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1. Introduction

Diffusion is an important aspect of various processes in the natural sciences. Corre-
spondingly, there are a lot of mathematical models involving partial differential equations
(PDEs) with a diffusion term. This thesis provides a collection of articles concerning
qualitative properties of diffusion equations. Thereby, different types of diffusion, includ-
ing nonlinear and degenerate ones, are studied. In addition, some of these equations are
coupled via nonlinear terms modeling different kinds of taxis. The first step in the quali-
tative analysis of such equations is usually the proof of local well-posedness, i.e. the local
existence (in time) and uniqueness of a solution. Then a natural question is whether the
solution exists globally or ceases to exist after a finite time, e.g., due to a blowup phe-
nomenon. If possible we also determine the large time behavior of global solutions, for
instance the convergence to stationary solutions.

The simplest diffusion equation is the linear heat equation

ut = ∆u,

where here and in the sequel u(x, t) depends on the spatial variable x ∈ Ω ⊂ Rn and the
time t ≥ 0, and ∆ = ∆x denotes the Laplace operator with respect to x. Although this
equation was used to describe the temperature evolution in particular settings, it turned
out that many biological, chemical or physical phenomena involving diffusion cannot be
described adequately by purely linear equations. In addition, nonlinear diffusion equations
often offer a richer behavior than linear ones, also from the mathematical point of view.
Therefore, our studies will focus on nonlinear equations. The first part of this thesis is
concerned with scalar equations and motivated from the theoretical point of view, while
in the second part systems of equations which model biological phenomena are studied.

We start our considerations with a semilinear parabolic equation, where in presence of
linear diffusion the nonlinearity is provided by a source term of order zero, a model case
being the power type function up. Namely, in Article 1 we study the Cauchy problem for

ut = ∆u+ up, (x, t) ∈ Rn × (0,∞), (1.1)

with p > 1 and nonnegative initial data. After the pioneering work of Fujita ([45]) a rich
variety of large time behaviors for solutions to (1.1) was shown, among them finite and
infinite time blowup, as well as convergence to nonzero steady states and to zero. For
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4 1. INTRODUCTION

a broad overview we refer to the monograph [89] and the references therein. In partic-
ular, it was shown in [44] that if p is larger than a critical (so-called Joseph-Lundgren)
exponent, there are solutions to (1.1) converging to zero as t → ∞ with arbitrary slow
polynomial rates of convergence. In Article 1, we prove that for the same range of p even
very slow rates of convergence to zero exist, which are slower than any polynomial rate
and are rarely observed in parabolic equations. In particular, arbitrary negative powers
of iterated logarithms occur as convergence rates for (1.1) for suitably chosen initial data.
More details about these results are provided in Chapter 2.

Next, we consider a quasilinear equation, where apart from a nonlinear source term also
nonlinear diffusion is included. Two common nonlinear generalizations of the linear dif-
fusion ∆u are the p-Laplacian ∆pu = div(|∇u|p−2∇u) = ∇ · (|∇u|p−2∇u) and the porous
medium type diffusion ∇ · (um−1∇u) = 1

m∆(um). Here the cases p > 2 and m > 1 are
called slow diffusion, as diffusion is slowed down for small values of ∇u or u, respectively.
Correspondigly, the cases p ∈ (1, 2) and m ∈ (0, 1) are called fast diffusion, while p = 2
and m = 1 correspond to linear diffusion.

Now we start from the semilinear diffusion equation

ut = ∆u+ |∇u|q (1.2)

with q > 0, where the source term of order zero in (1.1) is replaced by a corresponding first
order term. (1.2) is on the one hand known as viscous Hamilton-Jacobi equation, which
appears as viscosity approximation of Hamilton-Jacobi equations in control theory, and
on the other hand it is called the generalized deterministic Kardar-Parisi-Zhang equation.
The latter was proposed to describe the evolution of the profile of a growing interface
for instance in the context of ballistic deposition (see e.g. [64, 69]). A short overview of
results concerning the behavior of solutions to (1.2) is given e.g. in [89, Section 40] and
the references provided therein.

We intend to study the interplay of diffusion and the nonlinear source term in a quasilinear
generalization of (1.2). As the source |∇u|q depends solely on ∇u but not on u itself, it
seems reasonable to generalize the linear diffusion by the p-Laplacian operator which does
not depend on u either. Therefore, in Articles 2–4 we study nonnegative solutions to the
quasilinear equation

ut = ∆pu+ |∇u|q, (x, t) ∈ Ω× (0,∞), (1.3)

with p > 2 and q > 0 in a bounded domain Ω ⊂ Rn, endowed with homogeneous Dirichlet
boundary conditions. Since the diffusion degenerates when ∇u = 0, we cannot expect
the existence of classical solutions and hence consider either weak or viscosity solutions.
Concerning the large time behavior of nonnegative global solutions to (1.3), q = p−1 turns
out to be a critical exponent. One important reason is that zero is the only stationary
solution in case of q ≥ p− 1, whereas the comparison principle for the stationary equation
is not valid in the case q < p − 1 and non-zero steady states may exist. In Article 2, we
study the case q < p− 1 in the one-dimensional setting n = 1. We show the existence of
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a family of nonnegative steady states for (1.3) and prove that for any sufficiently regular
initial data there exists a global weak solution to (1.3) which converges to one of the steady
states as t→∞. These results are generalized in Article 3 to arbitrary dimensions n ≥ 2
within the concept of radially symmetric viscosity solutions, when Ω is the unit ball in
Rn. Both results strongly rely on the available classification of the stationary solutions
and such a classification as well as the large time behavior of solutions to (1.3) remain
open for general domains Ω ⊂ Rn.
Finally, we show in Article 4 that in case of q ≥ p − 1 for any nonnegative continuous
initial data u0, which is assumed to be sufficiently small for q > p, there exists a unique
global in time viscosity solution u to (1.3) which converges to zero as t→∞. In contrast
to the very slow convergence rates obtained for (1.1), here u converges to zero with a fixed
polynomial convergence rate. More precisely, after a suitable rescaling of time, we prove
convergence to a unique spatial profile in the large time limit. In fact, there are only two
different profiles, one for q > p− 1 and one for the borderline case q = p− 1, which both
do not depend on the initial data. Altogether, our results show that, like for (1.2) in the
case p = 2, the large time behavior of global solutions to (1.3) is the same as for the pure
diffusion equation ut = ∆pu if q > p − 1, while it strongly depends on the source term
|∇u|q in the case q < p− 1. Moreover, we provide an indication that for q > p a smallness
assumption on u0 is indeed necessary, since we show that for large u0 there is no Lipschitz
continuous weak solution to (1.3), which exists globally in time. This has been further
strengthened in [18], where the occurrence of finite time gradient blowup for weak solu-
tions to (1.3) is proved for large u0 and q > p, meaning that u remains bounded and ∇u
becomes unbounded after a finite time. More details about the results from Articles 2–4
are presented in Chapter 3.

After the foregoing works, where we studied the influence of the interplay between diffusion
and further nonlinearities of zeroth or first order on the large time behavior of solutions
to scalar diffusion equations, we next study in Articles 5–8 systems of parabolic equations
including a strong coupling via cross diffusion terms which rely on different types of taxis.
The migration of various cell populations relies at least partially on taxis, which means
directed movement in response to the gradient of some stimulus. Here we consider only
cell motions up such gradients. Furthermore, we account for either chemotaxis, where
cells are attracted by a diffusible chemical (called chemoattractant), or a combination of
the latter mechanism with haptotaxis, where the (insoluble) attractant substance is not
moving (e.g. a component of the extracellular matrix). Denoting by u the cell density and
by v and w the concentrations of the chemo- and haptotactic attractant, respectively, the
system

ut = ∇ · (φ(u,w)∇u)−∇ · (ψ(u, v)∇v)−∇ · (ξ(u,w)∇w) + g1(u, v, w),

vt = ∆v + g2(u, v, w),

wt = g3(u, v, w),

(1.4)

provides a general framework for the models considered in Articles 5–8. Therein (1.4) is
always imposed in Ω× (0, T ) together with homogeneous Neumann boundary conditions
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and appropriate initial conditions, where Ω ⊂ Rn is a bounded domain with smooth
boundary. Thereby, the first equation in (1.4) describes the evolution of the cell density
in presence of diffusion, chemo- and haptotaxis. Here, the diffusivity φ is of a generalized
porous medium type, which reflects e.g. when φ is decreasing with respect to u the reduced
cell movement at places where cells are densely packed, and ψ and ξ are the respective
chemo- and haptotactic sensitivities. Moreover, the chemoattractant v satisfies a parabolic
equation, while the substance w involved in haptotaxis solves an ordinary differential
equation (ODE). Apart from their dependence on u and ∇u, the taxis terms also depend
on spatial derivatives of the respective attractant. Therefore, they are considerably more
general than the nonlinearities present in (1.1) and (1.3) and moreover provide strong
couplings between the equations in (1.4).

In Articles 5 and 6 we study variants of the well-known Keller-Segel chemotaxis model,
which was introduced in [65] to model aggregation of the slime mold Dictyostelium dis-
coideum. Several variants thereof have been proposed to describe the behavior of various
types of cells and have been mathematically analyzed by numerous authors. The surveys
[56, 58] and the references therein present different variants of the Keller-Segel model
and mathematical results concerning the behavior of their solutions. In particular, it has
been shown that aggregation phenomena do occur in these models. In Article 5 we study
positive and radially symmetric classical solutions to the parabolic-parabolic Keller-Segel
system formed by the subsystem of (1.4) involving only u and v with g1 ≡ 0 in a ball
Ω ⊂ Rn. Moreover, we assume that the diffusivity φ and the chemotactic sensitivity ψ
depend only on u and that the cells produce the chemoattractant (see (4.1) for the precise
model). In this setting an important issue is the investigation of finite-time blowup, in the
sense that the cell density u becomes unbounded in finite time, which can be interpreted
as an indication for the formation of aggregation. Quite a few results concerning finite-
time blowup have been proved for parabolic-elliptic versions of the Keller-Segel model (see
e.g. the introduction of Article 5 for a short overview), however, when the equation for v
is genuinely parabolic there were only the three works [53, 30, 101] addressing this issue
(for details we refer to Chapter 4). The results therein are valid for a linear chemotac-
tic sensitivity ψ and only [30] includes nonlinear diffusion, i.e. non-constant φ, in the
one-dimensional setting n = 1. Article 5 provides the first result of finite-time blowup
for a parabolic-parabolic Keller-Segel model with both nonlinear diffusion and nonlinear
chemotactic sensitivity. More precisely, for dimensions n ≥ 3 we assume a certain relation
between φ and ψ, which in the sequel is called supercritical, along with an at least linear
growth of ψ. By generalizing the method from [101], we then prove that for any prescribed
initial mass m > 0 of the cells there are initial data such that the corresponding solution
to the Keller-Segel model blows up in finite time. The supercritical relation of φ and ψ is
necessary for finite-time blowup (if the critical relation is suppressed), since in presence of
the corresponding subcritical relation all solutions are global and bounded (see e.g. [95]).
However, in view of the question whether the superlinear growth of the chemotactic sen-
sitivity ψ is necessary, we only provide a partial answer. We show that if ψ(u) decreases
fast enough for large u then there exists a diffusivity φ such that the supercritical relation
is satisfied, but for any positive initial mass of u there are solutions which exist globally
in time and blow up in infinite time. The latter result is also unusual, since most results
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about infinite-time blowup in variants of the Keller-Segel model are only valid for specific,
nonarbitrary initial cell masses like critical masses. The existence of a critical growth of
ψ separating finite-time and infinite-time blowup remains open; partial answers are given
by the refined results in our subsequent papers [3, 4]. More details about Article 5 are
provided in Section 4.1.

In Article 6 we consider a chemotaxis system of Keller-Segel type within a slightly different
setting. Instead of a single species we now study the competition between two cell popu-
lations in the presence of a common chemoattractant. More precisely, we assume that the
movement of both species is governed by diffusion and chemotaxis and that both species
produce the chemoattractant. Moreover, suppose that they proliferate and compete for
resources like nutrients or space, such that their mutual competition takes place according
to the classical Lotka-Volterra dynamics. For examples of such species we refer to the
introduction of Article 6 and the references therein. We further assume for simplicity that
the chemoattractant diffuses much faster than each of the two species, so that its dynamics
can be approximated by an elliptic instead of a parabolic equation, and that both species
move according to linear diffusion and a linear chemotactic sensitivity. Altogether, we
study a parabolic-elliptic variant of the Keller-Segel model supplementary involving com-
petition terms (see (4.11) for the precise model). One basic question is whether in the
large time behavior for this system both species coexist, meaning that both population
densities converge to a positive steady state as t→∞, or if competitive exclusion occurs
in the sense that one population outcompetes the other such that the latter converges to
zero while the former converges to a positive steady state as t→∞. The coexistence case
was studied in [97] and we study competitive exclusion in Article 6. Namely, we show that
for the same competition parameters, which imply competitive exclusion for the classical
Lotka-Volterra ODE system, competitive exclusion occurs as well for all positive solu-
tions of the Keller-Segel system. This result, which is valid independent of the diffusivity
constants, requires the smallness of the chemotactic sensitivities when compared to the
proliferation rates from the competition terms. However, it remains open whether a simi-
lar behavior can also be observed for larger chemotactic sensitivities. More details about
these results can be found in Section 4.2.

Finally, in Articles 7 and 8 we study multiscale models for cancer cell migration. In
particular, they contain a Keller-Segel chemotaxis model as a subsystem. Cancer cells
migrate through the surrounding tissue in order to reach blood vessels and distal organs,
where they initiate further tumors, called metastases. Thereby, the cancer cell migra-
tion is influenced by various processes (including diffusion, chemotaxis, and haptotaxis)
taking place at different spatial and temporal scales. These scales range from the subcel-
lular level (microscopic scale) up to the level of cell and tissue populations (macroscopic
scale). In addition, the microscopic processes happen at much shorter time scales than
the macroscopic ones. In order to model the migration of a cancer cell population we
couple a system of PDEs for the macroscopic quantities with a system of ODEs for the
subcellular dynamics. In that way we obtain a continuous micro-macro model which is a
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rather new approach in the context of cancer cell migration. Such models allow a more
detailed modeling than purely macroscopic population models and provide a simplified
multiscale approach as compared to models including also the intermediate mesoscale of
cell-cell and/or cell-tissue interactions. More details on related multiscale approaches for
cancer cell migration are presented in Chapter 5 and in the references therein.

In Article 7, we propose a micro-macro model which focuses on the influence of cell con-
tractivity on cancer cell migration. Thereby, cell contractivity describes the ability of the
cancer cell to modify its shape according to its environment. On the macroscopic scale,
our model accounts for the densities of cancer cells and tissue fibers in the extracellular
matrix (ECM) as well as for the proteolytic rests, which are resulting from the ECM
fiber degradation by the cancer cells. Here, the tissue fibers and proteolytic rests are
the respective haptotactic and chemotactic attractants for the cancer cells, so that the
macroscopic part of our model has the structure (1.4). This system is further coupled
with an ODE system which models the binding of cell surface receptors (called integrins)
to tissue fibers and proteolytic residuals on the microscopic scale. The coupling between
these two scales is provided by the cell contractivity function, which on the one hand is
influenced by the integrin dynamics and on the other hand affects the macroscopic cancer
cell density. The latter is reflected by an explicit dependence of the diffusivity φ and of
the haptotactic sensitivity ξ (from (1.4)) on the contractivity function, which is a new
feature for continuous micro-macro models. The precise model (5.1) and details about
the modeling are provided in Chapter 5. In particular, when considering only cancer cells
and proteolytic rests on the macroscale, our model reduces to a Keller-Segel chemotaxis
system. Moreover, the purely macroscopic subsystem of type (1.4) is related to the com-
petition model studied in Article 6. The main differences are the haptotaxis term, which
provides an additional coupling between the competing cancer cells and tissue fibers apart
from the Lotka-Volterra competition terms, and the lack of diffusion for the tissue fibers.

In Article 7, we further assume that Ω ⊂ Rn is a bounded domain with smooth boundary
and n ≤ 3. In view of biologically motivated requirements, we aim at assuming rather
modest regularity assumptions. Hence, we prove the local existence and uniqueness within
the framework of weak solutions, which is a nontrivial issue, since the system consists of
different types of equations which are coupled in a highly nonlinear way. Furthermore, we
illustrate the solution behavior by numerical simulations. Afterwards, the global existence
of a weak solution has been shown in [14] in a slightly more specific setting. In addition,
our model provides a paradigm for further multiscale models in which subcellular processes
and their effects on cancer cell migration can be described in a more detailed manner. In
particular, the proofs of local and global existence provide a framework for such models.
More details about Article 7 are given in Chapter 5.

In Article 8 we focus on a different aspect of cancer cell migration, namely acid-mediated
tumor invasion. Cancer cells are able to upregulate some biological mechanisms which
cause the acidification of their neighborhood. This in turn leads to apoptosis of normal
cells, which cannot survive in an acidic surrounding, and hence provides space for can-
cer invasion. An acidic tumor environment is generated when cancer cells regulate their
intracellular acidity for instance by increasing extrusion of intracellular protons through
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membrane transporters. Hence, we propose a multiscale model for acid-mediated cancer
invasion by accounting for the densities of cancer cells and normal cells and for the con-
centration of extracellular protons on the macroscopic scale, as well as for the intracellular
proton concentration on the microscopic scale. Two features included in our model are pH
taxis and a time-varying carrying capacity for the cancer cells due to the effects of acidity.
Here the chemotaxis mechanism is called pH taxis, as cancer cells move up the gradient
of proton concentration. Altogether, in Article 8 we obtain a micro-macro model, where
a macroscopic system of type (1.4) is coupled with an ODE for the intracellular protons
(see Chapter 5 for the model (5.5) and the modeling). The micro-macro models proposed
in Articles 7 and 8 have a few structural differences. On the macrolevel, in Article 8 on
the one hand we do not account for haptotaxis, since now the interactions of cancer cells
with normal cells instead of tissue fibers are studied. On the other hand, we include time
varying carrying capacities. The subcellular dynamics in Article 8 now consist of only one
ODE, whereas the coupling between integrins and cell contractivity on the microscale is
included in Article 7. However, it turns out that only the consideration of haptotaxis has
a strong impact on the mathematical analysis as it implies weaker regularity properties
than chemotaxis.
In Article 8 we prove the global existence of a weak solution in a general framework.
Again, the setting of weak solutions is motivated by biological considerations. Moreover,
we provide conditions on data and parameters implying the uniqueness and the uniform
boundedness of the solution. Finally, we illustrate the solution behavior for different
choices of the carrying capacity of cancer cells by numerical simulations. Details about
Article 8 are presented in Chapter 5.

To summarize, the results contained in this thesis contribute to the knowledge on the
qualitative behavior of solutions to different types of diffusion equations. Thereby, models
ranging from nonlinear scalar equations up to multiscale models for cancer cell migration
are studied. In view of the increasing complexity of the models, the experience acquired
during the development and application of methods to prove the results of former articles
often contributed substantially to the understanding of solution behaviors for more com-
plex models and to the development of appropriate methods for the proofs of upcoming
outcomes. In the subsequent Chapters 2–5 the results obtained in Articles 1–8 and the
different methods used in the proofs are presented in a more detailed way. Part II of this
thesis contains the collection of Articles 1–8.
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2. Very slow convergence rates for
a semilinear heat equation

In this chapter we summarize the results and methods from [8] (Article 1) and start by
presenting our result in the context of related works.
We study the large time behavior of nonnegative classical solutions to the Cauchy problem{

ut = ∆u+ up, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x), x ∈ RN ,
(2.1)

with p > 1 and initial data u0 ∈ C0(RN ). In spite of its simple structure, (2.1) offers a
variety of behaviors (see [89] and the references therein for an overview). Here we study
convergence rates of global solutions converging to zero and first notice that positive
global-in-time solutions to (2.1) exist if and only if p > pF , where pF := N+2

N is the Fujita
exponent (see [45] and, for the case p = pF , [52, 68]). Concerning rates of convergence to
zero of nonnegative solutions to (2.1), in case of p > pF conditions on the initial data were
found implying the same convergence rates as for the linear heat equation ut = ∆u (see

e.g. [40, 73]). The slowest of these rates is the self-similar rate t
− 1
p−1 in the sense that for

some initial data there are positive constants K1,K2 such that

K1(t+ 1)
− 1
p−1 ≤ ‖u(·, t)‖L∞(RN ) ≤ K2(t+ 1)

− 1
p−1 for all t ≥ 0.

Slower convergence rates were found in [49], where the existence of global solutions satis-
fying

t
1
p−1 ‖u(·, t)‖L∞(RN ) →∞ as t→∞

was shown in case of p > pc. Here,

pc :=

{
∞ for N ≤ 10,

(N−2)2−4N+8
√
N−1

(N−2)(N−10) for N ≥ 11,

is the Joseph-Lundgren exponent (see [63]), which satisfies pc >
N
N−2 > 1 for N ≥ 11.

By studying the exact convergence rates of the above solutions from [49], arbitrarily slow
polynomial (or algebraic) rates of convergence to zero for (2.1) were found in [44]. We
extend this result in Article 1 and prove the existence of very slow convergence rates, for
instance logarithmic rates, for p > pc. We now present the latter two results within a
more general framework which also includes rates of infinite-time blowup.

11
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In case of p > pc, on the one hand a singular radially symmetric steady state to (2.1)
exists, namely

ϕ∞(|x|) := L|x|−m, x ∈ RN \ {0},

where

m :=
2

p− 1
and L := {m(N − 2−m)}

1
p−1 .

On the other hand, (2.1) has a family of radially symmetric regular positive steady states,
which exist for p ≥ N+2

N−2 and N ≥ 3, but are only strictly ordered and stable, e.g. with
respect to certain weighted L∞-norms ([49]), in the case p ≥ pc. It turns out that the
decay of u0 as |x| → ∞ is very important for the large time behavior of solutions to
(2.1) and that the corresponding behavior of the regular steady states separates solutions
converging to zero from those blowing up in infinite time. More precisely, we denote by
λ1 the smaller and by λ2 the larger positive root of

λ2 − (N − 2− 2m)λ+ 2(N − 2−m) = 0,

which has two distinct positive roots if and only if p > pc.

Then assuming that η ∈ C2([0,∞)) is positive and belongs to certain function classes
which will be specified soon, the following convergence rates were shown:
If u0 ∈ C0(RN ) satisfies

0 ≤ u0(x) < ϕ∞(|x|) for x ∈ RN \ {0} (2.2)

(which guarantees the global-in-time existence of the solution u to (2.1), see [87]) as well
as

ϕ∞(|x|)− c1|x|−m−λ1η(|x|) ≤ u0(x) ≤ ϕ∞(|x|)− c2|x|−m−λ1η(|x|), |x| > R, (2.3)

with some positive constants c1, c2, and R, then for p > pc there exist positive constants
C1 and C2 such that the solution to (2.1) satisfies

C1η
− m
λ1 ((t+ 1)

1
2 ) ≤ ‖u(·, t)‖L∞(RN ) ≤ C2η

− m
λ1 ((t+ 1)

1
2 ) for all t ≥ 0. (2.4)

This behavior was first shown for algebraic functions η(z) := zα, z ≥ 0. The case α ∈
(−(λ2−λ1 +2), 0) along with its optimality was established [38, 42, 79], which implies that
the corresponding solutions to (2.1) blow up in infinite time with arbitrarily slow algebraic
blowup rates. Correspondingly, arbitrary slow algebraic rates of convergence to zero were
detected in [44] for the case α ∈ (0, λ1). In the borderline case α = 0, the solutions
are bounded and bounded away from zero and according to (2.3) they can be bounded
from above and below by suitable regular positive steady states. This case requires a
more detailed study of the initial behavior as |x| → ∞ as compared to (2.3) and results
concerning the stability of these positive steady states and arbitrarily slow algebraic rates
of convergence toward them can be found e.g. in [43, 48, 61, 87, 88].
After these slow algebraic rates were established, it turned out that even slower rates like
logarithmic ones occur. Such rates are rarely observed for parabolic equations. More
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precisely, given any number of iterations of the logarithm and any α 6= 0, for z0 > 0 large
enough the function η(z) := (ln(ln(. . . (ln(z + z0)) . . . )))α, z ≥ 0, is positive and has the
property that (2.2) and (2.3) imply the solution behavior (2.4). First, the case of very slow
rates of infinite-time blowup corresponding to α < 0 were proved by Fila, King, Winkler,
and Yanagida in [41]. Inspired by this result, we prove the corresponding very slow rates
of convergence to zero for α > 0 in Article 1. In fact, both results are valid for a more
general class of functions η including the logarithmic functions given above. As the general
conditions on η are quite technical, we confine ourselves to present only our result from
Article 1 in full generality (see Section 2.1 below). The corresponding general result for
very slow blowup rates is given in [41].
Later on, by slightly adapting the methods used to prove these results, we further estab-
lished very slow rates of convergence to positive regular steady states for p > pc (see [10])
as well as slow algebraic rates of convergence to zero and to positive steady state in the
critical case p = pc (see [11, 12] and, for corresponding rates of infinite-time blowup, [39]).

2.1 Results

In order to present the full result from Article 1, we first define the class of functions η
for which the behavior (2.4) is shown. The aim is that η is slowly increasing as z → ∞.
More precisely, we assume that η ∈ C2([0,∞)) fulfills

η(z) > 0, η′(z) > 0 and η′′(z) ≤ 0 for all z ≥ 0, (2.5)

η increases slowly near infinity in the sense that

zη′(z)

η(z)
→ 0 as z →∞, (2.6)

and satisfies ∣∣∣∣zη′′(z)η′(z)

∣∣∣∣ ≤ Cη for all z ≥ 0 (2.7)

with some constant Cη > 0. Furthermore, we require that for any α > 0 and γ > 0

η(γzα) ≤ cα,γη(z) for all z ≥ 1 (2.8)

holds with some constant cα,γ > 0. Indeed, (2.8) is not a consequence of (2.5)–(2.7) (see
the example given after (1.1.9) in Article 1).
In particular, due to (2.5) and (2.6), for any β > 0

η(z) ≤ Cβzβ for all z ≥ 1

is satisfied with some Cβ > 0. Moreover, η(z) := (ln(ln(. . . (ln(z + z0)) . . . )))α satisfies
(2.5)–(2.8) for fixed α > 0, if z0 > 0 is chosen large enough. As (2.5)–(2.8) are also valid
for some bounded functions η, we can prove (2.4) also for these functions η. However, the
very slow rates of convergence to zero are obtained only for unbounded η.
In Article 1, we prove the following result (see Theorem 1.1.1).
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Theorem 2.1 Let N ≥ 11, p > pc and assume that u0 ∈ C0(RN ) fulfills (2.2) and (2.3),
where η meets the conditions (2.5)–(2.8). Then there are positive constants C1 and C2

such that the solution u of (2.1) satisfies (2.4).

2.2 Methods

The proof of Theorem 2.1 basically relies on the strategy developed by Fila, Winkler, and
Yanagida in [44], where slow algebraic rates of convergence to zero were established. In
a first step, in the radially symmetric setting, we use the self-similar change of variables
to transform the solution u of (2.1) to a corresponding function v. If v is radially non-
increasing, then (2.4) is equivalent to the behavior

v(0, s) ' e
m
2
sη
− m
λ1 (e

1
2
s) for s ≥ 0 (2.9)

of v. In particular, instead of studying convergence to zero for u, we study rates of
infinite-time blowup for v (see Section 1.2 in Article 1 and [44, Section 2] for more details
concerning the transformation). In order to prove the blowup behavior (2.9) of v, we
construct appropriate sub- and supersolutions to the transformed problem and use the
comparison principle. Thereby, the supersolution is obtained by constructing two super-
solutions, one in an inner region near x = 0 and another in a corresponding outer region
bounded away from x = 0, and matching them. We build the sub- and supersolutions by
inserting parts containing η into the corresponding functions from [44]. One advantage
of the self-similar transformation is the structure of separated variables in the original
functions. However, in order to include η in such a way that the initial behavior (2.3)
is reflected, that the matching for the supersolution is possible, and that the sub- and
supersolutions allow to prove (2.9), this structure gets lost in the new parts containing
η and, in addition, we need to impose (2.8) on η. Both can be seen for instance in the
definitions of vout in Lemma 1.3.3 and of vsub in Lemma 1.4.1, where in particular dif-
ferent values of β are used. In contrast to this, in the proof of the corresponding very
slow rates of infinite-time blowup in [41] functions with separated variables could be used
for the comparison argument and no condition corresponding to (2.8) had to be imposed,
whereas conditions (2.5)–(2.7) are motivated by their analogs in [41].



