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Abstract

The essential structural information of discrete Morse functions is cap-
tured by so-called Morse matchings. We show that computing optimal
Morse matchings is NP-hard and give an integer programming formu-
lation for the problem. Then we present first polyhedral results for the
corresponding polytope and report on some preliminary computational
results.

1 Introduction

Discrete Morse functions where introduced by Forman [3] as a combinatorial
analogy of classical smooth Morse theory and have many applications in combi-
natorial topology, e.g., they can be used to compute a compact representation
of a simplicial complex as an CW-complex; for details and other applications
see [3], Chari [1], and Joswig [6]. It turns out that the essential information
of discrete Morse functions can be stored in a Morse matching. To be concise,
we will therefore not give the definition of discrete Morse functions but state
everything in terms of Morse matchings. In the applications one is interested in
optimal Morse matchings, a problem which leads to a combinatorial optimiza-
tion problem that we will describe in the following.

We first need some notation. Let ∆ be a (finite abstract) simplicial complex,
i.e., a set of subsets of a finite set V with the following property: if F ∈ ∆
and G ⊆ F , then G ∈ ∆; hence ∆ is an independence system with ground
set V . In the following we will ignore ∅ as a member of ∆. The elements in V
are called vertices and the elements of ∆ are called faces. The dimension of a
face F is dim F := |F | − 1. In the following let d = max{dim F : F ∈ F} be
the dimension of ∆. Let F be the set of faces of ∆ and let fi = fi(∆) be the
number of faces of dimension i ≥ 0. The maximal faces with respect to inclusion
are called facets and ∆ is pure, if all facets have the same dimension.
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Consider the Hasse diagram H = (F , A) of ∆, that is, a directed graph on
the faces of ∆ with an arc (F,G) ∈ A if G ⊂ F and dim G = dim F − 1. It
will be convenient not to distinguish between H and its underlying undirected
graph, i.e., when we speak of matchings and (undirected) cycles we mean the
corresponding structures in the underlying undirected graph.

Let M ⊂ A be a matching in H and let H(M) be the directed graph ob-
tained from H by reversing the direction of the arcs in M . Then M is a Morse
matching of ∆ if H(M) does not contain directed cycles, i.e., is acyclic (in the
directed sense). Chari [1] showed that the essential structure of discrete Morse
functions are contained in Morse matchings. As stated above, one is interested
in maximum Morse matchings, i.e., the size of M is maximized. The comple-
mentary measure to |M | is the number of critical faces of M , i.e., faces not
matched by M . Hence, by maximizing |M |, we minimize the number of critical
faces.

It seems helpful to briefly describe the case of Morse matchings for a one-
dimensional simplicial complex ∆. Then ∆ represents the incidences of a
graph G. A Morse matching M of ∆ matches edges with nodes of G. Let G̃ be
the following oriented subgraph of G: take all edges which are matched in M
and orient them towards its matched node. Since M is a matching this con-
struction is well defined and the in-degree of each node is one. The acyclicity
property shows that G̃ contains no directed cycles and hence is a branching.
Therefore, the Morse matchings on a graph G are in one-to-one correspondence
with orientations of subgraphs of G which are branchings. Generalizing this
idea, Lewiner, Lopes, and Tavares [7] developed a heuristic for computing op-
timal Morse matchings, which works well for the data set which we also use in
Section 4.

In the following we will show that computing optimal Morse matchings is
NP-hard. Then we will give an integer programming formulation for the prob-
lem and sketch polyhedral results for the corresponding polytope. We end with
some preliminary computational results.

2 Hardness of Computing an Optimal Morse
Matching

Eǧecioǧlu and Gonzalez [2] proved a hardness result which in terms of Morse
matchings reads as follows: Given a pure 2-dimensional simplicial complex ∆
and an integer K, it is NP-complete to decide whether there exist a Morse
matching with at most K critical 2-faces, i.e., faces of dimension 2. In fact we
can remove the “restriction” to 2-faces and prove:

Theorem 2.1. Given a simplicial complex ∆ and an integer K, it is NP-
complete to decide whether there exists a Morse matching with at most K critical
simplices.

This result holds even when ∆ is connected (i.e., H is connected), pure,
2-dimensional, and it can be embedded in R3. A crucial part in the proof of
this theorem is the following lemma:

Lemma 2.2. Given any Morse matching M on ∆, we can compute a Morse
matching M ′ which has exactly one critical vertex and at most as many critical
2-faces as M .
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This lemma and the Euler equation make it possible to reduce the gen-
eral case to the problem discussed by Eǧecioǧlu and Gonzalez. In fact, they
proved strong inapproximability results for their problem. Lewiner, Lopes, and
Tavares [7] claimed the same inapproximability results for computing Morse
matchings with a minimum number of critical faces, but did not supply a rea-
soning as in the lemma. The reduction in our proof is not approximation pre-
serving. Therefore, the approximability status seems to be open; the same holds
for computing maximum Morse matchings.

