ≤ 2min{n,m}). This yields the same total asymptotic running
time, but searching the tree takes more (or the same) time compared to
the variant of the face tree with balanced search trees at its nodes, since
log n ≤ min{n, m}.

4.2.5 The Analysis

We summarize the algorithm in pseudo-code (Algorithm 1) below.

Proposition 4.5. Algorithm 1 computes the Hasse diagram of the face lat-
tice of a polytope P from its vertex-facet incidences in O(n · α · ϕ) time. It
can be implemented such that its space requirements (without output space)
are bounded by O(ϕ · n).

Proof. Algorithm 1 works correctly by the discussion above.
Step 7 can be performed in O(n · α) steps by Lemma 4.1. Lemma 4.2

shows that Step 8 can be executed in O(n2) ⊆ O(n · α) time. Hence, Steps 7
and 8 in total contribute at most O(n · α · ϕ) to the running time (since the
while-loop is executed once per face).

The body of the for-loop has to be executed for each of the O(n · ϕ) arcs
in the Hasse diagram L. Lemma 4.3 implies that each execution of the body

4.2 The Algorithm 101

Algorithm 1: Computing the face lattice of a polytope from its incidences.

1: Input: incidence matrix of a polytope P
2: Output: Hasse diagram L of the face lattice of P
3: initialize L and a face tree with
∅ corresponding to the empty face
4: initialize a set Q ⊆ {nodes of L} × {subsets of V } by (
∅, ∅)
5: while Q �= ∅ do
6: choose some (
H , H) ∈ Q and remove it from Q
7: compute the collection H of all H(v), v ∈ V \ H
8: compute the set G of minimal sets in H
9: for each G ∈ G do

10: locate/create the node
G corresponding to G in L
11: if
G was newly created then
12: add (
G, G) to Q
13: end if
14: add the arc (
H ,
G) to L
15: end for
16: end while

of the for-loop can be performed in O(α) steps. Thus, the claim on the
running time follows.

Since each node of the face tree corresponds to a face of P , the face tree
has O(ϕ) nodes. Each label on an edge of the face tree needs at most O(log n)
bits, and we can estimate the space requirements of any of the (internal and
external) pointers by O(log ϕ) ⊆ O(min{n, m}). Hence, the face tree needs
no more than O(ϕ · min{n, m}) bits.

The space required for the storage of Q is bounded by O(ϕ · n), if for
each pair (
H , H) ∈ Q the set H is stored as a bit set, i.e., the characteristic
vector of H ⊆ V is stored bit by bit.

If m < n, then it is more efficient to apply Algorithm 1 to the incidences
of the dual polytope, i.e., to the transpose of the incidence matrix. Of course,
after the computations the roles of vertices and facets have to be exchanged
again. This yields the main result of this chapter.

Theorem 4.6. The Hasse diagram of the face lattice of a polytope P can
be computed from the vertex-facet incidences of P in O(min{n, m} · α · ϕ)
time, where n is the number of vertices, m is the number of facets, α is
the number of vertex-facet incidences, and ϕ is the total number of faces
of P . The space requirements of the algorithm (without output space) can
be bounded by O(ϕ · min{n, m}).

102 Computing the Face Lattice of a Polytope

Whenever a new node representing a face G in the Hasse diagram L is
constructed, we can label that node with the vertex set of G, the set of facets
containing G, or with the dimension of G without (asymptotically) increasing
the running time of the algorithm. The output, however, might become much
larger with such labelings. For instance, labeling the Hasse diagram of the
d-cube by vertex labels requires Ω(4d · d) output storage space, while the
Hasse diagram with facet labels needs only O

(
d · 3d · log d

)
space.

In practice, the computation can be speeded up by exploiting that every
vertex that is contained in a face G with H ⊂ G and dim G = dim H+1 must
be contained in some facet which contains H. Thus, it suffices to consider
only the sets H(v), v ∈

(⋃
f∈F(H) V({f})

)
\ H in Step 7.

Remark 4.7. Algorithm 1 can be used to compute the Hasse diagram of an
atomic lattice, if a subroutine is available that computes the join of a set
of atoms. In Section 4.3.4 we provide an application of this idea to oriented
matroids. Another example are atomic and coatomic lattices where the atom-
coatom incidences are given; in this case one can compute the joins of atoms
similarly to the case of face lattices of polytopes.

4.3 Extensions

4.3.1 Simple or Simplicial Polytopes

For a simple d-polytope P with n vertices, the above procedure can be im-
plemented to run more efficiently. We have α = n · d in this case. From the
incidences (stored in the sorted sparse format), the graph G(P) of P (i.e.,
all one-dimensional faces) can be computed in time O(n2 · d), since a pair of
vertices forms an edge if and only if it is contained in d − 1 common facets.

After initialization with the vertices instead of ∅ (in Steps 3 and 4),
Steps 7 and 8 can now be simplified. Consider an arbitrary vertex w ∈ H.
For each neighbor v /∈ H of w in G(P), H(v) yields the other end node of
an arc in the Hasse diagram; and each out-arc of H is produced this way.
Thus, we can avoid constructing non-minimal faces in Step 7. Hence, Step 8
can be skipped. The total running time for simple d-polytopes decreases to
O(d · α · ϕ) (since the body of the for-loop is executed at most d · ϕ times).

The space complexity stays O(ϕ · n) (see Proposition 4.5). It can, how-
ever, be reduced to O(ϕ · m) (we have m ≤ n for simple polytopes): in-
stead of storing pairs (
H , H) in the set Q, we store the pairs (
H , F(H)),
since |F(H)| ≤ m. Converting between H and F(H) can be performed
in O(α) steps and hence does not increase the asymptotic total running
time.

4.3 Extensions 103

Using duality, the same running times and space requirements can be
achieved for simplicial polytopes.

Similarly to the situation with general polytopes, for both simple and
simplicial polytopes we can also output for each face its vertices, the facets
containing it, or its dimension without (asymptotically) increasing the run-
ning time.

4.3.2 The k-Skeleton

A variant of Algorithm 1 computes the Hasse diagram of the k-skeleton
(all faces of dimension at most k) of a polytope P . One simply prevents
the computation of faces of dimensions larger than k by not inserting any
(k − 1)-face into the list Q. This leads to an O

(
n · α · ϕ≤k

)
time algorithm,

where ϕ≤k is the number of faces of P of dimension at most k. The space
requirements are O

(
n · ϕ≤k

)
.

4.3.3 Computing the “Hasse Diagram without Edges”

If we only want to compute the faces of P together with their descriptions and
dimensions (i.e., the “Hasse diagram without edges”), there exists a variant
of Algorithm 1 with the same asymptotic running time, but significantly
reduced space requirements. The difference is that no face tree is used, and
the set Q is organized as a stack, i.e., the faces are investigated in a depth-first
search manner. At each step, we take a face H from the stack, output it, and
compute the set G of (dim H +1)-faces containing H, like in Steps 7 and 8 of
Algorithm 1. This needs time O(n · α) for each H. The for-loop beginning at
Step 10, including the search in the face tree, is replaced by an efficient way
to decide which of the faces in G is put onto the stack Q, such that every face
appears exactly once on the stack during the algorithm. For this, we compute
for each face G ∈ G a unique canonical facet H ′ of it. We put G onto the stack
if and only if H = H ′. This ensures that each face is picked exactly once.

We take H ′ as the closure of a set D(G), which is computed similar to
the set C(G) of Section 4.2.4, except that we reject vertices which would
produce G. More precisely, let G = {g1, g2, . . . , gl}, with g1 < g2 < · · · < gl.
Initialize D(G) with ∅ and in each iteration extend D(G) by the smallest gi

such that cl(D(G)) ⊂ cl(D(G) ∪ {gi}) and cl(D(G) ∪ {gi}) �= G. After the
computation, H ′, the closure of D(G), clearly is a proper face of G. Moreover,
it is a facet of G, since otherwise there exists a vertex g ∈ G \ H ′, such
that cl(H ′ ∪ {g}) ⊂ G. But then g would have been included into D(G)
when it was considered. Hence, D(G) is the lexicographically smallest subset

104 Computing the Face Lattice of a Polytope

of G which spans a facet of G. It can be computed in time O(α), and hence
checking for all faces G ∈ G whether H is the canonical facet D(G) of G can
be performed in O(n · α) time.

Altogether, this leads to an O(n · α · ϕ) time algorithm (see the proof of
Proposition 4.5). The algorithm needs O(n2 · d · log n) space for Q; since the
depth of Q is at most d + 1, there are never more than n · (d + 1) sets on the
stack, each of size at most n. Additionally, we need O(α · log max{n, m})
space for storing the incidences in the sorted sparse format. Applying this
method to the dual polytope, if necessary, we obtain an O(min{n, m} · α · ϕ)
time algorithm.

4.3.4 Oriented Matroids

As noted in Remark 4.7, Algorithm 1 can be used to compute the Hasse dia-
gram of any atomic lattice provided a subroutine is available that computes
the join of a set of atoms. In this section, we describe such an application of
our algorithm to oriented matroids.

The covectors of an oriented matroid with groundset {1, . . . , k} are el-
ements of {−, 0, +}k that satisfy certain axioms. We refer to the book of
Björner, Las Vergnas, Sturmfels, White, and Ziegler [30, Chap. 4] for the
definitions and concepts that are relevant in the following.

A specific, but illustrative, example of an oriented matroid arises from any
finite set X of points in �d as follows. For every linear functional ϕ ∈ (�d)�

denote by sign(ϕ) ∈ {−, 0, +}X the vector whose component corresponding
to x ∈ X encodes the sign of ϕ(x). Then the set {sign(ϕ) : ϕ ∈ (�d)�} is
the set of covectors of an oriented matroid O(X).

For v,w ∈ {−, 0, +}k the separation set S(v,w) of v and w contains all
indices i such that one of vi, wi is +, and the other one is −. The composition
v ◦ w of v and w is defined by (v ◦ w)i := vi if vi �= 0 and (v ◦ w)i := wi

otherwise.
We define a partial order � on {−, 0, +}k, where v � w holds if and

only if for all i we have vi = 0 or vi = wi. The �-minimal elements among
the nonzero covectors of an oriented matroid are called its cocircuits. If one
adjoins an artificial maximal element 1̂ to the poset formed by the covectors
of an oriented matroid (ordered by �), then one obtains its (big) face lattice.

If, in the above example, X is the vertex set of a polytope P ⊂ �d, then
the faces of P correspond to the positive covectors (i.e., the covectors with no
component equal to −) of O(X). The facets of P correspond to the positive
cocircuits of O(X). The face lattice of P is anti-isomorphic to a sublattice
of the face lattice of O(X).

4.3 Extensions 105

The face lattice of an oriented matroid is atomic and coatomic; its atoms
are the cocircuits, and its coatoms are called topes. Hence, as in the case
of polytopes, we can compute the (Hasse diagram of the) face lattice of an
oriented matroid if the abstract atom-coatom incidences are given.

However, this is not the usual way to encode an oriented matroid. It is far
more common to specify an oriented matroid by its cocircuits. In this case,
we can use the fact that the join of two covectors simply is their composition,
if their separation set is empty, or 1̂ otherwise. Such a composition can be
computed in O(k) steps, which enables us to compute the (Hasse diagram of
the) face lattice (efficiently) from its cocircuits by a variant of Algorithm 1,
which we describe now.

In Step 6, H now is a face of the oriented matroid, i.e., a covector. In
Step 7, one has to compute the joins of H with every cocircuit v �� H. Thus,
Step 7 can be performed in O(n · k · ϕ) steps altogether (where ϕ is the total
number of covectors and n is the number of cocircuits). We do not know any
method to perform Step 8 faster than by pairwise comparisons, which take
O(n2 · k · ϕ) time in total.

The face tree is organized similarly to the description in Section 4.2.4.
One first fixes an (arbitrary) ordering C1, . . . ,Cn of the cocircuits. Then
for a covector S let {i1, . . . , ir} (i1 < · · · < ir) be the set of indices of
cocircuits Cij � S. To compute a “canonical spanning set”, we iteratively
form the joins of Ci1 , . . . ,Cir , and let C(S) consist of all those indices for
which the “joins change”. Computing C(S) from S takes O(n · k) steps. Note
that |C(S)| ≤ k.

Using this modified face tree, the node corresponding to a given covec-
tor S can now be located or created in the same way as in the case of face
lattices of polytopes. The depth of the face tree is bounded by k. Hence,
location/creation of a covector can be performed in O(n · k) time. The rest
of the analysis is similar to the proof of Proposition 4.5. We conclude that
by this variant of Algorithm 1, the Hasse diagram of the face lattice of an
oriented matroid can be computed in O(n2 · k · ϕ) steps, requiring O(ϕ · k)
working space (since ϕ ≤ 3k).

Finschi [56] describes a different algorithm that computes the covectors of
an oriented matroid from its cocircuits in O(n · k2 · ϕ) time. His algorithm,
however, does not produce the edges of the Hasse diagram.

The case where the topes (i.e., the �-maximal covectors) of an oriented
matroid are given is a bit different. Here, the number of faces is bounded
by m2, where m is the number of topes. Hence, the size of the face lattice is
polynomial in m. Fukuda, Saito, and Tamura [60] give an O(k3 · m2) time
algorithm for constructing the face lattice from the maximal covectors.

106 Computing the Face Lattice of a Polytope

4.3.5 Computational Experience

In this section we report on computational experience with Algorithm 1. The
goal is to provide an idea of the running times of this algorithm for different
classes of polytopes. No detailed investigation is intended here.

Algorithm 1 is compared to a naive algorithm to compute the face lattice
of a polytope (given the vertex-facet incidences), which we call the level
algorithm. This algorithm proceeds by levels in the face lattice, starting at
the level of the facets. As before, we identify a face with its vertex set.
At each step, every element of a level (face) is intersected with every facet.
The inclusionwise maximal sets among the resulting sets constitute the faces
of the level below the current one. This algorithm needs O(d · n · ϕ2) time
and O(ϕ · n) space in the worst case to compute the face lattice. It can be
easily modified to produce the Hasse diagram, too.

Below, we compare the running times of implementations of the level
algorithm and of Algorithm 1. Both algorithms were implemented and
tested by Nikolaus Witte using the polymake framework of Gawrilow and
Joswig [63, 64]. For this comparison, both algorithms just produce the face
lattice (without the edges of the Hasse diagram). Algorithm 1 issues requests
to the face tree data structure to test if a face has already been output, but
does not create the edges of the Hasse diagram. The specializations for sim-
ple and simplicial polytopes described in Section 4.3.1 are not implemented,
although all tested polytopes below are simplicial.

Table 4.2 gives the results for the d-dimensional simplex, for 4 ≤ d ≤ 13.
Indicated are the number of vertices n, the number of facets m, the number

Table 4.2: Running times in seconds for the level algorithm (Tla) and Algorithm 1 (TA1)
for the d-simplex.

d n m α ϕ Tla TA1 TA1/(n · α · ϕ)

4 5 5 20 31 0.00 0.00 0.00
5 6 6 30 63 0.00 0.00 0.00
6 7 7 42 127 0.01 0.04 1.07 · 10−6

7 8 8 56 255 0.02 0.06 5.25 · 10−7

8 9 9 72 511 0.06 0.15 4.53 · 10−7

9 10 10 90 1023 0.27 0.38 4.13 · 10−7

10 11 11 110 2047 1.20 0.91 3.67 · 10−7

11 12 12 132 4095 4.89 2.27 3.50 · 10−7

12 13 13 156 8191 20.32 5.31 3.20 · 10−7

13 14 14 182 16383 85.04 12.64 3.03 · 10−7

4.3 Extensions 107

Table 4.3: Running times in seconds for the level algorithm (Tla) and Algorithm 1 (TA1)
for the d-cross polytope.

d n m α ϕ Tla TA1 TA1/(n · α · ϕ)

4 8 16 64 81 0.01 0.01 2.41 · 10−7

5 10 32 160 243 0.02 0.06 1.54 · 10−7

6 12 64 384 729 0.17 0.43 1.28 · 10−7

7 14 128 896 2187 1.67 2.55 9.30 · 10−8

8 16 256 2048 6561 17.56 17.17 8.00 · 10−8

9 18 512 4608 19683 213.73 119.56 7.32 · 10−8

10 20 1024 10240 59049 2844.25 821.09 7.00 · 10−8

11 22 2048 22528 177147 37601.80 5701.34 6.49 · 10−8

of vertex-facet incidences α, the size of the face lattice ϕ, the running time
Tla of the level algorithm in seconds, the running time TA1 of Algorithm 1
in seconds, and the quotient TA1/(n · α · ϕ). Similarly, Table 4.3 provides
results for the d-dimensional cross polytope, for 4 ≤ d ≤ 11. Table 4.4 gives
results for random d-polytopes, which are produced by placing n vertices
randomly on the (d− 1)-sphere. Such polytopes are generated for d = 4, 5, 6
and n = 10, 20, . . . , 100. All values in Table 4.4 are mean values over 10 runs.