3. Large time behavior for a quasi-
linear diffusive Hamilton-Jacobi
equation

This chapter contains the summary of the results and methods from [9, 1, 6] (Articles
2–4). First we describe the connection of our results to other works.
Here we study nonnegative solutions to the diffusive Hamilton-Jacobi equation

ut = ∆pu+ |∇u|q, (x, t) ∈ Ω× (0,∞),

u = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

(3.1)

where p ≥ 2, q > 0, Ω ⊂ Rn is a bounded domain with smooth enough boundary and
u0 is regular enough (at least continuous) and nonnegative with u0 6≡ 0. One issue is to
investigate in how far the competition between diffusion and the nonlinear gradient source
term is reflected in the large time behavior of solutions to (3.1) and to identify optimal
parameter regimes for each of the observed phenomena.

Equation (3.1) was first studied in the semilinear case p = 2, where classical solutions
exist, and two critical exponents concerning the large time behavior were determined,
namely q = 1(= p− 1) and q = 2(= p). In case of q ∈ (0, 1), the existence of a continuum
of stationary solutions to (3.1) was shown in [23]. In the one-dimensional case n = 1, the
nonnegative steady states for (3.1) were explicitly calculated and shown to be an ordered
one-parameter family. In addition, the convergence of each solution of (3.1) to one of these
steady states was proved and the zero state was excluded as a limit function in case of
nonnegative and nontrivial initial data, but also sign-changing solutions were studied (see
[72]). However, the large time behavior in higher dimensions remained open.
In case of q ≥ 1, the classical elliptic comparison principle implies that the zero state is
the only stationary solution to (3.1). However, in this parameter regime, the nonlinear
source term can cause finite-time gradient blowup for (3.1) in the sense that ‖u(·, t)‖L∞(Ω)

is uniformly bounded, but ‖∇u(·, t)‖L∞(Ω) becomes unbounded after a finite time. More
precisely, while the solutions exist globally in time and are bounded in C1(Ω̄) in case of
q ∈ (0, 2] for any u0 (see e.g. [71]), for q > 2 this is only true if ‖u0‖C1(Ω̄) is below some
positive threshold and otherwise finite-time gradient blowup occurs (see [17, 92]). Further-
more, it was shown in [26] that all global solutions converge to zero with an exponential

15
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convergence rate for q ≥ 1, where in the case q > 1 the decay rate and the limiting spatial
profile are the same as for the linear heat equation, while for q = 1 the exponential decay
rate is slower than in the latter case. For non-global solutions the gradient blowup takes
place at the boundary ∂Ω and blowup rates as well as the size of the blowup set were
studied (see e.g. [50, 74, 93]).

In the quasilinear case p > 2, the existence of classical solutions cannot be expected in view
of the degeneracy of the diffusion. Instead, the concepts of weak and viscosity solutions
turn out to be useful. In spite of some results for the Cauchy problem when Ω = Rn (see
e.g. the introduction of Article 2), the large time behavior for (3.1) in a bounded domain
was fairly open in the quasilinear case p > 2 and we intended to provide further insights.
Although our final results often parallel those from the case of linear diffusion, the proofs
rely on different methods. Concerning the existence of multiple stationary solutions, we
show that now q = p − 1 is critical, while q = p turns out to be critical with respect
to the existence of gradient blowup. We study the case q < p − 1 in Article 2 in the
one-dimensional case n = 1 within the concept of weak solutions and in Article 3 in the
context of radially symmetric viscosity solutions, when Ω is the unit ball in Rn and n ≥ 2.
In both cases we prove the existence of an ordered one-parameter family of steady states.
For n = 1 this provides a classification of all weak steady states of arbitrary sign, while in
the radial setting only all nonnegative, radially symmetric, and non-increasing stationary
solutions in the viscosity sense are included. The available knowledge of the steady states
then provides a starting point for proving the convergence of solutions of (3.1) to one
of these stationary solutions and, like in the semilinear case, the zero state is excluded
as limit for nonnegative and nontrivial solutions. Moreover, the steady states are flat in
some subdomain of Ω (see Figure 2.1 in Article 2) and the results of Article 2 contain
the behavior of solutions irrespective of their sign. Finally, while the proof of the large
time behavior in Article 2 relies on the availability of a Liapunov functional, the theory
of half-relaxed limits for viscosity solutions is used in Article 3.

The latter theory is again an important part of the method used in Article 4, where the
large time behavior of global viscosity solutions satisfying the boundary condition in the
classical sense is established in case of q ≥ p− 1. Namely, we show that in this parameter
regime all solutions exist globally in time and converge to zero with the polynomial con-

vergence rate t
− 1
p−2 as t → ∞, where in the case q > p we require in addition that u0 is

small enough. Moreover, for q > p − 1 the rescaled solution t
1
p−2u(·, t) converges to the

same unique profile, which does not depend on u0, as for the diffusion equation ut = ∆pu,
so that like in the case p = 2 the large time behavior of global solutions for large q is the
diffusive one. However, in the critical case q = p− 1, the temporal decay rate is the same
as for q > p−1, but the limiting spatial profile changes, still being independent of u0 (and
implying the existence of a so called friendly giant). This shows a difference to the linear
diffusion case, where the decay rate for q = 1 was slower than for q > 1, whereas now only
the spatial profile changes.

Finally, we indicate in Article 4 that some smallness condition on u0 is necessary for the
global existence in case of q > p, as no global Lipschitz continuous weak solution to (3.1)



3.1. RESULTS 17

exists for large initial data. Later this was further studied in [18], where the occurrence
of finite-time gradient blowup on the boundary ∂Ω was proved for q > p and large initial
data in the setting of weak solutions. This result confirms that blowup is the influence of
the gradient source term in case of q > p, whereas global solutions show a purely diffusive
behavior for these parameters. Moreover, the uniqueness of weak solutions, which remains
open in Article 2, was shown for q ≥ p

2 in [18]. Recent results on the exclusion of infinite-
time gradient blowup and the size of the blowup set can be found e.g. in [19, 20].
Short, but certainly not complete overviews on further results on (3.1) in the whole space
Ω = Rn or for the case of a negative gradient term −|∇u|q can be found e.g. in [89] and
the introduction of Article 2.

3.1 Results

Next, we summarize our results concerning the large time behavior for (3.1). The first
theorem contains the results for q < p − 1 and n = 1 from Article 2 (see Lemma 2.2.1,
Theorem 2.4.3, Theorem 2.4.4, and Corollary 2.4.6).

Theorem 3.1 Assume that p > 2, 0 < q < p − 1, and Ω := (−R,R) ⊂ R with some
R > 0.

(a) Let w ∈ C1([−R,R]) be a weak solution to the stationary problem corresponding to
(3.1) in the sense that it satisfies w(±R) = 0 and

R∫
−R

(
− (|wx|p−2wx)(x) ξx(x) + |wx|q(x) ξ(x)

)
dx = 0 for any ξ ∈ C∞0 ((−R,R)).

Then w is nonnegative and there is ϑ ∈ [0, R] such that w = wϑ, where

wϑ(x) :=
c̃0

α

[
(R− ϑ)α − (|x| − ϑ)α+

]
, x ∈ [−R,R],

for ϑ ∈ [0, R] with α := p−q
p−1−q > 1 and c̃0 :=

(
p−1−q
p−1

) 1
p−1−q

> 0. In particular,

wR ≡ 0 in Ω̄.

(b) For any u0 ∈ C1(Ω̄) with u0 = 0 on ∂Ω there exists a global weak solution u to (3.1)
in the sense of Definition 2.4.1. Furthermore, supt≥0 ‖u(·, t)‖W 1,∞(Ω) is finite and
there exists a unique ϑ0 ∈ [0, R] such that ‖wϑ0‖C0(Ω̄) = limt→∞ ‖u(·, t)‖C0(Ω̄) and

‖u(·, t)− wϑ0‖C0(Ω̄) → 0 as t→∞

are fulfilled. In addition, in case of u0 ≥ 0 with u0 6≡ 0 we have ϑ0 < R (or
equivalently wϑ0 6≡ 0), whereas ϑ0 = R (or equivalently wϑ0 ≡ 0) is satisfied in case
of u0 ≤ 0.

Let us add the following remark.
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Remark 3.2 Although the results in [9] (Article 2) are only stated for p > 2 and 1 < q <
p−1, they are indeed valid in the more general regime p > 2 and 0 < q < p−1, as claimed
above in Theorem 3.1. In fact, each proof contained in Article 2 remains true without any
change, since the combination of the positivity of q with q < p − 1 is actually sufficient
in each step. In order to avoid changes in the introduction of the published paper [9], we
confine ourselves with this remark and the footnote to (2.1.3) in Article 2.

Next, we present the extension of the former one-dimensional results to the radial case.
These results from Article 3 (see Theorem 3.1.1, Theorem 3.1.3, and Proposition 3.3.1)
were even unknown in the semilinear case p = 2.

Theorem 3.3 Suppose that p ≥ 2, 0 < q < p − 1, and Ω := B1(0) ⊂ Rn is the unit ball
with n ≥ 2.

(a) Let w ∈ W 1,∞(Ω) be a radially symmetric and non-increasing viscosity solution to
−∆pw − |∇w|q = 0 in Ω satisfying w = 0 on ∂B. Then there is ϑ ∈ [0, 1] such that
w = wϑ, where

wϑ(x) := c0

1∫
max{|x|,ϑ}

(
ρ− ϑβρ−(β−1)

) 1
p−1−q

dρ, x ∈ Ω̄,

for ϑ ∈ [0, 1] with β := 1 + (N−1)(p−1−q)
p−1 > 1 and c0 :=

(
p−1−q
(p−1)β

) 1
p−1−q

> 0. In

particular, we have w0(x) = c0
α (1 − |x|α) for x ∈ Ω̄, where α := p−q

p−1−q > 1, and

w1 ≡ 0 in Ω̄.

(b) For any radially symmetric and nonnegative u0 ∈W 1,∞
0 (Ω) with u0 6≡ 0, there exists

a unique global (radially symmetric) viscosity solution u ∈ C0(Ω̄ × [0,∞)) to (3.1).
Moreover, supt≥0 ‖u(·, t)‖W 1,∞(Ω) is finite and there is a unique ϑ0 ∈ [0, 1) such that

lim
t→∞
‖u(·, t)− wϑ0‖C0(Ω̄) = 0.

In particular, ϑ0 ∈ [0, 1) implies wϑ0 6≡ 0.

Finally, the results in case of q ≥ p− 1 from Article 4 (see Theorem 4.1.2, Theorem 4.1.4,
Corollary 4.4.5, and Proposition 4.5.3) are collected in the following theorem.

Theorem 3.4 Assume that p > 2, q ≥ p− 1, Ω ⊂ Rn is a bounded domain with a smooth
boundary (at least C2), n ∈ N, and u0 ∈ C0(Ω̄) is nonnegative such that u0 = 0 on ∂Ω
and u0 6≡ 0.

(a) In case of q = p − 1, there is a unique global viscosity solution u ∈ C0(Ω̄ × [0,∞))
to (3.1) in the sense of Definition 4.1.1 and

lim
t→∞

∥∥∥t 1
p−2 u(·, t)− f

∥∥∥
C0(Ω̄)

= 0 ,
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where f ∈ C0(Ω̄) is the unique positive viscosity solution to

−∆pf − |∇f |p−1 − f

p− 2
= 0 in Ω, f > 0 in Ω , f = 0 on ∂Ω . (3.2)

Furthermore, if u0 ∈W 1,∞(Ω), then ∇u(·, t) ∈ L∞(Ω) for all t ≥ 0 and

`[u0] := sup
t≥0
{‖∇u(·, t)‖L∞(Ω)} <∞.

(b) Let q > p − 1. If q > p, assume further that there is a nonnegative G0 ∈ W 1,∞(Ω)
satisfying G0 = 0 on ∂Ω such that

u0(x) ≤ G0(x)

`[G0]
, x ∈ Ω̄ , (3.3)

where `[G0] is defined in part (a). Then there is a unique global viscosity solution
u ∈ C0(Ω̄× [0,∞)) to (3.1) in the sense of Definition 4.1.1 and

lim
t→∞

∥∥∥t 1
p−2 u(·, t)− f0

∥∥∥
C0(Ω̄)

= 0 ,

where f0 ∈ C0(Ω̄) is the unique positive viscosity solution to

−∆pf0 −
f0

p− 2
= 0 in Ω, f0 > 0 in Ω , f0 = 0 on ∂Ω . (3.4)

In addition, if u0 ∈W 1,∞(Ω) then supt≥0 ‖u(·, t)‖W 1,∞(Ω) is finite.

(c) Assume in addition that u0 ∈W 1,∞(Ω), let q > p, and define r := q/(q − p). There
is a constant κ > 0 depending on Ω, p, and q such that, if ‖u0‖Lr+1(Ω) > κ, then
(3.1) has no global Lipschitz continuous weak solution.

We add the following explanation concerning the uniform Lipschitz estimate from part (b).

Remark 3.5 In case of q > p − 1, the result that supt≥0 ‖u(·, t)‖W 1,∞(Ω) is finite for
Lipschitz continuous initial data is stated in Article 4 only for q ≤ p (see Corollary 4.4.5).
However, the proof of the latter Corollary also covers the case q > p, provided that the
additional assumption (3.3) is fulfilled. Indeed, it relies on (4.4.18) which is also valid in
that case and proved in Section 4.5.2 of Article 4.

Finally, we remark that while the existence and uniqueness of the positive viscosity solution
f0 to (3.4) was proved in [77], the corresponding result for the solution f to (3.2) is
one contribution of Article 4. In particular, Theorem 3.4 implies in case of q = p − 1
the uniform convergence of the solution u of (3.1) to the separated variables solution

u∞(x, t) := t
− 1
p−2 f(x) of (3.1) with an initial condition being identically infinite in Ω,

while the limit function for q > p− 1 is the corresponding solution U∞(x, t) := t
− 1
p−2 f0(x)

of the diffusion equation ut = ∆pu. The solutions u∞ and U∞ are also called friendly
giants and we refer to the introduction of Article 4 for related results concerning other
equations.
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3.2 Methods

We first describe the methods used in Article 2 to prove Theorem 3.1 for q < p− 1. While
the classification of the stationary solutions given in part (a) is shown by straightforward
calculations, the proof of the convergence of a weak solution to (3.1) towards one of
these steady states strongly relies on the availability of a Liapunov functional, which is
constructed by applying an idea of Zelenyak (see [103]). Although the latter method
was already used in [72] for classical solutions in the semilinear case p = 2, our proof
in the quasilinear case p > 2 requires different arguments. In particular, we do not
prove the existence of a Liapunov functional for (3.1), but only for the regularized and
strictly parabolic problems (2.3.1), and further need additional compactness properties
in order to obtain the large time behavior of weak solutions to (3.1). To this end, by
constructing suitable sub- and supersolutions and using an idea from [47], we first prove
that the classical solutions uε to the approximate problems (2.3.1) satisfy a uniform spatial
Lipschitz estimate as well as a uniform Hölder estimate with respect to time. Then,
uniform estimates of (uε)t in L2(Ω× (0,∞)) and of the second spatial derivative are direct
consequences of the Liapunov functional (see Lemma 2.3.3). Based on these estimates, we
prove appropriate compactness properties which imply the existence of a weak solution
u to (3.1) as a limit of the approximations uε (as ε ↘ 0) as well as the convergence of
u(·, t) to one of the stationary solutions wϑ as t → ∞. Therein, in view of the nonlinear
diffusion, the pointwise convergence of the spatial derivatives (uε)x to ux as well as of
ux(·, t) to (wϑ)x are important and are provided by the two estimates derived from the
Liapunov functional in conjunction with the Aubin-Lions lemma. Moreover, we are able
to identify ϑ since on the one hand ‖wϑ‖C0(Ω̄) is strictly decreasing for ϑ ∈ [0, R] and on
the other hand ‖u(·, t)‖C0(Ω̄) is non-increasing for t ≥ 0.
As the existence of the Liapunov functional relies on the one-dimensional setting, we
use a different method to prove the corresponding results of Theorem 3.3 in the higher-
dimensional radially symmetric case in Article 3. Namely, we use the theory of viscosity
solutions satisfying initial and boundary data in the classical sense (see e.g. the user’s
guide [31]). In a first step, we classify the nonnegative, Lipschitz continuous, radially
symmetric and non-increasing viscosity solutions to the stationary problem corresponding
to (3.1). As compared to the straightforward formal proof given in the beginning of
Section 3.2 in Article 3 for more regular solutions, a number of comparison arguments for
the radial stationary problem are used in the rigorous proof for viscosity solutions in order
to prove the validity of (3.2.11) as well as the property that every Lipschitz continuous
steady state in fact belongs to C1(Ω̄). The existence and uniqueness of a uniformly
Lipschitz continuous, radially symmetric viscosity solution to the parabolic problem (3.1)
is then shown with the help of an approximation by solutions to regularized problems in
conjunction with the stability theorem and the comparison principle for viscosity solutions.
The proof of the large time behavior of the solution u to (3.1) relies on the method of half-
relaxed limits introduced in [24]. As u is uniformly Lipschitz continuous, the half-relaxed
limits, defined by

u∗(x) := lim inf
(s,ε)→(t,0)

u(x, ε−1s) and u∗(x) := lim sup
(s,ε)→(t,0)

u(x, ε−1s), x ∈ Ω̄,
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are well-defined, do not depend on t > 0, and u∗ and u∗ are Lipschitz continuous viscosity
super- and subsolutions, respectively, of the stationary problem corresponding to (3.1). In
view of u∗ ≤ u∗ by definition, we aim to prove u∗ ≥ u∗ in order to show the equality of the
two half-relaxed limits. As there is no comparison principle for the stationary problem,
we use the additional properties that u∗ and u∗ are radially symmetric and non-increasing
and have the same maximal value (see Lemma 3.4.1) in order to be able to apply certain
comparison arguments which finally allow us to conclude that u∗ ≥ u∗. Therefore, the two
half-relaxed limits are equal and coincide with one steady state wϑ0 , so that the theory
from [21, 22] implies the claimed convergence of u to wϑ0 . Thereby, the proofs of both
the classification of the steady states and the equality of the half-relaxed limits strongly
rely on the radial setting and it is an open question whether corresponding results can be
obtained for general solutions.

The proof of the large time behavior for the case q ≥ p− 1 from Theorem 3.4 in Article 4
again relies on the theory of viscosity solutions and the method of half-relaxed limits. One
main difference as compared to Article 3 is that in order to identify the spatial profiles

f and f0, the convergence is now proved for the rescaled function v(x, t) := t
1
p−2u(x, t)

and not for u itself. In particular, this requires more precise estimates for u reflecting the

decay according to the rate t
− 1
p−2 . As a first step, we prove a comparison principle for the

stationary problems (3.2) and (3.4) which generalizes a result from [28] and is crucial for
the identification of the half-relaxed limits. In case of q ∈ [p− 1, p], the global existence of
a unique viscosity solution u to (3.1) directly follows from [32]. We then prove Lipschitz

estimates on the boundary and upper bounds for u (which both behave like t
− 1
p−2 for

large t) by constructing appropriate barrier functions and supersolutions, respectively.
These estimates imply that the rescaled function v is uniformly Lipschitz continuous on
the boundary and uniformly bounded, so that the half-relaxed limits corresponding to v
are well-defined and Lipschitz continuous on the boundary. In addition, the large time
behavior for the diffusion equation zt = ∆pz proved in [77] along with the comparison
principle for (3.1) imply that the solution f0 to (3.4) is a positive lower bound for both
half-relaxed limits. This enables us to apply the above mentioned comparison principle
for (3.2) or (3.4) to show that both half-relaxed limits coincide either with the solution
f to (3.2) or f0. Finally, we can apply the theory of half-relaxed limits as described for
Article 3 to conclude that v converges to f in case of q = p − 1 and to f0 in case of
q ∈ (p− 1, p].

In the case q > p, the main issue is the well-posedness, because the result from [32]
cannot be applied any more. However, we are able to construct a Lipschitz continuous
supersolution to (3.1) by using a corresponding solution for (3.1) with q = p − 1. If
the initial data are below this supersolution, the classical Perron method along with the
comparison principle implies the existence and uniqueness of a global viscosity solution to
(3.1). Then, the large time behavior can be proved just like in the case q ∈ (p− 1, p]. The
method from Article 4 also can be used for other equations, see e.g. [5] for the infinite
heat equation ut = ∆∞u.

Finally, in the proof of the non-existence of a global Lipschitz continuous weak solution to
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(3.1) in case of q > p for large initial data (see Theorem 3.4(c)) we adapt the method from
[54] to show that ‖u(·, t)‖Lr+1(Ω) becomes unbounded after a finite time provided that it
is large enough for t = 0.

Article 3 was mainly developed jointly by Philippe Laurençot and myself during my visit
to the Université Paul Sabatier de Toulouse in June 2009. Guy Barles introduced us to the
method of half-relaxed limits and explained common approaches for proofs of comparison
arguments for viscosity solutions, which enabled Philippe Laurençot and me to develop
part of the proofs from Article 3.
Article 4 was developed jointly by Philippe Laurençot and myself during his visit to the
Universität Duisburg-Essen in January 2010 and my visit to the Université Paul Sabatier
de Toulouse in March 2010.



4. Contributions to Keller-Segel
chemotaxis models

In this chapter we present our contributions to Keller-Segel chemotaxis models contained in
[2, 15] (Articles 5 and 6). Since both articles are related to different aspects of chemotaxis
systems, we describe their results and methods in two sections. The first one contains
finite-time blowup results for fully parabolic Keller-Segel systems, while the second is
concerned with competition of two species in presence of chemotaxis.

As there is a huge literature on Keller-Segel models, we only present results which are
very closely related to Articles 5 and 6. For a more general overview we refer e.g. to the
surveys [56, 58].

4.1 Finite-time blowup in a quasilinear parabolic-parabolic
Keller-Segel system

One feature of Keller-Segel models is the ability to describe aggregation phenomena for
populations of cells. As finite-time blowup of the population density is an indication that
aggregation can take place before the blowup time, this phenomenon has been studied
by many authors. Here we present finite-time blowup results for the parabolic-parabolic
Keller-Segel system

ut = ∇ · (φ(u)∇u)−∇ · (ψ(u)∇v), (x, t) ∈ Ω× (0, T ),

vt = ∆v − v + u, (x, t) ∈ Ω× (0, T ),
∂u
∂ν = ∂v

∂ν = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(4.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary, ν is the outward unit normal
on ∂Ω, and u0, v0 are positive and sufficiently regular. Therein, u denotes the cell density
and v the concentration of the chemical signal, which attracts the cells. We assume that the
cell motion is governed by diffusion and chemotaxis and that the cells produce the chemical
signal. Motivated by the volume-filling model derived in [55], we further require that the
diffusivity φ and the chemotactic sensitivity ψ depend solely on u. Here we only study
classical solutions to some variants of (4.1) and in the sequel blowup at time T ∈ (0,∞]
means that lim supt↗T ‖u(·, t)‖L∞(Ω) = ∞. For parabolic-elliptic simplifications of (4.1)

23
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(when the second equation in (4.1) is replaced by an elliptic one) many results of finite-
time blowup are known, which mostly rely on the reduction of this system to a scalar
parabolic equation or on the use of second moments, the first one being [62]. We refer e.g.
to the introduction of Article 5 for a short, but certainly not complete overview about
these results. However, for parabolic-parabolic Keller-Segel models, where these methods
apparently do not work, before Article 5 there were only three results of finite-time blowup,
namely those of Herrero and Velázquez from 1997 ([53]), of Cieślak and Laurençot from
2010 ([30]), and of Winkler proved in 2011 ([101]). In order to describe these results, which
all rely on different methods, we look at two variants of (4.1).

We first consider the case φ(u) ≡ 1 and ψ(u) = u in (4.1), where both diffusion and
chemotactic sensitivity are linear. This system is often called the classical or minimal
Keller-Segel model. Concerning the existence of blowup for classical nonnegative solutions,
it was proved in [86] that in dimension n = 1 all solutions to (4.1) are global and bounded.
In dimension n = 2, the existence of a critical mass, which is 4π in the general setting and
8π when restricted to radially symmetric solutions, was shown. Namely, it was established
in [46, 83] with two different proofs both using a Liapunov functional that all solutions
with initial mass m :=

∫
Ω u0(x) dx smaller than the critical mass are global and bounded,

while it was shown in [60] that for any initial mass (which is required to be no multiple of
4π in the general setting) larger than the critical mass there exist unbounded solutions.
The latter result was again proved by using the Liapunov functional, but it remained open
whether these solutions blow up in finite or infinite time. In addition, in the radial case,
for some masses larger than 8π some solutions blowing up in finite time were constructed
in [53] by using the method of matched asymptotic expansions. It was further shown that
the latter solutions develop a singularity of Dirac-δ type and the asymptotic behavior near
the blowup time was described in a very detailed way. However, it remained open whether
finite-time blowup is a generic phenomenon for large masses and n = 2 or depends on the
particular choice of the solutions from [53]. It was revealed very recently in [81] by using
the method from [101] described below that indeed for any initial mass larger than 8π there
exists a large set of radially symmetric initial data such that the corresponding solution
to (4.1) exhibits finite-time blowup, which therefore can be seen as a generic phenomenon
in this context. In dimensions n ≥ 3 it was proved in [101] that for any positive initial
mass there exist radially symmetric initial data such that the corresponding solutions to
(4.1) blow up in finite time and that the set of these initial data is dense with respect to
a certain topology. In [101] the Liapunov functional was used in a new way by showing
that for a supposedly global solution the corresponding Liapunov functional itself becomes
unbounded after a finite time. Indeed [101] marked a breakthrough, because the method
used there provides a framework which could be used (e.g. in our works and [81]) and
possibly can be further adapted to prove results on finite-time blowup for fully parabolic
Keller-Segel models.

As a second case, we describe the results known for the quasilinear variant of (4.1) when
the diffusivity φ(u) = (u+1)−p and the chemotactic sensitivity ψ(u) = u(u+1)q−1 are both
power type nonlinearities with p, q ∈ R. This variant of (4.1) is related to the model with
volume-filling effect proposed in [55] and serves as a prototype of a fully parabolic Keller-
Segel model with both nonlinear diffusion and nonlinear chemotactic sensitivity. Although
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all results which we will present for this variant of (4.1) are indeed valid for more general
choices of φ and ψ, for the ease of presentation we will only give the results of Article 5
in full generality (see the next subsection). For (4.1) with the power type nonlinearities φ
and ψ, it was shown in [95] that in the subcritical case p+ q < 2

n with n ∈ N all solutions
are global and bounded. In addition, it was proved in [100] that in the supercritical case
p+q > 2

n with n ≥ 2 for any initial mass there exist unbounded solutions, but it remained
open whether finite-time or infinite-time blowup occurs. Only in the one-dimensional case
n = 1, it was shown in [30] by using an identity of virial type and the boundedness of the
Liapunov functional that finite-time blowup occurs in the supercritical case when q = 1
and the initial mass is large enough. By generalizing the method from [101] described
above, we prove in Article 5 that in the supercritical case p + q > 2

n with n ≥ 3 and
q ≥ 1 for any positive initial mass there exist radially symmetric solutions blowing up in
finite time. This result induced the question whether the superlinear growth of ψ (i.e.
q ≥ 1) is really necessary for the existence of finite-time blowup. As a partial answer, we
further show in Article 5 that for any q < 1 − n and p ∈ R such that 2

n < p + q ≤ 1
with n ≥ 3 for any positive initial mass there exist radially symmetric solutions blowing
up in infinite time. This reveals that for chemotactic sensitivities ψ(u) decreasing fast
enough as u→∞, infinite-time blowup is a generic phenomenon in the supercritical case
and happens for any positive initial mass, while this usually occurs only for particular
masses like critical ones in the context of Keller-Segel systems. The results from Article 5
are generalized to the two-dimensional case and further refined in our subsequent papers
[3, 4] by slightly adapting the proofs from Article 5 in order to reduce the gap between
those values of q enabling finite-time blowup and those implying blowup in infinite time.
The current result is summarized in Corollary 4.4 below, but it is still open whether there
exists a critical exponent q separating these two types of behavior. Recently, the local
non-degeneracy of blowup points in case of p = 0 was established in [80].

