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Abstract

We consider the MAX FS problem: For a given infeasible linear system Ax ≤ b,
determine a feasible subsystem containing as many inequalities as possible. This
problem, which is NP-hard and also difficult to approximate, has a number of in-
teresting applications in a wide range of fields. In this paper we examine structural
and algorithmic properties of MAX FS and of Irreducible Infeasible Subsystems
(IISs), which are intrinsically related since one must delete at least one constraint
from each IIS to attain feasibility. First we provide a new simplex decomposition
characterization of IISs and prove that finding a smallest cardinality IIS is very
difficult to approximate. Then we discuss structural properties of IIS-hypergraphs,
i.e., hypergraphs in which each edge corresponds to an IIS, and show that recog-
nizing IIS-hypergraphs subsumes the Steinitz problem for polytopes and hence is
NP-hard. Finally we investigate rank facets of the Feasible Subsystem polytope
whose vertices are incidence vectors of feasible subsystems of a given infeasi-
ble system. In particular, using the IIS-hypergraph structural result, we show that
only two very specific types of rank inequalities induced by generalized antiwebs
(which generalize cliques, odd holes and antiholes to general independence sys-
tems) can arise as facets.

Key words. Infeasible linear systems – feasible subsystems – Irreducible Infea-
sible Subsystem (IIS) – IIS-hypergraphs – independence systems – Feasible Sub-
system polytope – rank facets

1 Introduction

We consider the following combinatorial optimization problem related to infeasible
linear inequality systems.

MAX FS: Given an infeasible system Σ : {Ax ≤ b} with A ∈
�

m×n and b ∈
�

m,
find a feasible subsystem containing as many inequalities as possible.
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Weighted and unweighted versions of this problem have a number of interesting appli-
cations in various fields such as operations research, computational geometry, statisti-
cal discriminant analysis and machine learning (see [2, 10, 29, 31, 34, 38, 43] and the
references therein).

In linear programming (LP) it arises when the formulation phase yields infeasible
models and one wishes to diagnose and resolve infeasibility by deleting as few con-
straints as possible, which is the complementary version of MAX FS [19, 28, 39]. In
most situations this cannot be done by inspection and the need for effective algorithmic
tools has become more acute with the considerable increase in model size. This type
of questions was first addressed in [48]. The reader is referred to [27] for a survey
on redundant and implied relations of inequality systems as well as on infeasibility is-
sues. From the computational complexity point of view, MAX FS is NP-hard [46] even
when the matrix A is totally unimodular and b is integer; it can be approximated within
a factor 2 but it does not admit a polynomial-time approximation scheme, unless P =
NP [4]. The above-mentioned complementary version, in which the goal is to delete
as few inequalities as possible in order to achieve feasibility, is equivalent to solve to
optimality but is much harder to approximate than MAX FS [5, 8].

Not surprisingly, minimal infeasible subsystems, discussed for instance in the thesis
of Motzkin [37], play a key role in the study of MAX FS. An infeasible subsystem Σ′

of Σ is an Irreducible Infeasible Subsystem (IIS) if every proper subsystem of Σ′ is
feasible. In order to help the modeler resolve infeasibility of large linear inequality
systems, attention was first devoted to the problem of identifying IISs, with a small
and possibly minimum number of inequalities [28]; see [20, 22, 47] for some heuris-
tics and [18] for implementations in commercial solvers such as CPLEX and MINOS.
Clearly, in the presence of many overlapping IISs, this does not provide enough infor-
mation to repair the original system. To achieve feasibility, one must delete at least one
inequality from each IIS. If all IISs were known, the complementary version of MAX

FS could be formulated as the following covering problem [26].

MIN IIS COVER: Given an infeasible system Σ : {Ax ≤ b} with A ∈
�

m×n and
b ∈

�
m and the set C of all its IISs, minimize

∑m

i=1 yi subject to
∑

i∈C yi ≥ 1
∀C ∈ C, yi ∈ {0, 1}, 1 ≤ i ≤ m.

Note that |C| can grow exponentially with m and n [17].
An exact algorithm based on a partial cover formulation is proposed in [38, 39]

and several heuristics are described in [10, 19, 21, 34]; a collection of infeasible LPs
is maintained in the Netlib Repository [41]. In [44, 45] the class of hypergraphs rep-
resenting the IISs of infeasible systems is studied and it is shown that in some special
cases MAX FS and MIN IIS COVER can be solved in polynomial time in the number
of IISs.

Although MAX FS with 0-1 variables can be easily shown to admit as a special case
the graphical problem of finding a maximum stable set of nodes [4], it has a different
structure when the variables are real-valued. Note that, since linear system feasibility
can be checked in polynomial time, MAX FS structure also differs substantially from
that of the maximum satisfiability problem aimed at satisfying a maximum number of
disjunctive Boolean clauses. The reader is referred to [25] for the exact definitions of
these well-known problems.

Variants of the classical Agmon-Motzkin-Schoenberg relaxation method for solv-
ing linear inequality systems have also been investigated and used, among others, in
machine learning as well as image and signal processing applications (see e.g. [2, 3,
6, 24]). The implicit enumeration technique described in [29] for optimizing general
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functions of a set of linear relations can, in principle, also be applied to the special case
of MAX FS. As to more recent work on problems related to MAX FS and IISs let us
mention, for instance, Håstad’s breakthrough [30] which bridges the approximability
gap for MAX FS on GF (p), and the problems of determining minimum or minimal
witnesses of infeasibility in network flows [1].

In this paper we investigate some structural and algorithmic properties of IISs, of
IIS-hypergraphs in which each edge corresponds to an IIS, and of the feasible subsys-
tem polytope defined by the convex hull of incidence vectors of feasible subsystems
of a given infeasible system. In Section 2 we provide a new IIS simplex decomposi-
tion characterization and prove that finding a smallest cardinality IIS is very difficult
to approximate. In Section 3 we first discuss the connection between IIS-hypergraphs
and vertex-facet incidences of polyhedra which is needed in the sequel. Based on this
connection we also derive that the problem of recognizing IIS-hypergraphs is NP-hard
since it subsumes the well-known Steinitz problem for polytopes. In Section 4 we
investigate rank facets of the feasible subsystem polytope. In particular, we focus at-
tention on the rank inequalities arising from generalized antiwebs, which generalize
cliques, odd holes and antiholes to general independence systems [33]. Finally, the ap-
pendix contains the proof of a result stated in Section 3 which completes the discussion
but is not required in Section 4.

Below we denote the ith row of the matrix A ∈
�

m×n by ai ∈
�

n, 1 ≤ i ≤ m;
for S ⊆ [m] := {1, . . . , m}, AS denotes the |S| × n matrix consisting of the rows
of A indexed by S. By identifying the ith inequality of the system Σ (i.e., aix ≤ bi)
with index i itself, [m] may also refer to Σ.

2 Irreducible Infeasible Subsystems

First we briefly recall the main structural results regarding IISs. For notational sim-
plicity, we use the same A and b, with A ∈

�
m×n and b ∈

�
m, to denote either the

original system Σ or one of its IISs.