The data of Table 4.2 and 4.3 show the rapid growth of ϕ and the running
times with increasing dimension. In Table 4.4, the dimensions are small, but
the growth of ϕ and the running times for an increasing number of vertices
already becomes visible. In any case, the data shows the limitations on the
practical applicability of both the level algorithm and of Algorithm 1; for
larger dimensions and higher number of vertices the computation times and
space requirements become too large.

For small d and n, the running times of Algorithm 1 are higher than the
times of the level algorithm. This could be caused by the overhead of the
data structures. For larger d, i.e., d ≥ 10 for the simplex and cross polytope,
Algorithm 1 is clearly superior to the level algorithm (as the theoretical
results indicate). For random polytopes, Algorithm 1 is better if the number
of vertices (and facets) is large. Not surprisingly, the higher the dimension,
the better Algorithm 1 is compared to the level algorithm.

Furthermore, the quotient of the running time TA1 of Algorithm 1 and
the number n · α · ϕ is surprisingly stable. This indicates that the asymp-
totic theoretical running times are already a good estimate of the asymptotic
running times in practice, even for small values of n, α, and ϕ.

108 Computing the Face Lattice of a Polytope

Table 4.4: Running times in seconds of the level algorithm (Tla) and Algorithm 1 (TA1)
for random d-polytopes for d = 4, 5, 6. All results are mean values over 10 trials.

d n m α ϕ Tla TA1 TA1/(n · α · ϕ)

4 10 26 104 125 0.004 0.018 1.38 · 10−7

20 79 357 316 0.038 0.088 3.90 · 10−8

30 136 544 605 0.113 0.177 1.79 · 10−8

40 196 785 866 0.243 0.302 1.11 · 10−8

50 259 1034 1135 0.405 0.448 7.63 · 10−9

60 323 1292 1413 0.634 0.638 5.82 · 10−9

70 385 1538 1679 0.902 0.867 4.79 · 10−9

80 443 1771 1932 1.193 1.147 4.19 · 10−9

90 512 2048 2229 1.619 1.446 3.52 · 10−9

100 573 2291 2492 2.008 1.803 3.16 · 10−9

5 10 36 180 267 0.022 0.079 1.64 · 10−7

20 175 873 1159 0.435 0.74 3.66 · 10−8

30 349 1745 2265 1.671 1.814 1.53 · 10−8

40 549 2743 3523 4.083 3.407 8.82 · 10−9

50 766 3828 4885 7.791 5.389 5.76 · 10−9

60 982 4910 6243 12.665 7.107 3.86 · 10−9

70 1219 6093 7723 19.376 9.388 2.85 · 10−9

80 1448 7241 9160 27.211 11.768 2.22 · 10−9

90 1691 8454 10676 36.557 14.437 1.78 · 10−9

100 1941 9704 12236 47.930 17.165 1.44 · 10−9

6 10 40 241 479 0.064 0.214 1.85 · 10−7

20 351 2106 3439 3.902 22.104 3.89 · 10−8

30 873 5240 8277 23.104 22.104 1.70 · 10−8

40 1508 9047 14105 69.994 49.053 9.61 · 10−9

50 2266 13593 21020 169.801 87.838 6.15 · 10−9

60 3064 18382 28301 320.993 134.079 4.30 · 10−9

70 3954 23722 36377 634.941 193.344 3.20 · 10−9

80 4871 29226 44704 987.710 257.754 2.47 · 10−9

90 5716 34298 52413 1303.643 319.822 1.98 · 10−9

100 6804 40823 62235 1923.358 402.331 1.58 · 10−9

Chapter 5

Branch-and-Cut for the

Min IIS Cover Problem

In this chapter we report on experience with a preliminary implementation
of a branch-and-cut algorithm for the Min IIS Cover Problem. It re-
lies on a generalization of the integer programming formulation (1.1) of the
Min IIS Cover problem, given in Section 1.1.1. We refer to this section for
the basic definitions needed in the sequel.

This chapter is organized as follows. In Section 5.1, we give an overview of
the branch-and-cut approach for Min IIS Cover and discuss basic methods
needed in the rest of the chapter. We explain the usage of a generalized al-
ternative polyhedron to check whether a given set of inequalities corresponds
to an IIS-cover, give heuristics to separate IIS-inequalities, and introduce
primal heuristics. We then briefly discuss two types of additional cutting
planes (Section 5.2). One type comprises a special case of inequalities char-
acterized by Balas and Ng. The second type consists of Gomory cuts. In
Section 5.3, we report on the performance of the branch-and-cut implementa-
tion on three different sets of test problems. The first set contains infeasible
systems collected in the Netlib library. The second set includes random in-
equality systems and the third involves classification problems in machine
learning.

We assume that the reader is familiar with branch-and-cut algorithms
and the basic concepts of integer programming. We refer to Nemhauser
and Wolsey [90], Padberg and Rinaldi [92], Thienel [112], and Caprara and
Fischetti [39] for more information.

5.1 Basic Techniques

The outline of the branch-and-cut implementation is as follows. We allow
general infeasible instances of Min IIS Cover of the following form:

Σ : {Cx ≤ c, Dx = d, � ≤ x ≤ u}, (5.1)

where C ∈ �m1×n, D ∈ �m2×n, c ∈ �m1 , d ∈ �m2 , and �, u ∈ �n. We
define m := m1 + m2 + 2n, so that Σ has m constraints. Furthermore, let

109

110 Branch-and-Cut for Min IIS Cover

S(Σ) := [m1]×[m2]×[n]×[n]; hence we have |S(Σ)| = 2m1 ·2m2 ·2n·2n = 2m. A
subset S = (S1, S2, S3, S4) ⊆ S(Σ) indexes a subset of the constraints of Σ,
where S1 and S2 correspond to subsets of the rows of C and D, respectively.
The sets S3 and S4 correspond to subsets of the lower � and upper bounds u,
respectively. Sometimes we identify S(Σ) with [m] and implicitly use the
obvious translation between subsets of the two representations.

As an instance of Min IIS Cover, Σ is infeasible and we want to delete
as few of its m constraints as possible to obtain a feasible subsystem. The
definition of an Irreducible Inconsistent Subsystem (IIS) directly carries over
to this general case, i.e, an infeasible subsystem Σ′ of Σ is an IIS if and
only if all proper subsystems of Σ′ are feasible. We usually identify the
constraints with their indices and also call the index set of an IIS an IIS. A
set of constraints that contains at least one constraint of each IIS is called
an IIS-cover. To obtain a feasible solution, we have to delete at least one
constraint out of each IIS, i.e., remove an IIS-cover from Σ. This observation
leads to the following set covering formulation similar to (1.1).

To avoid the generation of all, or almost all, IISs we only work with a
partial list of IISs. We introduce a variable yi for the ith constraint of Σ
(i = 1, 2, . . . , m) and consider the following partial set covering problem:

min
∑m

i=1 yi

s.t.
∑

i∈C yi ≥ 1 for all C ∈ C ′

y ∈ {0, 1}m,

(5.2)

where C ′ is a subset of the set of IISs C(Σ). Weighted versions of this formu-
lation can be solved by the branch-and-cut implementation with only slight
changes.

Since C ′ might not be complete, i.e., C ′ �= C(Σ), we have to be able to
deal with the following situation: Given an integer solution of (5.2), check
whether it is the incidence vector of an IIS-cover. If this is not the case, we
should produce an IIS which is not covered. A method that can perform this
task is explained in Section 5.1.1. We then can add the resulting IIS to C ′

and iterate.
Parker and Ryan [95] solve (5.2) by exact methods, check whether the

solution corresponds to an IIS-cover, and iterate (if necessary) until a min-
imum cardinality IIS-cover is found. They also discuss the use of heuristics
to solve the integer program (5.2), where of course the last solution has to
be computed exactly. For both approaches, however, it can happen that the
number of IISs that have to be covered gets very large and consequently
the corresponding set covering problem is very hard to solve. Hence, the
idea evolved to incorporate the solution of the set covering problems into a

5.1 Basic Techniques 111

branch-and-cut algorithm as follows. In fact, Parker [94] began the investi-
gation of polyhedral properties of the corresponding polytope PIISC, see also
Section 1.3.2.

We start with the empty set C ′ and then iteratively solve the LP relaxation
of (5.2). Additionally, we add cutting planes after each iteration and perform
a branch-and-bound process. If we obtain a 0/1-solution, we check if it is an
IIS-cover as mentioned above (feasibility test). So far, we use the following
cutting planes in our implementation: inequalities arising from IISs as in (5.2)
(see Section 1.3.2), special cases of inequalities characterized by Balas and
Ng (Section 5.2.1), and Gomory cuts (Section 5.2.2). All cuts are stored in a
pool, and at the beginning of each iteration the pools are checked for violated
cuts, which are then included into the current LP relaxation.

The fact that we start with the empty set C ′ is not a problem, since
testing if the empty set is an IIS-cover, i.e., the whole system is feasible, can
be done by linear programming. If it is not an IIS-cover, we can obtain an
IIS that is not covered by the method mentioned above.

For S ⊆ [m] and a vector x ∈ �n, in the following we write

x(S) =
∑
i∈S

xi .

We now explain the above mentioned methods in more detail.

5.1.1 Checking for an IIS-Cover

We consider the following basic problem: Given an integer solution of (5.2),
check whether it is the incidence vector of an IIS-cover. If it does not cor-
respond to an IIS-cover, we have to produce a witness, i.e., an IIS which is
not covered.

We can use the statement of Theorem 1.13 to perform this task: IISs
of Σ are in one-to-one correspondence with supports of the vertices of the
alternative polyhedron

P (Σ) = {(y, v, w, z) : yC + vD + w − z = 0
yc + vd + wu − z� = −1
y, w, z ≥ 0, v free}.

(5.3)

For S = (S1, S2, S3, S4) ⊆ S(Σ), define the polyhedron

PS(Σ) := {(y, v, w, z) ∈ P (Σ) : yi = 0 i ∈ S1, vi = 0 i ∈ S2,
wi = 0 i ∈ S3, zi = 0 i ∈ S4 },

which might be empty. We use the following useful fact:

112 Branch-and-Cut for Min IIS Cover

Lemma 5.1. The set S ⊆ S(Σ) corresponds to an IIS-cover if and only if
PS(Σ) = ∅.

Proof. The system 5.3 in which all variables indexed by S are removed has
no solution if and only if PS(Σ) = ∅. By the Farkas lemma (Proposition 1.3),
the former is the case if and only if the system (5.1) with inequalities indexed
by S removed is feasible, i.e., S is an IIS-cover.

If y ∈ {0, 1}m is a feasible solution to (5.2), we let S := {i ∈ [m] : yi = 1}.
Then we test if PS(Σ) = ∅ by an LP-solver that returns a vertex in the
case where PS(Σ) �= ∅. By Lemma 5.1, S is an IIS-cover if PS(Σ) = ∅.
Otherwise, let v be a vertex of PS(Σ). We clearly have supp v∩S = ∅. Then
by Theorem 1.13, supp v corresponds to an IIS that has empty intersection
with S, i.e., is uncovered.

5.1.2 Preprocessing

We perform a preprocessing step to find “small” IISs before starting the
branch-and-cut algorithm. Such IISs are of interest since their corresponding
IIS-inequalities provide the “strongest” cuts. Furthermore, small IISs are hard
to find by other methods, e.g., by the ones explained in the next section.

In a first step, one can check if there are IISs of cardinality one, although
they rarely occur in practice. In principle, these IISs can be removed, since
any IIS-cover includes these inequalities. In a second step, we look for IISs
of cardinality two. Such IISs are easy to find by just comparing their normal
vectors and right hand sides. We furthermore check for IISs that involve one
inequality and bounds on the variables. To find more complicated IISs would
need more elaborate methods and would be too time consuming.

5.1.3 Separation of IIS Facets

Clearly, the most important cuts one can use in a branch-and-cut algorithm
for the Min IIS Cover problem are IIS-inequalities:

y(C) =
∑
i∈C

yi ≥ 1,

for an IIS C. If Σ is of the form {Ax ≤ b} and |C| > 1, applying the
connection between PIS and PFS (see Section 1.3.1), Theorem 1.26 shows
that these IIS-inequalities define facets of the polytope

PIISC = {y ∈ {0, 1}m : y(C) ≥ 1 for all IISs C}.

5.1 Basic Techniques 113

This result is not necessarily true for our case where Σ contains equations,
i.e., m2 > 0; in this case, IISs are not necessarily closed, see Example 1.28.
Nevertheless, IIS-inequalities are still important valid inequalities.

As mentioned above, after the solution of each LP relaxation we want to
find IIS-inequalities that violated by the current LP solution. By Proposi-
tion 1.29, finding such IIS-inequalities (or deciding that there exists none)
is NP-hard. Hence, it is unlikely that there exists an efficient algorithm to
solve this problem. Consequently, all of the (polynomial-time) methods to
find violated IIS-inequalities introduced in this section can fail to produce
any such inequality, even if many exist.

The key to find IISs is the alternative polyhedron P (Σ). As the IISs
correspond to the vertices of P (Σ), it suffices to work on this polyhedron
in order to find new IISs. Let x∗ ∈ �m be the solution of the current LP
relaxation in the branch-and-cut algorithm. Hence, the problem to find an
IIS-inequality violated by x∗ can in principle be solved by first determining

λ := min{x∗(S) : S = supp(v), v vertex of P (Σ)}. (5.4)

If λ < 1, the support of a vertex at which the minimum is attained corres-
ponds to an IIS C whose corresponding inequality x∗(C) ≥ 1 is violated. As
noted above, the problem to find λ is NP-hard. Hence, we introduce the
following heuristics for it.

Method 1: The first intuitive way to separate an IIS-inequality is to ap-
proximate (5.4) by the following LP:

min{x∗y : y ∈ P (Σ)},

where again x∗ is the current LP solution of the branch-and-cut algorithm.
This approach finds only one IIS-inequality per iteration, which is not nec-
essarily violated by x∗, even if there exist many violated IIS-inequalities.

We also experimented with solving this LP by a simplex solver and then
testing whether the support of each vertex on the path to the optimum is an
IIS whose inequality is violated. This works, but is inferior to the methods
presented below.

Method 2: An extension of the idea of method (1) is the following. Let S
be the support of x∗. Applying Lemma 5.1, we can check if S is an IIS-cover
by finding a vertex solution of

min{x∗y : y ∈ PS(Σ)},

if there exists one. If the LP is feasible, the result gives us a vertex which
corresponds to an IIS, otherwise we found an IIS-cover, which may be a good
primal solution to the Min IIS Cover problem.

114 Branch-and-Cut for Min IIS Cover

Let C(S) be the set of all IISs which are covered by S, i.e., we have
C ∩ S �= ∅ for each C ∈ C(S). By definition, the polyhedron PS(Σ) only
has vertices whose components corresponding to S are zero. This excludes
all IISs in C(S), since each IIS of Σ corresponds to the support of a vertex
of P (Σ). Hence, if we obtain a vertex solution of the above problem, then
the corresponding IIS is not contained in C(S).

Usually, the current LP relaxation includes all known IIS-inequalities that
are satisfied with equality or were violated by the solution of the previous
LP relaxation (e.g., if they were separated from a pool). Clearly, x∗ satis-
fies x∗(C) ≥ 1 for each IIS C whose inequality is included the LP relaxation.
Hence, for each such IIS C there exists i ∈ C such that x∗

i > 0. In particular,
we have C ∈ C(S).