4.1.1 Results

In order to present the general results of Article 5, we need to introduce some notation.
The results in the particular case, when the diffusivity φ and the chemotactic sensitivity
ψ are power type nonlinearities, are given in Corollaries 4.3 and 4.4 below.

In general, let

φ, ψ, β ∈ C2([0,∞)) with φ(s) > 0, ψ(s) = sβ(s), β(s) > 0 for s ∈ [0,∞) (4.2)

be fulfilled. We further assume that there exist positive constants s0, a, b such that

G(s) :=

s∫
s0

σ∫
s0

φ(τ)

ψ(τ)
dτ dσ, s > 0, and H(s) :=

s∫
0

σφ(σ)

ψ(σ)
dσ, s ≥ 0, (4.3)

satisfy

G(s) ≤ a s2−α, s ≥ s0, with some α >
2

n
, (4.4)
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as well as

H(s) ≤ γ ·G(s) + b(s+ 1), s > 0, with some γ ∈
(

0,
n− 2

n

)
. (4.5)

Here, φ and ψ satisfy the supercritical relation if (4.4) and (4.5) are fulfilled (which in the
case of power type nonlinearities as defined above is equivalent to p+q > 2

n). Furthermore,
it is well-known that

F(u, v) :=
1

2

∫
Ω
|∇v|2 +

1

2

∫
Ω
v2 −

∫
Ω
uv +

∫
Ω
G(u) (4.6)

is a Liapunov functional for (4.1) with dissipation rate

D(u, v) :=

∫
Ω
v2
t +

∫
Ω
ψ(u) ·

∣∣∣φ(u)

ψ(u)
∇u−∇v

∣∣∣2. (4.7)

More precisely, any classical solution to (4.1) satisfies

d

dt
F(u(·, t), v(·, t)) = −D(u(·, t), v(·, t)) for all t ∈ (0, Tmax(u0, v0)), (4.8)

where Tmax(u0, v0) ∈ (0,∞] denotes the maximal existence time of (u, v) (see e.g. [100,
Lemma 2.1]). Finally, for our finite-time blowup result we further need to impose a
superlinear growth condition for the chemotactic sensitivity ψ, namely

ψ(s) ≥ c0 s, s ≥ 0, (4.9)

with some c0 > 0.
With these conditions and notation, our main results from Article 5 are summarized in
the following theorem (see Theorems 5.1.1, 5.1.2, and 5.1.6).

Theorem 4.1 Suppose that Ω = BR(0) ⊂ Rn with some n ≥ 3 and R > 0, and that (4.2)
holds.

(a) Assume further that (4.4), (4.5), and (4.9) are satisfied, and let m > 0 and A > 0
be given. Then there exist positive constants T (m,A) and K(m) such that for any

(u0, v0) ∈ B(m,A) :=

{
(u0, v0) ∈ C0(Ω̄)×W 1,∞(Ω)

∣∣∣∣ u0 and v0 are radially

symmetric and positive in Ω̄,
∫

Ω u0 = m,

‖v0‖W 1,2(Ω) ≤ A, and F(u0, v0) ≤ −K(m) · (1 +A2)

}
,

the corresponding solution (u, v) of (4.1) blows up at the finite time Tmax(u0, v0) ∈
(0,∞), i.e. lim supt↗Tmax(u0,v0) ‖u(·, t)‖L∞(Ω) =∞, where Tmax(u0, v0) ≤ T (m,A).

(b) If (4.4) is satisfied, then for any m > 0 there exists A > 0 such that B(m,A) 6= ∅.
If (4.4) is fulfilled with some α > 4

n+2 and, moreover, p ∈ (1, 2n
n+2) is such that

p > 2 − α, then for any m > 0 and A > 0, the set B(m,A) is dense with respect
to the topology in Lp(Ω) ×W 1,2(Ω) in the space of all radially symmetric positive
functions (u0, v0) ∈ C0(Ω̄)×W 1,∞(Ω) satisfying

∫
Ω u0 = m and ‖v0‖W 1,2(Ω) < A.
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(c) Assume that (4.4) and (4.5) are fulfilled, that lims→∞ φ(s) = 0, and that there exist
constants D > 0, D1 > 0, and γ1 > n such that

β(s)

φ(s)
≤ D and β(s) ≤ D1s

−γ1 for any s > 0.

Then all solutions to (4.1) exist globally in time and for any m > 0 there are radially
symmetric global solutions (u, v) to (4.1) satisfying

∫
Ω u0 = m which blow up in

infinite time, i.e. lim supt→∞ ‖u(·, t)‖L∞(Ω) =∞.

Let us add the following short remark.

Remark 4.2 Although not explicitly stated in Theorem 5.1.6 of Article 5, its proof already
shows that there is not only one solution blowing up in infinite time, but in fact such
solutions exist for any positive initial mass as claimed in part (c) of Theorem 4.1 above.
In the proof of Theorem 5.1.6, the latter claim is a consequence of [100, Theorem 5.1] used
there, which indeed provides appropriate initial data for any positive mass.

In the particular case of power type nonlinearities φ and ψ, Theorem 4.1 immediately
implies the following results (see also Corollary 5.1.5).

Corollary 4.3 Assume that Ω = BR(0) ⊂ Rn with some n ≥ 3 and R > 0, and that
φ(s) = (s+ 1)−p and ψ(s) = s(s+ 1)q−1, s ≥ 0, with p, q ∈ R such that p+ q > 2

n .

(a) In case of q ≥ 1, for any m > 0 there exist radially symmetric solutions (u, v) to
(4.1) satisfying

∫
Ω u0 = m which blow up in finite time.

(b) In case of q < 1− n and 2
n < p+ q ≤ 1, all solutions to (4.1) exist globally in time

and for any m > 0 there are radially symmetric solutions (u, v) to (4.1) fulfilling∫
Ω u0 = m which blow up in infinite time.

The results from Article 5 were extended to the case n = 2 in [3] and further refined in
[4]. Combining these results with Corollary 4.3, we have the following results for power
type nonlinearities φ and ψ.

Corollary 4.4 Assume that Ω = BR(0) ⊂ Rn with some n ≥ 2 and R > 0, and that
φ(s) = (s+ 1)−p and ψ(s) = s(s+ 1)q−1, s ≥ 0, with p, q ∈ R such that p+ q > 2

n .

(a) If either q > 2
n and p ≤ 0 or q ≥ 1 is satisfied, then for any m > 0 there exist

radially symmetric solutions (u, v) to (4.1) satisfying
∫

Ω u0 = m which blow up in
finite time.

(b) If q < 0 and 2
n − q < p < 2

n − 2q, then all solutions to (4.1) exist globally in time
and for any m > 0 there are radially symmetric solutions (u, v) to (4.1) fulfilling∫

Ω u0 = m which blow up in infinite time.

These results imply that in terms of q, which describes the growth of the chemotactic
sensitivity ψ, for any q > 2

n there are p such that finite-time blowup occurs, while for
q < 0 there are some p such that infinite-time blowup occurs, but finite-time blowup is
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excluded. However, it remains open whether there is a critical value q ∈ [0, 2
n ] separating

these two blowup types. The general results obtained in [3, 4] can be found in [3, Theorems
1.1 and 1.4] and [4, Theorems 1.1 and 1.3]. The main refinements in the proofs as compared
to Article 5 are described in the next subsection.

4.1.2 Methods

For proving the finite-time blowup result given in Theorem 4.1(a), we adapt the method
from [101], where the case φ(u) ≡ 1 and ψ(u) = u was studied, to the quasilinear case.
The main idea is to show that the Liapunov functional F(u(t), v(t)) defined in (4.6) tends
to −∞ after a finite time provided that it is small enough at t = 0. The main step towards
this behavior consists of proving that each solution (u, v) to (4.1) starting from initial data
(u0, v0), which satisfy all conditions raised in B(m,A) (defined in Theorem 4.1(a)) except
the last one involving F(u0, v0), fulfills∫

Ω
uv ≤ c1

(∥∥∥∆v − v + u
∥∥∥2θ

L2(Ω)
+

∥∥∥∥∥ φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

∥∥∥∥∥
L2(Ω)

+ 1

)

+
1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u). (4.10)

for all t ∈ (0, Tmax(u0, v0)) with some constants c1 > 0 (depending on m and A) and
θ ∈ (1

2 , 1) (see Lemma 5.3.1). In view of (4.1), (4.7), and Young’s inequality, this implies∫
Ω
uv ≤ c2

(
Dθ(u, v) + 1

)
+

1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u), t ∈ (0, Tmax(u0, v0)),

with some c2 > 0, which means that we have estimated the only negative ingredient of
the Liapunov functional F(u, v) by a sublinear power of the dissipation rate D(u, v) and
positive ingredients of F(u, v). Inserting the latter inequality into (4.6), we have

F(u, v) ≥ −c2

(
Dθ(u, v) + 1

)
, t ∈ (0, Tmax(u0, v0)),

(see Theorem 5.3.6), which in turn, when combined with (4.8) and the condition F(u0, v0) ≤
−2c2, implies

d

dt
[−F(u(·, t), v(·, t))] ≥

(
−F(u(·, t), v(·, t))

2c2

) 1
θ

, t ∈ (0, Tmax(u0, v0)),

(see Lemma 5.4.1). Due to θ ∈ (0, 1), we conclude that F(u, v) and hence also its only
negative ingredient −

∫
Ω uv tend to −∞ after a finite time. As Ω is bounded, the latter

means that u blows up in finite time, since otherwise parabolic regularity theory applied to
the second equation of (4.1) would imply the boundedness of both u and v. This completes
the proof of part (a), as we can choose K(m) such that 2c2 = K(m) · (1 +A2) is satisfied
corresponding to the last condition in B(m,A).
As compared to the original method from [101], apart from some more involved estimates
our proof contains two important structural differences. First, in estimate (4.10) we include
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positive ingredients of the Liapunov functional (namely the terms in the second line of
(4.10)), which were not present in the corresponding estimate [101, (4.7)]. This is a
consequence of the more general choices of φ and ψ, and is particularly reflected in the
proof of Lemma 5.3.4. In the proof of (4.10), which altogether consists of Lemmas 5.3.1–
5.3.5,

∫
Ω uv is first estimated in terms of

∫
Ω |∇v|

2, which in turn is estimated appropriately
by splitting the domain Ω into a small ball Br0(0) and the remaining annulus, where the
smallness of r0 is needed to ensure the sublinear power of the dissipation rate D(u, v) in
(4.10). Mainly in Lemma 5.3.4, which contains the estimate on

∫
Br0 (0) |∇v|

2, the additional

terms stemming from the Liapunov functional as well as the assumptions (4.4), (4.5), and
the superlinear condition (4.9) play an important role.

The second difference is the explicit dependence on A in the condition F(u0, v0) ≤ −K(m)·
(1 + A2) raised in the set B(m,A) for the initial data. This is used in Theorem 4.1(b)
to prove that for any initial mass m > 0 there are suitable initial data in the sense that
B(m,A) 6= ∅ for some A > 0. If α in (4.4) is large enough, we can directly adapt the proof
from [101] to show even the density of B(m,A) in the sense claimed in the second part of
Theorem 4.1(b), where we do not need the precise dependence on A of the upper bound
for F(u0, v0). However, when α in (4.4) is close to 2

n , which is the border between super-
and subcritical case, we could only find appropriate initial data which imply that for any
m > 0 there is some A > 0 such that B(m,A) 6= ∅ (see the first part of Theorem 4.1(b)),
if the upper bound on F(u0, v0) depends at most quadratically on A (see the proof of
Theorem 5.1.2 starting from (5.4.7)). Moreover, in view of the definition of F in (4.6)
the quadratic dependence on A seems to be optimal. In order to show that this quadratic
dependence on A can be achieved in the sense that the above choice 2c2 = K(m) · (1+A2)
is possible, in the proof of part (a) we need to determine the precise dependence of the
involved constants on A. In the slightly more general setting in Section 5.3 of Article 5
this corresponds to the dependence on M and B which both depend linearly on A (see
the proof of Lemma 5.4.1). Thereby, we further refine some estimates from [101].

The proof of the infinite-time blowup result from Theorem 4.1(c) mainly relies on showing
that there is p > n such that supt∈(T

2
,T ) ‖u(·, t)‖Lp(Ω) ≤ C(T ) holds for any finite T ≤

Tmax(u0, v0). Parabolic regularity theory then implies uniform bounds in L∞(Ω) on ∇v
and on u in (T2 , T ) for any such T (see e.g. [29]), which implies the global existence of all
solutions to (4.1). As unbounded solutions for any positive mass were already found in
[100], the global existence result shows that they indeed blow up in infinite time.

This result of infinite-time blowup has been generalized in [3, 4] by showing bounds on
‖u(·, t)‖Lp(Ω) for any p ∈ [1,∞). The latter enables us to conclude the global existence
claimed in Corollary 4.4 from a more general result given in [95], which relies on an itera-
tive method of Moser-Alikakos type (see [3, Section 4] and [4, Section 3] for details). Each
of the finite-time blowup results in [3, 4] summarized in Corollary 4.4 mainly relies on the
refinement of one estimate from the proof of Lemma 5.3.4 (which was described above).
More precisely, in the two-dimensional setting we use a logarithmic Young inequality in
order to handle the term r1−n in the inequality below (5.3.30), which is not integrable at
zero for n = 2 (see [3, Lemma 2.4] for details). In order to get a finite-time blowup result

also for some ψ with sublinear growth in dimensions n ≥ 3, we use s2

ψ(s) ≤ L(G(s) + s+ 1)
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for s > 0 with some constant L > 0 instead of (4.9) in estimate (5.3.27) (see [4, Lemma 2.1
and (2.15)] for details).

Article 5 was jointly developed by Tomasz Cieślak and myself in December 2011 at the
Universität Zürich, where both of us had a postdoc position.

4.2 Competitive exclusion in a two-species chemotaxis model

In this section we study the influence of chemotaxis on the competition of two biological
species (e.g. cells or bacteria). Thereby we assume that these species are attracted by the
same chemical signal, which they produce themselves, and that their movement is governed
by diffusion and chemotaxis. Furthermore, we assume that the species proliferate and
compete for resources like space or nutrients such that their competition can be modeled
by the classical Lotka-Volterra dynamics. Finally, we assume that the chemical signal
diffuses much faster than the species so that we may describe its dynamics by an elliptic
instead of a parabolic equation. Denoting by u and v the population densities of the
two species and by w the concentration of the chemical signal, in Article 6 we therefore
consider the two-species Keller-Segel system

ut = d1∆u− χ1∇ · (u∇w) + µ1u(1− u− a1v), (x, t) ∈ Ω× (0,∞),

vt = d2∆v − χ2∇ · (v∇w) + µ2v(1− v − a2u), (x, t) ∈ Ω× (0,∞),

−∆w + λw = ku+ v, (x, t) ∈ Ω× (0,∞),
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(4.11)

where Ω ⊂ Rn is a bounded domain with smooth boundary, u0 and v0 are continuous and
nonnegative, di, µi, λ are positive and χi, ai, k are nonnegative parameters. As compared
to (4.1), the second species and the competition terms are included, while (4.11) is not
fully parabolic and contains only linear diffusion and chemotactic sensitivities. Some
examples of species which compete in presence of chemotaxis as well as mathematical
models combining competition and chemotaxis are provided in the introduction of Article 6
and the references given therein. In order to present the influence of chemotaxis on the
competition of u and v, we first recall that in the absence of diffusion and chemotaxis the
classical Lotka-Volterra ODE-system{

ut = µ1u(1− u− a1v), t ∈ (0,∞),

vt = µ2v(1− v − a2u), t ∈ (0,∞),
(4.12)

with positive initial data has the following large time behavior depending on the com-
petition parameters a1 and a2. In case of weak competition, namely a1, a2 ∈ [0, 1),
both species coexist in the sense that (u(t), v(t)) converges to the positive steady state
(u∗, v∗) := ( 1−a1

1−a1a2
, 1−a2

1−a1a2
) as t → ∞. In case of a1 > 1 > a2 ≥ 0, v has a stronger influ-

ence on u than u on v so that v outcompetes u in the sense that (u(t), v(t)) → (0, 1) as
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t→∞, a phenomenon called competitive exclusion as u converges to zero, but v converges
to a positive steady state. By symmetry, u outcompetes v in case of 0 ≤ a1 < 1 < a2.
Finally, in case of a1, a2 > 1 in (4.12) the steady state (0, 0) is unstable, (1, 0) and (0, 1)
are locally asymptotically stable, and (u∗, v∗) is a saddle. These results for (4.12) can be
found e.g. in [16, 82, 102].

One basic question is in how far chemotaxis influences the competition behavior as com-
pared to (4.12). For mathematical models containing both chemotaxis and competition,
results on the qualitative behavior of solutions including global existence were obtained
e.g. in [70, 105]. Furthermore, the existence and stability of steady states for coexistence
or competitive exclusion were studied e.g. in [33, 34, 59, 98, 105]. However, before 2012
there was no result concerning the qualitative behavior of solutions in the case of compet-
itive exclusion, when chemotaxis and competition involving both species are present. For
systems like (4.11) fulfilling the latter conditions, a few recent results are known. Namely,
(4.11) was studied in [97] in the coexistence case a1, a2 ∈ [0, 1) and it was shown that
if k = 1 and the proliferation rates µi are large enough as compared to the competition
parameters ai and the chemotactic sensitivity rates χi, then for all positive and continuous
initial data the solution to (4.11) satisfies (u(·, t), v(·, t))→ (u∗, v∗) as t→∞ so that coex-
istence is observed. A further coexistence result was proved in [84] for a system related to
(4.11), which includes non-local competition terms, if the chemotactic sensitivity parame-
ters are small as compared to the competition terms. In addition, the large time behavior
for a system, where the right-hand side of the third equation in (4.11) is replaced by a
given regular function f(x, t) satisfying ‖f(·, t) − 1

|Ω|
∫

Ω f(x, t)dx‖L∞(Ω) → 0 as t → ∞,

was recently studied in [85]. In particular, competitive exclusion for a1 > 1 > a2 ≥ 0 as
well as coexistence for a1, a2 ∈ [0, 1) were proved without a smallness assumption on the
chemotactic sensitivity parameters for positive initial data, but in this case the third equa-
tion for w is discoupled from the first two equations for u and v. The proofs of [84, 85, 97]
rely on comparison arguments with solutions to ODEs and such arguments are also part
of our method used in Article 6. For a general framework we refer to [85].

We study the coexistence case for (4.11) in Article 6. Assuming that a1 > 1 > a2 ≥ 0
and that the chemotactic sensitivity parameters are small as compared to the proliferation
rates in the sense that χ1

µ1
and χ2

µ2
are small enough, we prove that for any nonnegative and

continuous initial data (u0, v0) with v0 6≡ 0 there exists a unique global classical solution
to (4.11) and competitive exclusion occurs such that (u(·, t), v(·, t), w(·, t)) converges to
(0, 1, 1

λ) as t → ∞. Again we need the smallness of the chemotactic sensitivity rates and
it remains open whether a similar behavior can also be observed for larger chemotactic
sensitivities. Possibly even blowup can occur for large enough chemotactic sensitivities,
which has been observed in two-species chemotaxis systems without competition terms
(see e.g. [36, 37]), but seems to be unknown for systems like (4.11) including competition.

4.2.1 Results

The results of Article 6 are given in the following theorem (see Theorem 6.1.1 and Re-
mark 6.1.3).
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Theorem 4.5 Let Ω ⊂ Rn be a bounded domain with smooth boundary, n ∈ N, di, µi, λ >
0, χi ≥ 0 for i ∈ {1, 2} as well as

a1 > 1 > a2 ≥ 0

be fulfilled. Assume further that k, q1 := χ1

µ1
, and q2 := χ2

µ2
are nonnegative such that

q1 ≤ a1, q2 <
1

2
, and kq1 + max

{
q2 ,

a2 − a2q2

1− 2q2
,
kq2 − a2q2

1− 2q2

}
< 1 (4.13)

are satisfied. Then for any nonnegative u0, v0 ∈ C0(Ω̄) such that v0 6≡ 0 there exists
a unique global-in-time classical solution (u, v, w) to (4.11) satisfying v > 0, w > 0 in
Ω̄× (0,∞), and either u ≡ 0 in Ω̄× [0,∞) or u > 0 in Ω̄× (0,∞) as well as

u(·, t)→ 0, v(·, t)→ 1, and w(·, t)→ 1

λ
as t→∞,

uniformly with respect to x ∈ Ω.
Furthermore, for the existence of a unique global-in-time solution (u, v, w) to (4.11) such
that u, v, and w are bounded in Ω̄× [0,∞) it is sufficient to require kq1 + q2 < 1 instead
of (4.13).

Remark 6.1.2 provides particular examples for which (4.13) becomes easier to handle.
Although it remains open whether (4.13) is optimal in general, in the special case k =
a2 = 0, where (4.11) reduces to the single-species parabolic-elliptic Keller-Segel system
with logistic source (for v and w), (4.13) becomes q2 < 1

2 , which coincides with the
condition from [96] for the latter single-species chemotaxis system.

4.2.2 Methods

In order to prove the result of global existence and uniqueness from Theorem 4.5, in
Article 6 we first show the local existence of a solution by using a usual fixed point
argument. For the global existence it then remains to show the boundedness of u and v.
This is done by proving that (u, v) is a subsolution to a cooperative parabolic system, for
which on the one hand the comparison principle is valid and on the other hand appropriate
constant supersolutions in case of kq1 + q2 < 1 can be constructed (see Lemma 6.2.2). In
order to prove the competitive exclusion behavior, we use comparison arguments with
solutions to ODEs in a different framework as compared to [84, 85, 97], where appropriate
ODE systems were constructed from the original PDE model. In Article 6, we show for
instance that u is a subsolution to a suitable scalar parabolic equation, for which a spatially
homogeneous supersolution solving a corresponding ODE exists. By comparing u with this
supersolution and using similar arguments for v, we obtain inequalities containing upper
or lower bounds for

L1 := lim sup
t→∞

(
max
x∈Ω̄

u(x, t)
)
, L2 := lim sup

t→∞

(
max
x∈Ω̄

v(x, t)
)
, l2 := lim inf

t→∞

(
min
x∈Ω̄

v(x, t)
)

in terms of some of these quantities and the constants k, qi, ai, i = 1, 2, defined in The-
orem 4.5. These inequalities are developed in Lemmas 6.3.3–6.3.5. By just using these
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inequalities irrespective of their origin in conjunction with (4.13), we finally show that
L1 = 0 and L2 = l2 = 1 are fulfilled (see Lemma 6.3.6 and Section 6.4 in Article 6). In
view of Lemma 6.3.1, this proves the claimed asymptotic behavior of (u, v, w).

The main part of Article 6 was jointly developed by José Ignacio Tello, Michael Win-
kler, and myself in May 2012 during a visit of J.I. Tello to the Universität Paderborn.
Article 6 was then completed by exchange of emails, where again each of us contributed
comparably.
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5. Contributions to multiscale
models for tumor invasion

This chapter is devoted to the description of results and methods from [7, 13] (Articles 7
and 8). Both works are concerned with multiscale models for cancer cell migration and,
unlike in the previous articles, one of the issues is the derivation of appropriate models.
Tumor cell migration is influenced by a plethora of processes taking place at different
spatial scales which range from the subcellular level (microscopic scale) via the mesoscopic
scale of cell interactions and up to the macroscopic scale of cell and tissue populations.
Related mathematical descriptions usually focus on specific aspects of cancer cell migration
which are either modeled on one of these scales or in multiscale settings involving two
or all three scales. We refer to the introduction of Articles 7 and 8 for a review of
monoscale models related to the settings therein. For couplings of subcellular processes
with macroscopic population behaviors, several types of multiscale models are used in the
context of tumor cell migration. Individual- and force-based models can be found e.g. in
[90, 91]. Moreover, hybrid models relying on cellular automata or agent-based approaches
provide a framework for coupling individual events with macroscopic features (see e.g.
[27, 51, 66, 104]). On the one hand these models allow for a very detailed modeling, but
on the other hand they become computationally very expensive for biologically realistic
numbers of cells. In contrast to this, continuum models allow to describe the evolution
of averaged phenomena by means of differential equations and are more efficient from the
numerical point of view. Thereby, mesoscopic interactions are usually described with the
help of kinetic transport equations of Boltzmann type from which macroscopic parabolic
or hyperbolic PDEs can be derived by appropriate scalings and limits. In this context
a general framework which allows to include subcellular processes was provided in [25].
Two particular examples of this model class can be found in [75], where a general global
well-posedness result for weak solutions was established, and [35], where the inclusion
of subcellular processes in a micro-meso-macro model for glioma invasion was crucial
for the observation of fingering patterns in numerical simulations. Since these micro-
meso-macro models are very challenging for the numerics and the rigorous derivation of
macroscopic PDEs from mesoscopic kinetic equations is only available in particular cases,
micro-macro models provide a simplified multiscale approach which avoids these difficulties
and concentrates on the evolution of macroscopic populations, but still allows to take into
account subcellular dynamics.

The latter approach is rather new in the context of cancer cell migration and consists of

35
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coupling a system of PDEs on the macroscale with ODEs modeling particular aspects of the
subcellular dynamics. In such a way for instance the influence of intra- and extracellular
acidity (see [99] for a model only relying on ODEs), heat shock proteins (see [78, 94]),
and glycolysis (see [67]) on tumor invasion as well as the influence of integrin dynamics
on haptotactic invasion (see [76]) were modeled. In these works, apart from the modeling
the solution behavior is illustrated by numerical simulations, whereas only [78] provides a
proof of the mathematical (local) well-posedness. The latter is a nontrivial issue since these
multiscale models contain quite different types of equations which are highly nonlinearly
coupled and the biologically motivated regularity assumptions are rather modest. We
use such micro-macro models as well in Article 7, where we focus on the influence of
cell contractivity on tumor invasion, and in Article 8, where the influence of intra- and
extracellular acidity on cancer cell invasion is studied. For the contractivity model we
prove the local well-posedness in the context of weak solutions in Article 7, while the
global existence was later proved in [14] in a slightly more specific framework. In Article 8,
we prove the global well-posedness of the acidity model in an appropriate setting of weak
solutions. In both articles we also perform numerical simulations in order to illustrate the
behavior of the solutions.

5.1 Results

In this section we present the analytical results of Articles 7 and 8, along with a short
description of the modeling. We refer to Articles 7 and 8 for more details about the models
as well as for the numerical simulations.

In Article 7 we focus on the influence of cell contractivity on tumor invasion. Thereby, the
cell contractivity describes the ability of the cancer cell to modify its shape according to
its environment. As cancer cells use adhesion to tissue fibers of the extracellular matrix
(ECM) for migration, they preferably move toward increasing fiber concentrations by
means of haptotaxis. Thereby, the contractivity influences the cell motility by enabling
them to drastically change their shape and hence to squeeze through the network of tissue
fibers. In addition, when the tissue is too dense, cancer cells are prone to degrade the
tissue fibers by proteolysis. The resulting small proteolytic rests are soluble, and thus can
diffuse and serve as a chemoattractant for the cancer cells. Altogether, we propose the
multiscale model

ct = ∇ · (ϕ(κ, c, v)∇c)−∇ · (ψ(κ, v)c∇v)−∇ · (f(c, l)c∇l)
+µcc

(
1− c

Kc
− η1

v
Kv

)
,

vt = −δvcv + µvv
(

1− η2
c
Kc
− v

Kv

)
,

lt = α∆l + δlcv − βl,
yt = G(v, l,y),

κt = −qκ+H(y(t− τ)).