The known characterizations of IISs are based on the following version of the
Farkas Lemma: For any linear inequality system Σ : {Ax ≤ b}, either Ax ≤ b is
feasible or ∃y ∈

�
m, y ≥ 0, such that yA = 0 and yb < 0, but not both.

Theorem 1 (Motzkin [37], Fan [23]). The system Σ : {Ax ≤ b} with A, b as above
is an IIS if and only if rank(A) = m − 1 and ∃y ∈

�
m, y > 0, such that yA = 0 and

yb < 0.

The rank condition obviously implies that m ≤ n + 1.

Now let Σ : {Ax ≤ b} be an infeasible system which is not necessarily an IIS. The
following result relates the IISs of Σ to the vertices of a given alternative polyhedron.
Recall that the support of a vector is the set of indices of its nonzero components.

Theorem 2 (Gleeson and Ryan [26]). Let Σ : {Ax ≤ b} be an infeasible system with
A, b as above. Then the IISs of Σ are in one-to-one correspondence with the vertices
of the polyhedron

P := {y ∈
� m |yA = 0, yb = −1, y ≥ 0} .

In particular, the nonzero components of any vertex of P index an IIS.
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See [39] for this statement that slightly extends the original result.
Theorem 2 can also be stated in terms of rays [39] and elementary vectors [27].

Definition 1. An elementary vector of a subspace L ⊆
�

m is a nonzero vector y that
has minimal support (when expressed with respect to the standard basis of

�
m). In

other words, if x ∈ L and supp(x) ⊂ supp(y) then x = 0, where supp(y) denotes
the support of y.

Corollary 1 (Greenberg [27]). Let Σ : {Ax ≤ b} be an infeasible system with A, b
as above. Then S ⊆ [m] corresponds to an IIS of Σ if and only if there exists an
elementary vector y in the subspace L := {y ∈

�
m |yA = 0} with yb < 0 and

y ≥ 0 such that S = supp(y).

The following result establishes an interesting geometric property of the polyhedra
obtained by deleting any inequality from an IIS.

Theorem 3 (Motzkin [37]). Let Σ : {Ax ≤ b} be an IIS and let σ ∈ Σ be an arbi-
trary inequality of Σ. Then the polyhedron corresponding to Σ \ σ, i.e., the subsystem
obtained by removal of σ, is an affine convex cone.

2.1 IIS simplex decomposition

We provide here a new geometric characterization of IISs with at least two inequalities,
that is m ≥ 2. For A ∈

� m×n, b ∈
� m, let Ai := A[m]\{i} and b

i := b[m]\{i} denote
the (m− 1)×n submatrix and, respectively, the (m− 1)–dimensional vector obtained
by removing the ith row of A and ith component of b. The following result strengthens
the necessity of Theorem 1.

Lemma 1. Let {Ax ≤ b} be an IIS. Then Ai has linearly independent rows, for all
1 ≤ i ≤ m; i.e., rank(Ai) = m − 1.

Proof. According to Theorem 1, there exists a y > 0 such that yA = 0 and yb = −1
(by scaling yb < 0). Suppose some proper subset of rows is linearly dependent; i.e.,
there exists z, such that zA = 0, zb ≥ 0 (without loss of generality) and some zk = 0.

If some component zi > 0, consider (y − εz)A = 0, (y − εz)b ≤ −1, where
ε = min{yi/zi | 1 ≤ i ≤ m, zi > 0} > 0 (and y is as above). Then y − εz ≥ 0,
at least one additional component of y − εz is 0, and the Farkas Lemma contradicts
minimality of the system (y − εz fulfills the requirements).

If all zi ≤ 0, then −z ≥ 0, −zA = 0 and −zb ≤ 0; so setting y = −z in the
Farkas Lemma leads to a contradiction of minimality, provided −zb < 0. If −zb = 0,
then (y+εz)A = 0, (y+εz)b = −1, with ε = min{yi/(−zi) | 1 ≤ i ≤ m, −zi > 0}
leads to a contradiction as above.

It is interesting to note that this lemma together with Theorem 1 imply that an infeasible
system {Ax ≤ b} is an IIS if and only if rank(Ai) = m − 1 for all i, 1 ≤ i ≤ m.

We then have the following simplex decomposition result for IISs.

Theorem 4. The system {Ax ≤ b} is an IIS if and only if {Ax = b} is infeasible and
{x ∈

� n |Ax ≥ b} = L + Q, where L is the lineality subspace {x ∈
� n |Ax = 0}

and Q is an (m − 1)-simplex with vertices determined by maximal proper subsystems
of {Ax = b}; namely, each vertex of Q is a solution for a subsystem {Aix = b

i},
1 ≤ i ≤ m.
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Proof. (⇒) The system {Ax = b} is obviously infeasible. To see the feasibility of
{Ax ≥ b}, delete constraint aix ≥ bi to get the equality system {Aix = bi}. By
Lemma 1, this system has a solution, say xi, and we have aixi > bi, else xi satisfies
{Ax ≤ b}. Applying the polyhedral resolution theorem, P := {x ∈

�
n |Ax ≥ b} 6=

∅ can be written as P = K + Q, where K = {x ∈
� n |Ax ≥ 0} is its recession cone

and Q ⊆ P is a polytope generated by representatives of its minimal nonempty faces.
If x satisfies Ax ≥ 0 and aix > 0 for row ai then xi−εx satisfies A(xi−εx) ≤ b

for sufficiently large ε > 0 and the original system {Ax ≤ b} would be feasible.
Therefore we must have that each aix = 0 for 1 ≤ i ≤ m, x ∈ K and we get that in
fact K = L := {x ∈

� n |Ax = 0}.
For Q, minimal nonempty faces of P are given by changing a maximal set of in-

equalities into equalities (all but one relation). Thus the vectors xi obtained by solving
{Aix = b

i} determine Q; i.e., Q = conv({x1, . . . , xm}). For A ∈
�

m×n, Q is the
(m−1)-simplex generated by the m points {x1, . . . , xm}. To see that the xi generate
an (m− 1)-simplex, we must only show that they are affinely independent. But if xi is
affinely dependent on the other xj , then xi =

∑
j 6=i λjx

j with
∑

j 6=i λj = 1. Thus we
have aixi > bi, but aixi = ai(

∑
j 6=i λjx

j) =
∑

j 6=i λj(a
ixj) =

∑
j 6=i λjbi = bi,

which is a contradiction.

(⇐) If the system {Ax ≤ b} is infeasible, then the minimality is obvious, because the
simplex conditions on Q imply that every proper subsystem has an equality solution.

To show that {Ax ≤ b} is infeasible, assume for the sake of contradiction that
x̂ ∈ {x ∈

�
n |Ax ≤ b} 6= ∅ and x̂ satisfies a maximal number of these relations

at equality. Since Ax = b is assumed to be infeasible, we have Ax̂ 6= b, i.e., there
exists i ∈ [m] with aix̂ < bi. Let x1, . . . , xm be the vertices of Q, where xi is a
solution of {Aix = b

i} for i = 1, . . . , m. Similarly, the above assumption together
with the fact that Q ⊆ {x |Ax ≥ b} implies that aixi > bi. Thus we can take
λ = (aixi − bi)/(a

ixi −aix̂) and have 0 < λ < 1, so that ai(λx̂ + (1−λ)xi) = bi.