It follows that the IIS found by the above process is new, i.e., not included
in the current LP relaxation. Moreover, the corresponding IIS-inequality is
clearly violated by x∗.

If supp(x∗) is not an IIS-cover, e.g., if during the above process we found
a violated IIS-inequality, we can even start a greedy heuristic to produce an
IIS-cover. Initially, let S be the support of x∗. At each step, check if S is
an IIS-cover using Lemma 5.1. If S is an IIS-cover, we stop. Otherwise,
we found a new IIS C. In this case, we enlarge S greedily by an arbitrary
element of C and iterate. This procedure yields an IIS-cover at the end and
new IISs in each step (except in the last). In our implementation, we choose
an element of C by taking an element that is contained in a maximal number
of the IISs we have found so far. This is essentially a heuristic of Ryan [103].

Performing such a greedy extension is the default method for separating
IIS-inequalities in the implementation of the branch-and-cut implementation.
For instance, it is used in all computational experiments of Section 5.3.

Method 3: We can extend this idea further. We fix α ∈ [0, 1] and initially
let S = S(α) := {i : x∗

i ≥ α}. Then we can proceed as in method (2).
At each step we either obtain an IIS-cover or an IIS which is not covered
by S(α). In contrast to the above case, these IISs are not necessarily new
and their corresponding inequalities may not be violated by x∗.

The motivation for this approach is based on the following observation:
It often happens that during the branch-and-cut process the fractional LP
solutions are “smeared” over a large number of variables, i.e., many variables
have about the same small nonzero value. In this case, method (2) is likely
to stop in the first iteration, since the set of fractional variables is so large
that it constitutes an IIS-cover. If α is large enough and x∗ is not an integer
solution, the set S(α) from above is not an IIS-cover. Consequently, some
IIS-inequalities are found – although they might not be violated.

5.2 Facet-defining Inequalities 115

As a side-effect, when performing these methods, we obtain a rather big list of
IISs at the end of the execution of the algorithm. Of course, we want to keep
this list as small as possible. The experiments of Section 5.3.3 indicate that
this is achieved by our branch-and-cut implementation and that there are far
too many IISs to be enumerated completely, cf. Table 5.4. Nevertheless, the
IISs that are found during the execution may provide additional information
about the instance, e.g., in the application of Min IIS Cover to linear
programming, see Section 1.1.2.

5.1.4 Primal Heuristics

Since the methods explained in the previous section generate (many) IIS-
covers, we implemented a primal heuristic that improves these IIS-covers
greedily. Let S be an IIS-cover to be improved. Initially set S ′ := S. To guide
the search for a good primal solution, we sort the elements of S ′ according to
increasing fractional value of the components of the current LP solution x∗.
We then remove each element in this order from S ′ and check if the result
is an IIS-cover, using Lemma 5.1. If S ′ is not an IIS-cover, we reinclude the
element otherwise we consider the next element. At the end of this process
we obtain a possibly smaller IIS-cover S ′.

To limit the amount of work spent for this heuristic, we apply it at the
end of every kth branch-and-bound node, where k is a user defined number.
In the computational experiments given below, k usually was set to 50. Ad-
ditionally, we apply it once we reach a level for the first time; this helps to
find better primal solutions at the beginning.

We could also apply any primal heuristic at the beginning of the whole
branch-and-cut process. We experimented with the solution of an elastic LP,
as explained in Section 1.1.3. Then one can take the set of slack variables
with non-zero support as the initial set S and then improve this solution as
above. Since the results of this approach are inferior to the results obtained
by improvement during the run of the branch-and-cut code, we decided not
to use it.

5.2 Facet-defining Inequalities

Many facet-defining inequalities for the set covering polytope PSC and the
independence system polytope PIS are known. See the overview chapter of
Ceria, Nobili, and Sassano [40] for a list of references about polyhedral re-
sults for PSC. As a special case we have the vertex cover polytope PVC or
stable set polytope PST belonging to a graph (compare Section 1.3.1). The

116 Branch-and-Cut for Min IIS Cover

understanding of the structure of these polytopes is (maybe not surprisingly)
better than that of PSC and PIS. Moreover, hardly any facet-defining inequal-
ities are known for PSC and PIS that can be separated in polynomial time;
this is in contrast to the situation for PVC and PST. To our knowledge, the
only special inequalities for PSC and PIS that can be (heuristically) separ-
ated in polynomial time are the conditional cuts of Balas [16] and Balas and
Ho [19], the aggregated cuts of Borndörfer [35], and the k-projection cuts of
Nobili and Sassano [91]. Additionally, we have cutting planes that are gener-
ally applicable like Gomory cuts (see, e.g., Schrijver [107] and Balas, Ceria,
Cornuéjols, and Natraj [18]) and lift-and-project cutting planes (see Balas,
Ceria, and Cornuéjols [17]).

Up to writing of this thesis, we could not find any problem specific cuts
for the Min IIS Cover problem. Therefore, we decided on the following
list of cutting planes to be used in the implementation of the branch-and-cut
algorithm:

◦ IIS-inequalities (separation methods (2) and (3) of Section 5.1.3)
◦ Special cuts of Balas and Ng, explained in Section 5.2.1
◦ Gomory cut (see Section 5.2.2)

We also experimented with the aggregated cuts of Borndörfer [35]. Unfor-
tunately, on our test problems this approach almost never found a violated
inequality, so we don’t use these cuts in the implementation and skip the
discussion of this very interesting approach.

Of course, the limited number of cutting planes that we use in the imple-
mentation raises the question of how well a branch-and-cut code can perform
beyond the computational results presented below, i.e., can additional cut-
ting planes be found that help to significantly improve the performance of
the branch-and-cut implementation. This question has to be left open for
future research.

5.2.1 Balas and Ng Cuts

A class of inequalities we use in the branch-and-cut algorithm are of the
form ay ≥ 2, where a ∈ {0, 1, 2}m. Balas and Ng [20] consider these inequal-
ities and characterize the cases when they define facets of the set covering
polytope.

In this section, let PSC(M) = {y ∈ �m : My ≥ �} be the set covering
polytope, where M = (mij) ∈ {0, 1}k×m. Assume ay ≥ β, with a ∈ �m

and β ∈ �, defines a facet of PSC(M). It is well known that if β > 0
then a ≥ 0, and if β = 1, then a is a row of M (see [20]).

5.2 Facet-defining Inequalities 117

If β = 2, Balas and Ng show that ay ≥ β can be obtained in the following
way. Let S ⊆ [k] and define aS as follows:

aS
j =

0 if mij = 0 for all i ∈ S,

2 if mij = 1 for all i ∈ S,

1 otherwise
for j = 1, . . . , m.

Hence, the result of Balas and Ng is: If ay ≥ 2 with a ∈ �m defines a facet
of PSC, there exists a set S ⊆ [k] such that a = aS. They also show that this
class of inequalities is in the elementary closure of PSC. Furthermore, they
discuss conditions on S, such that aSy ≥ 2 defines a facet of PSC.

The complexity status of the corresponding separation problem is un-
known, but it seems difficult to find a violated inequality of this type. In
fact, we tried to separate such cuts by randomly picking S and then greedily
trying to improve the violation of aSx∗ ≥ 2, where x∗ denotes the current
solution of the LP relaxation. This approach was almost always unsuccessful.
Therefore, in our implementation we enumerate sets S ⊆ [k] of cardinality
three and check if the inequalities aSy ≥ 2 are violated by the current LP
solution. Note that the sets S ⊆ [k] of cardinality two are uninteresting,
since in this case aSx ≥ 2 is just the sum of two IIS-inequalities and hence
is never violated if the IIS-inequalities are not violated.

To keep computation times of our approach small, we take the currently
active IIS-inequalities as the rows of the matrix M and consider a randomly
chosen subset of these as candidates for elements of S. The size of this subset
is user defined. For the results presented in Section 5.3, it is 200.

It turns out that this approach yields a successful method in practice.

5.2.2 Gomory Cuts

Gomory cutting planes are a general class of cutting planes that can be
separated in polynomial time and always yield a violated inequality (if the
solution is not integer), see, e.g., Nemhauser and Wolsey [90] and Schrij-
ver [107]. One can prove finite termination of a cutting plane algorithm that
uses Gomory cut, but they were rarely used since they were introduced by
Gomory in the 1950’s. The main reason is that the precision needed for
the coefficients of the generated inequalities can get large after a couple of
iterated applications of the cutting plane generation. Lately, Gomory cuts
regained interest, see, e.g., Balas, Ceria, Cornuéjols, and Natraj [18]. One
reason is that today’s LP solvers are much more robust; see [18] for a more
detailed analysis.

118 Branch-and-Cut for Min IIS Cover

In our context we have to introduce slack variables to obtain the following
equality-form of the set covering formulation, derived from (5.2):

My + s = �

y ∈ {0, 1}m

s ≤ 0, s ∈ �k,

where M ∈ �k×m is the constraint matrix of the current LP relaxation.
Hence, we assume that all cutting planes used here have integer coefficients.
We can then apply the Gomory procedure to this formulation which yields
a cutting plane, from which the slack variables have to be eliminated and
which has to be made integer.

As suggested in [18], in each round we generate a Gomory cut for every
fractional variable. Furthermore, as mentioned above, we store Gomory cuts
in a pool and try to separate from there. Since violated Gomory cuts for
a fractional solution can always be found, the user has to set limits on the
number of Gomory rounds that are performed in each node. In the compu-
tational tests presented below, 25 rounds were performed in the root node
and 15 in every other node. For higher values numerical problems occur, i.e.,
the basis matrix gets numerically almost singular.

5.3 Computational Experience

In the following sections we report on the results of the branch-and-cut im-
plementation of the branch-and-cut algorithm for different problem sets and
different combinations of the methods proposed above.

The branch-and-cut algorithm was implemented using the framework
ABACUS of Thienel [112]. We used ABACUS version 2.2 on a 200 MHz
Sun Ultra Sparc 2 machine running under Solaris 5.8 with 512 MByte mem-
ory. As an LP solver we used ILOG CPLEX version 6.6. All running times
are measured in seconds.

5.3.1 Numerical Issues

Before discussing the computational results, we give a disclaimer concerning
numerical errors occurring during the computation and the limited precision
of LP solvers. This has rarely been addressed in the literature so far.

At the beginning of solving a particular Min IIS Cover or Max FS in-
stance, we have to determine whether it is infeasible. At the end, a claimed
solution to Max FS has to be verified, i.e., tested for feasibility. Further-
more, most algorithms for Min IIS Cover/Max FS have to perform (many)

5.3 Computational Experience 119

Table 5.1: Abbreviations used in the Tables of Section 5.3.

n dimension of the space
m number of inequalities
sub number of subproblems solved
LP total number of LPs solved
D depth of the branch-and-cut tree
CPU CPU time for the whole optimization process in seconds
sep total CPU time for the separation process in seconds
IIS number of IISs found
Cbn number of Balas and Ng cuts found
Cgo number of Gomory cuts found
bnd lower bound obtained in the root node�

sol optimal objective value of the problem
s number of random instances successfully solved for each size
∗ Since the objective function value is integer, lower bounds are always rounded up.

tests for infeasibility before terminating. In almost all cases, an LP solver
working with fixed precision (e.g., doubles) is used to perform these tests.
Currently, using exact solvers is out of question because this would result in a
prohibitively slow code. Moreover, in some applications the user is restricted
to a specific LP solver; for instance, in the linear programming application
of Min IIS Cover, the user might want to know why his or her favorite LP
solver reports an infeasibility.

Hence, in most practical cases infeasibility is decided with a fixed limited
precision. The LP-solver CPLEX, for instance, only works with a preci-
sion of 10−5. In most cases this is sufficient for finding a (near) optimal
solution and most LP solvers are tuned to find such an solution very fast.
Usually, it doesn’t matter whether the cost of a solution is off the optimal
cost by 10−5. For testing feasibility, however, limited precision can lead to
completely wrong decisions. This can already happen if the system is mildly
ill conditioned. Even more, the decisions could differ when using the al-
ternative system to check feasibility or when testing a subsystem directly
(see Section 5.1.1). The decision could also be different if one uses different
starting bases for the dual simplex algorithm.

These are principal problems that cannot be avoided without making the
solution process very slow. The consequence is that one should not trust the
results of algorithms in this area too much, as one should not trust LP solvers
too much if they report infeasibility. On the other hand, some problems might
be solved (correctly) by tuning the numerical behavior of the LP solver.

120 Branch-and-Cut for Min IIS Cover

5.3.2 Results for the Netlib Problems

We turn to the first set of test instances for the branch-and-cut implemen-
tation for Min IIS Cover. In the Netlib library a well known set of infeas-
ible linear inequality systems are available (at “http://www.netlib.org”).
It provides a list of 29 infeasible problems. Additionally, there are three
more problems (gams10am, gams30am, gams60am), which are available at
“ftp://ftp.sztaki.hu/pub/oplab/LPTESTSET/INFEAS/”.

We removed problem gran from the test set, since it provides severe
numerical problems. It also could not be tackled by other known approaches,
i.e., the ones of Parker and Ryan [95] and Chinneck [48].

Table 5.2 gives results of the branch-and-cut algorithm for this test set.
For these problems it suffices to only separate IIS-inequalities by method (2)
of Section 5.1.3. Additionally the primal heuristic, explained in Section 5.1.4,
is run at every new level of the branch-and-bound tree. We used a breadth-
first search strategy for the tree. The abbreviations used in the tables are
explained in Table 5.1.

The results show that these problems are very easy to solve. In only two
cases the algorithm had to do a branching step. All other problems could
be solved in the root node. Interestingly, for both exceptional problems the
optimal lower bound could be obtained in the root node, i.e., these two prob-
lems could have been solved in the root node if an optimal primal solution
had been found earlier. Moreover, almost all problems could be solved within
a few seconds. The only exceptions are problem gosh, which was solved in 76
seconds, and problem greanbea, which needed 169 seconds to be solved; this
is due to the greater effort needed to solve the intermediate linear programs
during the algorithm. We furthermore observe that only very few IISs are
found/needed to solve the problems.

The explanation for this good overall performance seems to be the follow-
ing: For 23 problems only one inequality needs to be removed to make them
feasible, for four additional problems removing two inequalities suffice. The
highest number of inequalities that have to be removed were 12 for bgdbg1.
Thus, our branch-and-cut algorithm seems to perform well on problems that
have a small Min IIS Cover objective function.

Parker [94] and Parker and Ryan [95] report comparable results; their
approach is described in Section 5.1. Unfortunately, the only computational
results available for this approach are for the Netlib problems. Hence, a fair
comparison to our branch-and-cut implementation is not possible.

Finally, the heuristics of Chinneck [48] find the optimal solution for almost
all these problems in a very short time. For the problems in Section 5.3.4,
the performance of Chinneck’s heuristics is also very good.

5.3 Computational Experience 121

Table 5.2: Results of the branch-and-cut algorithm on the Netlib problems. The only
cutting planes used are IIS-inequalities, separated by method (2) of Section 5.1.3. Add-
itionally the primal heuristic is run. See Table 5.1 for an explanation of the abbreviations.