(5.1)

in (0, T ) × Ω, where Ω ⊂ Rn is a bounded domain with a smooth enough boundary and
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n ∈ {1, 2, 3}. We further assume the boundary conditions

∂c

∂ν
=
∂v

∂ν
=
∂l

∂ν
= 0 on (0, T )× ∂Ω, (5.2)

where ν denotes the outward unit normal vector on ∂Ω, and the initial conditions

c(0, x) = c0(x), v(0, x) = v0(x), l(0, x) = l0(x),
κ(0, x) = κ0(x), y(t, x) = y0(x),

t ∈ (−∞, 0], x ∈ Ω. (5.3)

Here, accounting for the cancer cell density c, the density v of tissue fibers in the ECM,
and the concentration l of proteolytic rests on the macroscopic scale, the PDE for c in
(5.1) includes diffusion, cross diffusion terms modeling hapto- and chemotaxis as well
as a Lotka-Volterra competition term describing the proliferation of cancer cells limited
by the presence of the ECM. As the ECM is not moving, v satisfies an ODE including
the degradation by the cancer cells as well as the remodeling of the tissue in presence of
competition for space with the cancer cells. The PDE for the concentration l of proteolytic
residuals includes diffusion, production due to the degradation of tissue by the cancer cells
as well as decay. A new feature in these macroscopic equations is the dependence of the
diffusivity ϕ and the haptotactic sensitivity ψ of cancer cells on the cell contractivity κ
carrying the information about microscopic dynamics to the macroscopic level. On the
microscale, we see the binding of cell surface receptors (called integrins) to tissue fibers and
proteolytic residuals as the onset of a number of processes which finally lead to changes in
the contractivity. Denoting by y1 and y2 the respective concentrations of integrins bound
to ECM and proteolytic rests, the integrin dynamics is described by an ODE system for
y = (y1, y2). Finally, as changes in the contractivity are the outcome of several processes
which are initiated by the integrin dynamics, we propose an ODE for κ including a time
delay τ . More details about the derivation of the resulting model (5.1), as well as examples
for the coefficient functions are provided in Article 7 (Section 7.2).
As the diffusivity and the haptotactic sensitivity of cancer cells depend on the contractiv-
ity κ, which in turn is influenced by the subcellular integrin dynamics, where the latter
depends on the maroscopic quantities v and l, (5.1) contains several strong couplings
between the micro- and macroscales, which affect the analysis. In order to present the
general well-posedness result, we define

Y := {(y1, y2) ∈ (0, R0)2 | y1 + y2 < R0}

and the mapping G : Y × [0,∞)× [0,∞)→ R2 by

G(y, v, l) :=

(
k1(R0 − y1 − y2)v − k−1y1

k2(R0 − y1 − y2)l − k−2y2

)
, (5.4)

where R0 is the total integrin concentration of each cancer cell, k1, k2 are respective
binding rates for the binding of integrins to ECM and proteolytic residuals, and k−1, k−2

the corresponding detaching rates. Then Y is a positive invariant set for the ODE system
forming the fourth equation of (5.1). We have the following result of local well-posedness
in Article 7 (see Theorems 7.3.1 and 7.3.2) which particularly applies to the coefficient
functions given in (7.2.8):
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Theorem 5.1 Let Ω ⊂ Rn be a bounded domain with smooth boundary, n ∈ {1, 2, 3},
p ∈ (n+2

2 ,∞), and define the spaces

X :=
{
u ∈ Lp(0, T ;W 2,p(Ω)) : ut ∈ Lp(0, T ;Lp(Ω))

}
,

Z := L2p(0, T ;W 1,2p(Ω)), V := C1(0, T ;C0(Ω̄)).

Furthermore, we fix a time lag τ ≥ 0 and assume that

c0, v0, l0 ∈W 2,p(Ω), κ0 ∈W 1,2p(Ω), y0 ∈ (W 1,2p(Ω))2,

∂c0
∂ν

=
∂v0

∂ν
=
∂l0
∂ν

= 0 on ∂Ω, 0 < c0 < Kc,

0 < v0 < Kv, l0 > 0, κ0 > 0 and y0 ∈ Y for all x ∈ Ω̄.

Moreover, suppose that (5.4) is fulfilled, all constants in (5.1) are positive with η1, η2 ∈
(0, 1), and let

H ∈ C1(Ȳ ), f ∈ C1([0,∞)2), ϕ ∈ C1([0,∞)3), ψ ∈ C1([0,∞)2) be

nonnegative such that for any 0 < a < b <∞ there exists δa,b > 0 with

ϕ(κ, c, v) ≥ δa,b for all (κ, c, v) ∈ [a, b]× [0, b]2.

Then there is T > 0 such that there exists a unique weak solution to (5.1)–(5.3) satisfying

c, l ∈ X, v ∈ X ∩ V, κ ∈ Z ∩ V, y ∈ Z2 ∩ V 2 such that 0 ≤ c ≤ Kc,

0 < v ≤ Kv, l ≥ 0, κ > 0 and y ∈ Y for all (t, x) ∈ [0, T )× Ω̄.

Furthermore, for the specific parameter choices given in (7.2.8) we have proved the global
existence of a weak solution in [14] together with M. Winkler by establishing a certain
quasi-dissipative functional for regularizations of (5.1) (stemming to a large extent from
his contribution).

In Article 8 we focus on the influence of intra- and extracellular acidity on cancer cell
migration. As normal cells cannot survive in an acidic surrounding, the latter provides
space for cancer cell invasion. An acidic tumor environment is generated when cancer cells
regulate their intracellular acidity for instance by increasing extrusion of intracellular pro-
tons through membrane transporters. Hence, we account for the densities c of cancer cells
and n of normal cells and the concentration h of extracellular protons on the macroscopic
scale, as well as for the intracellular proton concentration y on the microscopic scale. As
compared to the ODE model in [99] and the multiscale model proposed in [57] including
stochasticity, in particular pH taxis as well as time varying carrying capacities are new fea-
tures in our model. As cancer cells prefer an acidic environment they follow extracellular
pH gradients. This so-called pH taxis is a mechanism by which tumor cells follow the pH
gradient available in their surroundings. Since tumor cells have more space in an acidic
environment due to apoptosis of normal cells, we propose that their carrying capacitity
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depends on the extracellular acidity h and that it is time delayed, as its adaptation to the
acidosis is not instantaneous. Altogether, in Article 8 we propose the micro-macro model

∂tc = ∇ · (ϕ(c, n)∇c)−∇ · (f(h, c)∇h)

+µc(y)c
(

1− c
Kc(h(·,t−τ)) − η1

n
Kn

)
in Ω× (0, T ),

∂tn = −δnhn+ µnn
(

1− η2
c

Kc(h(·,t)) −
n
Kn

)
in Ω× (0, T ),

∂th = Dh∆h+R(y, h) in Ω× (0, T ),

∂ty = −R(y, h)− αy + g(c) in Ω× (0, T ),

(5.5)

where Ω ⊂ RN is a bounded domain with smooth boundary and N ≤ 3. We further endow
(5.5) with the boundary conditions

∂νc = ∂νh = 0 on ∂Ω× (0, T ) (5.6)

and initial conditions

c(x, 0) = c0(x), n(x, 0) = n0(x), y(x, 0) = y0(x) for x ∈ Ω,
h(x, t) = h0(x, t) for x ∈ Ω, t ∈ [−τ, 0].

(5.7)

The PDE for the cancer cells c includes diffusion and pH taxis with both nonlinear dif-
fusivity and pH-tactic sensitivity as well as the proliferation of cancer cells in presence of
competition with normal cells for space. Here, as described above, the carrying capacity
Kc of cancer cells is time varying and delayed, while their proliferation rate depends on
the intracellular acidity described by y. Furthermore, the normal cells are not diffusing,
so that n solves an ODE involving their degradation by extracellular acidity and their
proliferation in presence of competition with cancer cells. Since extracellular protons dif-
fuse, h solves a PDE including diffusion and exchange of extra- and intracellular protons.
The latter is described by the function R(y, h). Correspondingly, −R(y, h) describes the
corresponding loss term in the microscopic ODE solved by the intracellular proton con-
centration y. In addition, the latter equation accounts for degradation of y as well as its
production by the cancer cells. Details on the derivation of (5.5) are presented in Article 8
(Section 8.2).
In order to obtain the global existence of a weak solution to (5.5), we require the following
assumptions. These are motivated by the coefficient functions proposed in (8.2.6), which
indeed satisfy (5.8)–(5.11) below. Namely, let

ϕ, f,R ∈ C1([0,∞)2), µc,Kc, g ∈ C1([0,∞)) such that g ∈ L∞((0,∞))

and g ≥ 0, µc > 0, Kc > 0 on [0,∞).
(5.8)

Moreover, we assume that there exist H0, Y0 ∈ (0,∞) such that

R(y, 0) ≥ 0, R(y,H0) ≤ 0 for all y ∈ [0, Y0], R(0, h) ≤ 0 for all h ∈ [0, H0],

−R(Y0, h)− αY0 + ‖g‖L∞((0,∞)) ≤ 0 for all h ∈ [0, H0].
(5.9)

H0 and Y0 are upper bounds for the concentrations of the extra- and intracellular protons,
respectively. R describes the effect of the proton exchange between the interior of the can-
cer cell and its environment. Here the first two conditions in (5.9) mean for instance that
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there is no proton transport into the tumor cell if there are no extracellular protons, while
protons cannot leave the cell if the extracellular proton concentration is at its maximal
value.

With H0 and Y0 as defined above, we further assume that there exist positive constants
C1 and C2 such that

0 ≤ f(h, c) ≤ C1(1 + c),
C2

1 + c
≤ ϕ(c, n) ≤ C1 ∀(c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0],

(5.10)
and that for any a ∈ (0, H0) there is Ca > 0 such that

f(h, c) ≤ Ca for all (c, h) ∈ [0,∞)× [a,H0]. (5.11)

Concerning the initial data suppose that

c0, n0, y0 ∈ C0(Ω̄), h0 ∈ C0([−τ, 0];W 1,q(Ω)),

c0 ≥ 0, 0 ≤ n0 ≤ Kn, 0 ≤ y0 ≤ Y0 in Ω̄, δ ≤ h0 ≤ H0 in Ω̄× [−τ, 0].
(5.12)

with some q ∈ (N + 2,∞) and δ > 0. Then we have the following global existence result
in Article 8 (see Theorem 8.3.2 and Remark 8.3.7):

Theorem 5.2 Let Ω ⊂ RN be a bounded domain with smooth boundary, N ∈ N, α > 0,
η1, η2 ∈ (0, 1), τ > 0, and assume that (5.8)–(5.12) are fulfilled. Then there exists a global
weak solution to (5.5)–(5.7) in the sense of Definition 8.3.1 satisfying

c ∈ L∞loc(Ω̄× [0,∞)), 0 ≤ n ≤ Kn and 0 ≤ y ≤ Y0 in Ω× (0,∞),

h ∈ L∞((0,∞);W 1,q(Ω)), 0 ≤ h ≤ H0 in Ω× (−τ,∞).
(5.13)

If in addition c0 ∈ Cβ(Ω̄) is satisfied with some β ∈ ( 1
N+2 , 1), then there is a unique global

weak solution within the class of functions satisfying the conditions of Definition 8.3.1 and
h ∈ Lrloc([0,∞);W 1,r(Ω)) for some r > N + 2.

If the conditions on h0 are replaced by h0 ∈ C0([−τ, 0];W 1,∞(Ω)) with h0 ≥ 0 in Ω̄×[−τ, 0]
and instead of (5.10) and (5.11) we assume

0 ≤ f(h, c) ≤ C1(1 + c)m1 , C2(1 + c)−m2 ≤ ϕ(c, n) ≤ C1(1 + c)m3

for all (c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0] with some real numbers mj, j = 1, 2, 3, satisfying
2m1 +m2 < 3, then there exists a global weak solution to (5.5)–(5.7) fulfilling c ∈ L∞(Ω̄×
[0,∞)) in addition to (5.13).

One particular intention of Theorems 5.1 and 5.2 was to allow on the one hand a preferably
general class of coefficient functions including the respective examples (7.2.8) and (8.2.6)
and to require on the other hand fairly weak regularity of the data so that both well-
posedness results can be applied to rather general classes of micro-macro models.
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5.2 Methods

The local existence result of Theorem 5.1 is proved by defining an iterative sequence of
solutions to equations which approximate (5.1), but are decoupled from each other, hence
allowing to circumvent the strong couplings of the original system (see (7.3.5)–(7.3.9)).
A fixed point argument in conjunction with compactness properties then imply the con-
vergence of this sequence of solutions to a local weak solution of the original problem.
Its uniqueness is shown with the help of Gronwall’s lemma. Thereby, in particular the
haptotaxis term requires very detailed estimates as on the one hand the spatial deriva-
tives of v are present in the equation for c, but on the other hand the ODE satisfied by v
does not provide any gain of spatial regularity as compared to the initial data. Moreover,
Theorem 5.1 is first proved for the case τ = 0 (see Theorem 7.3.1) and then extended to
the case of a constant temporal delay τ > 0 with the help of the method of steps (see
Theorem 7.3.2).
For proving the global existence result of Theorem 5.2, we approximate (5.5) by appro-
priate regularizations (see (8.3.11)), for which the local existence of a classical solution is
verified by a fixed point argument involving parabolic Schauder theory. The global exis-
tence for any of these approximate solutions is further shown by providing suitable uniform
bounds on ∇cε and ∇hε, which in conjunction with bounds on ‖cε‖L∞loc((0,∞),Lp(Ω)) for any
finite p also allow to obtain the latter uniform bound for p = ∞. Thereby, we adapt
arguments which are known for purely macroscopic Keller-Segel chemotaxis systems (see
Lemmas 8.3.4–8.3.6). Appropriate compactness arguments finally imply the convergence
of these approximate solutions to a global weak solution to (5.5)–(5.7). The uniqueness
part of Theorem 5.2 is obtained by combining results on maximal parabolic regularity with
Gronwall’s lemma and applying the proof of uniqueness from Theorem 5.1. Although (5.5)
contains pH taxis, which is a kind of chemotaxis, the absence of haptotaxis allows to ob-
tain stronger results as compared to (5.1).

In Articles 7 and 8 the analysis was done by myself, while Christina Surulescu mainly
contributed the modeling and Gülnihal Meral was responsible for the implementation
of the numerical schemes. However, these three parts influence each other, since e.g.
discussions on the analytic and numerical results induced changes in the model, hence our
contributions cannot be completely separated.
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Abstract

We study the asymptotic behavior of nonnegative solutions to the Cauchy problem for a
semilinear parabolic equation with a supercritical nonlinearity. It is known that there are
initial data such that the corresponding solution decays to zero with an algebraic rate.
Furthermore, any algebraic rate which is slower than the self-similar rate occurs as decay
rate for some solution. In this paper we prove that the convergence to zero can take place
with an “arbitrarily” slow rate, if the initial data are chosen properly.

Key words: convergence to zero, semilinear parabolic equation, Cauchy problem
MSC 2010: 35K15, 35B40, 35K57

1.1 Introduction

We consider the Cauchy problem{
ut = ∆u+ up, x ∈ RN , t ∈ (0,∞),

u(x, 0) = u0(x), x ∈ RN ,
(1.1.1)

where u = u(x, t), p > 1, ∆ denotes the Laplacian operator with respect to x and the
function u0 is nonnegative and continuous in RN . In spite of its simple structure, problem
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(1.1.1) offers a rich variety of mathematical phenomena and has been studied intensively
by several authors. The monograph [A1.20] and the references given therein provide a
broad overview.

Concerning the large-time behavior of solutions to (1.1.1), the Fujita exponent

pF :=
N + 2

N

is one of the critical exponents. It is well-known that in case of 1 < p ≤ pF each positive
solution of (1.1.1) blows up in finite time, whereas there are positive global solutions in
case of p > pF (see [A1.12]). With regard to global solutions converging to zero, different
decay rates have been proved by several authors. In [A1.16] it has been proved that, for
p > pF and initial data u0 satisfying

k1(1 + |x|)−l ≤ u0(x) ≤ k2(1 + |x|)−l, x ∈ RN ,

with positive and small constants k1 and k2 the corresponding solution u of (1.1.1) exists
globally in time and decays to zero at the same rate as the solution of the linear heat
equation with the same initial data. Namely, u fulfills

K1 g(t) ≤ ‖u(·, t)‖L∞(RN ) ≤ K2 g(t), for t ≥ t1 > 1,

where g is given by

g(t) :=


t−

N
2 if l > N,

t−
N
2 ln t if l = N,

t−
l
2 if 2

p−1 ≤ l < N.

Moreover, it is shown in [A1.4] that for l > 2
p−1 this behavior of u occurs for a larger class

of initial data without a smallness condition on k2. We remark that the slowest of these

decay rates is t
− 1
p−1 .

Furthermore, several conditions have been found which imply that

‖u(·, t)‖L∞(RN ) ≤ C t
− 1
p−1 for t > 0

holds with some positive constant C (see e.g. [A1.13], [A1.15], [A1.17], [A1.21], [A1.22]).

Additionally, there are solutions which decay to zero at a rate which is slower than t
− 1
p−1 .

In order to present these results, we define another critical exponent

pc :=

{
∞ for N ≤ 10,

(N−2)2−4N+8
√
N−1

(N−2)(N−10) for N ≥ 11,

which satisfies pc >
N
N−2 > 1 for N ≥ 11. Moreover, let ϕ∞ = ϕ∞(|x|) denote the singular

steady state of (1.1.1), which exists for p > N
N−2 , N > 2, and is given by

ϕ∞(|x|) := L|x|−m, |x| > 0,
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where m := 2
p−1 and L := {m(N − 2−m)}

1
p−1 . Finally, in case of p > pc we set

λ1 = λ1(N, p) :=
N − 2− 2m−

√
(N − 2− 2m)2 − 8(N − 2−m)

2
,

which is the smaller positive root of

λ2 − (N − 2− 2m)λ+ 2(N − 2−m) = 0,

while λ2 is defined to be the larger positive root of this equation. It was proved in [A1.15]
that for p > pc with initial data u0 fulfilling

0 ≤ u0(x) < ϕ∞(|x|) for |x| > 0 (1.1.2)

and
ϕ∞(|x|)− κ1|x|−l ≤ u0(x) ≤ ϕ∞(|x|)− κ2|x|−l for |x| > R (1.1.3)

with l ∈ (m,m + λ1) and some positive constants κ1, κ2 and R, the solution u of (1.1.1)
is global in time and converges to zero in such a way that

t
1
p−1 ‖u(·, t)‖L∞(RN ) →∞ as t→∞

is satisfied. In [A1.9] the exact decay rate of this slow convergence to zero was determined
and it was shown that

K1(t+ 1)
−m(m+λ1−l)

2λ1 ≤ ‖u(·, t)‖L∞(RN ) ≤ K2(t+ 1)
−m(m+λ1−l)

2λ1 for all t ≥ 0 (1.1.4)

holds with positive constants K1 and K2. Moreover, (1.1.4) is also valid in case of p > pc,
if the initial data satisfy (1.1.2) and (1.1.3) with some l ∈ [m+λ1,m+λ2 +2). This shows
that solutions grow up for l > m+λ1 while they remain bounded and bounded away from
zero for l = m+ λ1. We refer to [A1.2] and [A1.7] for the grow-up rate when l > m+ λ1

and to [A1.8], [A1.14], [A1.18] and [A1.19] for the convergence to regular steady states if
l = m + λ1. Furthermore, the rates of convergence to singular steady states (see [A1.6]),
the convergence to self-similar solutions (see [A1.10], [A1.11]) and the grow-up rate in the
critical case p = pc (see [A1.3]) have been established.

We remark that any algebraic decay rate slower than the self-similar one occurs due to
(1.1.4) for solutions converging to zero, if the initial data are chosen suitably. As the grow-
up can take place with any arbitrarily slow rate and in particular with rates which are
slower than any algebraic rate (see [A1.5]), we are concerned with the question whether
the convergence to zero also occurs with an arbitrarily slow rate.
To this end, we assume in this paper p > pc with N ≥ 11 as well as (1.1.2) and

ϕ∞(|x|)− c1|x|−m−λ1η(|x|) ≤ u0(x) ≤ ϕ∞(|x|)− c2|x|−m−λ1η(|x|), |x| > R, (1.1.5)

where c1, c2 and R are positive constants. Here η is supposed to increase slowly at infinity
like for example η(z) = (ln(z + z0))n for n ∈ N or η(z) = ln(ln(. . . (ln(z + z0)) . . . )).
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Actually, the conditions on η which are raised below are satisfied for any of these examples
if z0 is chosen large enough.
Throughout this paper, η ∈ C2([0,∞)) is supposed to fulfill

η(z) > 0, η′(z) > 0 and η′′(z) ≤ 0 for all z ≥ 0 (1.1.6)

such that η increases slowly near infinity in the sense that

zη′(z)

η(z)
→ 0 as z →∞. (1.1.7)

Furthermore, we assume that ∣∣∣∣zη′′(z)η′(z)

∣∣∣∣ ≤ Cη for all z ≥ 0 (1.1.8)

holds with a positive constant Cη. Finally, we suppose that for any α > 0 and γ > 0 there
is a positive constant cα,γ such that

η(γzα) ≤ cα,γη(z) for all z ≥ 1 (1.1.9)

is fulfilled. Indeed, condition (1.1.9) is not a consequence of (1.1.6), (1.1.7) and (1.1.8)
which can be seen for example with the function η(z) := e(ln(z+2))ε , where ε > 0 is a small
constant. Now (1.1.7) and (1.1.8) imply

z2η′′(z)

η(z)
→ 0 as z →∞. (1.1.10)

Moreover, we obtain from (1.1.6) and (1.1.7) that for any α > 0 there is a constant Cα > 0
such that

η(z) ≤ Cαzα for all z ≥ 1. (1.1.11)

We are now able to state our main result which shows that the convergence to zero in
(1.1.1) takes place with arbitrarily slow decay rates, if the initial data are chosen suitably.
In particular, there are solutions converging to zero with decay rates that are slower than
any algebraic rate.

Theorem 1.1.1 Let N ≥ 11, p > pc and assume that u0 ∈ C0(RN ) fulfills (1.1.2) and
(1.1.5), where η meets the conditions (1.1.6), (1.1.7), (1.1.8) and (1.1.9). Then there are
positive constants C1 and C2 such that the solution u of (1.1.1) satisfies

C1η
− m
λ1 ((t+ 1)

1
2 ) ≤ ‖u(·, t)‖L∞(RN ) ≤ C2η

− m
λ1 ((t+ 1)

1
2 ) for all t ≥ 0.

We remark that there are also bounded functions η which fulfill the conditions raised above.
In this case Theorem 1.1.1 gives another proof of (1.1.4) with l = m + λ1. Although we
are here only interested in the case where η is unbounded, we prove Theorem 1.1.1 for
general functions η as we do not need the unboundedness of η in the proof.
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This paper is organized in the following way. In Section 1.2 we shortly introduce the
self-similar change of variables which transforms radially symmetric solutions of (1.1.1)
decaying to zero with a very slow rate into solutions of another problem which grow
up. In Sections 1.3 and 1.4 we prove an upper and lower bound of the corresponding
grow-up rate by constructing suitable super- and subsolutions, respectively, and using
comparison arguments. These super- and subsolutions for the transformed problem are
more transparent than for (1.1.1) itself. Finally, we complete the proof of Theorem 1.1.1
in Section 1.5.

1.2 Self-similar change of variables

To prove Theorem 1.1.1 we make use of a suitable transformation which has been an
important ingredient of [A1.9]. A radially symmetric solution of (1.1.1) with the behavior
claimed in Theorem 1.1.1 will be transformed into a function which grows up. We will
derive estimates for this grow-up rate which will imply the claimed behavior of solutions to
(1.1.1). Here we shortly introduce the transformation and refer to [A1.9] for more details.
If u = u(r, t), r = |x|, is a radially symmetric solution of (1.1.1), it satisfies{

ut = urr + N−1
r ur + up, r > 0, t > 0,

u(r, 0) = u0(r), r > 0.
(1.2.1)

The self-similar change of variables

v(ρ, s) = (t+ 1)
1
p−1u(r, t), ρ =

r√
t+ 1

, s = log(t+ 1) (1.2.2)

transforms (1.2.1) into the problem{
vs = vρρ + N−1

ρ vρ + vp + ρ
2vρ + m

2 v, ρ > 0, s > 0,

v(ρ, 0) = v0(ρ) ≡ u0(ρ), ρ > 0.
(1.2.3)

Now our aim is to show that a radially nonincreasing solution v of (1.2.3) grows up such
that

v(0, s) ' e
m
2
sη
− m
λ1 (e

1
2
s) for s ≥ 0 (1.2.4)

is satisfied. This will imply the claimed behavior of u.

1.3 Upper bound

We use an idea from [A1.9] to prove an upper estimate for the grow-up rate of solutions
to (1.2.3) which corresponds to (1.2.4). For this purpose, we construct two supersolutions
of (1.2.3), one of them in an inner region near ρ = 0 and the other one in a corresponding
outer region which is bounded away from ρ = 0.
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To this end, let ψ denote the classical solution of{
ψξξ + N−1

ξ ψξ + ψp = 0, ξ > 0,

ψ(0) = 1, ψξ(0) = 0.
(1.3.1)

Then for p > pc, ψ satisfies the asymptotic expansion

ψ(ξ) = Lξ−m − aξ−m−λ1 + o(ξ−m−λ1),
ψξ(ξ) = −mLξ−m−1 + a(m+ λ1)ξ−m−λ1−1 + o(ξ−m−λ1−1),

ξ ' ∞, (1.3.2)

where a is a positive constant (see [A1.7], [A1.14]). This implies

Lξ−m − a1ξ
−m−λ1 ≤ ψ(ξ) ≤ Lξ−m − a2ξ

−m−λ1 for ξ ≥ 1 (1.3.3)

with some positive constants a1 and a2. Furthermore, ψ has the following property.

Lemma 1.3.1 Suppose N ≥ 11, p > pc and ψ is the solution of (1.3.1). Then

ψ(ξ) +
1

m
ξ ψξ(ξ) ≥ 0 for ξ ≥ 0

is satisfied.

Proof. As the positive radially symmetric steady states of (1.1.1) are ordered in case of
p ≥ pc, we obtain ψ(ξ) < ϕ∞(ξ) for any ξ > 0 (see e.g. [A1.2] and the references given
there).

We fix ξ0 > 0 and set Bξ := Bξ(0) ⊂ RN for ξ > 0. Due to the fact that N ≥ 11 and
p > pc >

N
N−2 , we have

−m− 1 = − 2

p− 1
− 1 > − 2

N
N−2 − 1

− 1 = −(N − 2)− 1 = −(N − 1).

Adapting an idea used in [A1.14], we conclude by Green’s identity (where ωN denotes the
volume of the unit ball in RN ) that

NωNξ
N−1
0 [ϕ∞(ξ0)ψξ(ξ0)− ψ(ξ0)ϕ′∞(ξ0)]

= NωNξ
N−1
0 [ϕ∞(ξ0)ψξ(ξ0)− ψ(ξ0)ϕ′∞(ξ0)]− lim

ξ↘0
NωNξ

N−1[ϕ∞(ξ)ψξ(ξ)− ψ(ξ)ϕ′∞(ξ)]

= lim
ξ↘0

∫
∂(Bξ0\Bξ)

(
ϕ∞

∂ψ

∂ν
− ψ∂ϕ∞

∂ν

)
dS = lim

ξ↘0

∫
Bξ0\Bξ

(ϕ∞∆ψ − ψ∆ϕ∞)dx

= lim
ξ↘0

∫
Bξ0\Bξ

(−ϕ∞ψp + ψϕp∞)dx = lim
ξ↘0

∫
Bξ0\Bξ

ϕ∞ψ(ϕp−1
∞ − ψp−1)dx ≥ 0.