PSfrag replacements

x1 x2
Q

L

PSfrag replacements

x1 x2Q

L

x3

Figure 1: Illustrations of Theorem 4 in dimensions n = 2 and n = 3. The IISs corresponding to Ax ≤ b

are indicated by the halfspaces with arrows pointing inward. If these are turned around the resulting polyhe-
dron can be written as the sum of a simplex Q (indicated by the dotted segment and grey area, respectively)
and a lineality space L (indicated by the dashed lines).
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But then at λx̂ + (1 − λ)xi more relations of {Ax ≤ b} hold at equality than at x̂,
contradicting the choice of x̂.

According to the above proof, we can take among all possible solutions xi of the
corresponding subsystems {Aix = bi}, for 1 ≤ i ≤ m, the representatives of the
minimal nonempty faces of {Ax ≤ b} that lie in the orthogonal linear subspace L⊥;
i.e., Q ⊂ L⊥. By Lemma 1, we know that {x ∈

�
n |Aix = b

i} = xi +L, where L is
the lineality space of the original linear system {Ax ≥ b}. However, any choice of xi

would do (see Figure 1).

It is worth observing that Theorem 4 handles the following special cases.
– If m = 1, then the system {A1~x ≤ ~b1} is empty and hence has a solution. Consider
for instance {Ax ≤ b} = {0x ≤ −1}, then L = {x ∈

�
n |0x = 0} =

�
n and

{x ∈
�

n |0x ≥ −1} =
�

n + {0} = L + Q = L.
– If m = n + 1, then A has n + 1 rows. Assuming A to be of full column rank,
L = {x ∈

�
n |Ax = 0} = {0}, Q = conv({x1, . . . , xn+1}) is an n-simplex and

{x ∈
� n |Ax ≥ b} = {0} + Q.

2.2 Minimum cardinality IISs

We now consider the complexity status of the following problem for which heuristics
have been proposed in [20, 22, 38, 39].

MIN IIS: Given an infeasible system Σ : {Ax ≤ b} as above, find a minimum cardi-
nality IIS.

To settle the issue left open in [20, 22, 28, 39], we prove that MIN IIS is not
only NP-hard to solve optimally but also hard to approximate. If DTIME(T (m))
denotes the class of problems solvable in deterministic time T (m), the assumption
NP 6⊆ DTIME(mpolylog(m)) is stronger than NP 6= P, but it is also believed to be
extremely likely. Since polylog(m) denotes any polynomial in log(m), the assumption
amounts to stating that all problems in NP cannot be solved in quasi-polynomial time.
Results that hold under such an assumption are often referred to as almost NP-hard.

Theorem 5. Assuming P 6= NP, no polynomial-time algorithm is guaranteed to yield
an IIS whose cardinality is at most c times larger than the minimum one, for any con-
stant c ≥ 1. Assuming NP 6⊆ DTIME(mpolylog(m)), MIN IIS cannot be approximated
within a factor 2log1−ε(m), for any ε > 0, where m is the number of inequalities.

Proof. We proceed by reduction from the following problem: Given a feasible linear
system Dz = d, with D ∈

� m′×n′

and d ∈
� m′

, find a solution z satisfying all
equations with as few nonzero components as possible. In [5] this problem is proved
to be (almost) NP-hard to approximate within the same type of factors, but with m
replaced by the number of variables n. Note that the above nonconstant factor grows
faster than any polylogarithmic function, but slower than any polynomial function.

For each instance of the latter problem which has an optimal solution containing s
nonzero components, we construct a particular instance of MIN IIS with a minimum
cardinality IIS containing s + 1 inequalities. Given any instance (D, d), consider the
system

[
D −D −d

]



z+

z−

z0


 = 0,

[
0

t
0

t −1
]



z+

z−

z0


 < 0, z+, z− ≥ 0, z0 ≥ 0. (1)
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Since the strict inequality implies z0 > 0, the system Dz = d has a solution with s
nonzero components if and only if (1) has one with s + 1 nonzero components. Now,
applying Corollary 1, (1) has such a solution if and only if the system




Dt

−Dt

−d
t


 x ≤




0

0

−1


 (2)

has an IIS of cardinality s + 1. Since (2) is the alternative system of (1), the Farkas
Lemma implies that exactly one of these is feasible; as (1) is feasible, (2) must be
infeasible. Thus (2) is a particular instance of MIN IIS with m = 2n′ + 1 inequalities
in n = m′ variables.

Given that the polynomial-time reduction preserves the objective function modulo
an additive unit constant, we obtain the same type of non-approximability factors for
MIN IIS.

Note that for the similar (but not directly related) problem of determining minimum
witnesses of infeasibility in network flows, NP-hardness is established in [1].

3 IIS-hypergraphs

Although in the previous section the focus was on single IISs, we have seen in the intro-
duction that the complementary version of MAX FS, in which one aims at minimizing
the number of inequalities that must be deleted to make a given infeasible system feas-
ible, can be viewed as the problem of covering all its IISs with a minimum number
of inequalities. Assuming the IISs are known, the entire combinatorial structure of a
MAX FS instance can thus be represented by an appropriate hypergraph containing one
node per inequality and one edge for each IIS.

Let H = (V, E) be a finite hypergraph with node set V and edge set E ⊆ 2V . All
hypergraphs in this paper will be finite. H is called a clutter hypergraph, if no set of E
contains any other set of E , i.e., E is a clutter.

A hypergraph H = (V, E) is isomorphic to a hypergraph H ′ = (V ′, E ′) if there
exists a bijection π : V → V ′ and a bijection τ : E → E ′ such that

τ(E) = {π(v) | v ∈ E} for all E ∈ E .

This relation is denoted by H ∼= H ′.

In this section let K denote either the field � , � , or
�

. Recall that � denotes the real
algebraic numbers, namely all real numbers that are roots of polynomials with integer
coefficients.

Definition 2. A hypergraph H = (V, E), with m = |V |, is an IIS-hypergraph (over K)
if there exists an infeasible linear system Σ = {Ax ≤ b}, with A ∈ Km×n (for
some n) and b ∈ Km, such that H is isomorphic to the clutter hypergraph H(Σ) :=
([m], I), where the i-th inequality of Σ is identified with i and I is the set of IISs of Σ.

In the above definition, infeasibility is meant with respect to
�

.

Investigations of the structure of IIS-hypergraphs (over
�

) began with [44, 45].
IIS-hypergraphs (with no trivial IISs of cardinality 1) turn out to be bicolorable, i.e.,
their nodes can be partitioned into two subsets so that neither subset contains an edge.
Furthermore, IIS-hypergraphs do not share many properties with other known classes
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of hypergraphs generalizing bipartite graphs. See, for instance, the figure in [45] sum-
marizing how IIS-hypergraphs fit into Berge’s hierarchy. Note, however, that there is
more structure for IIS-hypergraphs than simply bicolorability, as there will generally
exist many different bipartitions into two feasible subsystems [27, 44].