Name m n sub LP D CPU sep IIS bnd sol

bgdbg1 349 407 1 5 1 0 0 30 12 12
bgetam 401 688 1 2 1 1 0 8 1 1
bgindy 2672 10116 1 2 1 14 0 1 1 1
bgprtr 21 34 1 2 1 0 0 1 1 1
box1 232 261 1 2 1 0 0 3 1 1
ceria3d 3577 824 1 3 1 7 0 40 1 1
chemcom 289 720 1 2 1 0 0 1 1 1
cplex1 3006 3221 1 2 1 7 0 1 1 1
cplex2 225 221 1 18 1 10 0 20 1 1
ex72a 198 215 1 2 1 0 0 3 1 1
ex73a 194 211 1 2 1 0 0 4 1 1
forest6 67 95 1 2 1 0 0 2 1 1
galenet 9 8 1 2 1 0 0 1 1 1
gams10am 114 61 1 3 1 0 0 4 4 4
gams30am 354 181 1 3 1 0 0 5 5 5
gams60am 714 361 1 2 1 0 0 1 1 1
gosh 3793 10733 1 2 1 76 0 1 1 1
greenbea 2505 5405 3 5 2 169 51 27 2 2
itest2 10 4 1 3 1 0 0 4 2 2
itest6 12 8 1 3 1 0 0 4 2 2
klein1 55 54 1 2 1 0 0 1 1 1
klein2 478 54 1 3 1 1 0 27 1 1
klein3 995 88 1 4 1 21 0 107 1 1
mondou2 313 604 3 7 2 1 0 16 3 3
pang 362 460 1 2 1 0 0 1 1 1
pilot4i 411 1000 1 2 1 0 0 1 1 1
qual 324 464 1 2 1 1 0 8 1 1
reactor 319 637 1 2 1 0 0 2 1 1
refinery 324 464 1 6 1 6 0 36 1 1
vol1 324 464 1 4 1 2 0 11 1 1
woodinfe 36 89 1 2 1 0 0 2 2 2

122 Branch-and-Cut for Min IIS Cover

5.3.3 Results for Random Inequality Systems

As reported in the last section, the infeasible inequality systems in the Netlib
library are easily solved by our branch-and-cut implementation. Hence, these
problems are not helpful for testing the practical limits of the implementation.
In this section we report on the performance of our branch-and-cut imple-
mentation on random inequality systems. We generated random instances
for different combinations of the number of inequalities and the dimension
of the space. This collection turns out to provide a good test set for the
implementation.

We generated these random inequality systems as follows: Each coefficient
of an inequality was chosen to be an integer in the range −K to K, where K
was set to 100 in our tests. The other parameters that could be chosen were
the dimension of the space n, the number of inequalities m, and a seed value
for the pseudo-random number generator. After the inequality system was
generated, it was tested for infeasibility; of course, only infeasible problems
were accepted. If m was large enough compared to n (about twice as big),
almost every system was infeasible.

The hyperplanes defined by these inequalities are in general position with
high probability. It follows that the corresponding alternative polyhedra are
simple/nondegenerate (with high probability). This leads to the question,
whether Min IIS Cover restricted to such systems is NP-hard. This ques-
tion seems to be open, see Section 2.3.2. Nevertheless, if m and n are large
enough, solving random inequality systems is hard for our branch-and-cut
implementation.

Below we report on results on such random problems. We altogether
consider 25 combinations of values for n and m, see, e.g., Table 5.5. For each
combination three problems were generated. The dimension of the space n
was chosen to be 5, 10, 15, and 20. The number of inequalities m varied
between 10 and 80 and depends on n, because m has to be large enough for
the random systems to be infeasible. Furthermore, m was chosen such that
at least one problem of each size could be solved.

Each value in the tables below is the average over the three problems of
each size. This should be a fair choice between providing a good estimate
of the average performance and reasonable running times. Nevertheless, the
values given can only provide a rough trend. We will discuss this issue below
in more detail.

We turn to a more thorough discussion of the results of the branch-and-
cut algorithm. Tables 5.5 to 5.14 provide results of different strategies for
the separation of cuts, which are explained in Section 5.1 and 5.2. Table 5.3

5.3 Computational Experience 123

Table 5.3: Overview of the separation methods used in Tables 5.5 to Table 5.14. In
column “ph” we indicate whether the primal heuristic is used, see Section 5.1.4. For IIS-
inequalities we refer to Section 5.1.3, for Balas and Ng cuts we refer to Section 5.2.1, and
for Gomory cuts we refer to Section 5.2.2.

Table ph Separation Methods

5.5 n IIS-inequalities (method (2))
5.6 y IIS-inequalities (method (2))
5.9 y IIS-inequalities (methods (2) and (3))
5.11 y Balas and Ng cuts
5.12 y Gomory cuts (25 in root node, 15 in other nodes)
5.13 y IIS-inequalities (methods (2) and (3)) and Balas and Ng cuts
5.14 y IIS-inequalities (methods (2) and (3)), Balas and Ng cuts,

and Gomory cuts (25 root, 15 other)

gives an overview. The abbreviations used in the tables are summarized
in Table 5.1. At the bottom of most tables the sums over the columns are
given. Here, the last row gives sums of columns over the rows that are marked
with “�”. The corresponding problems are chosen such that almost all variants
of the branch-and-cut implementation terminated with the optimal value for
all three problems of this size. Hence, the last row can be used for a fair
comparison between the variants. These values are also plotted in Figure 5.1
on page 138.

The column indicated by s (if present) gives the number of the three prob-
lems of each size that could be solved to optimality, given a time constraint
of 12 hours and a limit of the available main memory of 512 MByte. We
always used depth first search in the tree to save memory space. The partial
results of problems that could not be solved to optimality are not included
in the tables, except in Table 5.7. If s = 0, we leave the remaining columns
empty.

Moreover, due to a memory leakage in either ABACUS or CPLEX, the
most severe constraint was the memory size. After roughly 4000 nodes of the
branch-and-cut tree the memory was exhausted. The time when this occurs
depends on the particular problem. We think that the tables nonetheless
provide a good overview of the performance of the implementation.

We now give an analysis of the results.

Primal Heuristic. Tables 5.5 and 5.6 give results of the “plain” algorithm,
i.e., using only the IIS-inequality separation method (2) of Section 5.1.3.
The latter table additionally uses the heuristic, explained in Section 5.1.4, to
find primal solutions; it is applied every 50 nodes of the branch-and-bound

124 Branch-and-Cut for Min IIS Cover

tree. The performance of this primal heuristic is examined in Table 5.7,
where the results of the former two tables are compared. This comparison
clearly shows the advantages of using the primal heuristic. The number of
subproblems and LPs needed to solve the problems is much smaller with
the primal heuristic. The same is true for the running times.1 We conclude
that the additional time needed to use the heuristic is well invested. For the
larger problems (with longer computation times) the primal heuristic finds a
relatively good solution in the root node. Moreover, in most cases the optimal
solution is found very early during the optimization process. This seems to
be an indication that if one would stop the branch-and-cut algorithm before
termination, one can hope for a very good primal solution; compare also the
results in Section 5.3.4. Because of these results, we used the primal heuristic
in all of the following tables.
Basic Observations. Several not surprising observations can be made
about the results of Table 5.6. Clearly, the larger the dimension of the space,
the more time is needed to solve the LPs during the algorithm. Hence,
the total CPU-time needed to solve problems for different dimensions of the
space, with the same number of inequalities, increases with growing n. On
the other hand, we observe that the average size of an optimal solution of
those problems that could be solved to optimality decreases with growing
n. This seems to strengthen the conclusion that problems are tractable for
the branch-and-cut implementation if the objective value is small. We also
observe that the number of IISs found by the implementation clearly grows
with m, but the trend for increasing n is unclear.
Number of IISs. In Table 5.4 we list the number of IISs for several small
random inequality problems. This table was computed as follows: First the
alternative polyhedron P was constructed using the polymake framework of
Gawrilow and Joswig [63, 64]. The vertices of the (simple) polyhedron P
were enumerated by lrs [11, 12], Avis’s implementation of the reverse search
method of Avis and Fukuda [14]; we refer to Section 2.2 for an explanation
of the connection between vertices of the alternative polyhedron and IISs.
The number of IISs for larger problems with n = 5 and n = 10 could not be
computed since 1 GB of memory did not suffice.2

In Table 5.4, for each combination of n and m given, we took the first
1Using the primal heuristic one additional problem of the ones marked with “�” could

be solved; it has size n = 5 and m = 60. This is the reason for the total sums in the last
row of Table 5.6 being larger than the corresponding total sums in Table 5.5. If the sums
are corrected accordingly, the values are in favor for using the primal heuristic.

2Dyer [53] proved that the following problem is NP-hard, even when restricted to
simple polyhedra: Given a polyhedron P and a number k, does P have at least k vertices?
We also refer to Problem 7 of [77].

5.3 Computational Experience 125

Table 5.4: The number of IISs for a couple of small random inequality systems.

n m IISs

5 10 16
5 20 1733
5 30 56036
5 40 400015

10 20 314
10 30 47538

of the three problems of this size. Hence, the numbers of IISs given in this
table can be compared to the number of IISs found during the branch-and-cut
algorithm in Table 5.8, where the results for the complete list of problems is
given; also see the next topic. We conclude that only a very small fraction of
the total number of IISs are actually needed or found by the branch-and-cut
implementation.
Variance. Table 5.8 lists results of the implementation using separation
methods (2) and (3) of Section 5.1.3 for the complete set of all 75 problems.
The mean values of these data are given in Table 5.9, and the corresponding
standard deviations are provided in Table 5.10. We observe that the standard
deviation gets larger with growing n and m. The large variance is mainly
due to problems that are much easier to solve than the other two problems of
the same size, compare, e.g., the results in Table 5.8 for n = 15 and m = 50
or m = 60. Furthermore, we can suspect that for problems of larger size
we actually could only solve the easier problems, while the harder problems
could not be solved within the memory and time constraints as they were
given for our tests. We conclude that the mean values that are given in
the tables provide only a rough estimate of the “real values”. Nevertheless,
the data seems to be significant enough to evaluate the performance of our
branch-and-cut implementation.
Performance of the Cuts. We now compare six different combinations
of the cutting plane generation strategies we mentioned in the beginning of
Section 5.2. See Table 5.3 for an overview. To estimate the performance of
these variants, we compare their results to the data given in Table 5.6, which
provides results of a “plain method”. This table gives the results for the
most simple strategy: Only IIS-inequalities are separated with method (2) of
Section 5.1.3, and we use the primal heuristic as explained in Section 5.1.4.
Method (2) is used in all of the variants discussed below.

126 Branch-and-Cut for Min IIS Cover

Figure 5.1 shows a comparison of the total sums of important values given
in the tables for these six variants; only the problems marked with “�” are
considered.

◦ We first observe that applying method (3) of Section 5.1.3 for separating
IIS-inequalities consistently reduces the number of subproblems and LPs
needed when compared to the “plain method”, but in general increases the
CPU-time, cf. Table 5.9. The number of found IISs drastically increase.
Moreover, one additional problem could be solved.

◦ Applying the cuts of Balas and Ng, as explained in Section 5.2.1, in
total decreases the number of subproblems needed compared to the “plain
method”. But it also sometimes increases them, cf. Table 5.11. The
number of needed LPs on average roughly stays the same. The CPU-
time is consistently higher than for the plain version.

◦ When Gomory cuts are used, in total the number of subproblems de-
creases, but the number of LPs increases, cf. Table 5.12. Moreover, the
total CPU-time increases extremely. Furthermore, because of memory
constraints, this variant could solve three problems less, compared to the
“plain method”.

◦ When combining method (3) for separating IIS-inequalities and the cuts
of Balas and Ng, the numbers of subproblems and LPs once more de-
crease when compared to the results when only one of the methods was
used. The CPU-time increases compared to using only one method, see
Table 5.13. Some of the larger problems could not be solved within 12
hours.

◦ If we combine all three methods, i.e., method (3) for separating IIS-
inequalities, the cuts of Balas and Ng, and Gomory cuts, the total number
of subproblems are in general the lowest of all. The number of LPs is only
higher for the version using Gomory cuts only. The CPU-time needed is
the highest of all, see Table 5.14. For all problems for which no optimal
solution could be obtained, the implementation terminated because of the
12 hour CPU time constraint.

Interestingly, using different and more additional cuts does not imply that
more of the larger problems could be solved. This may be due to the imposed
memory and time constraints.

5.3 Computational Experience 127

Table 5.5: Results of the branch-and-cut algorithm on random inequality systems. Given
are mean values over the three problems for each size. See Table 5.1 for an explanation
of the abbreviations. The last two rows give sums over the columns, where the last row
gives sums over the rows marked with “�”.
The only cutting planes used are IIS-inequalities, separated by method (2) of Section 5.1.3.
No primal heuristic is used.

n m sub LP D CPU sep IIS bnd sol s

5 10 1.0 2.3 1.0 0.0 0.0 2.3 1.0 1.0 3 �

5 20 1.0 4.7 1.0 0.1 0.0 13.3 2.7 2.7 3 �

5 30 23.0 84.0 5.7 0.5 0.1 88.0 4.3 5.7 3 �

5 40 109.7 418.0 10.7 3.8 1.6 180.7 5.3 7.7 3 �

5 50 587.0 2586.0 14.3 45.7 26.0 384.7 7.0 11.0 3 �

5 60 311.0 1302.5 16.0 19.4 9.4 382.5 7.5 12.5 2 �

5 70 1331.0 6053.0 18.5 161.4 99.0 675.0 9.5 16.0 2
5 80 0

10 20 1.0 2.3 1.0 0.1 0.0 3.0 1.0 1.0 3 �

10 30 5.0 17.3 2.7 0.1 0.0 23.0 2.0 2.7 3 �

10 40 82.3 279.0 8.0 2.2 0.9 136.0 3.0 4.0 3 �

10 50 593.0 2313.7 14.7 40.2 21.6 402.7 4.0 7.0 3 �

10 60 721.0 2924.0 18.0 54.1 26.0 495.0 5.0 9.0 1
10 70 0

15 30 1.0 3.3 1.0 0.0 0.0 4.3 1.0 1.0 3 �

15 40 7.7 24.3 3.7 0.3 0.0 28.7 1.7 2.0 3 �

15 50 107.7 340.3 10.0 3.6 1.5 150.0 2.7 3.7 3 �

15 60 1184.3 4202.7 14.7 90.7 54.4 540.3 2.7 5.3 3 �

15 70 1.0 8.0 1.0 0.3 0.1 57.0 3.0 3.0 1
15 80 765.0 2617.0 18.0 54.2 31.3 683.0 3.0 7.0 1

20 40 1.0 4.0 1.0 0.1 0.0 9.0 1.0 1.0 3 �

20 50 95.7 292.7 7.3 3.6 1.5 98.0 2.0 2.7 3 �

20 60 89.0 249.3 15.0 3.3 1.5 126.3 2.0 4.0 3 �

20 70 1513.7 5253.0 21.0 154.2 101.2 693.3 3.0 5.3 3
20 80 1187.0 3869.0 22.0 87.6 51.8 617.0 3.0 6.0 1∑ 8719.1 32850.4 226.3 725.5 427.9 5793.1 77.4 121.3 59

3200.4 12126.4 127.8 213.7 118.5 2572.8 50.9 75.0 50 �

128 Branch-and-Cut for Min IIS Cover

Table 5.6: Results for the situation as in Table 5.5, except that the primal heuristic is
called every 50 nodes of the branch-and-cut tree.

n m sub LP D CPU sep IIS bnd sol s

5 10 1.0 2.3 1.0 0.0 0.0 2.3 1.0 1.0 3 �

5 20 1.0 4.7 1.0 0.0 0.0 13.3 2.7 2.7 3 �

5 30 15.7 58.0 4.7 0.4 0.1 74.7 4.3 5.7 3 �

5 40 87.0 329.7 7.0 2.8 1.2 175.3 5.3 7.7 3 �

5 50 519.7 2324.3 12.0 44.1 25.4 360.0 7.0 11.0 3 �

5 60 902.3 4332.3 14.3 115.8 70.2 484.0 8.0 13.7 3 �

5 70 1146.0 5296.0 18.5 139.2 83.0 642.0 9.5 16.0 2
5 80 2081.0 10168.0 20.0 370.5 220.9 857.0 12.0 20.0 1

10 20 1.0 2.3 1.0 0.0 0.0 3.0 1.0 1.0 3 �

10 30 4.3 16.7 2.7 0.1 0.0 22.0 2.0 2.7 3 �

10 40 65.0 201.7 7.7 1.6 0.7 115.0 3.0 4.0 3 �

10 50 263.7 1030.7 12.3 15.9 7.5 301.3 4.0 7.0 3 �

10 60 661.0 2729.0 19.0 55.5 27.0 534.0 5.0 9.0 1
10 70 1931.0 8822.0 17.0 290.1 164.8 868.0 6.0 11.0 1

15 30 1.0 3.3 1.0 0.1 0.0 4.3 1.0 1.0 3 �

15 40 5.0 16.0 3.0 0.2 0.0 24.0 1.7 2.0 3 �

15 50 90.3 289.3 10.0 3.2 1.5 143.0 2.7 3.7 3 �

15 60 897.0 3152.3 15.3 63.0 36.2 451.7 2.7 5.3 3 �

15 70 1.0 8.0 1.0 0.3 0.1 57.0 3.0 3.0 1
15 80 461.0 1662.0 15.0 34.6 19.6 558.0 3.0 7.0 1