As this implies

ξ−m0 ψξ(ξ0) + ψ(ξ0)mξ−m−1
0 ≥ 0
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and ξ0 is positive, the claim is valid for ξ0. Hence, the claim is proved, since ξ0 > 0 is
arbitrary and the claim is obvious for ξ = 0.

In order to construct a supersolution of (1.2.3) in an inner region, we let Ψ denote the
solution of{

Ψξξ + N−1
ξ Ψξ + pψp−1Ψ = m+λ1−l

l−m
(
ψ + 1

mξ ψξ
)

+ A
1+ξm+λ1

, ξ > 0,

Ψ(0) = 0,Ψξ(0) = 0,
(1.3.4)

where l ∈ (m,m + λ1) is fixed. Moreover, due to Lemma 3.1 in [A1.9], we are able to
choose A > 0 such that

Ψ(ξ) = Kξ2−m−λ1 + o(ξ2−m−λ1),
Ψξ(ξ) = −K(m+ λ1 − 2)ξ1−m−λ1 + o(ξ1−m−λ1),

ξ ' ∞, (1.3.5)

and
|Ψ(ξ)|+ |ξΨξ(ξ)| ≤ CΨ(1 + ξ)2−m−λ1 for all ξ ≥ 0 (1.3.6)

is satisfied with positive constants K and CΨ.
Now by an adaption of the idea used to prove Lemma 3.2 of [A1.9] we obtain a suitable
supersolution in an inner region near ρ = 0.

Lemma 1.3.2 Suppose N ≥ 11 and p > pc. For ρ ≥ 0, s ≥ 0, M > 0, β > 0 and µ > 0
we define

σ(s) := Me
m
2
sη
− m
λ1 (eβ(s+µ)), ξ(ρ, s) := σ

1
m (s) ρ

and
vin(ρ, s) := σ

(
ψ(ξ)− σs

σp
Ψ(ξ)

)
.

Then for any β > 0 there are µ > 0, M0 > 0 and ρ0 > 0 such that vin is a supersolution
of (1.2.3) for 0 < ρ < ρ0 and s > 0 and

σs
σp
|Ψ(ξ)|
ψ(ξ)

≤ 1

2
for ρ > 0 and s > 0 (1.3.7)

is fulfilled, whenever M ≥M0 holds.

Proof. We fix β > 0. First we compute

σs(s) =
m

2
Me

m
2
sη
− m
λ1 (eβ(s+µ))

(
1− 2β

λ1
· e

β(s+µ)η′(eβ(s+µ))

η(eβ(s+µ))

)
for s ≥ 0

and define

ε :=
m+ λ1 − l
l −m

> 0,

where l is chosen in (1.3.4). Due to (1.1.6) and (1.1.7) there is µ > 0 such that

m

2(1 + ε)
σ(s) ≤ σs(s) ≤

m

2
σ(s) for all s ≥ 0 (1.3.8)
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is satisfied for any M > 0. We fix µ > 0 with this property.
Next, (1.3.3), (1.3.6) and λ1 > 2 imply the existence of ξ0 ≥ 1 such that

|Ψ(ξ)|
ψ(ξ)

≤ CΨ
L
2

ξ2−λ1 ≤ 2CΨ

L
for ξ ≥ ξ0.

Hence, due to the positivity of ψ there is c0 > 0 such that |Ψ(ξ)|
ψ(ξ) ≤ c0 holds for all ξ > 0.

Therefore, due to (1.1.11) we obtain

σs
σp
|Ψ(ξ)|
ψ(ξ)

≤ c0
m

2
σ1−p = c0

m

2
M−

2
m e−sη

2
λ1 (eβ(s+µ))

≤ c0
m

2
M−

2
m (Cλ1

2β

)
2
λ1 eµ ≤ 1

2
for ρ > 0, s > 0,

whenever

M ≥M1 :=

(
c0m(Cλ1

2β

)
2
λ1 eµ

)m
2

(1.3.9)

is fulfilled. Thus, (1.3.7) is satisfied for sufficiently large M .
As m + λ1 > λ1 > 2, we can fix ϑ ∈ ( 2

m+λ1
, 1) with ϑ < 2

m+λ1−2 and obtain cϑ > 0 such
that

(1− z)p ≤ 1− pz + cϑ|z|1+ϑ for |z| ≤ 1

2

holds. Hence, for M ≥M1, we conclude(
ψ − σs

σp
Ψ
)p
≤ ψp − σs

σp
pψp−1Ψ + cϑ

(σs
σp

)1+ϑ
ψp−1−ϑ|Ψ|1+ϑ (1.3.10)

for all ρ > 0 and s > 0 by (1.3.7).
Now, we let P denote the operator defined by

Pw := ws − wρρ −
N − 1

ρ
wρ − wp −

ρ

2
wρ −

m

2
w.

Due to σξs = 1
mσsξ, 1 + 2

m = p, (1.3.1), (1.3.4) and (1.3.10) we compute for M ≥M1

Pvin = σsψ + σψξξs −
( σs
σp−1

Ψ
)
s
− σ1+ 2

mψξξ +
σs

σp−1− 2
m

Ψξξ −
N − 1

ρ
σ1+ 1

mψξ

+
N − 1

ρ

σs

σp−1− 1
m

Ψξ − σp
(
ψ − σs

σp
Ψ
)p
− ρ

2
σ1+ 1

mψξ +
ρ

2

σs

σp−1− 1
m

Ψξ

−m
2
σψ +

m

2

σs
σp−1

Ψ

= σs

(
ψ +

1

m
ξ ψξ

)
−
( σs
σp−1

Ψ
)
s
− σp

(
ψξξ +

N − 1

ξ
ψξ

)
+σs

(
Ψξξ +

N − 1

ξ
Ψξ

)
− σp

(
ψ − σs

σp
Ψ
)p
− σ

(
ξ

2
ψξ +

m

2
ψ

)
+

σs
σp−1

(
ξ

2
Ψξ +

m

2
Ψ

)
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= σs

(
Ψξξ +

N − 1

ξ
Ψξ + ψ +

1

m
ξ ψξ

)
−
( σs
σp−1

Ψ
)
s

+σpψp − σp
(
ψ − σs

σp
Ψ
)p
− σ

(
ξ

2
ψξ +

m

2
ψ

)
+

σs
σp−1

(
ξ

2
Ψξ +

m

2
Ψ

)
≥ σs

(
Ψξξ +

N − 1

ξ
Ψξ + pψp−1Ψ + ψ +

1

m
ξ ψξ

)
−
( σs
σp−1

Ψ
)
s

−cϑ
σ1+ϑ
s

σpϑ
ψp−1−ϑ|Ψ|1+ϑ − m

2
σ

(
ψ +

1

m
ξ ψξ

)
+

σs
σp−1

(
ξ

2
Ψξ +

m

2
Ψ

)
= σs

(
A

1 + ξm+λ1
+ (1 + ε)

(
ψ +

1

m
ξ ψξ

))
−
( σs
σp−1

Ψ
)
s

−cϑ
σ1+ϑ
s

σpϑ
ψp−1−ϑ|Ψ|1+ϑ − m

2
σ

(
ψ +

1

m
ξ ψξ

)
+

σs
σp−1

(
ξ

2
Ψξ +

m

2
Ψ

)
≥ Aσs

1 + ξm+λ1
+

σs
σp−1

(
ξ

2
Ψξ +

m

2
Ψ

)
− cϑ

σ1+ϑ
s

σpϑ
ψp−1−ϑ|Ψ|1+ϑ −

( σs
σp−1

Ψ
)
s

=: I1 + I2 − I3 − I4, (1.3.11)

for ρ > 0 and s > 0, where the last inequality is valid thanks to (1.3.8) and Lemma 1.3.1.
Next, we show that I2, I3 and I4 are small as compared to I1, if ρ ≤ ρ0, M ≥M0 and ρ0,
M0 are chosen suitably.
For ξ ≥ 1, we obtain by (1.3.6) (as m+ λ1 > 2)

|I2|
1
3I1

=
3

A
σ−

2
m (1 + ξm+λ1)

∣∣∣∣ξ2Ψξ +
m

2
Ψ

∣∣∣∣ ≤ 3

A
σ−

2
m 2ξm+λ1

(
1

2
+
m

2

)
CΨξ

2−m−λ1

=
3(m+ 1)CΨ

A
σ−

2
m ξ2 =

3(m+ 1)CΨ

A
ρ2 ≤ 1 (1.3.12)

provided that

ρ ≤ ρ1 :=

(
3(m+ 1)CΨ

A

)− 1
2

. (1.3.13)

Furthermore, if ξ < 1, (1.1.11), (1.3.6) and m+ λ1 > 2 imply

|I2|
1
3I1

=
3

A
σ−

2
m (1 + ξm+λ1)

∣∣∣∣ξ2Ψξ +
m

2
Ψ

∣∣∣∣ ≤ 3

A
M−

2
m e−sη

2
λ1 (eβ(s+µ)) · 2

(
1

2
+
m

2

)
CΨ

≤
3(m+ 1)CΨ(Cλ1

2β

)
2
λ1 eµ

A
M−

2
m ≤ 1, (1.3.14)

whenever

M ≥M2 :=

3(m+ 1)CΨ(Cλ1
2β

)
2
λ1 eµ

A


m
2

. (1.3.15)

Next, the choice of ϑ yields

2

m+ λ1
< ϑ ≤ 2

m+ λ1 − 2
<

2

m
= p− 1
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since λ1 > 2. As ψ ≤ 1, we obtain

|I3|
1
3I1

=
3

A
(1 + ξm+λ1)cϑ

σϑs
σpϑ

ψp−1−ϑ|Ψ|1+ϑ ≤ 3cϑ
A

(σs
σp

)ϑ
(1 + ξm+λ1)|Ψ|1+ϑ.

Thus, if ξ ≥ 1 and ρ ≤ 1, we conclude by (1.1.11), (1.3.6), (1.3.8) and the choice of ϑ

|I3|
1
3I1

≤ 3cϑ
A

(m
2

)ϑ
σ−

2ϑ
m 2ξm+λ1C1+ϑ

Ψ ξ(1+ϑ)(2−m−λ1)

=
6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ σ−
2ϑ
m ξ2−(m+λ1−2)ϑ

=
6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ σ−
(m+λ1)ϑ−2

m ρ2−(m+λ1−2)ϑ

≤ 6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ M−
(m+λ1)ϑ−2

m e−
(m+λ1)ϑ−2

2
sη

(m+λ1)ϑ−2
λ1 (eβ(s+µ))

≤ 6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ (Cλ1
2β

)
(m+λ1)ϑ−2

λ1 e
(m+λ1)ϑ−2

2
µM−

(m+λ1)ϑ−2
m

≤ 1, (1.3.16)

if

M ≥M3 :=

(
6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ (Cλ1
2β

)
(m+λ1)ϑ−2

λ1 e
(m+λ1)ϑ−2

2
µ

) m
(m+λ1)ϑ−2

. (1.3.17)

Similarly, if ξ < 1 we conclude

|I3|
1
3I1

≤ 3cϑ
A

(m
2

)ϑ
σ−

2ϑ
m 2C1+ϑ

Ψ =
6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ M−
2ϑ
m e−ϑsη

2ϑ
λ1 (eβ(s+µ))

≤ 6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ (Cλ1
2β

)
2ϑ
λ1 eϑµM−

2ϑ
m ≤ 1, (1.3.18)

provided that

M ≥M4 :=

(
6cϑ
A

(m
2

)ϑ
C1+ϑ

Ψ (Cλ1
2β

)
2ϑ
λ1 eϑµ

) m
2ϑ

. (1.3.19)

Concerning I4, we compute, using σξs = 1
mσsξ and (1.3.8),

|I4| =
∣∣∣( σs
σp−1

Ψ
)
s

∣∣∣ =

∣∣∣∣ σssσp−1
Ψ− (p− 1)

σ2
s

σp
Ψ +

σs
σp−1

ξsΨξ

∣∣∣∣
=

∣∣∣∣ σssσp−1
Ψ− (p− 1)

σ2
s

σp
Ψ +

σ2
s

mσp
ξΨξ

∣∣∣∣
≤

∣∣∣ σss
σp−1

Ψ
∣∣∣+

m(p− 1)

2

σs
σp−1

|Ψ|+ 1

2

σs
σp−1

|ξΨξ|.

Moreover, as µ satisfies (1.3.8), we have

0 ≤ 2β

λ1
· e

β(s+µ)η′(eβ(s+µ))

η(eβ(s+µ))
≤ ε

1 + ε
< 1 for all s ≥ 0.
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Hence, we obtain by (1.1.8) and (1.3.8)

|σss| =

∣∣∣∣∣
[
m

2
Me

m
2
sη
− m
λ1 (eβ(s+µ))

(
1− 2β

λ1
· e

β(s+µ)η′(eβ(s+µ))

η(eβ(s+µ))

)]
s

∣∣∣∣∣
=

∣∣∣∣∣ (m2 )2
Me

m
2
sη
− m
λ1 (eβ(s+µ))

(
1− 2β

λ1
· e

β(s+µ)η′(eβ(s+µ))

η(eβ(s+µ))

)2

−m
2
Me

m
2
sη
− m
λ1 (eβ(s+µ))

2β

λ1

(
β
eβ(s+µ)η′(eβ(s+µ))

η(eβ(s+µ))
+ β

e2β(s+µ)η′′(eβ(s+µ))

η(eβ(s+µ))

−β

(
eβ(s+µ)η′(eβ(s+µ))

η(eβ(s+µ))

)2)∣∣∣∣∣
≤ m

2
σs +

m

2
σ

(
β + βCη +

λ1

2

)
≤
(
m

2
+ (1 + ε)

(
β(1 + Cη) +

λ1

2

))
σs

=: C̃σs.

If ξ ≥ 1, this implies due to (1.3.6)

|I4|
1
3I1

≤ 3

A
(1 + ξm+λ1)

(
C̃ +

m(p− 1) + 1

2

)
σ−

2
m (|Ψ|+ |ξΨξ|)

≤ 6

A

(
C̃ +

m(p− 1) + 1

2

)
ξm+λ1σ−

2
mCΨξ

2−m−λ1

=
6

A

(
C̃ +

m(p− 1) + 1

2

)
CΨρ

2

≤ 1, (1.3.20)

provided that

ρ ≤ ρ2 :=

(
6

A

(
C̃ +

m(p− 1) + 1

2

)
CΨ

)− 1
2

. (1.3.21)

If ξ < 1, by (1.3.6) and (1.1.11) we obtain

|I4|
1
3I1

≤ 3

A
(1 + ξm+λ1)

(
C̃ +

m(p− 1) + 1

2

)
σ−

2
m (|Ψ|+ |ξΨξ|)

≤ 6

A

(
C̃ +

m(p− 1) + 1

2

)
σ−

2
mCΨ

=
6

A

(
C̃ +

m(p− 1) + 1

2

)
CΨM

− 2
m e−sη

2
λ1 (eβ(s+µ))

≤ 6

A

(
C̃ +

m(p− 1) + 1

2

)
CΨ(Cλ1

2β

)
2
λ1 eµM−

2
m

≤ 1 (1.3.22)

under the additional restriction

M ≥M5 :=

(
6

A

(
C̃ +

m(p− 1) + 1

2

)
CΨ(Cλ1

2β

)
2
λ1 eµ

)m
2

. (1.3.23)
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Finally, we conclude by (1.3.11)-(1.3.23) that vin is a supersolution of (1.2.3) for s > 0
and 0 < ρ ≤ ρ0 := min{ρ1, ρ2, 1}, if

M ≥M0 := max{M1,M2,M3,M4,M5}

is fulfilled, and hence the claim is proved.

Next, we construct a suitable supersolution of (1.2.3) in a region where ρ is bounded away
from zero. We let W = W (ρ) denote the solution of the problem{

Wρρ + N−1
ρ Wρ + ρ

2Wρ + m+λ1
2 W = 0, ρ > 0,

W (0) = 1, Wρ(0) = 0.
(1.3.24)

By Lemma 3.1 in [A1.2] this problem has a positive, decreasing solution W fulfilling

c−ρ
−m−λ1 ≤W (ρ) ≤ c+ρ

−m−λ1 for ρ ≥ 1. (1.3.25)

Furthermore, W is given by

W (ρ) = e−
ρ2

4 M
(
N −m− λ1

2
,
N

2
,
ρ2

4

)
, ρ ≥ 0,

where M denotes Kummer’s function

M(a, b, z) := 1 +
az

b
+ · · ·+ a(a+ 1) · · · (a+ n− 1)zn

b(b+ 1) · · · (b+ n− 1)n!
+ · · ·

which can be found in [A1.1]. Now we give a suitable supersolution in an outer region.

Lemma 1.3.3 Let N ≥ 11 and p > pc. Then there are α > 0 and β ∈ (0, 1
2 ] such that for

any µ > 0 there exists b0 > 0 with the property that

vout(ρ, s) := Lρ−m − b e−
λ1
2
sη
(
eβ(s+µ)ρα

)
W (ρ)

is a positive supersolution of (1.2.3) for ρ > 0 and s > 0, whenever b ∈ (0, b0) holds.

Proof. Recalling the definition of Cη in (1.1.8), we fix α > 0 such that α(Cη−1) ≤ N −2
is satisfied. Then, we fix β ∈ (0, 1

2 ] such that β ≤ α
N holds. As ∂

∂zM(a, b, z) ≥ a
bM(a, b, z)

holds for any z ≥ 0 in case of 0 < a < b (since a+n−1
b+n−1 ≥

a
b for n ∈ N in this case), we have

Wρ(ρ) ≥ −ρ
2
W (ρ) +

ρ

2

N −m− λ1

N
W (ρ) =

−m− λ1

N

ρ

2
W (ρ)

≥ −
N−2

2

N

ρ

2
W (ρ) = −

(
1− 2

N

)ρ
4
W (ρ) (1.3.26)

due to the fact that m+ λ1 ≤ N−2
2 .
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Now let µ > 0 be given. By (1.1.11) and (1.3.25) there is b0 > 0 such that vout is positive
for any ρ > 0 and s > 0 in case of b ∈ (0, b0). As moreover W is nonnegative, by (1.3.24),
(1.3.26) and (1.1.8) we obtain for any b ∈ (0, b0) (omitting the argument eβ(s+µ)ρα of η,
η′ and η′′)

Pvout = (vout)s − (vout)ρρ −
N − 1

ρ
(vout)ρ − (vout)

p − ρ

2
(vout)ρ −

m

2
vout

= −(Lρ−m)ρρ −
N − 1

ρ
(Lρ−m)ρ −

(
Lρ−m − be−

λ1
2
sηW

)p
−ρ

2
(Lρ−m)ρ −

m

2
Lρ−m + b

λ1

2
e−

λ1
2
sηW − bβe−

λ1
2
seβ(s+µ)ραη′W

+be−
λ1
2
sη

[
Wρρ +

N − 1

ρ
Wρ +

ρ

2
Wρ +

m

2
W

]
+be−

λ1
2
s

[
e2β(s+µ)α2ρ2(α−1)η′′W + eβ(s+µ)α(α− 1)ρα−2η′W

+2eβ(s+µ)αρα−1η′Wρ +

(
N − 1

ρ
+
ρ

2

)
eβ(s+µ)αρα−1η′W

]
= (Lρ−m)p −

(
Lρ−m − be−

λ1
2
sηW

)p
+be−

λ1
2
sη

[
Wρρ +

N − 1

ρ
Wρ +

ρ

2
Wρ +

m+ λ1

2
W

]
+be−

λ1
2
s

[
− βeβ(s+µ)ραη′W + e2β(s+µ)α2ρ2(α−1)η′′W

+eβ(s+µ)α(α− 1)ρα−2η′W + 2eβ(s+µ)αρα−1η′Wρ

+

(
N − 1

ρ
+
ρ

2

)
eβ(s+µ)αρα−1η′W

]

≥ be−
λ1
2
seβ(s+µ)η′W

[
− βρα − eβ(s+µ)α2ρ2(α−1)Cηe

−β(s+µ)ρ−α

+α(α− 1)ρα−2 − 2
(

1− 2

N

)ρ
4
αρα−1 +

(
N − 1

ρ
+
ρ

2

)
αρα−1

]
= be−

λ1
2
seβ(s+µ)η′W

[
− βρα − Cηα2ρα−2 + α(α− 1)ρα−2 +

α

N
ρα

+(N − 1)αρα−2
]

= be−
λ1
2
seβ(s+µ)η′W

[( α
N
− β

)
ρα + α(N − 2− α(Cη − 1))ρα−2

]
≥ 0 for ρ > 0 and s > 0,

where we have used the choices of α and β.
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We now use the functions vin and vout to obtain a supersolution of (1.2.3) for ρ > 0 and
s > 0 which does not grow up faster than at the rate claimed in (1.2.4).

Lemma 1.3.4 Let N ≥ 11, p > pc and v0 = v0(ρ) be a nonnegative and nonincreasing
continuous function of ρ ≥ 0 fulfilling

v0(ρ) < Lρ−m for ρ > 0

and
v0(ρ) ≤ Lρ−m − b1ρ−m−λ1η(ρ) for ρ ≥ R (1.3.27)

with some positive constants b1 and R. Moreover, let v = v(ρ, s) denote the nonnegative
solution of (1.2.3). Then there is a positive constant c such that

v(ρ, s) ≤ c e
m
2
sη
− m
λ1 (e

1
2
s) (1.3.28)

holds for ρ ≥ 0 and s ≥ 0.

Proof. We fix α > 0 and β ∈ (0, 1
2 ] as in Lemma 1.3.3. Then, we choose µ > 0,

ρ0 > 0, M0 > 0 and vin as in Lemma 1.3.2. Furthermore, let b0 and vout be chosen as in
Lemma 1.3.3. As v0 is bounded, there is ρ1 ∈ (0, ρ0) such that v0(ρ) ≤ 1

4Lρ
−m
1 is satisfied

for 0 ≤ ρ ≤ ρ1. Next, we set

M6 := max

M0,
(
η
− 1
λ1 (eβµ)ρ1

)−m
,

(
Lρλ1

1

2a1η(eβµ)

)− m
λ1

 ,

where a1 is defined in (1.3.3).
Since ψ is decreasing, we thus obtain by (1.3.3) and Lemma 1.3.2

vin(ρ, 0) = σ(0)

(
ψ(ξ)− σs(0)

σp(0)
Ψ(ξ)

)
≥ 1

2
σ(0)ψ(ξ)

=
1

2
Mη

− m
λ1 (eβµ)ψ

(
M

1
m η
− 1
λ1 (eβµ)ρ

)
≥ 1

2
Mη

− m
λ1 (eβµ)ψ

(
M

1
m η
− 1
λ1 (eβµ)ρ1

)
≥ 1

2
Mη

− m
λ1 (eβµ)

(
L
(
M

1
m η
− 1
λ1 (eβµ)ρ1

)−m
− a1

(
M

1
m η
− 1
λ1 (eβµ)ρ1

)−m−λ1

)
=

1

2
Lρ−m1 − a1

2
M−

λ1
m η(eβµ)ρ−m−λ1

1 ≥ 1

4
Lρ−m1

≥ v0(ρ) for ρ ≤ ρ1, (1.3.29)

provided that M ≥M6 holds.
Now, we show that vout ≥ v0 holds for ρ > 0, if b > 0 is chosen suitably small. In case of
ρ ≥ max{1, R}, due to (1.3.25), (1.3.27) and (1.1.9) we conclude

vout(ρ, 0) = Lρ−m − b η(eβµρα)W (ρ) ≥ Lρ−m − b (cα,eβµ)η(ρ)c+ρ
−m−λ1 ≥ v0(ρ),
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if b ≤ b2 := b1
(c
α,eβµ

)c+
is fulfilled. As v0 is continuous with v0(ρ) < Lρ−m for ρ > 0, there

is b3 > 0 such that v0(ρ) ≤ Lρ−m− b3 holds for ρ ≤ max{1, R}. Since W is nonincreasing
and thus satisfies W ≤W (0) = 1 in [0,∞), we obtain

vout(ρ, 0) ≥ Lρ−m − b η(eβµ(Rα + 1)) ≥ v0(ρ) for ρ ≤ max{1, R},

if b ≤ b4 := b3
η(eβµ(Rα+1))

. Accordingly, we fix b ∈ (0,min{b0, b2, b4}) and have

vout(ρ, 0) ≥ v0(ρ) for all ρ ≥ 0. (1.3.30)

Keeping this value of b fixed, we now claim that for any M sufficiently large

ρM (s) := inf {ρ > 0 : vout(ρ, s) < vin(ρ, s)}

is well-defined for all s ≥ 0 and fulfills

ρM (s) ≤ ρ1 for s ≥ 0. (1.3.31)

Once this has been shown, we will obtain from Lemma 1.3.2 and Lemma 1.3.3 that

vsup(ρ, s) :=

{
vin(ρ, s) for s ≥ 0, ρ ≤ ρM (s),
vout(ρ, s) for s ≥ 0, ρ > ρM (s),

is a supersolution of (1.2.3) which moreover satisfies vsup(ρ, 0) ≥ v0(ρ) for ρ ≥ 0 by (1.3.29)
and (1.3.30). As vρ ≤ 0 holds due to the properties of v0, the comparison principle implies

v(ρ, s) ≤ v(0, s) ≤ vsup(0, s) = vin(0, s) = σ(s) = Me
m
2
sη
− m
λ1 (eβ(s+µ))

≤ Me
m
2
sη
− m
λ1 (eβs) ≤M(c 1

2β
,1)

m
λ1 e

m
2
sη
− m
λ1 (e

1
2
s) for ρ ≥ 0 and s ≥ 0,

where we have used (1.1.6) and (1.1.9). Consequently, the lemma is proved if we show
(1.3.31).

To this end, we prove that

vout(ρ1, s) < vin(ρ1, s) for s ≥ 0 (1.3.32)

holds if M is chosen large enough. By (1.3.3), (1.3.6) and (1.3.8) we have

vin(ρ1, s) = σ
(
ψ(ξ)− σs

σp
Ψ(ξ)

)
≥ σ

(
L(σ

1
m ρ1)−m − a1(σ

1
m ρ1)−m−λ1 − m

2
σ−

2
mCΨ(σ

1
m ρ1)2−m−λ1

)
= Lρ−m1 −

(
a1ρ
−m−λ1
1 +

m

2
CΨρ

2−m−λ1
1

)
σ−

λ1
m for s ≥ 0

whenever

M ≥M7 := max

{
M6,

(
(Cλ1)

− 1
λ1 e−βµρ1

)−m}
,
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because
σ

1
m (s)ρ1 ≥M

1
m e

1
2
s(Cλ1)

− 1
λ1 e−β(s+µ)ρ1 ≥M

1
m (Cλ1)

− 1
λ1 e−βµρ1

is satisfied due to (1.1.11) and β ∈ (0, 1
2 ]. As moreover (1.1.9) implies

vout(ρ1, s) = Lρ−m1 − b e−
λ1
2
sη(eβ(s+µ)ρα1 )W (ρ1)

≤ Lρ−m1 − b e−
λ1
2
s(c1,ρ−α1

)−1η(eβ(s+µ))W (ρ1)

= Lρ−m1 − b (c1,ρ−α1
)−1W (ρ1)M

λ1
m σ−

λ1
m for s ≥ 0,

(1.3.32) is valid for any

M > M8 := max

M7,

(
a1ρ
−m−λ1
1 + m

2 CΨρ
2−m−λ1
1

b (c1,ρ−α1
)−1W (ρ1)

) m
λ1

 .

Finally, ρM (s) is well-defined for any s ≥ 0, since limρ↘0 vin(ρ, s) = σ(s) < ∞ and
vout(ρ, s) → ∞ as ρ ↘ 0 holds for any s ≥ 0. Thus, (1.3.31) is fulfilled due to (1.3.32) if
we choose M > M8, and the proof is complete.

1.4 Lower bound

In this section, we derive the corresponding lower bound for v and adapt an idea from
[A1.9].
The function

W̄ (ρ) := ρ−m−λ1 , ρ > 0,

is a positive solution of the equation

W̄ρρ +
N − 1

ρ
W̄ρ +

ρ

2
W̄ρ +

m+ λ1

2
W̄ +

pLp−1

ρ2
W̄ = 0 for ρ > 0. (1.4.1)

Now we construct a suitable subsolution of (1.2.3).