According to hypergraph terminology, MIN IIS COVER amounts to finding a mini-
mum cardinality transversal, i.e., a subset of nodes having nonempty intersection with
every edge. Clearly, the problem can also be viewed as that of finding a maximum
stable set in IIS-hypergraphs. The special structure of IIS-hypergraphs accounts for
the fact a minimum transversal (maximum stable set) can be found in polynomial time
in the size of the hypergraph if the corresponding alternative polyhedron is nondegen-
erate (a subclass of uniform hypergraphs) [45], while the problem is NP-hard even for
simple graphs, i.e., for 2-uniform hypergraphs.

In this section we first introduce some terminology and discuss a property of IIS-
hypergraphs which is needed in Section 4 to investigate facets of the feasible subsystem
polytope. In Subsection 3.2, the same property is used to settle the complexity status
of the problem of recognizing whether a given hypergraph is an IIS-hypergraph.

3.1 Connection between IIS-hypergraphs and vertex-facet
incidences of polyhedra

Theorem 2 provides a connection between the combinatorial structure of the IISs of any
given infeasible system (i.e., its IIS-hypergraph) and the vertex-facet incidences of its
alternative polyhedron. To formalize this connection, we need the following concepts
related to finite hypergraphs.

Let H = (V, E) be a hypergraph. For E ∈ E define E := V \ E to obtain the
complement hypergraph H := (V, E), where E = {E |E ∈ E}.

Definition 3 (see [11]). For each node v ∈ V , the set Sv := {E ∈ E | v ∈ E} denotes
the set of all edges of H which contain v. Then H∗ := {E , E∗}, with the edges of H as
nodes and E∗ := {Sv | v ∈ V } as edges, is the dual hypergraph of H .

It is easily verified that H∗∗ ∼= H and (E)∗ ∼= (E∗) for every edge E of H .

Definition 4. Let P be a pointed polyhedron with vertex set VP . Let F1, . . . , Fm be
the facets of P and let Fi := {v ∈ VP | v ∈ Fi} be the vertex set of facet Fi, for
1 ≤ i ≤ m. Then define H(P ) := (VP , {F1, . . . ,Fm}). A hypergraph H = (V, E) is
a vertex-facet incidence hypergraph of P if H is isomorphic to H(P ).

Now we have the following relation:

Lemma 2. Let H = (V, E) be a finite IIS-hypergraph (over K) and H∗ be a clutter
hypergraph. Let Σ : Ax ≤ b, with A ∈ Km×n and b ∈ Km, be any infeasible
system such that H(Σ) ∼= H . Then H∗ is a vertex-facet incidence hypergraph of the
alternative polyhedron corresponding to Σ.

Proof. Denote by I the set of IISs of the given Σ. According to Theorem 2, the ele-
ments of I are in one-to-one correspondence with the supports of the vertices of the
alternative polyhedron

P = {y ∈
� m |Aty = 0, bty = −1, y ≥ 0} .

Identify V with [m] (the set of inequalities of Σ) so that E = I. Let E ∈ E correspond
to an IIS and v be the vertex of P associated with E. The complement of the support
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of v is E, and it determines which faces defined by yj = 0, 1 ≤ j ≤ m, are satisfied
by v with equality, i.e., which of these faces contain v. This means that each set E ∈ E
gives the set of all faces containing a specific vertex.

By definition, each set in E∗ coincides with the vertex set of a face defined by
yj = 0 for some 1 ≤ j ≤ m. Furthermore, each facet of P must be defined by yj = 0
for some 1 ≤ j ≤ m. Since E∗ is a clutter, no vertex set of the faces defined by yj = 0
contains another. Altogether this implies that each yj = 0 defines a facet of P . Thus,
H∗ is a vertex-facet incidence hypergraph of P .

It is worth noting that the reverse direction of the previous lemma also holds.

Lemma 3. Let H = (V, E) be a vertex-facet incidence hypergraph of a polyhedron P
(with a description over K) which is not a cone. Then H∗ is an IIS-hypergraph
(over K).

For completeness the proof is given in the Appendix.
Note the slight asymmetry between the assumptions of Lemma 2 and Lemma 3,

which is due to the fact that vertex-facet incidences cannot capture all information
about the face lattice of unbounded polyhedra (see the comments at the end of Sec-
tion 3). Restricting attention to hypergraphs H such that H∗ is a clutter hypergraph
yields the following result.

Corollary 2. Let H = (V, E) be a finite hypergraph and H∗ be a clutter hypergraph.
Then H is an IIS-hypergraph if and only if H∗ is a vertex-facet incidence hypergraph
of a polyhedron.

Proof. For IIS-hypergraphs, Lemma 2 guarantees the “if”-direction. If H∗ is a vertex-
facet incidence hypergraph of a polyhedron P and it is a clutter hypergraph then P
cannot be a cone. Thus by Lemma 3, H is an IIS-hypergraph.

3.2 IIS-hypergraph recognition

In this subsection we address the interesting problem of recognizing IIS-hypergraphs.

IIS-hypergraph Recognition problem over K: Given a hypergraph H , is H an IIS-
hypergraph over K?

The face lattice of a polytope P is its set of faces, ordered by inclusion, with the
meet defined by intersection. It is well-known (see, e.g., [49]) that the face lattice of P
has a rank function r(·), satisfying r(F ) = dim(F ) + 1 for every face F , and is both
atomic and coatomic. Two polytopes P ⊂

�
p and Q ⊂

�
q are affinely equivalent

(denoted by P ∼= Q) if there exists an affine map φ :
�

p →
�

q , which establishes a
one-to-one correspondence between points in P and Q. Two polytopes with isomor-
phic face lattices are combinatorially equivalent. For the definitions of poset and (face)
lattice we again refer the reader to [49].

We prove NP-hardness of IIS-hypergraph recognition by polynomial-time reduc-
tion from the following decision problem.

Steinitz problem over K: Given a lattice L, does there exist a polytope P ⊂
� d (for

some d) with vertices in Kd whose face lattice is isomorphic to L?

If the answer is affirmative, L is realizable as a polytope. In this case d can be assumed
to be the dimension of L. See [15] for related material. We need a special lattice
construction arising from hypergraphs.
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Let H = (V, E) be a hypergraph. Define the poset L(H) as the set of all intersec-
tions of sets in E , ordered by set inclusion. Furthermore, adjoin a maximal element 1̂.
Clearly, L(H) is bounded and has a meet (defined by intersection); hence it is a lattice.
Note that the size of L(H) can be exponential in the size of H . If H is a vertex-facet
incidence hypergraph of a polytope P then L is isomorphic to the face lattice of P .
This follows from the fact that all faces are determined by their vertex sets or by the
facets they are contained in.

Conversely, let L be an arbitrary ranked, atomic, and coatomic lattice. Let V be
the set of atoms of L. For each coatom F , let EF := {v ∈ V | v is below F in L}.
Then define the hypergraph H(L) := (V, {EF |F coatom of L}). Note that, since L
is atomic, H(L) is a clutter hypergraph by construction. If L is the face lattice of a
polytope, then H(L) is a vertex-facet incidence hypergraph.

Theorem 6. For K ∈ { � , � }, there is a polynomial-time reduction from the Steinitz
problem (over K) to the IIS-hypergraph Recognition problem (over K).