20 40 1.0 4.0 1.0 0.1 0.0 9.0 1.0 1.0 3 �

20 50 94.3 262.3 7.7 3.4 1.6 85.0 2.0 2.7 3 �

20 60 82.3 235.0 15.7 3.6 1.9 124.3 2.0 4.0 3 �

20 70 735.0 2451.3 20.7 55.0 31.3 454.3 3.0 5.3 3
20 80 695.0 2336.0 24.0 57.4 32.1 520.0 3.0 6.0 1∑ 10742.6 45737.2 252.6 1256.9 725.1 6882.5 95.9 153.5 62

3031.6 12264.9 117.4 254.3 146.3 2392.2 51.4 76.2 51 �

5.3 Computational Experience 129

Table 5.7: In this table the performance of the primal heuristic for random inequality
systems is investigated. The left part of the table shows data similar to Table 5.5, where
no primal heuristic is used. The right part displays the data as in Table 5.6, i.e., the primal
heuristic is called every 50 nodes in the branch-and-bound tree. In both cases method (2)
for separating IIS-inequalities was used. The values in the column labeled “root” show
the objective function value of the best primal solution found in the root node, “best” the
objective function value of the best primal solution found in the whole optimization process
(not all problems could be solved optimally), “bestsub” gives the number of the subproblem
where the best solution was found, “sub” gives the total number of subproblems, and the
column labeled “%” gives the fraction in percent of subproblems solved until the best
solution was found. Again all values are means over the three problems of each size. In
this table also problems that could not be solved to optimality are counted.

no primal heuristic with primal heuristic
n m root best bestsub sub % root best bestsub sub %

5 10 1.0 1.0 1.0 1.0 100.0 1.0 1.0 1.0 1.0 100.0
5 20 2.7 2.7 1.0 1.0 100.0 2.7 2.7 1.0 1.0 100.0
5 30 11.0 5.7 21.0 23.0 91.3 7.0 5.7 13.7 15.7 87.2
5 40 13.0 7.7 102.0 109.7 93.0 8.7 7.7 83.7 87.0 96.2
5 50 19.3 11.0 388.0 587.0 66.1 13.0 11.0 278.3 519.7 53.6
5 60 26.7 13.7 1168.0 1308.7 89.3 17.7 13.7 671.7 902.3 74.4
5 70 30.3 18.0 1333.3 1905.0 70.0 23.0 17.7 440.3 1745.7 25.2
5 80 36.3 23.7 1648.0 2959.7 55.7 26.0 21.7 116.0 2590.0 4.5

10 20 1.0 1.0 1.0 1.0 100.0 1.0 1.0 1.0 1.0 100.0
10 30 3.0 2.7 1.7 5.0 33.3 2.7 2.7 1.0 4.3 23.1
10 40 8.0 4.0 79.3 82.3 96.4 4.7 4.0 58.3 65.0 89.7
10 50 15.3 7.0 477.3 593.0 80.5 9.3 7.0 45.3 263.7 17.2
10 60 24.7 12.3 759.0 2759.3 27.5 15.7 11.0 1018.0 2533.7 40.2
10 70 28.3 15.0 315.3 3293.0 9.6 18.0 13.7 9.7 2696.3 0.4
10 80 40.0 22.3 2761.0 3391.3 81.4 26.3 18.7 194.3 2893.0 6.7

15 30 1.0 1.0 1.0 1.0 100.0 1.0 1.0 1.0 1.0 100.0
15 40 3.0 2.0 2.7 7.7 34.8 2.0 2.0 1.0 5.0 20.0
15 50 6.0 3.7 44.0 107.7 40.9 5.0 3.7 34.3 90.3 38.0
15 60 10.7 5.3 351.7 1184.3 29.7 7.7 5.3 10.3 897.0 1.2
15 70 15.7 7.7 1078.3 2504.7 43.1 9.7 7.7 288.7 2365.0 12.2
15 80 23.7 12.7 1888.3 2771.7 68.1 16.3 11.3 8.0 2364.7 0.3

20 40 1.0 1.0 1.0 1.0 100.0 1.0 1.0 1.0 1.0 100.0
20 50 4.3 2.7 70.3 95.7 73.5 3.3 2.7 62.0 94.3 65.7
20 60 8.0 4.0 4.7 89.0 5.2 4.7 4.0 1.3 82.3 1.6
20 70 11.7 5.3 1101.7 1513.7 72.8 7.0 5.3 50.3 735.0 6.8
20 80 20.0 8.0 633.7 2730.3 23.2 11.3 7.7 31.7 2524.7 1.3

130 Branch-and-Cut for Min IIS Cover

Table 5.8: Results of the branch-and-cut algorithm on random inequality systems. Here,
methods (2) and (3) of Section 5.1.3 are used to separate IIS-inequalities. Additionally,
the primal heuristic is run every 50 nodes. We give the complete results on all 75 problems
considered.

n m sub LP D CPU sep IIS bnd sol
5 10 1 3 1 0.03 0.00 4 1 1
5 10 1 2 1 0.02 0.00 2 1 1
5 10 1 2 1 0.05 0.00 1 1 1
5 20 1 5 1 0.03 0.00 14 3 3
5 20 1 3 1 0.04 0.00 9 2 2
5 20 1 6 1 0.07 0.00 17 3 3
5 30 17 57 7 0.40 0.17 94 5 6
5 30 3 12 2 0.12 0.01 56 4 5
5 30 29 92 7 0.68 0.35 97 5 6
5 40 19 78 6 0.77 0.41 130 7 8
5 40 5 21 3 0.22 0.08 59 5 6
5 40 69 334 10 3.72 1.76 264 6 9
5 50 55 308 10 4.80 2.29 340 8 11
5 50 19 92 5 0.89 0.40 112 6 8
5 50 511 2893 13 66.74 40.62 755 8 14
5 60 305 1663 13 40.92 23.66 579 9 13
5 60 113 537 12 9.17 4.74 389 9 12
5 60 537 3411 14 112.29 68.67 938 10 16
5 70 875 4674 14 160.01 99.97 863 11 17
5 70 425 2365 11 65.58 37.36 663 10 15
5 70 0 0 0 0.00 0.00 0 0 0
5 80 903 5643 16 285.43 185.95 1217 13 20
5 80 1373 8359 18 462.18 320.40 1356 12 20
5 80 0 0 0 0.00 0.00 0 0 0

10 20 1 2 1 0.02 0.00 2 1 1
10 20 1 2 1 0.05 0.00 4 1 1
10 20 1 3 1 0.04 0.00 3 1 1
10 30 1 4 1 0.08 0.00 8 2 2
10 30 7 26 4 0.24 0.10 37 2 3
10 30 5 20 3 0.18 0.07 25 2 3
10 40 5 24 3 0.33 0.16 52 3 4
10 40 139 533 14 6.25 3.66 358 4 5
10 40 9 27 5 0.30 0.16 40 3 3
10 50 299 1665 16 71.72 54.20 1974 5 7
10 50 219 1871 13 201.55 167.79 5095 5 8
10 50 23 175 7 4.25 2.73 481 4 6
10 60 0 0 0 0.00 0.00 0 0 0

5.3 Computational Experience 131

Table 5.8: continued. Results on all 75 problems.

n m sub LP D CPU sep IIS bnd sol
10 60 0 0 0 0.00 0.00 0 0 0
10 60 235 2127 13 282.81 238.17 6186 6 9
10 70 0 0 0 0.00 0.00 0 0 0
10 70 0 0 0 0.00 0.00 0 0 0
10 70 925 8775 15 4274.72 3976.56 21321 6 11

15 30 1 2 1 0.05 0.00 3 1 1
15 30 1 6 1 0.09 0.00 9 1 1
15 30 1 2 1 0.06 0.00 1 1 1
15 40 13 37 7 0.51 0.28 44 2 3
15 40 3 4 2 0.12 0.01 11 2 2
15 40 1 5 1 0.10 0.00 10 1 1
15 50 123 734 14 36.06 29.59 2095 3 5
15 50 1 5 1 0.10 0.00 13 2 2
15 50 23 179 9 5.41 4.27 505 3 4
15 60 607 3929 17 627.67 559.06 9163 4 7
15 60 3 5 2 0.22 0.01 33 2 2
15 60 575 3864 16 593.03 523.99 8427 4 7
15 70 0 0 0 0.00 0.00 0 0 0
15 70 3 15 2 0.63 0.31 91 3 3
15 70 0 0 0 0.00 0.00 0 0 0
15 80 0 0 0 0.00 0.00 0 0 0
15 80 353 2094 15 174.49 146.99 3907 4 7
15 80 0 0 0 0.00 0.00 0 0 0

20 40 1 5 1 0.11 0.00 11 1 1
20 40 1 4 1 0.15 0.00 11 1 1
20 40 1 3 1 0.07 0.00 5 1 1
20 50 49 364 16 23.57 20.17 1615 3 4
20 50 1 6 1 0.17 0.00 14 2 2
20 50 5 23 3 0.46 0.17 34 2 2
20 60 21 203 11 16.75 14.48 1143 3 4
20 60 23 247 11 23.59 20.83 1433 3 4
20 60 31 194 12 8.19 6.75 497 2 4
20 70 447 3336 18 997.15 926.65 14848 3 6
20 70 129 882 15 87.78 76.94 2941 3 4
20 70 1149 6801 24 1705.46 1575.93 16962 3 6
20 80 0 0 0 0.00 0.00 0 0 0
20 80 647 4335 23 1365.63 1270.37 15830 3 6
20 80 0 0 0 0.00 0.00 0 0 0

132 Branch-and-Cut for Min IIS Cover

Table 5.9: Results of the branch-and-cut algorithm on random inequality systems. Given
are mean values of the data in Table 5.8.
The two separation methods (2) and (3) of Section 5.1.3 are used to separate IIS-
inequalities. Additionally, the primal heuristic is run every 50 nodes.

n m sub LP D CPU sep IIS bnd sol s

5 10 1.0 2.3 1.0 0.0 0.0 2.3 1.0 1.0 3 �

5 20 1.0 4.7 1.0 0.0 0.0 13.3 2.7 2.7 3 �

5 30 16.3 53.7 5.3 0.4 0.2 82.3 4.7 5.7 3 �

5 40 31.0 144.3 6.3 1.6 0.8 151.0 6.0 7.7 3 �

5 50 195.0 1097.7 9.3 24.1 14.4 402.3 7.3 11.0 3 �

5 60 318.3 1870.3 13.0 54.1 32.4 635.3 9.3 13.7 3 �

5 70 650.0 3519.5 12.5 112.8 68.7 763.0 10.5 16.0 2
5 80 1138.0 7001.0 17.0 373.8 253.2 1286.5 12.5 20.0 2

10 20 1.0 2.3 1.0 0.0 0.0 3.0 1.0 1.0 3 �

10 30 4.3 16.7 2.7 0.2 0.1 23.3 2.0 2.7 3 �

10 40 51.0 194.7 7.3 2.3 1.3 150.0 3.3 4.0 3 �

10 50 180.3 1237.0 12.0 92.5 74.9 2516.7 4.7 7.0 3 �

10 60 235.0 2127.0 13.0 282.8 238.2 6186.0 6.0 9.0 1
10 70 925.0 8775.0 15.0 4274.7 3976.6 21321.0 6.0 11.0 1

15 30 1.0 3.3 1.0 0.1 0.0 4.3 1.0 1.0 3 �

15 40 5.7 15.3 3.3 0.2 0.1 21.7 1.7 2.0 3 �

15 50 49.0 306.0 8.0 13.9 11.3 871.0 2.7 3.7 3 �

15 60 395.0 2599.3 11.7 407.0 361.0 5874.3 3.3 5.3 3 �

15 70 3.0 15.0 2.0 0.6 0.3 91.0 3.0 3.0 1
15 80 353.0 2094.0 15.0 174.5 147.0 3907.0 4.0 7.0 1

20 40 1.0 4.0 1.0 0.1 0.0 9.0 1.0 1.0 3 �

20 50 18.3 131.0 6.7 8.1 6.8 554.3 2.3 2.7 3 �

20 60 25.0 214.7 11.3 16.2 14.0 1024.3 2.7 4.0 3 �

20 70 575.0 3673.0 19.0 930.1 859.8 11583.7 3.0 5.3 3
20 80 647.0 4335.0 23.0 1365.6 1270.4 15830.0 3.0 6.0 1∑ 5820.2 39436.8 218.4 8135.7 7331.5 73306.6 104.7 153.5 63

1294.2 7897.3 101.9 620.8 517.3 12338.4 56.7 76.2 51 �

5.3 Computational Experience 133

Table 5.10: Results of the branch-and-cut algorithm on random inequality systems. Given
are standard deviations for the data in Table 5.8. The corresponding mean values are
presented in Table 5.9.

n m sub LP D CPU sep IIS bnd sol s

5 10 0.0 0.5 0.0 0.0 0.0 1.2 0.0 0.0 3 �

5 20 0.0 1.2 0.0 0.0 0.0 3.3 0.5 0.5 3 �

5 30 10.6 32.7 2.4 0.2 0.1 18.7 0.5 0.5 3 �

5 40 27.5 136.1 2.9 1.5 0.7 85.0 0.8 1.2 3 �

5 50 223.9 1272.6 3.3 30.2 18.5 266.2 0.9 2.4 3 �

5 60 173.4 1182.4 0.8 43.1 26.8 227.6 0.5 1.7 3
5 70 225.0 1154.5 1.5 47.2 31.3 100.0 0.5 1.0 2
5 80 235.0 1358.0 1.0 88.4 67.2 69.5 0.5 0.0 2

10 20 0.0 0.5 0.0 0.0 0.0 0.8 0.0 0.0 3 �

10 30 2.5 9.3 1.2 0.1 0.0 11.9 0.0 0.5 3 �

10 40 62.2 239.2 4.8 2.8 1.6 147.2 0.5 0.8 3 �

10 50 115.9 755.6 3.7 81.9 69.0 1922.3 0.5 0.8 3 �

10 60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
10 70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1

15 30 0.0 1.9 0.0 0.0 0.0 3.4 0.0 0.0 3 �

15 40 5.2 15.3 2.6 0.2 0.1 15.8 0.5 0.8 3 �

15 50 53.1 310.9 5.4 15.8 13.1 888.5 0.5 1.2 3 �

15 60 277.5 1834.7 6.8 288.0 255.7 4141.4 0.9 2.4 3 �

15 70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
15 80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1

20 40 0.0 0.8 0.0 0.0 0.0 2.8 0.0 0.0 3 �

20 50 21.7 164.9 6.6 11.0 9.5 750.0 0.5 0.9 3 �

20 60 4.3 23.2 0.5 6.3 5.8 391.2 0.5 0.0 3 �

20 70 426.1 2428.1 3.7 662.1 613.8 6171.9 0.0 0.9 3
20 80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1

134 Branch-and-Cut for Min IIS Cover

Table 5.11: Results of the branch-and-cut algorithm on random inequality systems. Given
are mean values for the three problems of each size.
The cuts of Balas and Ng, described in Section 5.2.1, are used. Additionally, the primal
heuristic is run every 50 nodes.

n m sub LP D CPU sep IIS Cbn bnd sol s

5 10 1.0 2.3 1.0 0.0 0.0 2.3 0.0 1.0 1.0 3 �

5 20 1.0 4.7 1.0 0.1 0.0 13.3 1.0 2.7 2.7 3 �

5 30 13.0 56.3 4.3 0.6 0.3 71.0 87.7 4.7 5.7 3 �

5 40 51.0 251.3 7.0 4.4 2.9 136.3 222.0 5.7 7.7 3 �

5 50 422.3 2325.0 10.7 130.2 107.2 312.7 776.0 7.0 11.0 3 �

5 60 464.3 2558.3 13.7 174.0 144.6 387.3 1040.3 8.7 13.7 3 �

5 70 810.0 4392.5 15.5 355.1 298.3 537.5 1813.0 9.5 16.0 2
5 80 2445.0 14408.0 18.0 1829.8 1594.4 853.0 993.0 12.0 20.0 1