Lemma 1.4.1 Suppose N ≥ 11 and p > pc. Then for any β ≥ 2N and each b > 0 the
function

vsub(ρ, s) := max
{

0, Lρ−m − b e−
λ1
2
sη(eβs(1 + ρ2))W̄ (ρ)

}
, ρ > 0, s ≥ 0,

is a subsolution of (1.2.3) for all ρ > 0 and s > 0.

Proof. Fixing β ≥ 2N and b > 0, we choose ρ > 0 and s > 0 such that vsub(ρ, s) is
positive.

As be−
λ1
2 η(eβs(1 + ρ2))W̄ (ρ) is positive and p > 1, the mean value theorem implies

(Lρ−m)p −
(
Lρ−m − be−

λ1
2
sη(eβs(1 + ρ2))W̄ (ρ)

)p
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≤ p(Lρ−m)p−1be−
λ1
2
sη(eβs(1 + ρ2))W̄ (ρ)

= be−
λ1
2
sη(eβs(1 + ρ2))

pLp−1

ρ2
W̄ (ρ).

Thus, we obtain due to (1.1.6) and (1.4.1) (suppressing the argument eβs(1 + ρ2) of η, η′

and η′′)

Pvsub = (vsub)s − (vsub)ρρ −
N − 1

ρ
(vsub)ρ − (vsub)

p − ρ

2
(vsub)ρ −

m

2
vsub

= −(Lρ−m)ρρ −
N − 1

ρ
(Lρ−m)ρ −

(
Lρ−m − be−

λ1
2
sηW̄

)p
−ρ

2
(Lρ−m)ρ −

m

2
Lρ−m + b

λ1

2
e−

λ1
2
sηW̄ − bβe−

λ1
2
seβs(1 + ρ2)η′W̄

+be−
λ1
2
sη

[
W̄ρρ +

N − 1

ρ
W̄ρ +

ρ

2
W̄ρ +

m

2
W̄

]
+be−

λ1
2
s

[
e2βs4ρ2η′′W̄ + 2eβsη′W̄ + 2eβs2ρη′W̄ρ +

(
N − 1

ρ
+
ρ

2

)
eβs2ρη′W̄

]
= (Lρ−m)p −

(
Lρ−m − be−

λ1
2
sηW̄

)p
+be−

λ1
2
sη

[
W̄ρρ +

N − 1

ρ
W̄ρ +

ρ

2
W̄ρ +

m+ λ1

2
W̄

]
+be−

λ1
2
s

[
− βeβs(1 + ρ2)η′W̄ + 4e2βsρ2η′′W̄ + 2eβsη′W̄ + 4eβsρη′W̄ρ

+

(
N − 1

ρ
+
ρ

2

)
2eβsρη′W̄

]

≤ be−
λ1
2
sη

[
W̄ρρ +

N − 1

ρ
W̄ρ +

ρ

2
W̄ρ +

m+ λ1

2
W̄ +

pLp−1

ρ2
W̄

]
+be−

λ1
2
seβsη′W̄

[
−β(1 + ρ2) + 2 + 2(N − 1) + ρ2

]
≤ be−

λ1
2
seβsη′W̄ (−β + 2N)(1 + ρ2) ≤ 0

due to the choice of β. Now the claim is proved since v1 ≡ 0 as well is a subsolution of
(1.2.3).

Now we are in position to prove the lower bound for the grow-up rate of solutions to (1.2.3)
which corresponds to the rate claimed in (1.2.4).

Lemma 1.4.2 Assume N ≥ 11 and p > pc. Moreover, let v0 = v0(ρ) be radially symmet-
ric and nonnegative satisfying

v0(ρ) ≥ Lρ−m − b2 ρ−m−λ1η(ρ) for ρ > 0 (1.4.2)
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with some b2 > 0. Then the solution v of (1.2.3) fulfills

sup
ρ>0

v(ρ, s) ≥ c e
m
2
sη
− m
λ1 (e

1
2
s) for all s ≥ 0

with some constant c > 0.

Proof. We fix β ≥ 2N , define

b := max

{
b2,

L

η(1)

}
and take the function vsub from Lemma 1.4.1. Due to (1.1.6) and the choice of b, we obtain

Lρ−m − b η(1 + ρ2)ρ−m−λ1 ≤ Lρ−m − b η(1)ρ−m−λ1 ≤ Lρ−m − Lρ−m−λ1 ≤ 0

for ρ ≤ 1. Thus, the definition of W̄ implies

vsub(ρ, 0) = 0 ≤ v0(ρ) for ρ ≤ 1.

Furthermore, by (1.1.6) and (1.4.2) we have

vsub(ρ, 0) = Lρ−m − b η(1 + ρ2)ρ−m−λ1 ≤ Lρ−m − b η(ρ)ρ−m−λ1

≤ Lρ−m − b2η(ρ)ρ−m−λ1 ≤ v0(ρ) for all ρ ≥ 1 where vsub(ρ, 0) > 0.

Altogether, we conclude vsub(ρ, 0) ≤ v0(ρ) for all ρ ≥ 0. Hence, the comparison principle
yields v ≥ vsub for all ρ ≥ 0 and s ≥ 0. Defining

ρ(s) :=

(
L

2b(c2β,2)

)− 1
λ1

e−
1
2
sη

1
λ1 (e

1
2
s) for s ≥ 0,

where c2β,2 is defined in (1.1.9), we find s0 ≥ 0 such that ρ(s) ≤ 1 is satisfied for all s ≥ s0

by (1.1.11). Hence, due to (1.1.6) and (1.1.9) we obtain

sup
ρ>0

v(ρ, s) ≥ vsub(ρ(s), s)

= Lρ−m(s)− b e−
λ1
2
sη(eβs(1 + ρ2(s)))W̄ (ρ(s))

≥ Lρ−m(s)− b e−
λ1
2
sη(2eβs)ρ−m−λ1(s)

≥ Lρ−m(s)− b e−
λ1
2
s(c2β,2)η(e

1
2
s)ρ−m−λ1(s)

= ρ−m(s)
(
L− b(c2β,2)e−

λ1
2
sη(e

1
2
s)ρ−λ1(s)

)
=

L

2
ρ−m(s)

=
L

2

(
L

2b(c2β,2)

) m
λ1

e
m
2
sη
− m
λ1 (e

1
2
s) for s ≥ s0.

This implies the claim as v is continuous and

sup
ρ>0

v(ρ, s) ≥ sup
ρ>0

vsub(ρ, s) > 0 for any s ∈ [0, s0]

is fulfilled due to the choice of vsub.
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1.5 Proof of Theorem 1.1.1

In this section we complete the proof of Theorem 1.1.1 with the help of the estimates
which are derived in Sections 1.3 and 1.4.

Let u0 ∈ C0(RN ) satisfy (1.1.2) and (1.1.5). Moreover, we let u denote the corresponding
solution of (1.1.1) and define the radially symmetric functions

u0(r) := min{u0(x) : x ∈ RN , |x| = r} for r ≥ 0

and

u0(r) := max{u0(x) : x ∈ RN , |x| ≥ r} for r ≥ 0.

Then the properties of u0 imply that u0(r) and u0(r) are continuous in r ≥ 0 and satisfy
(1.1.5) (with a possibly larger constant R). Moreover, u0(r) is nonincreasing for r ≥ 0
and we have

0 ≤ u0(|x|) ≤ u0(x) ≤ u0(|x|) < ϕ∞(|x|) for x ∈ RN \ {0}.

We define u(r, t) and u(r, t) to be the solutions of (1.2.1) corresponding to the initial
data u0(r) and u0(r), respectively. Both solutions exist globally in time and u(r, t) is
nonincreasing in r for any t ≥ 0. Furthermore, let v(ρ, s) and v(ρ, s) denote the solutions
of (1.2.3) which are obtained from u and u, respectively, by the self-similar change of
variables defined in (1.2.2). As the initial data v0(ρ) = u0(ρ) and v0(ρ) = u0(ρ) fulfill the
conditions of Lemma 1.4.2 and Lemma 1.3.4, respectively, we conclude

sup
ρ≥0

v(ρ, s) ≥ C1 e
m
2
sη
− m
λ1 (e

1
2
s) for s ≥ 0

by Lemma 1.4.2 and

sup
ρ≥0

v(ρ, s) ≤ C2 e
m
2
sη
− m
λ1 (e

1
2
s) for s ≥ 0

by Lemma 1.3.4 with some positive constants C1 and C2. Hence, (1.2.2) implies

‖u(| · |, t)‖L∞(RN ) = (t+ 1)
− 1
p−1 sup

ρ≥0
v(ρ, log(t+ 1)) ≥ C1 η

− m
λ1 ((t+ 1)

1
2 ), t ≥ 0,

and

‖u(| · |, t)‖L∞(RN ) = (t+ 1)
− 1
p−1 sup

ρ≥0
v(ρ, log(t+ 1)) ≤ C2 η

− m
λ1 ((t+ 1)

1
2 ), t ≥ 0.

As the comparison principle yields

‖u(| · |, t)‖L∞(RN ) ≤ ‖u(·, t)‖L∞(RN ) ≤ ‖u(| · |, t)‖L∞(RN ) for t ≥ 0,

the proof of Theorem 1.1.1 is complete.
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Abstract

This paper deals with weak solutions of the one-dimensional viscous Hamilton-Jacobi
equation

ut = (|ux|p−2ux)x + |ux|q in (−R,R)× (0,∞)

with homogeneous Dirichlet boundary conditions, where R > 0, p > 2 and 1 < q < p− 1.
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2.1 Introduction

We consider the one-dimensional diffusive Hamilton-Jacobi equation
ut = (|ux|p−2ux)x + |ux|q, x ∈ Ω, t ∈ (0,∞),

u|∂Ω = 0,

u|t=0 = u0,

(2.1.1)

75
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where Ω := (−R,R) ⊂ R with R > 0,

u0 ∈ C1(Ω̄) with u0 = 0 on ∂Ω, (2.1.2)

p > 2 and 1 < q < p− 1 1 (2.1.3)

is assumed. As (|ux|p−2ux)x is the one-dimensional variant of the well-known p-Laplacian
operator ∆pu := div(|∇u|p−2∇u), the differential equation in (2.1.1) is a special case of
the equation

ut = ∆pu+ a |∇u|q in Ω× (0,∞), where Ω ⊂ Rn, p > 2, q > 1, a ∈ {−1, 1} (2.1.4)

and n ∈ N is arbitrary.
The corresponding semilinear equation

ut = ∆u+ a |∇u|q in Ω× (0,∞), where Ω ⊂ Rn, q > 0, a ∈ {−1, 1} (2.1.5)

possesses many different qualitative behaviors and has been widely studied by several
authors in view of a theoretical interest. In particular, the asymptotic behavior of non-
negative and integrable global solutions to the Cauchy problem has been of great interest.
In case of a = −1, where the gradient term is an absorption term, solutions decay to zero
as t→∞, and different decay rates and asymptotic profiles, depending on the value of q
and the initial data, have been established (see e.g., [A2.5, A2.7, A2.8]). For q ∈ (0, 1), in
particular the phenomenon of extinction in finite time has been observed (see [A2.6, A2.9]).
In case of a = 1, where the gradient term acts as a source term, the asymptotic behavior of
solutions to the Cauchy problem depends as well strongly on the value of q and there are so-
lutions tending to a nonzero state with infinite mass (see e.g., [A2.5, A2.9, A2.15, A2.16]).
Moreover, gradient blow-up phenomena have been observed in [A2.2, A2.20, A2.21] for
the Dirichlet problem in a bounded domain with suitably chosen boundary conditions and
a = 1.
Concerning the large time behavior of global classical solutions to (2.1.5) in a bounded
domain with homogeneous Dirichlet boundary conditions, it has been shown in [A2.4,
A2.22] that they converge exponentially fast to zero in case of q ≥ 1 and a ∈ {−1, 1}, while
extinction in finite time occurs for nonnegative solutions in case of q ∈ (0, 1) and a = −1.
Furthermore, in space dimension one with q ∈ (0, 1) and a = 1 there is a one parameter
family of nonnegative steady states, and any solution evolving from sufficiently regular
initial data converges uniformly to one of these stationary solutions (see [A2.13]). In
particular, nonnegative solutions evolving from nonzero initial data converge to a nonzero
steady state.
Now equation (2.1.4) is a quasilinear generalization of (2.1.5) which is of theoretical inter-
est. As (2.1.4) degenerates at points where ∇u = 0, one cannot expect to have classical
solutions. Weak solutions of this equation are obtained by approximation with solutions
of regularized equations. Often, this is done within the theory of viscosity solutions. The

1All results proved in this article remain valid for the larger regime p > 2 and 0 < q < p − 1. In fact,
even all the proofs persist without any change, as the positivity of q in conjunction with q < p − 1 is
sufficient in all of their steps.
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qualitative behavior of solutions to the Cauchy problem corresponding to (2.1.4) has been
investigated recently.

In case of a = −1, nonnegative solutions tend to zero and asymptotic decay rates have
been established in [A2.1, A2.3]. In particular, there are two critical exponents q1 = p− 1
and q∗ = p − n

n+1 which separate different kinds of behavior (see [A2.3]). Moreover, for
1 < q < p − 1, in [A2.17] the convergence to a suitable self-similar solution was obtained
as well as a detailed description of the evolution of the positivity set for solutions with
compactly supported initial data. The latter is due to the fact that (2.1.4) allows finite
speed of propagation in contrast to (2.1.5). Furthermore, the existence of self-similar
solutions has been established in [A2.11, A2.18].

In case of a = 1, the asymptotic behavior of nonnegative solutions to the Cauchy problem
has been investigated in [A2.14] for 1 < q < p. In particular, for solutions which do not
tend to zero, it is shown that they converge to a positive constant uniformly in compact
subsets of Rn, and the asymptotic profile is given.

To the best of our knowledge, no result implying the convergence to a nonzero state is
known for (2.1.4) in a bounded domain with homogeneous Dirichlet boundary conditions.
In this work, we consider the one-dimensional problem (2.1.1) in case of 1 < q < p−1. We
establish the existence of a one parameter family (wϑ)ϑ∈[0,R] of nonnegative steady states,
where wϑ 6≡ 0 for ϑ ∈ [0, R). In particular, the family of steady states is ordered, w0 is the
maximal stationary solution of (2.1.1) and wϑ is flat in a subinterval of Ω for ϑ ∈ (0, R).
This corresponds to the behavior observed in (2.1.5), but is a novelty in the quasilinear
case (2.1.4). Moreover, we prove the existence of a global weak solution of (2.1.1) which
converges to one nonnegative steady state wϑ as t → ∞. This behavior is observed for
all initial data u0 satisfying (2.1.2). In particular, the limit wϑ fulfills wϑ 6≡ 0 in case of
u0 ≥ 0 and u0 6≡ 0, while the solution of (2.1.1) tends to zero for nonpositive initial data.

In contrast to the semilinear case p = 2, it remains open if some solutions of (2.1.1)
converge to a nonzero steady state in case of sign changing initial data. This corresponds
to the fact that extinction in finite time for nonpositive solutions of (2.1.1) is not expected
to occur in case of q > 1, while this phenomenon was an important help to investigate the
behavior of solutions with sign changing initial data for p = 2.

To prove the large time behavior of solutions to (2.1.1), we establish the existence of a
Lyapunov functional using a method developed in [A2.25]. Although this method has also
been used in [A2.13] in the proof of the semilinear case p = 2, our proof of the large time
behavior is different to the latter one. We use an idea which has been used for other
degenerate parabolic equations (see e.g., [A2.24]). As our proof of the convergence to
steady states strongly relies on the one-dimensional setting, the large time behavior of the
Dirichlet problem corresponding to (2.1.4) in dimension n ≥ 2 remains open here and has
to be investigated elsewhere.

This paper is organized as follows. We classify the steady states of problem (2.1.1) in
Section 2.2. In Section 2.3, we establish estimates for classical solutions of an approx-
imative problem to (2.1.1) and their derivatives. In particular, we prove the existence
of a Lyapunov functional for these regularized problems (see Lemma 2.3.3). Finally, in
Section 2.4, we show the existence of a weak solution of (2.1.1) and prove our main result,
namely the convergence of this weak solution to a stationary solution (see Theorem 2.4.4).
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2.2 Stationary solutions

In this section, we classify the stationary solutions w of (2.1.1). More precisely, we call
w ∈ C1([−R,R]) a weak solution of{

(|wx|p−2wx)x + |wx|q = 0, x ∈ (−R,R),

w(±R) = 0,
(2.2.1)

if w satisfies w(±R) = 0 and

R∫
−R

(
− (|wx|p−2wx)(x) ξx(x) + |wx|q(x) ξ(x)

)
dx = 0 for any ξ ∈ C∞0 ((−R,R)). (2.2.2)

Defining

α :=
p− q

p− 1− q
> 1, c0 :=

(
p− 1− q
p− 1

) 1
p−1−q

· p− 1− q
p− q

, (2.2.3)

where α > 1 due to q < p − 1, we obtain the following lemma. In particular, any weak
solution of (2.2.1) is nonnegative.

Lemma 2.2.1 Suppose (2.1.3) is fulfilled and R > 0. Furthermore, let w ∈ C1([−R,R])
satisfy w(±R) = 0 and (2.2.2). Then w is nonnegative and there is ϑ ∈ [0, R] such that
w = wϑ holds, where we define

wϑ(x) := c0

[
(R− ϑ)α − (|x| − ϑ)α+

]
for x ∈ [−R,R].

Proof. Since α > 1 holds, wϑ ∈ C1([−R,R]) is satisfied for any ϑ ∈ [0, R]. Let w ∈
C1([−R,R]) be a solution of (2.2.2) with w(±R) = 0. Then (2.2.2) implies that

Φ := |wx|p−2wx

fulfills Φ ∈W 1,∞((−R,R)) with Φx = −|wx|q a.e. in (−R,R). Hence, Φ is a nonincreasing
function on [−R,R] due to Φx ≤ 0 a.e. in (−R,R). Thus, wx is a nonincreasing function
on [−R,R] due to p > 1. As w(±R) = 0, we conclude that w is nonnegative in [−R,R].
Moreover, this implies wx(−R) ≥ 0 and wx(R) ≤ 0.

If wx(−R) = 0 is fulfilled, we conclude w = wR ≡ 0, since wx is nonincreasing and
w(±R) = 0 holds. Similarly, w = wR ≡ 0 is satisfied in case of wx(R) = 0.

In case of wx(−R) > 0 and wx(R) < 0, there are unique ϑ1, ϑ2 ∈ (−R,R) with ϑ1 ≤ ϑ2

such that wx > 0 in [−R,ϑ1), wx = 0 in [ϑ1, ϑ2] and wx < 0 in (ϑ2, R] is satisfied as wx is

nonincreasing. Hence, Φ is positive in [−R,ϑ1) and therefore Φx = −wqx = −Φ
q
p−1 holds

a.e. in (−R,ϑ1). Thus, an integration yields

p− 1

p− 1− q
Φ
p−1−q
p−1 (x) + x = β1 for x ∈ (−R,ϑ1)
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with some constant β1 ∈ R. Now the limit x↗ ϑ1 implies β1 = ϑ1 due to wx(ϑ1) = 0 and
q < p− 1. Hence, we have

wx(x) =

(
p− 1− q
p− 1

(ϑ1 − x)

) 1
p−1−q

for x ∈ (−R,ϑ1).

Using w(−R) = 0 and (2.2.3), a further integration implies

w(x) = c0 [(ϑ1 +R)α − (ϑ1 − x)α] for x ∈ [−R,ϑ1]. (2.2.4)

Similarly, we conclude

− p− 1

p− 1− q
(−Φ)

p−1−q
p−1 (x) + x = ϑ2 for x ∈ (ϑ2, R),

wx(x) = −
(
p− 1− q
p− 1

(x− ϑ2)

) 1
p−1−q

for x ∈ (ϑ2, R)

and finally, due to w(R) = 0,

w(x) = c0 [(R− ϑ2)α − (x− ϑ2)α] for x ∈ [ϑ2, R]. (2.2.5)

Furthermore, we get w(ϑ1) = w(ϑ2) because wx ≡ 0 in [ϑ1, ϑ2] is satisfied. Thus,
(R + ϑ1)α = (R − ϑ2)α holds due to (2.2.4) and (2.2.5), and we conclude ϑ1 = −ϑ2.
Hence, ϑ2 ∈ [0, R] has to be fulfilled since ϑ1 ≤ ϑ2, and finally (2.2.4) and (2.2.5) imply
w = wϑ2 in [−R,R].

As an example, we show the plot of some stationary solutions wϑ for a particular choice
of R, p and q. In particular, wϑ is flat in [−ϑ, ϑ] for ϑ ∈ (0, R) and wϑ1 ≥ wϑ2 holds for
0 ≤ ϑ1 ≤ ϑ2 ≤ R.

Figure 2.1: steady states wϑ for ϑ ∈ {0, 1
2 , 1,

3
2 , 2} in case of R = 2, p = 5 and q = 3
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2.3 Approximate parabolic problems

In this section, we consider solutions of some suitably chosen regularized problems. Specif-
ically, as smooth functions u satisfy

(|ux|p−2ux)x = (p− 1)|ux|p−2uxx,

for ε > 0 let uε denote the classical solution of
(uε)t = (p− 1)(|(uε)x|2 + ε2)

p−2
2 (uε)xx + (|(uε)x|2 + ε2)

q
2 , x ∈ Ω, t ∈ (0,∞),

uε|∂Ω = 0,

uε|t=0 = u0ε.

(2.3.1)

These functions uε will approximate a weak solution of (2.1.1). First, we state the existence
of classical solutions to (2.3.1).

Lemma 2.3.1 Suppose (2.1.3) is fulfilled, ε ∈ (0, 1) and u0ε ∈ C∞(Ω̄) satisfies u0ε = 0
on ∂Ω. Then there is a unique solution uε ∈ C0(Ω̄× [0,∞))∩C2,1(Ω̄× (0,∞)) of (2.3.1).
This solution uε fulfills

min
x∈Ω̄

u0ε(x) ≤ uε ≤ max
x∈Ω̄

u0ε(x) + εqt in Ω̄× [0,∞).

Moreover, there are constants C0, C1 ∈ [1,∞) which are independent of ε such that

|uε| ≤ C0(1 + ‖(u0ε)x‖L∞(Ω)) and |(uε)x| ≤ C1(1 + ‖(u0ε)x‖L∞(Ω)) in Ω× [0,∞)

is satisfied.

Proof. By standard parabolic theory, there is a unique classical solution uε ∈ C0(Ω̄ ×
[0, Tε)) ∩ C2,1(Ω × (0, Tε)) of (2.3.1) with some maximal existence time Tε ∈ (0,∞] (see
e.g., Section VI.5 in [A2.12]). Furthermore, it is possible to choose c ≥ 0 properly such
that v1(x, t) := c+ εqt, (x, t) ∈ Ω̄× [0,∞), is a supersolution and v2 ≡ −c is a subsolution
to (2.3.1) in Ω̄× [0,∞). Hence, the comparison principle implies Tε =∞ and

min
x∈Ω̄

u0ε(x) ≤ uε ≤ max
x∈Ω̄

u0ε(x) + εqt in Ω̄× [0,∞).

Similarly, we conclude

min
x∈Ω̄

uε(x, t0) ≤ uε(x, t) ≤ max
x∈Ω̄

uε(x, t0)+εq(t−t0) for (x, t) ∈ Ω̄×[t0,∞) and any t0 ≥ 0.

(2.3.2)
Next, in case of q ≥ p− 2 we define

v(x, t) := coshR− coshx, (x, t) ∈ Ω̄× [0,∞).

Then, for any a ≥ 1 the function z(x, t) := a v(x, t) satisfies

zt − (p− 1)(z2
x + ε2)

p−2
2 zxx − (z2

x + ε2)
q
2
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= −ap−1(p− 1)
(
v2
x +

ε2

a2

) p−2
2
vxx − aq

(
v2
x +

ε2

a2

) q
2

= ap−1
(
v2
x +

ε2

a2

) p−2
2

(
−(p− 1)vxx − aq−p+1

(
v2
x +

ε2

a2

) q−p+2
2

)
≥ ap−1

(
v2
x +

ε2

a2

) p−2
2
(
−vxx − aq−p+1(v2

x + 1)
1
2

)
= ap−1

(
v2
x +

ε2

a2

) p−2
2 (

1− aq−p+1
)

coshx ≥ 0 in Ω× (0,∞)

since p > 2, p− 2 ≤ q < p− 1, ε ∈ (0, 1) and vxx ≤ 0 is fulfilled.
Moreover, vxx ≤ 0 and a > 0 imply

(−z)t − (p− 1)((−z)2
x + ε2)

p−2
2 (−z)xx − ((−z)2

x + ε2)
q
2 ≤ −εq ≤ 0 in Ω× (0,∞).

As |u0ε(x)| ≤ ‖(u0ε)x‖L∞(Ω) dist(x, ∂Ω) and v(x) ≥ c1 dist(x, ∂Ω) holds for x ∈ Ω̄ with

some c1 > 0, we choose a := max{1, ‖(u0ε)x‖L∞(Ω)

c1
} and obtain −z(x, 0) ≤ u0ε(x) ≤ z(x, 0)

for x ∈ Ω̄ and uε = ±z = 0 on ∂Ω. Thus, we have

−z ≤ uε ≤ z in Ω̄× [0,∞) in case of q ≥ p− 2 (2.3.3)

by comparison.
Now, for i ∈ {1, 2}, we fix x1 := −2R, x2 := 2R and let

vi(x) := c0[(3R)α − |x− xi|α], x ∈ Ii := [xi − 3R, xi + 3R],

where c0 and α are defined in (2.2.3). Similar to Lemma 2.2.1, vi ∈ C1(Īi)∩C2(Īi \ {xi})
satisfies the differential equation of (2.2.1) in Ii \ {xi} for i ∈ {1, 2}. Next, in case of
q < p− 2 we set

zi(x, t) := b vi(x), (x, t) ∈ Īi × [0,∞),

where b ≥ 1 and i ∈ {1, 2}. Then, as Ω ⊂ Ii \ {xi}, we obtain for any b ≥ 1 and i ∈ {1, 2}

(zi)t − (p− 1)((zi)
2
x + ε2)

p−2
2 (zi)xx − ((zi)

2
x + ε2)

q
2

= −bp−1(p− 1)
(

(vi)
2
x +

ε2

b2

) p−2
2

(vi)xx − bq
(

(vi)
2
x +

ε2

b2

) q
2

= bp−1
(

(vi)
2
x +

ε2

b2

) p−2
2

(
−(p− 1)(vi)xx − bq−p+1

(
(vi)

2
x +

ε2

b2

) q−p+2
2

)
≥ bp−1

(
(vi)

2
x +

ε2

b2

) p−2
2 (
−(p− 1)(vi)xx − bq−p+1|(vi)x|q−p+2

)
= bp−1

(
(vi)

2
x +

ε2

b2

) p−2
2 (

1− bq−p+1
)
|(vi)x|q−p+2 ≥ 0 in Ω× (0,∞),

since q < p− 2 is fulfilled. Due to (vi)xx ≤ 0 in Ω, we conclude

(−zi)t − (p− 1)((−zi)2
x + ε2)

p−2
2 (−zi)xx − ((−zi)2

x + ε2)
q
2 ≤ −εq ≤ 0 in Ω× (0,∞)
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for any b > 0 and i ∈ {1, 2}. Furthermore, there is c̃ > 0 such that vi(x) ≥ c̃dist(x, ∂Ii)
holds for x ∈ Īi and i ∈ {1, 2}. This implies v1(x) ≥ c̃ |x−R| ≥ c̃dist(x, ∂Ω) and v2(x) ≥
c̃ |x + R| ≥ c̃dist(x, ∂Ω) for x ∈ Ω̄. Since |u0ε(x)| ≤ ‖(u0ε)x‖L∞(Ω) dist(x, ∂Ω) is satisfied

for x ∈ Ω̄, we choose b := max{1, ‖(u0ε)x‖L∞(Ω)

c̃ } and obtain −zi(x, 0) ≤ u0ε(x) ≤ zi(x, 0)
for x ∈ Ω̄ as well as −zi ≤ 0 = uε ≤ zi on ∂Ω for i ∈ {1, 2}. Thus, we obtain −zi ≤ uε ≤ zi
in Ω̄× [0,∞) for i ∈ {1, 2} by comparison. This implies

−(min{z1, z2}) ≤ uε ≤ min{z1, z2} in Ω̄× [0,∞) in case of q < p− 2. (2.3.4)

Hence, whenever 1 < q < p − 1, there are constants C0 ≥ 1 and C ≥ 1, which are
independent of ε ∈ (0, 1), such that

|uε| ≤ C0(1 + ‖(u0ε)x‖L∞(Ω)) in Ω× [0,∞)

and
|(uε)x| ≤ C (1 + ‖(u0ε)x‖L∞(Ω)) on ∂Ω× [0,∞) (2.3.5)

is fulfilled, due to uε = z = min{z1, z2} = 0 on ∂Ω × [0,∞), (2.3.3) and (2.3.4). Conse-
quently, parabolic regularity theory shows that (uε)x and (uε)xx are bounded in Ω̄× (τ, T )
for 0 < τ < T <∞ and (uε)x ∈ C0(Ω× [0,∞))∩C2,1(Ω̄× (0,∞)) is satisfied (see [A2.12]).
Furthermore, y := (uε)x fulfills

yt = (p−1)(y2+ε2)
p−2

2 yxx+(p−1)(p−2)(y2+ε2)
p−4

2 y(yx)2+q(y2+ε2)
q−2

2 yyx in Ω×(0,∞).