Proof. We show that for any instance of the Steinitz problem, given by an arbitrary
lattice L, we can construct in polynomial time a special instance of the latter problem,
given by a clutter hypergraph H , such that the answer to the first instance is affirmative
if and only if the answer to the second instance is affirmative.

If L is ranked, atomic, and coatomic, take H = H(L)∗. Note that these properties
of L can be checked (Test 1) and H can be constructed in polynomial time in the size
of L, namely the number of elements. If any of these properties fail, let H be any
hypergraph which is not an IIS-hypergraph, e.g., take H = ({1, 2, 3}, {{1, 2}, {2, 3},
{1, 3}}).

In [32] it is proved that, if H is a vertex-facet incidence hypergraph of a poly-
hedron P of dimension d, then there exists a number χ̃ = χ̃(H) ∈ � , namely the
reduced Euler characteristic of the order complex of L(H) (see e.g. [12]) such that
χ̃ = (−1)d−1 if P is bounded while χ̃ = 0 if P is unbounded. Moroever, χ̃ can be
computed in polynomial time in the size of L(H). Note that this result implies that
no unbounded polyhedron and polytope can have isomorphic vertex-facet incidence
hypergraphs.

Since χ̃(H∗) can be computed in polynomial time in the size of L(H∗), which
equals the size of L. If χ̃(H∗) = 0 (Test 2), then replace H by any hypergraph which
is not an IIS-hypergraph.

The resulting H is the input to the IIS-hypergraph Recognition problem. Assume
that the answer to the IIS-hypergraph Recognition of H is affirmative, i.e., H is an IIS-
hypergraph. As noted above, the atomicity of L implies that H∗ is a clutter hypergraph.
By Lemma 2, H∗ is a vertex-facet incidence hypergraph of some polyhedron P .

First assume that P is a polytope. By construction, L is isomorphic to L(H∗) =
L(H(L)). Since P is a polytope, L(H∗) is isomorphic to the face lattice of P and
hence so is L, i.e., the answer to the Steinitz problem for L is affirmative.

Now assume P is an unbounded polyhedron. Then H∗ is a vertex-facet incidence
hypergraph of an unbounded polyhedron and, according to the above-mentioned result,
we have χ̃(H∗) = 0. But in this case we replaced the input by an instance which is not
an IIS-hypergraph; this is a contradiction.

Conversely assume that the answer to the Steinitz problem for L is affirmative.
Then there exists a polytope P such that L is isomorphic to the face lattice of P and
hence, by construction, H∗ is a vertex-facet incidence hypergraph of P . Now P is
not a cone unless P = {0}, a case which can be easily identified and discarded. By
applying Lemma 3 to H∗, it follows that H is an IIS-hypergraph.
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Note that since L is ranked, atomic, and coatomic, it has necessarily passed Test 1.
Furthermore, by the above-mentioned result we have χ̃(H∗) = ±1, which implies that
it also passed Test 2. Thus, the answer to the IIS-hypergraph Recognition question
for H is affirmative.

Given polynomials f1, . . . , fr, g1, . . . , gs, h1, . . . , ht ∈ � [x1, . . . , xl], the problem
to decide whether the polynomial system f1 = 0, . . . , fr = 0, g1 ≥ 0, . . . , gs ≥ 0,
h1 > 0, . . . , ht > 0 has a solution in K l = � l is called the Existential theory of the
reals (ETR). ETR is polynomial-time equivalent to the Steinitz problem for 4-polytopes
over � [42]. All polytopes realizable over

�
, are realizable over � . Moreover, ETR is

polynomial-time equivalent to the Steinitz problem for d-Polytopes with d + 4 vertices
over � [36]. Since ETR is easily verified to be NP-hard [13], the same is valid for the
general Steinitz problem (over � ) and for the IIS-hypergraph recognition problem.

According to Theorem 2.7 of [15], for K = � or � , deciding whether an arbitrary
polynomial f ∈ � [x1, . . . , xl] has zeros in K l, where l is a positive integer, is equiv-
alent to solving the Steinitz problem for K. For K = � , it is not even clear whether
the Steinitz problem (and therefore the IIS-hypergraph Recognition) is decidable, since
finding roots in K = � of a single polynomial f ∈ � [x1, . . . , xl] is the unsolved ra-
tional version of Hilbert’s 10th problem. By the quantifier elimination result of Tarski,
the problem is decidable for K = � . Note that, unlike

�
, � admits a finite represen-

tation. For K = � , it is unknown whether the Steinitz problem is in NP. See [14, 35]
and references therein for this and related issues.

Finally it is worth noting that to establish the reverse direction of Theorem 6 one
would need to provide an appropriate input (a lattice) to the Steinitz problem. This task
appears to be difficult to achieve because we need to consider the case of unbounded
polyhedra. In fact, as shown in [32], it is in general impossible to reconstruct the face
lattice of an unbounded polyhedron P given a vertex-facet incidence hypergraph H
of P , even when H is a clutter hypergraph.

4 Feasible Subsystem (FS) Polytope

An independence system (E, I) is defined by a finite ground set E and a collection
of subsets I ⊆ 2E such that I ∈ I and J ⊂ I imply J ∈ I. The subsets of E that
(do not) belong to I are the so-called independent (dependent) sets. An independence
system can be defined by its collection of independent sets I or, equivalently, by the
collection C of all minimal dependent subsets of E; i.e., any dependent subset each of
whose proper subsets are independent. To any independence system (E, I) with the
collection of circuits C, we can associate the polytope

P (I) = conv({y ∈ {0, 1}|E| |y is the incidence vector of an I ∈ I},

which will also be denoted by P (C).
Now consider an infeasible system Σ : {Ax ≤ b} with no single inequality that is

trivially infeasible. Let [m] = {1, . . . , m} be the set of indices of the inequalities in Σ.
If I denotes the set of all feasible subsystems of Σ, ([m], I) is clearly an independence
system and its set of circuits C corresponds to the set of all IISs. We denote by PFS(Σ)
the Feasible Subsystem polytope, defined as the convex hull of all the incidence vectors
of feasible subsystems.

Before investigating this polytope, let us recall some definitions and facts regard-
ing general independence system polytopes. The rank function is defined by r(S) =

11



max{|I| | I ⊆ S, I ∈ I} for all S ⊆ E. For any S ⊆ E, the rank inequality
for S is

∑
e∈S ye ≤ r(S), which is clearly valid for P (I). A subset S ⊆ E is closed if

r(S ∪ {t}) ≥ r(S)+1 for all t ∈ E−S and nonseparable if r(S) < r(T )+r(S − T )
for all T ⊂ S, T 6= ∅. For any set S ⊆ E, S must be closed and nonseparable for the
corresponding rank inequality to define a facet of P (I). These conditions generally are
only necessary, but sufficient conditions can be stated using the following concept [33].
For S ⊆ E, the critical graph GS(I) = (S, F ) is defined as follows: (e, e′) ∈ F , for
e, e′ ∈ S, if and only if there exists an independent set I such that I ⊆ S, |I| = r(S)
and e ∈ I , e′ /∈ I , I − e + e′ ∈ I. It is shown in [33] that if S is a closed subset
of E and the critical graph GS(I) of I on S is connected, then the corresponding rank
inequality induces a facet of the polytope P (I). (See references in [16].)