10 20 1.0 2.3 1.0 0.1 0.0 3.0 0.0 1.0 1.0 3 �

10 30 3.7 17.0 2.3 0.1 0.0 21.7 38.7 2.0 2.7 3 �

10 40 31.7 161.3 5.7 2.4 1.3 81.7 483.3 3.0 4.0 3 �

10 50 384.3 2506.3 11.7 189.3 156.6 319.7 930.0 4.3 7.0 3 �

10 60 539.0 3365.0 15.0 296.0 241.1 501.0 2024.0 5.0 9.0 1
10 70 2115.0 13612.0 18.0 2123.7 1862.2 823.0 1764.0 6.0 11.0 1

15 30 1.0 3.3 1.0 0.1 0.0 4.3 0.0 1.0 1.0 3 �

15 40 4.3 16.7 2.7 0.2 0.0 21.3 73.7 1.7 2.0 3 �

15 50 59.7 324.7 8.3 8.9 5.3 118.7 631.0 2.7 3.7 3 �

15 60 651.7 4111.3 13.3 354.4 287.7 452.7 1030.7 3.0 5.3 3 �

15 70 3.0 24.0 2.0 0.8 0.3 63.0 456.0 3.0 3.0 1
15 80 397.0 2429.0 16.0 189.7 151.4 525.0 1364.0 3.0 7.0 1

20 40 1.0 4.0 1.0 0.1 0.0 9.0 0.0 1.0 1.0 3 �

20 50 23.0 117.7 6.3 3.4 1.8 76.3 383.3 2.0 2.7 3 �

20 60 32.3 213.7 13.0 6.1 3.3 122.3 1317.3 2.7 4.0 3 �

20 70 1149.7 6905.3 17.7 637.0 506.9 659.0 1013.3 3.0 5.3 3
20 80 555.0 3282.0 19.0 227.8 163.8 514.0 460.0 3.0 6.0 1∑ 10160.0 61094.0 225.2 6534.3 5529.4 6629.1 16902.3 98.7 153.5 62

2146.3 12676.2 104.0 874.4 711.0 2153.6 7015.0 54.2 76.2 51 �

5.3 Computational Experience 135

Table 5.12: Results of the branch-and-cut algorithm on random inequality systems. Given
are mean values for the three problems of each size.
Here we separate at most 25 Gomory cuts in the root node and at most 15 Gomory cuts
are separated in the other nodes. As usual, the primal heuristic is run every 50 nodes.

n m sub LP D CPU sep IIS Cgo bnd sol s

5 10 1.0 2.3 1.0 0.0 0.0 2.3 0.0 1.0 1.0 3 �

5 20 1.0 4.7 1.0 0.0 0.0 13.3 0.3 2.7 2.7 3 �

5 30 7.7 153.7 3.0 8.0 6.9 70.7 93.0 5.0 5.7 3 �

5 40 23.7 683.3 5.7 50.2 43.5 146.7 234.7 5.7 7.7 3 �

5 50 169.7 6506.3 8.7 784.2 692.7 332.0 330.0 7.7 11.0 3 �

5 60 232.3 9005.3 11.0 1696.1 1532.8 414.7 321.0 9.0 13.7 3 �

5 70 293.0 10869.0 12.0 2619.3 2397.6 535.5 125.0 10.0 16.0 2
5 80 0

10 20 1.0 2.3 1.0 0.1 0.0 3.0 0.0 1.0 1.0 3 �

10 30 3.0 46.3 2.0 1.9 1.5 23.7 157.3 2.3 2.7 3 �

10 40 18.3 415.0 4.3 30.9 26.7 89.0 172.7 3.3 4.0 3 �

10 50 339.7 11519.0 10.7 1252.4 1090.2 459.3 263.7 4.7 7.0 3 �

10 60 359.0 12582.0 17.0 2051.4 1827.5 587.0 173.0 5.0 9.0 1
10 70 0

15 30 1.0 3.3 1.0 0.1 0.0 4.3 0.0 1.0 1.0 3 �

15 40 2.3 35.3 1.7 1.2 0.9 24.0 144.0 1.7 2.0 3 �

15 50 99.7 2643.3 8.7 306.4 265.3 218.0 288.7 2.7 3.7 3 �

15 60 393.7 11935.3 11.7 1674.1 1481.5 507.3 188.0 3.3 5.3 3 �

15 70 3.0 64.0 2.0 10.4 9.0 67.0 483.0 3.0 3.0 1
15 80 249.0 6608.0 13.0 1280.2 1153.6 571.0 182.0 4.0 7.0 1

20 40 1.0 4.0 1.0 0.1 0.0 9.0 0.0 1.0 1.0 3 �

20 50 25.0 535.7 6.7 67.5 58.9 86.0 151.3 2.0 2.7 3 �

20 60 35.0 853.3 12.0 144.5 126.6 144.7 532.3 2.3 4.0 3 �

20 70 402.0 12271.5 16.5 2219.2 1948.7 553.0 605.5 3.0 5.0 2
20 80 299.0 8451.0 17.0 1453.0 1306.0 570.0 252.0 3.0 6.0 1∑ 2960.1 95193.9 168.7 15651.2 13969.9 5431.5 4697.5 84.4 122.2 59

1355.1 44348.4 91.2 6017.7 5327.5 2548.0 2877.0 56.4 76.2 51 �

136 Branch-and-Cut for Min IIS Cover

Table 5.13: Results of the branch-and-cut algorithm on random inequality systems. Given
are mean values for the three problems of each size.
IIS-inequalities are separated by methods (2) and (3) of Section 5.1.3. Additionally, the
cuts of Balas and Ng (see Section 5.2.1) are used. The primal heuristic is run every 50
nodes.

n m sub LP D CPU sep IIS Cbn bnd sol s

5 10 1.0 2.3 1.0 0.0 0.0 2.3 0.0 1.0 1.0 3 �

5 20 1.0 4.7 1.0 0.1 0.0 13.3 1.0 2.7 2.7 3 �

5 30 7.0 38.7 3.3 0.5 0.2 68.3 81.7 5.0 5.7 3 �

5 40 35.0 175.0 5.7 4.2 3.0 147.0 209.7 6.0 7.7 3 �

5 50 155.0 1041.0 9.3 85.6 74.1 383.3 297.3 7.7 11.0 3 �

5 60 163.0 1223.7 10.0 146.4 129.2 539.7 910.7 9.0 13.7 3 �

5 70 588.0 3741.5 14.5 470.5 415.4 752.5 738.0 11.0 16.0 2
5 80 1356.0 9651.0 17.5 2023.2 1834.5 1353.0 2887.0 13.0 20.0 2

10 20 1.0 2.3 1.0 0.0 0.0 3.0 0.0 1.0 1.0 3 �

10 30 2.3 16.3 1.7 0.2 0.1 22.3 61.7 2.3 2.7 3 �

10 40 12.3 92.0 4.7 2.0 1.3 91.0 438.7 3.3 4.0 3 �

10 50 109.0 1204.0 10.0 467.3 441.8 2814.7 871.3 5.0 7.0 3 �

10 60 161.0 1896.0 13.0 894.6 843.6 6158.0 1289.0 6.0 9.0 1
10 70 391.0 6272.0 12.0 6691.4 6453.0 21471.0 1796.0 7.0 11.0 1

15 30 1.0 3.3 1.0 0.1 0.0 4.3 0.0 1.0 1.0 3 �

15 40 1.7 10.0 1.3 0.2 0.1 21.7 97.0 2.0 2.0 3 �

15 50 41.0 360.3 7.0 40.6 34.7 947.7 927.7 2.7 3.7 3 �

15 60 261.0 2634.0 11.0 1301.4 1228.7 7338.7 1266.3 3.3 5.3 3 �

15 70 1.0 32.0 1.0 2.0 1.2 116.0 812.0 3.0 3.0 1
15 80 217.0 2049.0 14.0 815.8 765.1 4507.0 3186.0 4.0 7.0 1

20 40 1.0 4.0 1.0 0.1 0.0 9.0 0.0 1.0 1.0 3 �

20 50 13.7 113.0 6.0 10.0 7.9 491.3 124.7 2.3 2.7 3 �

20 60 19.7 212.7 10.3 24.2 20.2 1065.7 2099.0 3.0 4.0 3 �

20 70 345.0 3459.0 15.7 2146.3 2034.6 15410.7 1921.3 3.0 5.3 3
20 80 205.0 2427.0 18.0 1558.6 1468.6 16521.0 1013.0 4.0 6.0 1∑ 4089.7 36664.8 191.0 16685.3 15757.3 80252.5 21029.1 109.3 153.5 63

825.7 7137.3 85.3 2082.9 1941.3 13963.3 7386.8 58.3 76.2 51 �

5.3 Computational Experience 137

Table 5.14: Results of the branch-and-cut algorithm on random inequality systems. Given
are mean values for the three problems of each size.
Here we use all separation methods: IIS-inequalities are separated by methods (2) and (3)
of Section 5.1.3, the cuts of Balas and Ng (see Section 5.2.1) are used, and Gomory cuts
(25 in the root node, 15 elsewhere) are separated. The primal heuristic is run every 50
nodes.

n m sub LP D CPU sep IIS Cbn Cgo bnd sol s

5 10 1.0 2.3 1.0 0.0 0.0 2.3 0.0 0.0 1.0 1.0 3 �

5 20 1.0 4.7 1.0 0.1 0.0 13.3 1.0 0.3 2.7 2.7 3 �

5 30 1.7 56.3 1.3 2.1 1.7 76.3 106.0 104.3 5.3 5.7 3 �

5 40 14.3 622.7 4.0 53.3 46.2 189.7 417.7 296.3 6.7 7.7 3 �

5 50 148.3 8699.0 6.7 1677.2 1529.4 543.7 868.7 203.7 8.0 11.0 3 �

5 60 110.3 6928.3 8.7 1725.6 1584.5 692.3 1194.3 126.7 10.0 13.7 3 �

5 70 310.0 18144.0 11.0 5710.0 5285.3 978.0 1682.5 399.0 11.5 16.0 2
5 80 0

10 20 1.0 2.3 1.0 0.1 0.0 3.0 0.0 0.0 1.0 1.0 3 �

10 30 1.7 54.7 1.3 1.6 1.2 38.7 205.7 83.0 2.7 2.7 3 �

10 40 10.3 503.7 3.7 39.1 32.5 230.3 829.7 241.3 3.7 4.0 3 �

10 50 64.3 5196.7 8.3 5883.2 5723.5 9219.7 592.3 294.0 5.0 7.0 3 �

10 60 73.0 7034.0 9.0 9183.4 8910.8 18534.0 1240.0 526.0 6.0 9.0 1
10 70 0

15 30 1.0 3.3 1.0 0.1 0.0 4.3 0.0 0.0 1.0 1.0 3 �

15 40 1.0 38.7 1.0 1.6 1.2 39.3 244.3 131.0 2.0 2.0 3 �

15 50 26.3 1554.7 6.7 535.7 498.7 2640.7 1071.3 162.7 2.7 3.7 3 �

15 60 138.3 11051.0 9.3 18403.5 17986.3 28890.3 1401.3 151.0 3.3 5.3 3 �

15 70 1.0 63.0 1.0 5.8 4.5 166.0 1017.0 159.0 3.0 3.0 1
15 80 125.0 9365.0 13.0 9866.2 9546.7 16674.0 2431.0 536.0 4.0 7.0 1

20 40 1.0 4.0 1.0 0.1 0.0 9.0 0.0 0.0 1.0 1.0 3 �

20 50 7.0 456.3 4.0 143.3 130.5 2565.3 461.7 74.7 2.3 2.7 3 �

20 60 13.7 949.7 7.3 300.8 271.9 4131.7 1481.0 346.7 3.0 4.0 3 �

20 70 9.0 714.0 5.0 264.4 240.0 5383.0 2182.0 327.0 3.0 4.0 1
20 80 127.0 11543.0 15.0 26759.2 26173.3 73458.0 791.0 426.0 4.0 6.0 1∑ 1187.3 82991.3 121.3 80556.3 77968 164483.0 18218.5 4588.7 92.8 121.0 58

542.2 36128.4 67.3 28767.4 27807.6 49289.9 8875.0 2215.7 61.4 76.2 51 �

138 Branch-and-Cut for Min IIS Cover

2 3 4sub LP D
1

10

100

1000

10000

100000

Table 5.6 (Plain)
Table 5.9 (M3)
Table 5.11 (Balas)

Table 5.12 (Gomory)
Table 5.13 (M3, Balas)
Table 5.14 (All)

5 6 7CPU sep IIS
1

10

100

1000

10000

100000

Figure 5.1: Comparison of the six different combinations of separation methods used in
Tables 5.6 to 5.14; see Table 5.3 for an overview. The charts compare the entries of the
six most important column sums over the rows marked with “�” of the tables listed in the
legend; Table 5.1 explains the abbreviations used for the column titles. “Plain” stands for
using method (2) and “M3” for method (3) for the separation of IIS-inequalities. “Balas”
is short for the separation method of Balas and Ng. The values are plotted in logarithmic
scale.

5.3 Computational Experience 139

5.3.4 Results for Machine Learning Problems

In this section we discuss results of the branch-and-cut implementation for
machine learning problems. These problems arise in a “classical” application
of Min IIS Cover, which we already briefly presented in Section 1.1.2.

In this application, one is given m points p1, . . . , pm in �n−1, each be-
longing to one of two possible classes P1 and P2, i.e., P1 and P2 partition
the set {p1, . . . , pm}. Each component of the points stores a measurement of
an attribute relevant for the concrete application. We want to classify these
points in �n−1 by an oriented hyperplane defined by ax ≤ β, with a ∈ �n−1

and β ∈ �. The points in P1 should satisfy the inequality ax ≤ β and the
points in P2 should violate it. Hence, we are looking for (a, β) ∈ �n such
that

|{p ∈ P1 : ap > β}| + |{p ∈ P2 : ap ≤ β}|

is minimized, i.e., the number of misclassified points should be minimized.
This minimization is performed in order to maximize the chance that a new
point can be correctly classified. This problem can be written as a Min IIS

Cover problem with variables (a, β) ∈ �n and the following inequalities

pa − β

{
≤ 0 if p ∈ P1

> 0 if p ∈ P2

for each p ∈ {p1, . . . , pm}.

In practice, this system is replaced by the system

pa − β

{
≤ 0 if p ∈ P1

≥ ε if p ∈ P2

for each p ∈ {p1, . . . , pm},

where ε > 0 is a small constant3, depending on the points p1, . . . , pm. Note
that it might happen that this system is feasible, i.e., the points are com-
pletely separable (in which case Min IIS Cover reduces to solving one linear
program).

We tested our branch-and-cut implementation on such classification prob-
lems from the UCI Repository of Machine Learning Databases (see Blake and
Merz [32]). We picked problems from this database that are of the above type
(i.e., have two classes) and are of reasonable size (m < 1000). Exceptions are
the problems glass, iris, and new-thyroid; for these problems one tries to
separate one class from the others. Most of these twelve problems are also

3For the test problems, discussed in the following, ε was 0.001.

140 Branch-and-Cut for Min IIS Cover

Table 5.15: Characteristics of the machine learning problems. As usual n denotes the
dimension of the space (number of attributes). The column labeled m� gives the number
of original data sets and m the number of data sets remaining after removing incomplete
ones. The right column gives additional notes, e.g., the names of the problems in the UCI
database.

Name n m m� Notes

breast-cancer 10 683 699 breast-cancer-wisconsin
bupa 7 345 345 liver-disorders
echo 9 61 132 echocardiogram
glass 10 214 214 type 2 vs. others
heart 14 297 303 heart-disease (Cleveland)
ionosphere 35 351 351
iris.1 5 150 150 Versicolor vs. others
iris.2 5 150 150 Virginica vs. others
new-thyroid 6 215 215 normal vs. others
pima 9 768 768 pima-indians-diabetes
tic-tac-toe 10 958 958
wpbc 33 194 198 Wisconsin breast-cancer database

used by Chinneck [48] for testing his heuristic for Max FS/Min IIS Cover.
Below, we compare our results to the results he obtained.