3 An IP-formulation

In this section we will discuss an integer programming formulation of the prob-
lem to compute a maximum Morse matching. We introduce a binary variable xa

for every arc in H, where xa = 1 if and only if a should be reversed in a Morse
matching. The matching conditions are modeled by:

x(δ(F )) :=
∑

a∈δ(F )

xa ≤ 1 ∀ F ∈ F . (1)

To handle the acyclicity requirement, let M be a Morse matching and assume C
to be a directed cycle in H(M). Because of the matching property, the nodes
in C can only belong to two levels in the Hasse diagram, i.e., {dim F : F ∈ C} =
{i, i + 1} for some i ∈ {0, . . . , d − 1}. Therefore define Hi to be the subgraph
of H induced by the faces of dimension i and i + 1, for i ∈ {0, . . . , d − 1}.
Again by the matching property, the values xa for the arcs in C alternate. A
little thought reveals that the following constraints suffice to eliminate directed
cycles:

x(C) :=
∑
a∈C

xa ≤
|C|
2
− 1 ∀ C cycle in Hi, i = 0, . . . , d− 1. (2)

Hence, the convex hull of all incidence vectors of Morse matchings is the follow-
ing polytope:

PM :=
{
x ∈ {0, 1}A : x satisfies (1) and (2)

}
.

A Morse matching with incidence vector x ∈ PM has |F| − 2 x(A) critical
faces. The problem to compute an optimal Morse matching is then to solve
max{x(A) : x ∈ PA}.

It is easy to see that PM is a monotone, full dimensional polytope and that
xa ≥ 0 defines a facet for every a ∈ A. Let us remark that the incidence vectors
of Morse matchings do not have to be monotone if H is an arbitrary acyclic
digraph. We can prove the following results:

Proposition 3.1. The matching constraints x(δ(F )) ≤ 1 define facets of PM

for F ∈ F , except if |δ(F )| ≤ 1.

It follows that the inequalities xa ≤ 1, a ∈ A, never define facets.

Proposition 3.2. The cycle constraints (2) define facets of PM and can be
separated in polynomial time.
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Some of the features of our problem resemble the acyclic subgraph problem
(ASP), studied by Grötschel, Jünger, and Reinelt [4]. The separation algo-
rithm referred to in Proposition 3.2, however, is more complicated than the one
for ASP, since the usual affine transformation trick (x′ = 1 − x) to turn the
separation problem into a shortest cycle problem does not work in our case.

One can strengthen the LP relaxation considerably by adding so called Morse
inequalities, which say that the number of critical faces of dimension i is at
least the Betti number βi, see Forman [3]. This translates to the inequality∑

F∈Fi
x(δ(F )) ≤ fi − βi.

4 Computational Results

We performed preliminary computational experiments with a branch-and-cut
code for the above integer programming formulation. The algorithm was im-
plemented using the branch-and-cut-and-price framework SCIP, developed by
Tobias Achterberg at the Zuse Institute Berlin. We computed Morse match-
ings for the smaller problems in a collection of simplicial complexes maintained
by Hachimori [5]. As a primal heuristic we used a simple greedy algorithm.
Whenever possible we branched as follows: for a face F ∈ F , we branch on the
following three constraints: x(δ−(F )) = 1, x(δ+(F )) = 1, x(δ(F )) = 0; this
seems to work very well. Additionally, we added Gomory cuts.

Computing optimal Morse matchings in practice appears to be hard for
relatively small problems. The reason seems to be the high symmetry of the
problems and the weakness of the LP relaxation. One has a good chance,
however, if the absolute difference between the optimal value and the bounds
implied by the Morse inequalities is small. In fact, for many of the problems
in Hachimori’s collection this difference is 0 and the algorithm “only” has to
find the optimal primal solution, which it usually finds fast. Summarizing, our
code can solve all 10 problems in the collection with up to 160 arcs in the Hasse
diagram (and two larger ones) in about an hour; about 50% of these problems
are solved in a few seconds.

It is clear, that there are still many things to investigate. Our plan for
the future is to find other (facet defining) inequalities for PA that can help to
improve the dual bound. Furthermore, it seems interesting to check whether
local search methods can help to improve primal solutions.
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