We now turn to the feasible subsystem polytope. According to well-known facts
about independence system polytopes, PFS(Σ) is full-dimensional if and only if there
are no trivially infeasible inequalities in Σ. Moreover, the inequalities yi ≥ 0 are facet
defining for all 1 ≤ i ≤ m, and it is easy to verify that for each i the inequality yi ≤ 1
defines a facet of PFS(Σ) if and only if there is no IIS of cardinality 2 that includes the
ith inequality of Σ.

4.1 Rank facets arising from IISs

In fact, Parker [38] began an investigation of the polytope associated to the MIN IIS
COVER problem, considering it as a special case of the general set covering polytope
(see also references in [16]). Since there is a simple correspondence between set cov-
ering polytopes and the associated independence system polytopes [33], the results
in [38] can be translated so that they apply to PFS(Σ).

From now on, we assume that all IISs are nontrivial, i.e., they are of cardinality
greater or equal to two. Let S be an arbitrary IIS of Σ, with ASx ≤ bS its associated
subsystem. Then the rank inequality

∑

i∈S

yi ≤ r(S) = |S| − 1

is called an IIS-inequality. Since the corresponding covering inequality
∑

i∈S yi ≥ 1
is proved to be facet defining in [38], we have:

Theorem 7. Every IIS-inequality defines a (rank) facet of PFS(Σ).

We give a geometric proof (based on the above-mentioned sufficient conditions [33]
and our IIS simplex decomposition result) in the following, which is simpler than that
of [38] and which provides additional insight into the IIS structure.

Proof. It is easy to verify that IIS-inequalities are valid for PFS(Σ). Since the critical
graph corresponding to any IIS is clearly connected (in fact, a complete graph), we just
need to show that the index set of every IIS is closed.
a) First consider the case of maximal IISs defined by subset S ⊆ E, i.e., with |S| =
n + 1, where E is the index set of the entire system Σ.

For each i ∈ S, consider the unique xi = A−1
S\{i}bS\{i}. By the proof of The-

orem 4, we know that x1, . . . , xn+1 are affinely independent. If we define di :=
(xi − x̂) for all i, 1 ≤ i ≤ n + 1, where x̂ := 1

n+1

∑n+1
i=1 xi is the barycenter of

the xi’s, then d1, . . . , dn+1 are also affinely independent. Clearly
∑n+1

i=1 di = 0 and
the di’s generate

� n. Since each xi satisfies exactly n of the n + 1 inequalities in

12
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Figure 2: Illustration of the proof of Theorem 7.

ASx ≤ b with equality and for the ith one aixi > bi (otherwise S would be feas-
ible), we have x̂ ∈ {x ∈

�
n |ASx ≥ bS }. In other words, x̂ satisfies the reversed

inequalities of the IIS. In fact, x̂ is an interior point of the above “reversed” polyhedron.
According to Theorem 3, deleting any inequality from an IIS yields a feasible sub-

system that defines an affine cone. For maximal IISs, we have n + 1 affine cones
Ki := xi+K ′

i, where K ′
i = {x ∈

�
n |AS\{i}x ≤ 0} for 1 ≤ i ≤ n+1. Note that the

ray generated by di passing through xi, i.e., Ri := {x ∈
�

n |x = xi +αdi, α ≥ 0},
is contained in Ki because we have

AS\{i}(αdi) = αAS\{i}(x
i − x̂) = α(bS\{i} − AS\{i}x̂) ≤ 0,

where we used the fact that AS\{i}x̂ ≥ bS\{i}. To show that the maximal IIS defined
by S is closed, we consider an arbitrary inequality ãx ≤ b̃ with ã 6= 0 and verify that
H := {x ∈

�
n | ãx ≤ b̃} has a nonempty intersection with at least one of the Ki’s,

1 ≤ i ≤ n + 1. This implies, in particular, that for any inequality index t ∈ E − S
we have rank(S ∪ {t}) = rank(S) + 1 = n + 1, which means that the IIS under
consideration is closed.

Since d1, . . . , dn+1 generate
�

n and
∑n+1

i=1 di = 0, we have

n+1∑

i=1

ãdi = ã(
n+1∑

i=1

di) = 0

and therefore ã 6= 0 implies that we cannot have ãdi = 0 ∀i, 1 ≤ i ≤ n + 1. Thus
there exists at least one i, such that ãdi < 0. But this implies that Ri ∩ H 6= ∅. In
other words, Ki ∩ H 6= ∅ and this proves the theorem for maximal IISs.

b) The result can be easily extended to non-maximal IISs, i.e., with |S| < n + 1. From
Theorem 4 we know that P := {x ∈

�
n |ASx ≥ bS} = L + Q with Q ⊆ L⊥.

Since P is full-dimensional (the barycenter of Q is an interior point), n = dim(P ) =
dim(L) + dim(Q) and dim(Q) = rank(AS) = |S| − 1 < n imply that dim(L) ≥ 1.

Two cases can arise:
i) If the above-mentioned ã belongs to the linear hull of the rows of AS denoted by
lin({ai | i ∈ S}) = L⊥, then since dim(L⊥) = dim(Q), we can apply the above
result to L⊥.
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ii) If ã 6∈ lin({ai | i ∈ S}) = L⊥, then the projection of H= := {x ∈
� n | ãx = b̃}

onto L⊥ yields all of L⊥ and therefore H = {x ∈
�

n | ãx ≤ b̃} must have a nonempty
intersection with all the cones corresponding to the maximal consistent subsystems of
{ASx ≤ bS}.

It is worth emphasizing that closedness of every IIS makes the feasible subsystem
polytope quite special among all independence system polyhedra, since the circuits
of a general independence system need not be closed. For example, consider the in-
dependent system defined by stable sets of nodes in a simple graph; here the circuits
correspond to the edges of the graph and it is clear that these circuits are not necessarily
closed (it suffices to consider any K3 in the graph).

We now turn to the IIS-inequality Separation problem, which is defined as fol-
lows: Given an infeasible system Σ and an arbitrary vector y ∈

�
m, show that y

satisfies all IIS-inequalities or find at least one violated by y.

In view of the trivial valid inequalities, we can assume that y ∈ [0, 1]m. Moreover, we
may assume with no loss of generality, that the nonzero components of y correspond
to an infeasible subsystem of Σ.

Proposition 1. The separation problem for IIS-inequalities is NP-hard.

Proof. We proceed by polynomial-time reduction from the decision version of the MIN

IIS problem, which is NP-hard according to Theorem 5. Given an infeasible system
Σ : {Ax ≤ b} with m inequalities, n variables, and an integer K with 1 ≤ K ≤ n+1,
does it have an IIS of cardinality at most K?

Let (A, b) and K define an arbitrary instance of the above decision problem. Con-
sider the particular instance of the separation problem given by the same infeasible
system together with the vector y such that yi = 1 − 1/(K + 1) for all i, 1 ≤ i ≤ m.

Suppose that Σ has an IIS of cardinality at most K which is indexed by the set S.
Then the corresponding IIS-inequality

∑
i∈S yi ≤ |S| − 1 is violated by the vector y

because

∑

i∈S

yi =
∑

i∈S

(1 −
1

K + 1
) = |S| −

|S|

K + 1
> |S| − 1,

where the strict inequality is implied by |S| ≤ K. Thus the vector y can be separated
from PFS(Σ).