In our context, we are not interested in the performance of the above
linear classification approach compared to other classification methods; this
is investigated elsewhere, see, e.g., Bennett and Bredensteiner [24], and Ben-
nett and Mangasarian [25]. Hence, we use all data sets of these problems as
points p1, . . . , pm – in contrast to using part of the points to find the hyper-
plane and the other part to test whether these points are correctly classified.
This is also the case in [48].

Table 5.15 gives the characteristics of the chosen problems. For some
problems we had to remove incomplete data sets. The dimension of the
space is denoted by n, as above, and gives the number of attributes for each
data set. A complete description of the particular contexts in which these
instances arise is available at the UCI Repository.

In Tables 5.16 and 5.17 the results of the branch-and-cut implementation
for these problems are reported. In Table 5.16 only method (2) of Sec-
tion 5.1.3 to separate IIS-inequalities is used. The primal heuristic is called
every 50 nodes of the tree. We also use the usual abbreviations (see Ta-
ble 5.1 on page 119). In Table 5.17 additionally the cuts of Balas and Ng
(Section 5.2.1) and method (3) of Section 5.1.3 are used. The primal heuris-
tic is called every five nodes of the tree. Furthermore, “tailing off” control

5.3 Computational Experience 141

Table 5.16: Results of the branch-and-cut algorithm on machine learning problems. The
only cutting planes used are IIS-inequalities, separated by method (2) of Section 5.1.3.
Additionally, the primal heuristic is run every 50 nodes. The last two columns give lower
(“lbd”) and upper (“ps”) bounds at termination, i.e., the first gives a dual bound and the
second a primal solution. Not all problems could be solved to optimality, in which case
we only have values in the last two columns.

name sub LP D CPU sep IIS sol lbd ps

breast-cancer 105 455 11 30 18 390 11 11 11
bupa 49 87
echo 17 75 7 0 0 115 6 6 6
glass 26 36
heart 19 31
ionosphere 2639 9684 27 1864 1671 1895 6 6 6
iris.1 291 1845 19 124 73 1013 25 25 25
iris.2 1 2 1 0 0 52 1 1 1
new-thyroid 17 92 7 3 1 428 11 11 11
pima 62 163
tic-tac-toe 65 92
wpbc 7 16

Table 5.17: Results of the branch-and-cut algorithm on machine learning problems. IIS-
inequalities are separated by methods (2) and (3) of Section 5.1.3. Additionally, the cuts
of Balas and Ng (see Section 5.2.1) are used. The primal heuristic is run every 5 nodes.
Tailing off control was on. The last two columns give lower (“lbd”) and upper (“ps”) bounds
at termination, i.e., the first gives a dual bound and the second a primal solution. Not all
problems could be solved to optimality.

name sub LP D CPU sep IIS sol lbd ps

breast-cancer 79 733 12 211 193 399 11 11 11
bupa 49 85
echo 11 98 5 2 1 89 6 6 6
glass 23 36
heart 16 29
ionosphere 4 6
iris.1 365 2593 20 564 503 1151 25 25 25
iris.2 1 2 1 0 0 52 1 1 1
new-thyroid 13 106 6 21 20 458 11 11 11
pima 62 157
tic-tac-toe 64 94
wpbc 5 15

142 Branch-and-Cut for Min IIS Cover

Table 5.18: Best results for the machine learning problems. The values give the fraction
of correctly classified points in percent. The column labeled “Chinneck” gives the best
results obtained by Chinneck [48]. Column “MISMIN” lists results of an algorithm by
Bennett and Bredensteiner [24], as they are given in [48]. Column “B&C” provides the
best primal solution of Tables 5.16 and 5.17, where values that are proved to be optimal
are marked with “�”.

Name Chinneck MISMIN B&C

breast-cancer 98.4 98.2 98.4 �

bupa 75.9 73.9 75.4
echo 90.2 �

glass 81.8 76.6 83.2
heart 90.2
ionosphere 98.3 98.3 98.3 �

iris.1 83.3 82.0 83.3 �

iris.2 99.3 99.3 99.3 �

new-thyroid 94.9 93.5 94.9 �

pima 80.6 80.5 79.6
tic-tac-toe 90.4
wpbc 94.6 91.2 92.3

was on, i.e., we perform a branching step if the progress in the value of the
LP relaxation is not good enough.

Since so far all available solutions for these instances were obtained by
heuristics, we are also interested in the best solution available for these prob-
lems. The last two columns give the lower bound “lbd” obtained in the
branch-and-bound tree and the best primal solution “ps” found during the
optimization. To obtain a good lower bound we perform a breadth-first
search in the branch-and-cut tree.

With the first variant half of the twelve instances could be solved to opti-
mality. Three of these problems are very easy to solve; only one (ionosphere)
takes quite long (around 30 minutes). The other half of the problems could
not be solved to optimality (within 12 hours of computation time or because
of memory constraints). For three of these instances the difference of the
final bounds is quite large and an optimal solution seems to be out of reach
for the current implementation.

The second variant could not solve ionosphere within 12 hours. It also
obtained worse lower bounds. It seems that within 12 hours of computation
time speed is more important than advanced separation techniques (at least
with the current cutting planes). The upper bounds are always better than
those of the first variant, except for tic-tac-toe, mainly because we called

5.3 Computational Experience 143

the primal heuristic every five nodes, instead of every 50 nodes.
Table 5.18 compares the best primal solutions found by our branch-and-

cut implementation to the best results obtained by the heuristics of Chin-
neck [48]. The results are given as the fraction of correctly classified points
to the total number of points in percent. We additionally add the results of a
heuristic called MISMIN by Bennett and Bredensteiner [24], as they appear
in [48]. For the results of our branch-and-cut implementation we take the
best primal solution given in Tables 5.16 and 5.17.

The results show that both the heuristics of Chinneck and MISMIN gen-
erate very good solutions, where the best solutions found by the heuristics
of Chinneck are better (or equal) than the solutions found by MISMIN.
Since neither the exact solution nor lower bounds were known previously,
this shows the advantage of an exact method like branch-and-cut to provide
reliable data to evaluate the performance of heuristics. We also conclude
that, compared to the two heuristics, the primal solutions that are generated
by the branch-and-cut implementation are relatively good and sometimes
better.

Bibliography

[1] C. C. Aggarwal, R. K. Ahuja, J. Hao, and J. B. Orlin, Diagnosing
infeasibilities in network flow problems, Math. Program. 81, no. 3 (1998),
pp. 263–280. [24]

[2] S. Agmon, The relaxation method for linear inequalities, Can. J. Math. 6
(1954), pp. 382–392. [14]

[3] E. Amaldi, On the complexity of training perceptrons, in Artificial Neural
Networks, T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, eds., Else-
vier, Amsterdam, 1991, pp. 55–60. [11]

[4] E. Amaldi, From Finding Maximum Feasible Subsystems of Linear Systems
to Feedforward Neural Network Design, PhD thesis, Dep. of Mathematics,
EPF-Lausanne, 1994. [10, 11, 15]

[5] E. Amaldi and R. Hauser, Randomized relaxation methods for the maxi-
mum feasible subsystem problem, Tech. Report 2001-90, DEI, Politecnico di
Milano, 2001. [15]

[6] E. Amaldi and V. Kann, The complexity and approximability of finding
maximum feasible subsystems of linear relations, Theor. Comput. Sci. 147,
no. 1–2 (1995), pp. 181–210. [1, 13]

[7] E. Amaldi and V. Kann, On the approximability of minimizing nonzero
variables or unsatisfied relations in linear systems, Theor. Comput. Sci. 209,
no. 1–2 (1998), pp. 237–260. [13, 23]

[8] E. Amaldi and M. Mattavelli, The Min PCS problem and piecewise
linear model estimation, Discrete Appl. Math. 118 (2002), pp. 115–143. [11]

[9] E. Amaldi, M. E. Pfetsch, and L. E. Trotter, Jr., On the maxi-
mum feasible subsystem problem, IISs, and IIS-hypergraphs, Math. Program.
(2002). To appear. [7, 37]

[10] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approx-
imate optima in lattices, codes, and systems of linear equations, J. Comput.
Syst. Sci. 54, no. 2 (1997), pp. 317–331. [13]

[11] D. Avis, A revised implementation of the reverse search vertex enumeration
algorithm, in Polytopes – Combinatorics and Computation, G. Kalai and
G. M. Ziegler, eds., DMV Seminar 29, Birkhäuser, Basel, 2000, pp. 177–
198. [124]

145

146 Bibliography

[12] D. Avis, lrs home page. Available at: http://cgm.cs.mcgill.ca/~avis/
C/lrs.html, 2001. [124]

[13] D. Avis, D. Bremner, and R. Seidel, How good are convex hull algo-
rithms?, Comput. Geom. 7, no. 5–6 (1997), pp. 265–301. [41, 60]

[14] D. Avis and K. Fukuda, A pivoting algorithm for convex hull and ver-
tex enumeration of arrangements and polyhedra, Discrete Comput. Geom. 8,
no. 3 (1992), pp. 295–313. [41, 124]

[15] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl.
Math. 65, no. 1–3 (1996), pp. 21–46. [44]

[16] E. Balas, Cutting planes from conditional bounds: a new approach to set
covering, Math. Program. Stud. 12 (1980), pp. 19–36. [116]

[17] E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane
algorithm for mixed 0-1 programs, Math. Program. 58, no. 3 (1993), pp. 295–
324. [116]

[18] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, Gomory cuts
revisited, Oper. Res. Lett. 19, no. 1 (1996), pp. 1–9. [116, 117, 118]

[19] E. Balas and A. Ho, Set covering algorithms using cutting planes, heuris-
tics, and subgradient optimization: a computational study, Math. Program.
Stud. 12 (1980), pp. 37–60. [116]

[20] E. Balas and S. M. Ng, On the set covering polytope: I. All the facets with
coefficients in {0, 1, 2}, Math. Program. 43, no. 1 (1989), pp. 57–69. [116]

[21] M. O. Ball and J. S. Provan, Disjoint products and efficient computation
of reliability, Oper. Res. 36, no. 5 (1988), pp. 703–715. [49]

[22] D. Barnette, P. Kleinschmidt, and C. W. Lee, An upper bound the-
orem for polytope pairs, Math. Oper. Res. 11, no. 3 (1986), pp. 451–464.

[65]

[23] D. Bayer and M. Stillman, Computation of hilbert functions, J. Symb.
Comput. 14, no. 1 (1992), pp. 31–50. [81]

[24] K. P. Bennett and E. J. Bredensteiner, A parametric optimization
method for machine learning, INFORMS J. Comput. 9, no. 3 (1997), pp. 311–
318. [11, 14, 140, 142, 143]

[25] K. P. Bennett and O. L. Mangasarian, Neural network training via lin-
ear programming, in Advances in optimization and parallel computing, P. M.
Pardalos, ed., North-Holland, Amsterdam, 1992, pp. 56–67. [11, 14, 140]

[26] C. Berge, Hypergraphs. Combinatorics of finite sets, North-Holland Math-
ematical Library 45, North-Holland, Amsterdam, 1989. [37, 50]

[27] L. J. Billera and C. W. Lee, The number of faces of polytope pairs and
unbounded polyhedra, Eur. J. Comb. 2, no. 4 (1981), pp. 307–322. [65]

Bibliography 147

[28] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization
of positive boolean functions, Inform. and Comput. 123, no. 1 (1995), pp. 50–
63. [46]

[29] A. Björner, Topological methods, in Handbook of Combinatorics, Vol. II,
R. L. Graham, M. Grötschel, and L. Lovász, eds., Elsevier, Amsterdam, 1995,
ch. 34, pp. 1819–1872. [5, 46, 75, 77, 79, 89]

[30] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M.

Ziegler, Oriented Matroids, Encyclopedia of Mathematics and its Applica-
tions 46, Cambridge University Press, Cambridge, 2nd ed., 1999. [38, 54, 104]

[31] A. Björner and M. L. Wachs, Shellable nonpure complexes and posets. I,
Trans. Am. Math. Soc. 348, no. 4 (1996), pp. 1299–1327. [47]

[32] C.L.Blake and C. J.Merz, UCI repository of machine learning databases,
1998. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.

[139]

[33] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real
Computation, Springer-Verlag, New York, 1997. [54]

[34] J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lec-
ture Notes in Mathematics 1355, Springer-Verlag, Berlin, 1989. [52, 54]

[35] R. Borndörfer, Aspects of Set Packing, Partitioning, and Covering, PhD
thesis, TU Berlin, 1998. [25, 116]

[36] E. Boros, Y. Crama, O. Ekin, P. L. Hammer, T. Ibaraki, and A. Ko-

gan, Boolean normal forms, shellability, and reliability computations, SIAM
J. Discrete Math. 13, no. 2 (2000), pp. 212–226. [48]

[37] D. Bremner, K. Fukuda, and A. Marzetta, Primal-dual methods for
vertex and facet enumeration, Discrete Comput. Geom. 20, no. 3 (1998),
pp. 333–357. [41]

[38] H. Bruggesser and P. Mani, Shellable decompositions of cells and
spheres, Math. Scand. 29 (1971), pp. 197–205. [49]

[39] A. Caprara and M. Fischetti, Branch-and-cut algorithms, in Annotated
Bibliographies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli,
and S. Martello, eds., John Wiley & Sons, Chichester, 1997, ch. 4, pp. 45–63.

[109]

[40] S. Ceria, P. Nobili, and A. Sassano, Set covering problem, in Annotated
Bibliographies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli,
and S. Martello, eds., John Wiley & Sons, Chichester, 1997, ch. 23, pp. 415–
428. [25, 115]

[41] N. Chakravarti, Some results concerning post-infeasibility analysis, Eur.
J. Oper. Res. 73 (1994), pp. 139–143. [1, 8, 12, 41]

148 Bibliography

[42] T. M. Chan, Output-sensitive results on convex hulls, extreme points, and
related problems, Discrete Comput. Geom. 16, no. 4 (1996), pp. 369–387. [41]

[43] B. Chazelle, An optimal convex hull algorithm in any fixed dimension,
Discrete Comput. Geom. 10, no. 4 (1993), pp. 377–409. [41]

[44] J. W. Chinneck, Computer codes for the analysis of infeasible linear pro-
grams, J. Oper. Res. Soc. 47, no. 1 (1996), pp. 61–72. [14]

[45] J. W. Chinneck, An effective polynomial-time heuristic for the minimum-
cardinality IIS set-covering problem, Ann. Math. Artif. Intell. 17, no. 1–2
(1996), pp. 127–144. [14]

[46] J. W. Chinneck, Feasibility and viability, in Advances in Sensitivity Analy-
sis and Parametric Programming, T. Gál and H. J. Greenberg, eds., Int. Ser.
Oper. Res. Manag. Sci. 6, Kluwer Academic Publishers, Dordrecht, 1997,
ch. 14, pp. 1–41. [10]

[47] J. W. Chinneck, Finding a useful subset of constraints for analysis in an
infeasible linear program, INFORMS J. Comput. 9, no. 2 (1997), pp. 164–174.

[14]

[48] J. W. Chinneck, Fast heuristics for the maximum feasible subsystem prob-
lem, INFORMS Journal on Computing 13, no. 3 (2001), pp. 210–223.