Since (2.3.5) implies |y| < C1 (1 +‖(u0ε)x‖L∞(Ω)) on the parabolic boundary of Ω× (0,∞)
with some C1 > 1 independent of ε, we finally conclude

−C1 (1 + ‖(u0ε)x‖L∞(Ω)) ≤ (uε)x ≤ C1 (1 + ‖(u0ε)x‖L∞(Ω)) in Ω̄× [0,∞)

by comparison.

Moreover, uε is also Hölder continuous with respect to the time t. To prove this, we use
an idea which is similar to the one used in Lemma 5 of [A2.10].

Lemma 2.3.2 Suppose (2.1.3) is fulfilled, ε ∈ (0, 1) and uε is the solution of (2.3.1).
Then

|uε(x0, t1)− uε(x0, t2)| ≤
(
2C1(1 + ‖(u0ε)x‖L∞(Ω))

)q |t1 − t2|
+p
(
2C1(1 + ‖(u0ε)x‖L∞(Ω))

)p−1 |t1 − t2|
1
2

holds for any x0 ∈ Ω̄ and t1, t2 ∈ [0,∞).

Proof. Since the claim is obvious in case of t1 = t2, we assume t1 6= t2. By Lemma 2.3.1
we have |uε(x, t)| ≤ C1(1 + ‖(u0ε)x‖L∞(Ω)) dist(x, ∂Ω) for (x, t) ∈ Ω̄ × [0,∞). Hence, in

case of dist(x0, ∂Ω) ≤ |t1 − t2|
1
2 this implies

|uε(x0, t1)− uε(x0, t2)| ≤ 2C1(1 + ‖(u0ε)x‖L∞(Ω)) dist(x0, ∂Ω)
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≤ p
(
2C1(1 + ‖(u0ε)x‖L∞(Ω))

)p−1 |t1 − t2|
1
2 (2.3.6)

due to p > 2.

In case of dist(x0, ∂Ω) > |t1 − t2|
1
2 we choose r := |t1 − t2|

1
2 > 0. Thus, we get by

Lemma 2.3.1 (due to ε ∈ (0, 1), p > 2 and C1 ≥ 1)

|uε(x0, t1)− uε(x0, t2)|

=
1

2r

∣∣∣∣∣∣
x0+r∫
x0−r

(uε(x0, t1)− uε(x0, t2))dx

∣∣∣∣∣∣
=

1

2r

∣∣∣∣∣∣
x0+r∫
x0−r

(uε(x, t)− uε(x0, t))dx
∣∣∣t2
t=t1
−

t2∫
t1

x0+r∫
x0−r

(uε)t(x, t)dxdt

∣∣∣∣∣∣
≤ 1

2r
· 2C1(1 + ‖(u0ε)x‖L∞(Ω))

x0+r∫
x0−r

|x− x0|dx

+
1

2r

∣∣∣∣∣
t2∫
t1

x0+r∫
x0−r

[
(p− 1)((uε)

2
x + ε2)

p−2
2 (uε)xx + ((uε)

2
x + ε2)

q
2

]
(x, t)dxdt

∣∣∣∣∣
≤ C1(1 + ‖(u0ε)x‖L∞(Ω)) r +

1

2r

∣∣∣∣∣∣
t2∫
t1

x0+r∫
x0−r

((uε)
2
x + ε2)

q
2 (x, t)dxdt

∣∣∣∣∣∣
+

1

2r

∣∣∣∣∣∣∣
t2∫
t1

 (uε)x(x,t)∫
0

(p− 1)(z2 + ε2)
p−2

2 dz


x0+r

x=x0−r

dt

∣∣∣∣∣∣∣
≤ C1(1 + ‖(u0ε)x‖L∞(Ω)) |t1 − t2|

1
2 +

(
(C1(1 + ‖(u0ε)x‖L∞(Ω))))

2 + 1
) q

2 |t1 − t2|

+
|t1 − t2|

2r
· 2C1(1 + ‖(u0ε)x‖L∞(Ω))(p− 1)

(
(C1(1 + ‖(u0ε)x‖L∞(Ω)))

2 + 1
) p−2

2

≤
(
2C1(1 + ‖(u0ε)x‖L∞(Ω))

)q |t1 − t2|+ p
(
2C1(1 + ‖(u0ε)x‖L∞(Ω))

)p−1 |t1 − t2|
1
2 .

This estimate and (2.3.6) imply the claim.

Furthermore, there is a Lyapunov functional for problem (2.3.1). This functional implies
important estimates, which are used to prove the convergence of solutions of (2.1.1) to
steady states.

For ε > 0, we define

ϕε(z) :=

z∫
0

s∫
0

(p− 1)(σ2 + ε2)
p−q−2

2 dσds for z ∈ R.
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The idea of the following proof is similar to the one used in [A2.13] for p = 2 and is based
on a technique developed by Zelenyak in [A2.25] (see also [A2.2, A2.19] for an application
of this method to related problems).

Lemma 2.3.3 Let (2.1.3) be satisfied, ε ∈ (0, 1) and uε denote the solution of (2.3.1).
Then for any t > 0 we have

d

dt

∫
Ω

(ϕε((uε)x(x, t))− uε(x, t)) dx+

∫
Ω

[
((uε)

2
x + ε2)−

q
2 (uε)

2
t

]
(x, t)dx = 0.

Proof. We fix t > 0. As uε ∈ C∞(Ω × (0,∞)) ∩ C2,1(Ω̄ × (0,∞)) holds (see e.g. Theo-
rem III.12.1 and Chapter VI in [A2.12]), we obtain (in some places omitting the argument
(x, t))

d

dt

∫
Ω

(ϕε((uε)x(x, t))− uε(x, t)) dx

=

∫
Ω

(
ϕ′ε((uε)x)(uε)tx − (uε)t

)
dx

= ϕ′ε((uε)x)(uε)t

∣∣∣x=R

x=−R
−
∫
Ω

[ϕ′′ε((uε)x)(uε)xx + 1](uε)tdx

= −
∫
Ω

(uε)t((uε)
2
x + ε2)−

q
2

[
(p− 1)((uε)

2
x + ε2)

p−2
2 (uε)xx + ((uε)

2
x + ε2)

q
2

]
dx

= −
∫
Ω

[
((uε)

2
x + ε2)−

q
2 (uε)

2
t

]
(x, t)dx

due to (2.3.1).

Now we immediately obtain an estimate for the derivative (uε)t, which will be very useful.

Corollary 2.3.4 Suppose (2.1.3) is satisfied, ε ∈ (0, 1) and uε denotes the solution of
(2.3.1). Then we have

∞∫
0

∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdxdt ≤ C2

(
1 + ‖(u0ε)x‖2L∞(Ω)

) p−q
2
,

where C2 is a positive constant which is independent of ε.

Proof. We fix T > 0. Since ϕε is even and convex, we get in case of p− 2 ≤ q < p− 1

0 ≤ ϕε(z) ≤
z∫

0

s∫
0

(p− 1)|σ|p−q−2dσds =
(p− 1)

(p− q − 1)(p− q)
|z|p−q for z ∈ R.
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In case of 1 < q < p− 2, we have

0 ≤ ϕε(z) ≤ |z|2(p− 1)(|z|2 + 1)
p−q−2

2 ≤ (p− 1)(z2 + 1)
p−q

2 for z ∈ R.

Altogether, there is a positive constant c, which only depends on p and q, such that

0 ≤ ϕε(z) ≤ c(z2 + 1)
p−q

2 for z ∈ R

is satisfied whenever 1 < q < p − 1. Next, (uε)x is Hölder continuous in Ω × [0, T ] due
to Theorem VI.2.3 and Remark VI.2.1 in [A2.12] and Lemma 2.3.1. Hence, we obtain by
Lemmas 2.3.3 and 2.3.1

T∫
0

∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdxdt

= −
∫
Ω

(ϕε((uε)x(x, T ))− uε(x, T )) dx+

∫
Ω

(ϕε((u0ε)x(x))− u0ε(x)) dx

≤
∫
Ω

|uε(x, T )|dx+

∫
Ω

|u0ε(x)|dx+

∫
Ω

ϕε((u0ε)x(x))dx

≤ 2C0|Ω| (1 + ‖(u0ε)x‖L∞(Ω)) + c |Ω|
(
‖(u0ε)x‖2L∞(Ω) + 1

) p−q
2

≤ C2

(
1 + ‖(u0ε)x‖2L∞(Ω)

) p−q
2

with some positive constant C2 which is independent of ε. As T > 0 was arbitrary, this
implies the claim.

Furthermore, the preceding Corollary implies another estimate, which will be used to
control terms involving (uε)xx.

Corollary 2.3.5 Let (2.1.3) be fulfilled, ε ∈ (0, 1) and let uε denote the solution of (2.3.1).
Then for 0 ≤ t1 < t2 <∞ we get

t2∫
t1

∫
Ω

((uε)
2
x + ε2)

2p−q−4
2 (uε)

2
xxdxdt ≤ 2C2

(p− 1)2

(
1 + ‖(u0ε)x‖2L∞(Ω)

) p−q
2

+
2|Ω|

(p− 1)2
(t2 − t1)

(
2C1(1 + ‖(u0ε)x‖L∞(Ω))

)q
.

Proof. For 0 ≤ t1 < t2 <∞ we conclude by (2.3.1), Lemma 2.3.1 and Corollary 2.3.4

t2∫
t1

∫
Ω

((uε)
2
x + ε2)

2p−q−4
2 (uε)

2
xxdxdt
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=
1

(p− 1)2

t2∫
t1

∫
Ω

(
((uε)

2
x + ε2)−

q
4 (uε)t − ((uε)

2
x + ε2)

q
4

)2
dxdt

≤ 2

(p− 1)2

t2∫
t1

∫
Ω

(
((uε)

2
x + ε2)−

q
2 (uε)

2
t + ((uε)

2
x + ε2)

q
2

)
dxdt

≤ 2

(p− 1)2

∞∫
0

∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdxdt

+
2

(p− 1)2
|Ω| (t2 − t1)

(
(C1(1 + ‖(u0ε)x‖L∞(Ω)))

2 + 1
) q

2

≤ 2

(p− 1)2
C2

(
1 + ‖(u0ε)x‖2L∞(Ω)

) p−q
2

+
2

(p− 1)2
|Ω| (t2 − t1)

(
2C1(1 + ‖(u0ε)x‖L∞(Ω))

)q
.

Hence, the claim is proved.

2.4 Existence of a weak solution and convergence to steady
states

We first give a definition of weak solutions to (2.1.1).

Definition 2.4.1 A function u ∈ C0(Ω̄× [0,∞)) ∩ Lploc([0,∞);W 1,p(Ω)) is called a weak
solution of (2.1.1), if u(·, 0) = u0, u|∂Ω = 0 and for any ξ ∈ C∞0 (Ω) and 0 ≤ s < t <∞

∫
Ω

(u(x, t)− u(x, s))ξ(x)dx =

t∫
s

∫
Ω

(
− (|ux|p−2ux)(x, τ) ξx(x) + |ux|q(x, τ) ξ(x)

)
dxdτ

(2.4.1)
is fulfilled.

As we approximate a weak solution of (2.1.1) by solutions of the regularized problems
(2.3.1), we first state that we are able to choose the initial data u0ε in a suitable way.

Lemma 2.4.2 Let (2.1.2) be fulfilled. Then there is a family (u0ε)ε∈(0,1) ⊂ C∞(Ω̄) such
that u0ε = 0 on ∂Ω,

‖u0ε − u0‖L∞(Ω) ≤ ε and ‖(u0ε)x − (u0)x‖L∞(Ω) ≤ ε

holds for any ε ∈ (0, 1). Moreover, in case of u0 ≥ 0, u0ε is chosen such that additionally
u0ε ≥ 0 is satisfied for any ε ∈ (0, 1).
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Proof. We fix ε ∈ (0, 1). Due to (2.1.2) we have (u0)x ∈ C0(Ω̄) as well as
∫

Ω(u0)xdx = 0.
Thus, we are able to choose vε ∈ C∞(Ω̄) such that

∫
Ω(vε)xdx = 0 , and ‖(vε)x −

(u0)x‖L∞(Ω) ≤ min{ ε
2R , ε} holds. Furthermore, as u0 ≥ 0 implies u0(x) =

∫ x
−R(u0)x(y)dy ≥

0 for x ∈ Ω, in case of u0 ≥ 0 we choose vε such that additionally
∫ x
−R(vε)x(y)dy ≥ 0 for

x ∈ Ω is fulfilled. Defining u0ε(x) :=
∫ x
−R(vε)x(y)dy for x ∈ Ω̄, u0ε ∈ C∞(Ω̄) fulfills u0ε = 0

on ∂Ω as well as ‖u0ε − u0‖L∞(Ω) ≤ ε and ‖(u0ε)x − (u0)x‖L∞(Ω) ≤ ε. We additionally
have u0ε ≥ 0 in case of u0 ≥ 0.

Now the results of the preceding section imply the existence of a weak solution to (2.1.1).

Theorem 2.4.3 Suppose (2.1.2) and (2.1.3) are fulfilled, (u0ε)ε∈(0,1) ⊂ C∞(Ω̄) satisfy the
conditions of Lemma 2.4.2 and (uε)ε∈(0,1) denote the corresponding solutions of (2.3.1).
Then there is a sequence (εk)k∈N ⊂ (0, 1) with εk ↘ 0 as k →∞ and a global weak solution
u of (2.1.1) satisfying uεk → u in C0

loc(Ω̄× [0,∞)) as k →∞. Furthermore, u fulfills

min
x∈Ω̄

u0(x) ≤ u ≤ max
x∈Ω̄

u0(x) in Ω̄× [0,∞)

and
‖ux(t)‖L∞(Ω) ≤ C1(2 + ‖(u0)x‖L∞(Ω)) for any t ∈ [0,∞),

where C1 is defined in Lemma 2.3.1. Moreover, ‖u(t)‖L∞(Ω) is a nonincreasing function
of t ≥ 0.

Proof. We fix ε ∈ (0, 1) and choose u0ε like in Lemma 2.4.2. Furthermore, let uε denote
the classical solution of (2.3.1) evolving from u0ε which we obtain in Lemma 2.3.1. Due
to Lemmas 2.3.1 and 2.4.2 we conclude

|uε| ≤ C0(2+‖(u0)x‖L∞(Ω)) and |(uε)x| ≤ C1(2+‖(u0)x‖L∞(Ω)) in Ω×[0,∞) (2.4.2)

for any ε ∈ (0, 1). We define

M1 := C1(2 + ‖(u0)x‖L∞(Ω)) (2.4.3)

to simplify the notation.
Next we fix T ∈ (0,∞). Then, by (2.4.2) and Lemma 2.3.2 the set M := {uε | ε ∈ (0, 1)}
is bounded in C0(Ω̄ × [0, T ]) and equicontinuous in Ω̄ × [0, T ]. Hence, the Arzelà-Ascoli
theorem implies that M is relatively compact in C0(Ω̄ × [0, T ]). Moreover, M is also
bounded in Lp((0, T );W 1,p

0 (Ω)) by (2.4.2). Thus, we obtain a function u ∈ C0(Ω̄× [0, T ])∩
Lp((0, T );W 1,p

0 (Ω)) and a sequence (εk)k∈N such that εk ↘ 0 and

uεk → u uniformly in Ω̄× [0, T ] and weakly in Lp((0, T );W 1,p
0 (Ω)) as k →∞. (2.4.4)

Since uε(t) is Lipschitz continuous in Ω̄ for any t ∈ [0, T ] with Lipschitz constant M1 by
(2.4.2) and (2.4.3), u(t) is again Lipschitz continuous in Ω̄ for any t ∈ [0, T ] with Lipschitz
constant M1 by (2.4.4). This implies u(t) ∈W 1,∞(Ω) with

‖ux(t)‖L∞(Ω) ≤M1 for any t ∈ [0, T ].
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Next, we define

ϕ(z) := |z|p−1z for z ∈ R. (2.4.5)

Then, (2.4.2) and (2.4.3) imply

|ϕ((uε)x)| ≤Mp
1 in Ω× [0, T ]. (2.4.6)

Moreover, by (2.4.2), Corollaries 2.3.4 and 2.3.5 we obtain constants c1 = c1(T, ‖(u0)x‖L∞(Ω))
and c2 = c2(‖(u0)x‖L∞(Ω)), which are independent of ε, such that

T∫
0

∫
Ω

((uε)
2
x + ε2)

2p−q−4
2 (uε)

2
xxdxdt ≤ c1 and

∞∫
0

∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdxdt ≤ c2

(2.4.7)
holds. This implies

T∫
0

∫
Ω

[ϕ((uε)x)]2xdxdt =

T∫
0

∫
Ω

[p |(uε)x|p−1(uε)xx]2dxdt

≤
T∫

0

∫
Ω

[p((uε)
2
x + ε2)

p−1
2 (uε)xx]2dxdt

= p2

T∫
0

∫
Ω

((uε)
2
x + ε2)

q+2
2 ((uε)

2
x + ε2)

2p−q−4
2 (uε)

2
xxdxdt

≤ p2
(
M2

1 + 1
) q+2

2 · c1. (2.4.8)

Furthermore, due to Ω ⊂ R, there is C > 0 such that ‖ρ‖L∞(Ω) ≤ C‖ρ‖
W 1,2

0 (Ω)
for all

ρ ∈W 1,2
0 (Ω) is fulfilled. Hence, by (2.4.7), (2.4.2) and (2.4.3) we conclude

‖[ϕ((uε)x)]t‖L1((0,T );(W 1,2
0 (Ω))∗)

=

T∫
0

 sup
ρ∈C∞0 (Ω),‖ρ‖

W
1,2
0 (Ω)

≤1

∫
Ω

p|(uε)x|p−1(uε)xtρ(x)dx

dt

=

T∫
0

(
sup

ρ∈C∞0 (Ω),‖ρ‖
W

1,2
0 (Ω)

≤1
p

∫
Ω

−
[
|(uε)x|p−1(uε)tρx(x)

+(p− 1)|(uε)x|p−3(uε)x(uε)xx(uε)tρ(x)
]

dx

)
dt

≤ p

T∫
0

(
sup

ρ∈C∞0 (Ω),‖ρ‖
W

1,2
0 (Ω)

≤1

∫
Ω

[
((uε)

2
x + ε2)

2p+q−2
4 ((uε)

2
x + ε2)−

q
4 |(uε)t||ρx(x)|
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+(p− 1)‖ρ‖L∞(Ω)((uε)
2
x + ε2)

2p+q−4
4 |(uε)xx|((uε)2

x + ε2)−
q
4 |(uε)t|

]
dx

)
dt

≤ p

T∫
0

sup
ρ∈C∞0 (Ω),‖ρ‖

W
1,2
0 (Ω)

≤1

(
(M2

1 + 1)
2p+q−2

4 ‖ρx‖L2(Ω)

(∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdx
) 1

2

+(p− 1)C‖ρ‖
W 1,2

0 (Ω)
(M2

1 + 1)
2q
4 ·

·
∫
Ω

((uε)
2
x + ε2)

2p−q−4
4 |(uε)xx|((uε)2

x + ε2)−
q
4 |(uε)t|dx

)
dt

≤ p(M2
1 + 1)

2p+q−2
4

T∫
0

∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdx

 1
2

dt

+p(p− 1)C(M2
1 + 1)

q
2

T∫
0

∫
Ω

((uε)
2
x + ε2)

2p−q−4
4 |(uε)xx|((uε)2

x + ε2)−
q
4 |(uε)t|dxdt

≤ p(M2
1 + 1)

2p+q−2
4 T

1
2

 T∫
0

∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdxdt


1
2

+ p(p− 1)C(M2
1 + 1)

q
2 ·

·

 T∫
0

∫
Ω

((uε)
2
x + ε2)

2p−q−4
2 (uε)

2
xxdxdt


1
2

·

 T∫
0

∫
Ω

((uε)
2
x + ε2)−

q
2 (uε)

2
tdxdt


1
2

≤ p(M2
1 + 1)

2p+q−2
4 T

1
2 c

1
2
2 + p(p− 1)C(M2

1 + 1)
q
2 c

1
2
1 c

1
2
2 . (2.4.9)

Altogether, (2.4.6), (2.4.8) and (2.4.9) imply

‖ϕ((uε)x)‖L2((0,T );W 1,2(Ω)) ≤ C̃ and ‖[ϕ((uε)x)]t‖L1((0,T );(W 1,2
0 (Ω))∗) ≤ C̃

with some C̃ > 0 which is independent of ε ∈ (0, 1). Thus, the set O := {ϕ((uε)x) | ε ∈
(0, 1)} is relatively compact in L2((0, T );L2(Ω)) by the Aubin-Lions lemma (see Theo-
rem 2.3 in [A2.23]). As O is bounded in L2((0, T );W 1,2(Ω)), there is a subsequence of
(εk)k∈N (which is not relabeled) and a function v ∈ L2((0, T );W 1,2(Ω)) such that ϕ((uεk)x)
converges to v as k →∞ strongly in L2((0, T );L2(Ω)), weakly in L2((0, T );W 1,2(Ω)) and

a.e. in Ω× [0, T ]. Due to p > 1, we therefore have (uεk)x(x, t)→ sign(v(x, t))|v(x, t)|
1
p a.e.

in Ω× (0, T ). Since uεk → u weakly in Lp((0, T );W 1,p
0 (Ω)), this implies ux = sign(v)|v|

1
p

a.e. in Ω× (0, T ). Thus, we conclude

(uεk)x(x, t)→ ux(x, t) a.e. in Ω× (0, T ) (2.4.10)

and v = ϕ(ux).
Moreover, we fix ξ ∈ C∞0 (Ω) and 0 ≤ s < t ≤ T . Defining

ζε(z) :=

∫ z

0
(p− 1)(s2 + ε2)

p−2
2 ds for z ∈ R and ε ∈ [0, 1), (2.4.11)
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(2.3.1) implies ∫
Ω

(uεk(x, t)− uεk(x, s))ξ(x)dx

=

t∫
s

∫
Ω

(
− ζεk((uεk)x(x, τ)) ξx(x) + ((uεk)2

x + ε2
k)

q
2 (x, τ) ξ(x)

)
dxdτ. (2.4.12)

For any sequence (zk)k∈N ⊂ [−M1,M1] such that zk → z as k →∞ we have

|ζεk(zk)− |z|p−2z| ≤ |ζεk(zk)− ζεk(z)|+ |ζεk(z)− ζ0(z)|

≤ (p− 1)(M2
1 + 1)

p−2
2 |zk − z|+ |ζεk(z)− ζ0(z)|

and therefore ζεk(zk)→ |z|p−2z as k →∞ by the dominated convergence theorem. Hence,
as k → ∞ in (2.4.12), we obtain that (2.4.1) is satisfied due to (2.4.2), (2.4.3), (2.4.4)
and (2.4.10). Taking T ∈ (0,∞) arbitrary, upon a repeated extraction process we finally
obtain a global weak solution u of (2.1.1).

Furthermore, (2.4.4) and (2.3.2) imply

min
x∈Ω̄

u(x, t0) ≤ u(x, t) ≤ max
x∈Ω̄

u(x, t0) for (x, t) ∈ Ω̄× [t0,∞) and any t0 ≥ 0.

In particular, ‖u(t)‖L∞(Ω) is a nonincreasing function of t ≥ 0. Altogether, the theorem is
proved due to (2.4.2) and (2.4.10).

We remark that uniqueness of solutions to (2.1.1) is likely to be obtained within the theory
of viscosity solutions, but we do not need it here.

Now we are ready to prove the main result concerning the large time behavior of u. We
show that u converges to one of the weak solutions wϑ of (2.2.1) which were obtained in
Lemma 2.2.1. In particular, this limit function is nonnegative independent of the sign of
the initial data u0. In the proof we use an idea which is similar to that used in [A2.24].
We particularly make use of the Lyapunov functional which is established in Lemma 2.3.3.

Theorem 2.4.4 Suppose (2.1.2) and (2.1.3) are satisfied and u denotes the weak solution
of (2.1.1) which is obtained in Theorem 2.4.3. Then there is a unique ϑ ∈ [0, R] such that
‖wϑ‖L∞(Ω) = limt→∞ ‖u(t)‖L∞(Ω) and

‖u(t)− wϑ‖L∞(Ω) → 0 as t→∞

is fulfilled.

Proof. We fix a sequence (t̃m)m∈N ⊂ (1,∞) such that t̃m → ∞ as m → ∞. Then,
due to the Sobolev embedding theorem with p > 2 and the one-dimensional case, the
set M := {u(t̃m) |m ∈ N} is bounded in C

1
2 (Ω̄) ∩W 1,p

0 (Ω) by Theorem 2.4.3. Thus, by
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the Arzelà-Ascoli theorem we obtain a function w ∈ C0(Ω̄) ∩W 1,p
0 (Ω) and a subsequence

(tl)l∈N of (t̃m)m∈N such that

u(tl)→ w strongly in C0(Ω̄) and weakly in W 1,p
0 (Ω) as l→∞. (2.4.13)

For ε ∈ (0, 1) let uε denote the solution of (2.3.1) which is constructed in the proof of
Theorem 2.4.3. Moreover, we define

ũl(x, τ) := u(x, tl + τ) for (x, τ) ∈ Ω̄× [−1, 1]. (2.4.14)

As Theorem 2.4.3, (2.4.2), (2.4.3) and Corollary 2.3.4 imply

∞∫
0

∫
Ω

u2
tdxdt ≤ C2(M2

1 + 1)
p
2 <∞, (2.4.15)

we conclude for l ∈ N
1∫
−1

∫
Ω

|ũl(x, τ)− w(x)|2dxdτ

≤ 2

1∫
−1

∫
Ω

|u(x, tl + τ)− u(x, tl)|2dxdτ + 2

1∫
−1

∫
Ω

|u(x, tl)− w(x)|2dxdτ.

Now we obtain due to u, ut ∈ L2(Ω× (0, tl + 1))

1∫
−1

∫
Ω

|ũl(x, τ)− w(x)|2dxdτ

≤ 2

1∫
−1

∫
Ω

∣∣∣∣∣∣
tl+τ∫
tl

ut(x, s)ds

∣∣∣∣∣∣
2

dxdτ + 4|Ω| ‖u(tl)− w‖2L∞(Ω)

≤ 2

1∫
−1

∫
Ω

|τ |

∣∣∣∣∣∣
tl+τ∫
tl

|ut(x, s)|2ds

∣∣∣∣∣∣dxdτ + 4|Ω| ‖u(tl)− w‖2L∞(Ω)

≤ 2

∞∫
tl−1

∫
Ω

|ut(x, s)|2dxds+ 4|Ω| ‖u(tl)− w‖2L∞(Ω).