Conversely, if there exists an IIS-inequality violated by y, then

∑

i∈S

yi = |S| −
|S|

(K + 1)
> |S| − 1

implies that the cardinality of the IIS defined by S is at most K.
Therefore, the original infeasible system Σ has an IIS of cardinality at most K if

and only if some IIS-inequality is violated by the given vector y.

4.2 Rank facets arising from generalized antiwebs

In [33] the concept of generalized antiwebs, which generalize cliques, odd holes and
antiholes to independence systems, is introduced. Necessary and sufficient conditions

14



are also established for the corresponding rank inequalities to define facets of the asso-
ciated independence system polytope.

Let m, t, q be integers such that 2 ≤ q ≤ t ≤ m, let E = {e0, . . . , em−1}
be a finite set, and define for each i ∈ M := {0, . . . , m − 1} the subset E i =
{ei, . . . , ei+t−1} (where the indices are taken modulo m) formed by t consecutive
elements of E. An (m, t, q)-generalized antiweb on E is the independence system
having the following family of subsets of E as circuits:

AW(m, t, q) = {C ⊆ E |C ⊆ Ei for some i ∈ M, |C| = q}.

Define P (AW(m, t, q)) to be the polytope of the independence system defined by
AW(m, t, q) and AW(m, t) := AW(m, t, t). Note that the case t = q = 1 would
correspond to m trivially infeasible inequalities, e.g., 0x ≤ −1.

As observed in [33], AW(m, t, q) corresponds to generalized cliques when m = t,
to generalized odd holes when q = t and t does not divide m, and to generalized
antiholes when m = qt + 1.

In this section we determine under which circumstances generalized antiwebs give
rise to rank facets of the form

∑
i∈S yi ≤ r(S) of PFS(Σ). Defining the hypergraph

H(AW(m, t, q)) := (E,AW(m, t, q)), the first question is: for which values of m, t,
and q is H(AW(m, t, q)) an IIS-hypergraph?

Lemma 4. If H(AW(m, t, q)) is an IIS-hypergraph then t = q.

Proof. Suppose that q < t and consider E1, an arbitrary circuit C ∈ AW(m, t, q)
with C ⊆ E1, and an arbitrary element e ∈ E1 \ C. By definition of AW(m, t, q),
any cardinality q subset of E1 is a circuit. This must be true in particular for all sub-
sets containing e and q − 1 elements of C. But then C cannot be closed because
r(C ∪ {e}) = r(C) and thus we have a contradiction to the fact that all IISs are closed
(consequence of Theorem 7).

To provide a characterization of IIS-hypergraphs arising from generalized antiwebs,
we need the following result that is proved using topological arguments.

Proposition 2 (Joswig, Kaibel, Pfetsch, Ziegler [32]). Let 1 < k < m be integers.
Then H(AW(m, k)) is a vertex-facet incidence hypergraph of a polyhedron P if and
only if P is a simplex or a polygon.

Together with Lemma 2 and Lemma 4 we obtain:

Proposition 3. H(AW(m, t, q)) is an IIS-hypergraph if and only if t = q and

i. t = m or
ii. t = m − 2.

Proof. Lemma 4 implies that necessarily t = q. Now assume H := H(AW(m, t)) is
an IIS-hypergraph. If t = m, we have a single IIS of size m. Therefore assume t < m.

Since t < m, H∗ is a clutter hypergraph and hence, by Lemma 2, H∗ is a vertex-
facet incidence hypergraph of a polyhedron P . Now AW(m, t) ∼= AW(m, k) with
k := m − t > 0 and H(AW(m, k))∗ ∼= H(AW(m, k)). Hence H(AW(m, k)) is a
vertex-facet incidence hypergraph of P . Since 2 ≤ t < m we have 0 < k < m − 1.
Furthermore k > 1 because H(AW(m, 1)) can only be a vertex-facet hypergraph if
m = k = 1, and this case is excluded by 1 < t < m.

By Proposition 2, P is a polygon; i.e., k = 2 (t = m − 2). Note that the case of a
simplex (k = m − 1) cannot arise. Clearly, examples of infeasible inequality systems
exist for all possible values of the above parameters. This proves sufficiency.
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This proposition implies that only two types of generalized antiwebs can arise as in-
duced hypergraph of IIS-hypergraphs. In particular, the only generalized cliques that
can occur are those with t = m, namely those corresponding to single IISs. For gen-
eralized odd holes the only cases that can arise are those with t = m − 2. Finally, all
generalized antiholes are ruled out since m = tq + 1 ⇔ m = (m − 2)2 + 1, which is
never satisfied.

To determine in which cases facets arise from generalized antiwebs, we need the
two following results.

Lemma 5 (Laurent [33]). The valid inequality
∑

e∈E ye ≤ bm(q − 1)/tc (rank in-
equality) arising from a generalized antiweb defines a facet of the independence system
polytope P (AW(m, t, q)) if and only if t = m or t does not divide m(q − 1).

Note that the right hand side of the above inequality is the rank of the independence
system defined by AW(m, t, q) (see [33]).

Let C be the set of circuits of an independence system I over the ground set [m].
For any S ⊆ [m], let CS = {C ∈ C |C ⊆ S} denote the family of circuits of I induced
on S.

Lemma 6 (Laurent [33]). The rank inequality
∑

e∈S ye ≤ r(S) induces a facet of
P (C) if and only if S is closed and it induces a facet of P (CS).

Altogether we obtain the following characterization of the rank facets of PFS(Σ)
that can be induced by generalized antiwebs.

Theorem 8. Let Σ be an infeasible inequality system with m inequalities and C be the
IISs of Σ. Let S ⊆ [m] and assume CS = AW(|S|, t) for some 2 ≤ t ≤ |S|. The rank
inequality

∑

e∈S

ye ≤

⌊
|S|(q − 1)

t

⌋
(3)

defines a facet of PFS(Σ) if and only if t = q and one of the following holds

i. t = |S| (IIS-inequality)
ii. S is closed, t = |S| − 2 and t 6= 2.

Proof. By Proposition 3, there are only two cases in which AW(|S|, t) can arise as an
induced hypergraph of an IIS-hypergraph (in both of them necessarily t = q).

i) Case t = |S|: AW(|S|, t) consists of a single circuit (IIS). Since Theorem 7
implies that S is closed, this gives (together with Lemma 6) another proof that
the rank facets arising from IISs define facets.

ii) Case t = |S|−2: By Lemma 5, inequality (3) defines a facet for P (AW(|S|, t))
if and only if t does not divide |S|(t− 1) = (t + 2)(t− 1) = t2 + t− 2. Clearly
this can only be the case if t = 1 (which is not feasible) or t = 2. Therefore by
Lemma 6, inequality (3) defines a facet of PFS(Σ) if and only if S is closed and
t 6= 2.