[14, 120, 140, 142, 143]

[49] J. W. Chinneck and E. W. Dravnieks, Locating minimal infeasible con-
straint sets in linear programs, ORSA J. Comput. 3, no. 2 (1991), pp. 157–
168. [14, 22]

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro-
duction to Algorithms, MIT Press, Cambridge, 2nd ed., 2001. [93, 97, 100]

[51] G. Cornuéjols, Combinatorial optimization. Packing and covering, CBMS-
NSF Regional Conference Series in Applied Mathematics 74, SIAM, Philadel-
phia, 2001. [25, 55]

[52] G. Cornuéjols and A. Sassano, On the 0, 1 facets of the set covering
polytope, Math. Program. 43, no. 1 (1989), pp. 45–55. [27]

[53] M. E. Dyer, The complexity of vertex enumeration methods, Math. Oper.
Res 8 (1983), pp. 381–402. [124]

[54] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hyper-
graph and related problems, SIAM J. Comput. 24, no. 6 (1995), pp. 1278–
1304. [45, 46]

[55] K. Fan, On systems of linear inequalities, in Linear Inequalities and Re-
lated Systems, H. W. Kuhn and A. W. Tucker, eds., Ann. Math. Studies 38,
Princeton University Press, 1956, pp. 99–156. [16]

[56] L. Finschi, A Graph Theoretical Approach for Reconstruction and Genera-
tion of Oriented Matroids, PhD thesis, IFOR, ETH Zürich, 2001. [105]

Bibliography 149

[57] M. L. Fredman and L. Khachiyan, On the complexity of dualization of
monotone disjunctive normal forms, J. Algorithms 21, no. 3 (1996), pp. 618–
628. [46]

[58] K. Fukuda, T. M. Liebling, and F. Margot, Analysis of backtrack al-
gorithms for listing all vertices and all faces of a convex polyhedron, Comput.
Geom. 8, no. 1 (1997), pp. 1–12. [92]

[59] K. Fukuda and V. Rosta, Combinatorial face enumeration in convex poly-
topes, Comput. Geom. 4, no. 4 (1994), pp. 191–198. [92, 93]

[60] K. Fukuda, S. Saito, and A. Tamura, Combinatorial face enumera-
tion in arrangements and oriented matroids, Discrete Appl. Math. 31, no. 2
(1991), pp. 141–149. [105]

[61] B. Ganter, Algorithmen zur formalen Begriffsanalyse, in Beiträge zur
Begriffsanalyse, B. Ganter, R. Wille, and K. E. Wolff, eds., B.I. Wis-
senschaftsverlag, Mannheim, 1987, pp. 241–254. [92]

[62] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, New York,
1979. [5, 80]

[63] E. Gawrilow and M. Joswig, polymake: a framework for analyzing con-
vex polytopes, in Polytopes – Combinatorics and Computation, G. Kalai and
G. M. Ziegler, eds., DMV Seminar 29, Birkhäuser, Basel, 2000, pp. 43–74.

[5, 27, 31, 39, 106, 124]

[64] E. Gawrilow and M. Joswig, polymake: an approach to modular soft-
ware design in computational geometry, in Proceedings of the 17th An-
nual Symposium on Computational Geometry, ACM, 2001, pp. 222–231.

[5, 27, 31, 39, 106, 124]

[65] J. Gleeson and J. Ryan, Identifying minimally infeasible subsystems of
inequalities, ORSA J. Comput. 2, no. 1 (1990), pp. 61–63. [2, 18]

[66] H. J. Greenberg, Consistency, redundancy, and implied equalities in linear
systems, Ann. Math. Artif. Intell. 17, no. 1–2 (1996), pp. 37–83. [19, 40]

[67] H. J. Greenberg and F. H. Murphy, Approaches to diagnosing infeasible
linear programs, ORSA J. Comput. 3, no. 3 (1991), pp. 253–261. [10, 14, 22]

[68] R. Greer, Trees and Hills: Methodology for Maximizing Functions of Sys-
tems of Linear Relations, Annals of Discrete Mathematics 22, North-Holland,
Amsterdam, 1984. [11, 13, 45]

[69] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer-
Verlag, Heidelberg, 2nd ed., 1993. [5]

[70] B. Grünbaum, Convex Polytopes, Interscience, London, 1967. [38]

150 Bibliography

[71] V. Gurvich and L. Khachiyan, On generating the irredundant conjunctive
and disjunctive normal forms of monotone boolean functions, Discrete Appl.
Math. 96–97 (1999), pp. 363–373. [41, 45]

[72] D. S. Johnson and F. P. Preparata, The densest hemisphere problem,
Theor. Comput. Sci. 6 (1978), pp. 93–107. [12]

[73] M. Joswig, V. Kaibel, M. E. Pfetsch, and G. M. Ziegler, Ambigu-
ous incidences of unbounded polyhedra. Electronic Geometry Models, No.
2000.05.001, available at http://www.eg-models.de, 2000. [73]

[74] M. Joswig, V. Kaibel, M. E. Pfetsch, and G. M. Ziegler, Vertex-
facet incidences of unbounded polyhedra, Advances in Geometry 1, no. 1
(2001), pp. 23–36. [66, 82]

[75] M. Joswig and G. M. Ziegler, Convex hulls and oracles. Preprint, 2002.
[62, 63]

[76] V. Kaibel and M. E. Pfetsch, Computing the face lattice of a polytope
from its vertex-facet incidences, Comput. Geom. 23, no. 3 (2002), pp. 281–
290. [79, 81, 91]

[77] V. Kaibel and M. E. Pfetsch, Some algorithmic problems in poly-
tope theory, in Algebra, Geometry, and Software Systems, M. Joswig and
N. Takayama, eds., Springer-Verlag, 2003. To appear.

[40, 48, 49, 63, 92, 93, 124]

[78] V. Klee, Polytope pairs and their relationship to linear programming, Acta
Math. 133 (1974), pp. 1–25. [65]

[79] U. Küssner and D. Tidhar, Combining different translation sources, in
Natural Language Processing - NLP 2000, Second International Conference,
Patras, Greece, June 2000, D. N. Christodoulakis, ed., Lecture Notes in
Computer Science 1835, Springer-Verlag, 2000, pp. 261–271. [11]

[80] M. Laurent, A generalization of antiwebs to independence systems and
their canonical facets, Math. Program., Ser. B 45, no. 1 (1989), pp. 97–108.

[27, 32, 34]

[81] C. W. Lee, Bounding the numbers of faces of polytope pairs and simple poly-
hedra, in Convexity and graph theory, Proc. Conf., Jerusalem 1981, M. Rosen-
feld and J. Zaks, eds., Ann. Discrete Math. 20, North-Holland, Amsterdam,
1984, pp. 215–232. [65]

[82] L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity,
CBMS-NSF Regional Conference Series in Applied Mathematics 50, SIAM,
Philadelphia, 1986. [38]

[83] O. L. Mangasarian, Misclassification minimization, J. Glob. Optim. 5,
no. 4 (1994), pp. 309–323. [11, 14]

Bibliography 151

[84] O. L. Mangasarian, Minimum-support solutions of polyhedral concave pro-
grams, Optimization 45, no. 1–4 (1999), pp. 149–162. [14]

[85] P. McMullen, The maximum numbers of faces of a convex polytope, Math-
ematika 17 (1970), pp. 179–184. [41]

[86] B. Mishra, Computational real algebraic geometry, in Handbook of Discrete
and Computational Geometry, J. Goodman and J. O’Rouke, eds., CRC Press,
Boca Raton, 1997, ch. 29, pp. 537–556. [54]

[87] N. E. Mnëv, The universality theorems on the classification problem of con-
figuration varieties and convex polytopes varieties, in Topology and Geom-
etry – Rohlin Seminar, O. Y. Viro, ed., Lecture Notes in Mathematics 1346,
Springer-Verlag, Berlin, 1988, pp. 527–543. [54]

[88] T. S. Motzkin, Beiträge zur Theorie der Linearen Ungleichungen, PhD
thesis, Basel, 1933. English version: “Contributions to the Theory of Linear
Inequalities”, translated by D. R. Fulkerson, in “Theodore S. Motzkin: Se-
lected Papers”, D. Cantor, B. Gordon and B. Rothschild, Eds., Birkhäuser,
Boston (1983). [15, 16]

[89] T. S. Motzkin and I. J. Schoenberg, The relaxation method for linear
inequalities, Can. J. Math. 6 (1954), pp. 393–404. [15]

[90] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization, Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion, John Wiley & Sons, New York, 1988. [5, 19, 109, 117]

[91] P. Nobili and A. Sassano, A separation routine for the set covering poly-
tope, in Integer programming and combinatorial optimization, 2nd interna-
tional IPCO Conference, Pittsburgh, E. Balas, G. Cornuéjols, and R. Kan-
nan, eds., 1992, pp. 201–219. [116]

[92] M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the reso-
lution of large-scale symmetric traveling salesman problems, SIAM Rev. 33,
no. 1 (1991), pp. 60–100. [109]

[93] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Ams-
terdam, 1994. [5]

[94] M. Parker, A Set Covering Approach to Infeasibility Analysis of Linear
Programming Problems and Related Issues, PhD thesis, Department of Math-
ematics, University of Colorado at Denver, 1995.

[2, 11, 13, 14, 19, 28, 29, 111, 120]

[95] M. Parker and J. Ryan, Finding the minimum weight IIS cover of an
infeasible system of linear inequalities, Ann. Math. Artif. Intell. 17, no. 1–2
(1996), pp. 107–126. [1, 10, 13, 19, 23, 110, 120]

[96] M. Pfetsch, Examples of generalized antiweb facets. Electronic Geometry
Models, No. 2000.09.029, available at http://www.eg-models.de, 2000. [35]

152 Bibliography

[97] K. Polthier, Mathematical visualization and online experiments with
JavaView, in Mathematical Visulization online, M. Emmer, ed., Matemat-
ica e Cultura 3, Springer Verlag, 2000. [5]

[98] K. Polthier, S. Khadem-Al-Charieh, E. Preuß, and U. Reitebuch,
JavaView – 3D Geometry in Web Pages. http://www.javaview.de/, 2000.

[5]

[99] J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in
Mathematics 1643, Springer-Verlag, Berlin; Heidelberg, 1996. [38, 54, 61, 68]

[100] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint
paths problem, J. Comb. Theory, Ser. B 63, no. 1 (1995), pp. 65–110. [63]

[101] F. Rossi, A. Sassano, and S. Smriglio, Models and algorithms for ter-
restrial digital broadcasting, Annals of Operations Research: Mathematics of
Industrial Systems IV. (2001). To appear. [10]

[102] G.-C. Rota, On the foundations of combinatorial theory. I: Theory of
Möbius functions, Z. Wahrscheinlichkeitstheorie 2 (1964), pp. 340–368.

[77, 78]

[103] J. Ryan, Transversals of IIS-hypergraphs, in Proc. 22nd Southeast Conf.
on Combinatorics, Graph Theory, and Computing, Baton Rouge, Congr.
Numerantium 81, 1991, pp. 17–22. [40, 48, 114]

[104] J. Ryan, IIS-hypergraphs, SIAM J. Discrete Math. 9, no. 4 (1996), pp. 643–
653. [40, 46, 49, 51]

[105] J. K. Sankaran, A note on resolving infeasibility in linear programs by
constraint relaxation, Oper. Res. Letters 13 (1993), pp. 19–20. [13, 45]

[106] A. Sassano, On the facial structure of the set covering polytope, Math.
Program. 44, no. 2 (1989), pp. 181–202. [27]

[107] A. Schrijver, Theory of Linear and Integer Programming, John Wiley &
Sons, Chichester, 1986. [5, 15, 19, 21, 54, 116, 117]

[108] B. Schwikowski and E. Speckenmeyer, On enumerating all minimal
solutions of feedback problems, Discrete Appl. Math. 117, no. 1–3 (2002),
pp. 253–265. [45]

[109] R. Seidel, Convex hull computations, in Handbook of Discrete and Com-
putational Geometry, J. Goodman and J. O’Rouke, eds., CRC Press, Boca
Raton, 1997, ch. 19, pp. 361–375. [41]

[110] R. P. Stanley, Combinatorics and Commutative Algebra, Progress in Math-
ematics 41, Birkhäuser, Boston, 2nd ed., 1996. [45]

[111] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Stud-
ies in Advanced Mathematics 49, Cambridge University Press, 2nd ed.,
1997. [77, 78]

Bibliography 153

[112] S. Thienel, ABACUS – A Branch-And-CUt System, PhD thesis, Universität
zu Köln, 1995. [109, 118]

[113] J. N. M. van Loon, Irreducibly inconsistent systems of linear inequalities,
Eur. J. Oper. Res. 8 (1981), pp. 282–288. [16]

[114] M. Wagner, J. Meller, and R. Elber, Large-scale linear programming
techniques for the design of protein folding potentials, Tech. Report TR-2002-
02, Old Dominion University, 2002. [12]

[115] G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995.
Revised edition 1998. [5, 47, 49, 52, 66, 68, 69, 81]

Index

#P-complete, 45, 80

alternative polyhedron, 10, 17, 17–19, 39,
42, 48, 50, 57, 59, 60, 111, 113,
124

nondegenerate, 122

Balas and Ng cut, 116, 126, 134, 136, 137,
140, 143

bicolorable, 40
big-M approach, 14

canonical spanning set, 97, 98, 100, 105
circuit, 24, 24–35
circulant, 32, 82, 87, 87–89
closed, 26, 26–35
closure, 94, 95, 97, 103
clutter hypergraph, 34, 37, 42, 50–52, 55,

56, 62
critical graph, 27, 28
cross-cut complex, 63, 79

elastic program, 14
Euler characteristic, 55, 77, 78, 79

face lattice, 52, 53, 55, 72, 79, 92, 95, 99,
101, 104, 106

face lattice enumeration problem
combinatorial problem, 92
geometric, 92

face poset F(P), 68, 76
face tree, 97, 101, 105, 106
Farkas lemma, 15, 18, 20, 23, 112
feasible subsystem polytope, 26, 24–35
f -vector, 80

generalized antiweb, 32, 32–35, 82
Gomory cut, 116, 117, 126, 135, 137

Hasse diagram, 78, 92, 95, 101, 104, 105
hypergraph, 37

clutter, see ∼ hypergraph
complement, 33, 36, 50
dual, 33, 36, 50, 56
isomorphism, 33, 37

nonempty, see ∼ hypergraph
transversal, see ∼ hypergraph, 39,

42

IIS, see irreducible inconsistent subsys-
tem

IIS-cover, 8, 42, 110–115
IIS-covering polytope, 26, 28, 112
IIS-hypergraph, 33–35, 38, 37–43, 49–63

nondegenerate, 39, 49
partial, 60, 60–63

IIS-hypergraph recognition problem, 10,
51, 51–55, 63

IIS-inequality, 28, 32, 35, 112, 121, 125
IIS-transversal, 8, 42–46, 48
IIS-transversal hypergraph, 42, 42–46, 48
independence system, 24, 24–27
independence system polytope, 25, 34,

115
index

loop, see loop index
irreducible inconsistent subsystem, 8, 15,

16, 20, 110, 112, 124

k-Skeleton, 103

lattice
atomic, coatomic, 52, 53, 78, 92, 102,

105
linearly orderable, 40
loop index, see index loop

Möbius function, 53, 75, 77, 79, 89
machine learning, 10, 14, 139
Max FS, see maximum feasible subsys-

tem problem
maximum feasible subsystem problem, 8,

8–15, 28, 40, 118
Min IIS, see minimum cardinality IIS

problem
Min IIS Cover, see minimum IIS-cover

problem
minimum cardinality IIS problem, 8, 10,

14, 22–24, 31

155

156 Index

minimum IIS-cover problem, 9, 8–15, 39,
49, 109, 113, 118, 122, 139

minor, 60, 62
contraction, 55, 57
deletion, 35, 55, 57
excluded, 55, 62
restriction, 56, 57, 58

non-face, 46, 46–48
nonempty hypergraph, 37, 51
nonseparable, 26
NP-hard, 12, 22, 24, 31, 46, 54, 79, 113,

122, 124

order complex, 62, 75
oriented matroid, 104

polyhedron
graph of, 69, 82
simple, 69, 74, 81, 88
simplicial, 69, 74, 81, 88
unbounded, 49, 51, 53, 55, 58, 61–

63, 65–77, 81
vertex-facet incidences of, see ∼

polynomial total time, 41, 42, 43, 46
PFS, see feasible subsystem polytope
PIISC, see IIS-covering polytope
PIS, see independence system polytope
PSC, see set covering polytope

rank function, 24, 52
rank inequality, 26, 27, 28, 34, 35
relaxation method, 11, 15

separation problem
for IIS-inequalities, 31, 113

set covering polytope, 25, 115, 116
simplicial complex, 24, 46, 55, 75, 79–81

shellable, 47, 49
sorted sparse format, 95, 97, 98, 102, 104
Steinitz problem, 52, 51–55
support, 18

transversal hypergraph, 42, 45, 48

vertex enumeration, 40, 124
vertex-facet incidence hypergraph, 34, 50,

52, 57, 61
vertex-facet incidence matrix, 36, 66, 71,

78, 88, 92, 94

vertex-facet incidences, 49, 66, 72, 75, 76,
101

partial, 61, 62