Example. Figure 3 gives an example of an infeasible system with m = 5 inequalities
in dimension n = 2 (see also [40]). Its IISs form an AW(5, 3). The inequalities
are indexed by 0, 1, 2, 3, 4. In the corresponding PFS(Σ) polytope the variables are
numbered likewise. Its full description is given by the following facets:
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Figure 3: Left: an infeasible linear inequality system, whose IISs {0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 0},
and {4, 0, 1} form a generalized antiweb AW(5, 3). Top right: incidence matrix of H(AW(5, 3)) accord-
ing to the notation of Section 3. Bottom right: incidence matrix of the dual hypergraph H(AW(5, 3))∗.
This matrix is the transpose of the above matrix. Clearly, the incidence matrix of the complement hypergraph
is a vertex-facet incidence matrix of a polygon.

• Trivial bounds: 0 ≤ yi ≤ 1 for 0 ≤ i ≤ 4.
• The IIS-inequalities:

∑
i∈S yi ≤ 2 for S = {0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 0},

{4, 0, 1}.
• The rank inequality y0+y1+y2+y3+y4 ≤ 3 arising from the unique generalized

antiweb.

5 Concluding Remarks

A question that naturally arises is whether our results are also valid for more general
(mixed) linear systems with equality as well as inequality relations. Since any equation
ax = b can be substituted by the pair of inequalities ax ≤ b and −ax ≤ −b, any
generalized MAX FS instance I with m1 equations and m2 inequalities can obviously
be reduced to a usual MAX FS instance I ′ with 2m1 + m2 inequalities, in which one
aims at maximizing the number of such pairs of inequalities that can be simultaneously
satisfied. Clearly, since any vector x satisfies at least one inequality out of each pair,
an optimal solution of I contains m∗ linear relations if and only if an optimal solu-
tion of I ′ contains m∗ + m1 inequalities. Thus, from a computational point of view,
generalized instances of MAX FS with mixed systems can be dealt with a polyhedral
approach based, among others, on the facet-defining inequalities discussed in this pa-
per. Not all of the above results, however, can be easily generalized to mixed systems.
In particular, it is still open whether the simplex decomposition characterization (The-
orem 4) can be extended. On the other hand, the complexity results regarding MIN

IIS (Theorem 5) and the IIS-hypergraph Recognition problem (Theorem 6) obviously
hold for this generalized class of instances. Note also that generalized versions of the
alternative polyhedron result (Theorem 2) for general mixed systems or mixed systems
(LPs) where all inequalities are nonnegativity constraints are given in [39].
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In this paper we have investigated structural and algorithmic properties of IISs, IIS-
hypergraphs, and of the feasible subsystem polytope PFS(Σ). On the structural and
geometric side, we have: provided a new characterization of IISs, given a new proof of
the fact that all IISs are closed, and shown that only two very specific types of general-
ized antiwebs (generalized cliques and odd holes) can arise as induced hypergraphs of
an IIS-hypergraph. In particular, the only generalized cliques that can occur are those
corresponding to single IISs. The above results imply that the feasible subsystem poly-
tope PFS(Σ) admits only a very limited type of rank facets induced by generalized
antiwebs. This is in sharp contrast with other known independence system polytopes
related to graphical problems, such as the maximum cardinality stable set problem in
a graph, for which a wealth of such rank facets have been extensively studied. On the
algorithmic side, we have established that: finding smallest cardinality IISs is very hard
to approximate, IIS-hypergraph recognition is NP-hard and IIS rank facets cannot be
separated in polynomial time, unless P = NP.

Interesting open questions include: What is the computational complexity of sep-
arating inequalities arising from generalized antiwebs? Do other PFS-specific rank
facets exist? Does the polytope PFS admit higher order facets besides the ones studied
in [9] with 0, 1, 2 coefficients?
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Appendix

To prove Lemma 3 of Section 3.1, we first need to verify the following.

Claim. Let P be a d-dimensional pointed polyhedron which has a description over
K and is not a polyhedral cone. Let m be the number of facets. Then there exists a
polyhedron

P ′ =
{
y ∈

� m |Aty = 0, bty = −1, y ≥ 0
}

,

where A ∈ Km×(m−d−1) and all inequalities yj ≥ 0, 1 ≤ j ≤ m, define facets, which
is affinely (and hence combinatorially) equivalent to P .

Proof. By projection onto the affine hull of P we can assume, w. l. o. g., that P is full-
dimensional. Moreover, it can be represented as P = {x ∈

�
d |Cx ≤ c}. Since P

has a minimal description over K, C ∈ Km×d and each inequality defines a facet. The
resulting polyhedron is affinely equivalent to P and can be represented as:

{
x ∈

� d

∣∣∣∣
(

C1

C2

)
x ≤

(
c1

c2

)}
,

where C1 is a full-rank d × d matrix (P is pointed), C2 is an (m − d) × d matrix,
c1 ∈ Kd, and c2 ∈ Km−d. Now apply the (bijective) affine transformation x 7→
C−1

1 (c1 − u), where u := c1 − C1x ∈
�

d and get:

(
C1

C2

)
C−1

1 (c1 − u) ≤

(
c1

c2

)
⇔

(
−I

−C2C
−1
1

)
u ≤

(
0

c2 − C2C
−1
1 c1

)
.

Setting c′ := c2 − C2C
−1
1 c1 and C ′ := −C2C

−1
1 ∈ K(m−d)×d gives

P ∼= {u ∈
� d |C ′u ≤ c′, u ≥ 0}.
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Clearly, all inequalities define facets. The introduction of slack variables s ∈
� m−d

yields

P ∼=
{
(u, s) ∈

� d ×
� m−d |C ′u + Is = c′, u ≥ 0, s ≥ 0

}
,

where all inequalities still define facets and the matrix [C ′ I] has size (m − d) × m.
Since P is not a cone, we must have c′ 6= 0. Therefore c′ has at least one nonzero

component; assume it is the last one. By adding multiples of the last row to the other
rows of [C ′ I | c′], we can eliminate all other nonzero components of c′. The resulting
system with matrix [A′ A′′] and right hand side (0, . . . , 0, α)t, with α 6= 0, is clearly
affinely equivalent. We denote by At the matrix [A′ A′′] without the last row and by bt

the last row of [A′ A′′] divided by −α (in order to scale the right hand side to −1).
Then A ∈ Km×(m−d−1), b ∈ Km and

P ∼= P ′ :=
{
y ∈

� m |Aty = 0, b
t
y = −1, y ≥ 0

}
,

where each inequality yj ≥ 0 defines a facet for j = 1, . . . , m. Since only affine
transformations were applied, P ′ is affinely equivalent to P .

Proof of Lemma 3. According to the claim, there exists a polyhedron P ′ affinely equiv-
alent to P , where P ′ =

{
y ∈

�
m |Aty = 0, bty = −1, y ≥ 0

}
. Each face of P ′

defined by yj = 0 is a facet, 1 ≤ j ≤ m. Now V corresponds to the vertices of P and
hence P ′. If one identifies V with the set of vertices of P ′, then each set of E is the ver-
tex set of a facet of P ′. Moreover, each set E∗ ∈ E∗ is the set of facets which contain
a specific vertex v of P ′. If we identify [m] with the set of facets, E∗ is the support
of v. Thus, by Theorem 2, {Ax ≤ b} is an infeasible system whose IISs correspond
bijectively to the sets in E∗.
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