Hence, we have ũl → W in L2(Ω × (−1, 1)) as l → ∞ by (2.4.13) and (2.4.15), where
W (x, τ) := w(x) for (x, τ) ∈ Ω × (−1, 1). Thus, there is a subsequence of (tl)l∈N (which
we do not rename) such that

ũl →W in L2(Ω× (−1, 1)) and a.e. in Ω× (−1, 1) as l→∞. (2.4.16)
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Furthermore, we choose ϕ like in (2.4.5). Then we obtain in a way completely similar to
(2.4.6), (2.4.8) and (2.4.9) that

‖ϕ((uε)x)‖L2((tl−1,tl+1);W 1,2(Ω)) ≤ C̃ and ‖[ϕ((uε)x)]t‖L1((tl−1,tl+1);(W 1,2
0 (Ω))∗) ≤ C̃

holds for any ε ∈ (0, 1) and l ∈ N with a positive constant C̃ which is independent of ε
and l (since C̃ only depends on the length of the interval (tl − 1, tl + 1)). This implies

‖ϕ(((ũε)l)x)‖L2((−1,1);W 1,2(Ω)) ≤ C̃ and ‖[ϕ(((ũε)l)x)]t‖L1((−1,1);(W 1,2
0 (Ω))∗) ≤ C̃

for every ε ∈ (0, 1) and l ∈ N. Therefore, the Aubin-Lions lemma (see Theorem 2.3 in
[A2.23]) implies that the set M := {ϕ(((ũε)l)x) | ε ∈ (0, 1), l ∈ N} is relatively compact
in L2((−1, 1);L2(Ω)). Moreover, (2.4.4), (2.4.10) and the choice of the sequence (εk)k∈N
in the proof of Theorem 2.4.3 yield N := {ϕ((ũl)x) | l ∈ N} ⊂ M. Hence, N is again
relatively compact in L2((−1, 1);L2(Ω)). Thus, there is a subsequence of (tl)l∈N (which
is not relabeled) and a function v ∈ L2((−1, 1);W 1,2(Ω)) such that ϕ((ũl)x) converges to
v as l → ∞ strongly in L2((−1, 1);L2(Ω)), weakly in L2((−1, 1);W 1,2(Ω)) and a.e. in

Ω × (−1, 1). Due to p > 1, we therefore have (ũl)x(x, t) → sign(v(x, t))|v(x, t)|
1
p a.e. in

Ω × (−1, 1). As {ũl | l ∈ N} is bounded in Lp((−1, 1);W 1,p
0 (Ω)) by Theorem 2.4.3, again

there is a subsequence of (tl)l∈N (which we again do not rename) such that ũl → w weakly

in Lp((−1, 1);W 1,p
0 (Ω)) by (2.4.16). This implies wx = sign(v)|v|

1
p a.e. in Ω× (−1, 1) and

hence

(ũl)x(x, τ)→ wx(x) a.e. in Ω× (−1, 1) (2.4.17)

and v = ϕ(wx) is satisfied.

Next, we fix ξ ∈ C∞0 (Ω) and ρ ∈ C∞0 ((−1, 1)) such that
∫ 1
−1 ρ(τ)dτ = 1 and recall the

definition of ζε in (2.4.11). Thus, by (2.3.1) we obtain for any k, l ∈ N

−
tl+1∫
tl−1

∫
Ω

uεk(x, t)ξ(x)ρ′(t− tl)dxdt

=

tl+1∫
tl−1

∫
Ω

(
− ζεk((uεk)x(x, t)) ξx(x) + ((uεk)2

x + ε2
k)

q
2 (x, t) ξ(x)

)
ρ(t− tl)dxdt.

By (2.4.2), (2.4.3), (2.4.4) and (2.4.10) we obtain as k →∞ (in a completely similar way
to the proof that (2.4.12) implies (2.4.1))

−
tl+1∫
tl−1

∫
Ω

u(x, t)ξ(x)ρ′(t− tl)dxdt

=

tl+1∫
tl−1

∫
Ω

(
− (|ux|p−2ux)(x, t) ξx(x) + |ux|q(x, t) ξ(x)

)
ρ(t− tl)dxdt.
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This equation is equivalent to

0 =

1∫
−1

∫
Ω

ũl(x, τ)ξ(x)ρ′(τ)dxdτ

+

1∫
−1

∫
Ω

(
− (|(ũl)x|p−2(ũl)x)(x, τ) ξx(x) + |(ũl)x|q(x, τ) ξ(x)

)
ρ(τ)dxdτ.

In the limit l → ∞, (2.4.16), (2.4.17), Theorem 2.4.3 and the dominated convergence
theorem imply

0 =

1∫
−1

∫
Ω

w(x)ξ(x)ρ′(τ)dxdτ

+

1∫
−1

∫
Ω

(
− (|wx|p−2wx)(x) ξx(x) + |wx|q(x) ξ(x)

)
ρ(τ)dxdτ

=

 1∫
−1

ρ′(τ)dτ

∫
Ω

w(x)ξ(x)dx


+

 1∫
−1

ρ(τ)dτ

∫
Ω

(
− (|wx|p−2wx)(x) ξx(x) + |wx|q(x) ξ(x)

)
dx



=

∫
Ω

(
− (|wx|p−2wx)(x) ξx(x) + |wx|q(x) ξ(x)

)
dx

due to the choice of ρ. As ξ ∈ C∞0 (Ω) was arbitrary, w satisfies (2.2.2). Moreover, w
fulfills w|∂Ω = 0 due to (2.4.13) and Theorem 2.4.3. Furthermore, (2.2.2) implies that
Φ := |wx|p−2wx is weakly differentiable with Φx = −|wx|q a.e. in Ω. As q < p − 1 and

wx ∈ Lp(Ω) due to (2.4.13), we conclude Φ ∈ W 1, p
p−1 (Ω) and thus Φ ∈ C0(Ω̄). Hence, we

obtain wx ∈ C0(Ω̄) since wx = sign(Φ)|Φ|
1
p−1 . This implies w ∈ C1(Ω̄) and thus w = wϑ

for some ϑ ∈ [0, R] by Lemma 2.2.1. In particular, w is nonnegative. Thus, from (2.4.13)
and Theorem 2.4.3, we conclude

c0(R− ϑ)α = ‖wϑ‖L∞(Ω) = lim
l→∞
‖u(tl)‖L∞(Ω) = lim

t→∞
‖u(t)‖L∞(Ω),

and therefore ϑ ∈ [0, R] is uniquely determined. Altogether, by (2.4.13) we conclude

‖u(tl)− wϑ‖L∞(Ω) → 0 as l→∞.

This implies the claim, since (tl)l∈N is a subsequence of (t̃m)m∈N, which was an arbitrarily
chosen sequence satisfying t̃m →∞ as m→∞, and since ϑ is independent of the sequence
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(t̃m)m∈N.

The following proposition shows that, if u0 is nonnegative such that u0 6≡ 0, u(t) can only
converge to a nontrivial steady state.

Proposition 2.4.5 Let (2.1.2) and (2.1.3) be satisfied and let u denote the weak solution
of (2.1.1) which is obtained in Theorem 2.4.3. Then, if u0 is nonnegative with u0 6≡ 0, we
have lim

t→∞
‖u(t)‖L∞(Ω) > 0.

Proof. Suppose u0 is nonnegative such that u0 6≡ 0. As u0 ∈ C0(Ω̄), there exist x0 ∈ Ω,
r > 0 and δ > 0 such that u0 ≥ 2δ in I := (x0 − r, x0 + r) holds. Moreover, for ε ∈ (0, 1),
let uε denote the solution of (2.3.1) which is constructed in the proof of Theorem 2.4.3. As
‖u0ε− u0‖L∞(Ω) ≤ ε is satisfied by Lemma 2.4.2, we obtain u0ε ≥ δ in Ī for any ε ∈ (0, δ).
Furthermore, in case of q > p− 2 we define

w̃(x) := c0[rα − |x− x0|α] for x ∈ Ī ,

where α and c0 are defined in (2.2.3). Hence, as q > p − 2 implies α > 2, we have
w̃ ∈ C2(Ī). Moreover, similar to Lemma 2.2.1 we have

(p− 1)|w̃x|p−2w̃xx + |w̃x|q = 0 and (p− 1)w̃xx + |w̃x|q−p+2 = 0 in I.

Then, we choose a ∈ (0, 1) such that ac0r
α ≤ δ and set z(x, t) := a w̃(x) for (x, t) ∈

Ī × [0,∞). Thus, in case of q > p− 2 we conclude

zt − (p− 1)(z2
x + ε2)

p−2
2 zxx − (z2

x + ε2)
q
2

= −ap−1(p− 1)
(
w̃2
x +

ε2

a2

) p−2
2
w̃xx − aq

(
w̃2
x +

ε2

a2

) q
2

= ap−1
(
w̃2
x +

ε2

a2

) p−2
2

(
−(p− 1)w̃xx − aq−p+1

(
w̃2
x +

ε2

a2

) q−p+2
2

)
≤ ap−1

(
w̃2
x +

ε2

a2

) p−2
2 (
−(p− 1)w̃xx − aq−p+1|w̃x|q−p+2

)
≤ ap−1

(
w̃2
x +

ε2

a2

) p−2
2 (

1− aq−p+1
)
|w̃x|q−p+2 ≤ 0 in I × (0,∞)

as p− 2 < q < p− 1.
In case of q ≤ p − 2 we set v(x) := r2 − (x − x0)2, x ∈ Ī, and choose b ∈ (0, 1) such

that br2 ≤ δ and 2(p− 1) ≤ bq−p+1(4r2 + 1)
q−p+2

2 is fulfilled. Defining z(x, t) := b v(x) for
(x, t) ∈ Ī × [0,∞), we obtain

zt − (p− 1)(z2
x + ε2)

p−2
2 zxx − (z2

x + ε2)
q
2

= b(z2
x + ε2)

p−2
2

(
−(p− 1)vxx − bq−p+1

(
v2
x +

ε2

b2

) q−p+2
2

)
≤ b(z2

x + ε2)
p−2

2

(
2(p− 1)− bq−p+1(4r2 + 1)

q−p+2
2

)
≤ 0 in I × (0,∞)
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for any ε ∈ (0, b) in case of q ≤ p− 2 due to |vx| ≤ 2r in I.
Moreover, for any ε ∈ (0, δ), we obtain z ≤ uε on the parabolic boundary of I × [0,∞)
in both cases, as uε is nonnegative by Lemma 2.3.1 and Lemma 2.4.2 as well as z(x, 0) ≤
δ ≤ u0ε(x) for x ∈ Ī. Thus, for 1 < q < p − 1, the comparison principle implies z ≤ uε
in Ī × [0,∞) for any ε ∈ (0,min{δ, b}). Therefore, we conclude z ≤ u in Ī × [0,∞)
due to Theorem 2.4.3. As this implies ‖u(t)‖L∞(Ω) ≥ δ̃ > 0 for all t ≥ 0, we obtain

limt→∞ ‖u(t)‖L∞(Ω) ≥ δ̃ > 0 by Theorem 2.4.3.

Finally, we obtain further information about the limit function wϑ from Theorem 2.4.4, if
the initial data u0 of the solution u only have one sign.

Corollary 2.4.6 Suppose (2.1.2) and (2.1.3) are satisfied and u denotes the weak solution
of (2.1.1) which is obtained in Theorem 2.4.3. Moreover, let ϑ ∈ [0, R] be chosen such
that ‖u(t)− wϑ‖L∞(Ω) → 0 as t→∞ is fulfilled. Then, in case of u0 ≥ 0 with u0 6≡ 0 we
have wϑ 6≡ 0, whereas wϑ ≡ 0 holds in case of u0 ≤ 0.

Proof. In case of u0 ≥ 0 with u0 6≡ 0, ‖wϑ‖L∞(Ω) = limt→∞ ‖u(t)‖L∞(Ω) > 0 holds by
Proposition 2.4.5 and Theorem 2.4.4. This implies wϑ 6≡ 0 in this case.
In case of u0 ≤ 0, Theorem 2.4.3 and Theorem 2.4.4 yield wϑ ≤ 0. Hence, we obtain
wϑ ≡ 0 in this case as wϑ is nonnegative.
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[A2.8] T. Gallay and Ph. Laurençot, Asymptotic behavior for a viscous Hamilton-
Jacobi equation with critical exponent, Indiana Univ. Math. J. 56 (2007), 459–479.

[A2.9] B.H. Gilding, The Cauchy problem for ut = ∆u+ |∇u|q, large-time behaviour,
J. Math. Pures Appl. 84 (2005), 753–785.

[A2.10] B.H. Gilding, M. Guedda, and R. Kersner, The Cauchy problem for ut =
∆u+ |∇u|q, J. Math. Anal. Appl. 284 (2003), 733–755.

[A2.11] A. Gmira and B. Bettioui, On the selfsimilar solutions of a diffusion convec-
tion equation, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 277–294.
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3.1 Introduction

We investigate the large time behaviour of non-negative and radially symmetric solutions
to the initial-boundary value problem

∂tu = ∆pu+ |∇u|q, x ∈ B, t ∈ (0,∞),

u = 0, x ∈ ∂B, t ∈ (0,∞),

u(x, 0) = u0(x), x ∈ B,
(3.1.1)

where B := {x ∈ RN : |x| < 1} is the unit ball in RN , N ≥ 2, and the p-Laplacian
operator is defined by

∆pu = div(|∇u|p−2∇u).

We further assume the initial condition

u0 ∈W 1,∞
0 (B) is radially symmetric and non-negative and u0 6≡ 0, (3.1.2)

while the parameters p and q satisfy

p ≥ 2 and 0 < q < p− 1. (3.1.3)

The partial differential equation in (3.1.1) is a second-order parabolic equation featuring
a diffusion term (possibly quasilinear and degenerate if p > 2) and a source term |∇u|q
counteracting the effect of diffusion and depending solely on the gradient of the solution.
The competition between the diffusion and the source term is already revealed by the
structure of steady states to (3.1.1). Indeed, while it follows from Theorem 1 in [A3.4]
that zero is the only steady state in C(B̄) when p ≥ 2 and q ≥ p− 1, several steady states
may exist when p ≥ 2 and q ∈ (0, p− 1) [A3.6, A3.14, A3.20]. Another typical feature of
the competition between diffusion and source is the possibility of finite time blow-up in
a suitable norm, and this phenomenon has been shown to occur for (3.1.1) when p = 2
and q > 2, see [A3.16] and the references therein. More precisely, it is established in
[A3.18] that, when p = 2 and q > 2, there are classical solutions to (3.1.1) for which the
L∞-norm of the gradient blows up in finite time, the L∞-norm of the solution remaining
bounded. These solutions may actually be extended to all positive times in a unique way
within the framework of viscosity solutions [A3.5, A3.21], the boundary condition being
also satisfied in the viscosity sense. According to the latter, the homogeneous Dirichlet
boundary condition might not always be fulfilled for all times, a property which is likely
to be connected with the finite time blow-up of the gradient.
Coming back to the case where p and q fulfil (3.1.3) and several steady states may exist,
a complete classification of steady states seems to be out of reach when B is replaced
by an arbitrary open set of RN . Nevertheless, there are at least two situations in which
the set of stationary solutions can be described, namely, when N = 1 and B = (−1, 1)
[A3.14, A3.20] and when N ≥ 2 under the additional requirement that the steady states
are radially symmetric and non-increasing, the latter being the first result of this paper.
More precisely, we show that (3.1.1) has a one-parameter family of stationary solutions
and that each stationary solution is characterized by the value of its maximum.
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Theorem 3.1.1 Assume (3.1.3). Let w ∈ W 1,∞(B) be a radially symmetric and non-
increasing viscosity solution to −∆pw − |∇w|q = 0 in B satisfying w = 0 on ∂B. Then
there is ϑ ∈ [0, 1] such that w = wϑ, where

wϑ(x) := c0

1∫
max{|x|,ϑ}

(
ρ− ϑβρ−(β−1)

)1/(p−1−q)
dρ, x ∈ B̄, (3.1.4)

for ϑ ∈ [0, 1] with

β := 1 +
(N − 1)(p− 1− q)

p− 1
> 1 and c0 :=

(
p− 1− q
(p− 1)β

)1/(p−1−q)
> 0. (3.1.5)

In particular, we have w0(x) = (c0/α) (1−|x|α) for x ∈ B̄, where α := (p−q)/(p−1−q) >
1.

An interesting feature of the stationary solution wϑ to (3.1.1) for ϑ > 0 is that it is flat
on the ball Bϑ(0) := {x ∈ RN : |x| < ϑ}, a property connected to the failure of the
comparison principle for (3.1.1) for the range (3.1.3) of the parameters p and q .

Remark 3.1.2 As already mentioned, for any M ∈ [0, c0/α] there is one and only one ϑ ∈
[0, 1] such that ‖wϑ‖L∞(B) = M as ‖wϑ‖L∞(B) is a decreasing function of ϑ ∈ [0, 1]. This
property plays an important role in the forthcoming analysis of the large time behaviour of
solutions to (3.1.1).

Having a precise description of the set of steady states of (3.1.1) at our disposal, it is
natural to investigate whether they attract the dynamics of (3.1.1) for large times. In
other words, given a solution to (3.1.1), does it converge to a steady state as t → ∞?
A positive answer to this question is given in [A3.14, A3.20] when N = 1, B = (−1, 1),
and p and q fulfil (3.1.3). The one-dimensional framework is fully exploited there as it
allows the construction of a Liapunov functional by the technique developed in [A3.22].
Such a nice tool does not seem to be available here and we instead use the theory of
viscosity solutions [A3.10] and more precisely the relaxed half-limits method introduced
in [A3.7]. This approach has already been used in [A3.8, A3.15, A3.17] to investigate
the large time behaviour of solutions to Hamilton-Jacobi equations and can be roughly
summarized as follows: given a non-negative and radially symmetric solution u to (3.1.1)
which is bounded in W 1,∞(B), the half-relaxed limits

u∗(x) := lim inf
(s,ε)→(t,0)

u(x, ε−1s) and u∗(x) := lim sup
(s,ε)→(t,0)

u(x, ε−1s), x ∈ B̄,

are well-defined, do not depend on t > 0, and are Lipschitz continuous viscosity superso-
lution and subsolution to

−∆pz − |∇z|q = 0 in B, z = 0 on ∂B,
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respectively, by Lemma 6.1 in [A3.10]. Clearly, u∗ ≤ u∗ on B̄ but we cannot apply the
comparison principle at this stage to conclude that u∗ ≥ u∗ on B̄. However, additional
information are available in this particular case, namely that u∗ and u∗ are both non-
negative, radially symmetric, non-increasing, and have the same maximal value. Extensive
use of these properties allows us to prove that u∗ ≥ u∗, from which we readily conclude
that u∗ = u∗ is a Lipschitz continuous radially symmetric and non-increasing stationary
solution to (3.1.1). Consequently, u∗ = u∗ = wϑ for some ϑ ∈ [0, 1] by Theorem 3.1.1 and
the assumption u0 6≡ 0 prevents ϑ = 1. The convergence result we obtain actually reads
as follows.

Theorem 3.1.3 Assume (3.1.2) and (3.1.3) and let u denote the (radially symmetric)
viscosity solution to (3.1.1). Then there is a unique ϑ ∈ [0, 1) such that

lim
t→∞
‖u(t)− wϑ‖C(B̄) = 0.

Notice that Theorem 3.1.3 applies in particular in the semilinear case p = 2 with q ∈ (0, 1)
according to (3.1.3). In that case, an interesting phenomenon takes place in one space
dimension [A3.14]: if ϑ ∈ (0, 1) (a property which is certainly true when ‖u0‖L∞(B) <
‖w0‖L∞(B) in view of Lemma 3.3.2) and the initial data is not too steep in a neighbourhood
of zero, then the corresponding solution to (3.1.1) becomes instantaneously flat in a time-
dependent neighbourhood of zero, its gradient thus undergoing finite time extinction near
zero. Whether this phenomenon still occurs in higher space dimension and also for p > 2
is an interesting open question. It is however likely that it requires q ∈ (0, 1).
Still in the semilinear case p = 2, several results on the large time behaviour of solutions
to (3.1.1) are also available when q ≥ 1 and B is replaced by an arbitrary open set Ω of RN
[A3.1, A3.9, A3.19, A3.21], including the convergence to zero in C(Ω̄) of global classical
solutions.

The analysis in this paper being restricted to radially symmetric solutions, we define
r := |x| and switch between the notation u = u(x, t) and u = u(r, t), whenever this is
convenient.
For further use, we introduce the following notations:

F (s,X) := −|s|p−2trace(X)−(p−2)|s|p−4〈Xs, s〉−|s|q for (s,X) ∈ RN×RN×N , (3.1.6)

its radially symmetric counterpart

f(r, µ, ζ) := −(p− 1)|µ|p−2ζ − N − 1

r
|µ|p−2µ− |µ|q for (r, µ, ζ) ∈ (0, 1)×R×R, (3.1.7)

and the radially symmetric p-Laplacian operator

f0(r, µ, ζ) := −(p− 1)|µ|p−2ζ − N − 1

r
|µ|p−2µ for (r, µ, ζ) ∈ (0, 1)× R× R. (3.1.8)
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3.2 Radially symmetric and non-increasing stationary solu-
tions

In this section, we prove Theorem 3.1.1, that is, if w is a radially symmetric, non-increasing,
and Lipschitz continuous viscosity solution to the stationary equation{

−∆pw − |∇w|q = 0 in B,
w = 0 on ∂B,

(3.2.1)

then w = wϑ for some ϑ ∈ [0, 1]. To this end, we first observe that, as a function of r = |x|,
w is a viscosity solution to f(r, ∂rw, ∂

2
rw) = 0 in (0, 1) with w(1) = 0 (recall that f is

defined in (3.1.7)).
Next, as a preliminary step, let us first give a formal proof, assuming w to be in C1(B̄)
and solving (3.2.1) pointwise. In particular, we will derive an identity (see (3.2.3) below)
which turns out to be valid for viscosity solutions as we shall see later on.
As w is radially symmetric and in C1(B̄), we have ∂rw(0) = 0. In addition, by (3.2.1),

ϕ(r) := rN−1(|∂rw|p−2∂rw)(r), r ∈ [0, 1],

fulfils ϕ ∈ W 1,∞((0, 1)) with ∂rϕ(r) = −rN−1|∂rw(r)|q ≤ 0 a.e. in (0, 1). Thus, ϕ is a
non-increasing function in [0, 1]. As, moreover, w is non-increasing with w(1) = 0, we have
∂rw(1) ≤ 0.
Now, either ∂rw(1) = 0 and thus ϕ(1) = 0. Since ϕ is non-increasing with ϕ(0) = 0, we
conclude that ϕ ≡ 0. This implies w = w1 ≡ 0.
Or ∂rw(1) < 0, and the continuity and monotonicity of ϕ warrant that there is a unique
ϑ ∈ [0, 1) such that ϕ = 0 in [0, ϑ] and ϕ < 0 in (ϑ, 1]. Hence,

∂rϕ(r) = −r[(N−1)(p−1−q)]/(p−1)|ϕ(r)|q/(p−1) = −rβ−1(−ϕ(r))q/(p−1) in (ϑ, 1).

After integration we obtain

− p− 1

p− 1− q
(−ϕ(r))(p−1−q)/(p−1) +

1

β
rβ = γ for r ∈ (ϑ, 1)

with some constant γ ∈ R. Introducing

χ(z) :=
p− 1

p− 1− q
|z|p−2−qz for z ∈ R, (3.2.2)

we end up with

rβ−1χ(∂rw(r)) +
1

β
rβ = γ for r ∈ (ϑ, 1) (3.2.3)

as ∂rw < 0 in (ϑ, 1). Letting r ↘ ϑ implies γ = ϑβ/β owing to ∂rw(ϑ) = 0 and 0 < q <
p− 1.
Furthermore, due to ∂rw < 0 in (ϑ, 1), we have

− p− 1

p− 1− q

(
r(N−1)/(p−1)(−∂rw(r))

)p−1−q
=

1

β

(
ϑβ − rβ

)
for r ∈ (ϑ, 1).
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Hence, we conclude

∂rw(r) = −
(
p− 1− q
(p− 1)β

(
r − ϑβr−(β−1)

))1/(p−1−q)
for r ∈ (ϑ, 1).

Using w(1) = 0 and the definition of c0, a further integration implies

w(r) = c0

1∫
r

(
ρ− ϑβρ−(β−1)

)1/(p−1−q)
dρ = wϑ(r) for r ∈ [ϑ, 1].

Furthermore, we get w(r) = w(ϑ) for any r ∈ [0, ϑ] since ∂rw ≡ 0 in [0, ϑ] and we conclude
that w = wϑ.

We now turn to the proof of Theorem 3.1.1 and first establish some preliminary results. We
recall that, by the Rademacher theorem, a Lipschitz continuous function v ∈W 1,∞((0, 1))
is differentiable a.e. and the measure of the differentiability set

D(v) := {r0 ∈ (0, 1) : ∂rv(r0) exists }

is thus equal to one.

Lemma 3.2.1 Let v ∈ W 1,∞((0, 1)) be a non-negative and non-increasing viscosity su-
persolution to

f0(r, ∂rz, ∂
2
rz) = 0 in (0, 1), (3.2.4)

the Hamiltonian f0 being defined in (3.1.8). Then, if r1 ∈ D(v) and r2 ∈ D(v) are such
that r1 < r2, we have

r
(N−1)/(p−1)
2 ∂rv(r2) ≤ r(N−1)/(p−1)

1 ∂rv(r1).

Proof. Take 0 < r1 < r2 < 1 with r1, r2 ∈ D(v) and assume for contradiction that

ξ1 := r
(N−1)/(p−1)
1 ∂rv(r1) < r

(N−1)/(p−1)
2 ∂rv(r2) =: ξ2.

As v is non-increasing we have ξ2 ≤ 0. Now take ξ1 < η1 < η2 < ξ2 ≤ 0 and define Φ by

r(N−1)/(p−1)∂rΦ(r) = η1 + (η2 − η1)
r − r1

r2 − r1
, r ∈ [r1, r2],

along with Φ(r1) = 0.

On the one hand, v − Φ is continuous in [r1, r2] and thus attains its minimum at a point
r0 ∈ [r1, r2]. On the other hand, we have

∂r(v − Φ)(r1) =
ξ1 − η1

r
(N−1)/(p−1)
1

< 0 and ∂r(v − Φ)(r2) =
ξ2 − η2

r
(N−1)/(p−1)
2

> 0,
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so that we cannot have r0 = r1 or r0 = r2. Thus, r0 ∈ (r1, r2) and, since v is a viscosity
supersolution to (3.2.4), we have

− 1

rN−1
0

∂r
(
rN−1|∂rΦ|p−2∂rΦ

)
(r0) ≥ 0.

Since r(N−1)/(p−1)∂rΦ(r) ≤ η2 < 0 for r ∈ [r1, r2] we obtain

−
(
rN−1|∂rΦ|p−2∂rΦ

)
(r) = rN−1|∂rΦ(r)|p−1 =

(
−r(N−1)/(p−1)∂rΦ(r)

)p−1

=

∣∣∣∣η1 + (η2 − η1)
r − r1

r2 − r1

∣∣∣∣p−1

.

Differentiating and taking r = r0, we end up with

0 ≤ −∂r
(
rN−1|∂rΦ|p−2∂rΦ

)
(r0)

= (p− 1)

∣∣∣∣η1 + (η2 − η1)
r0 − r1

r2 − r1

∣∣∣∣p−3(
η1 + (η2 − η1)

r0 − r1

r2 − r1

)
η2 − η1

r2 − r1
< 0,

and a contradiction.

In order to show that a viscosity solution to (3.2.1) satisfies (3.2.3), we next prove that
the left-hand side of (3.2.3) is non-increasing for a supersolution to (3.2.1).

Lemma 3.2.2 Let w ∈W 1,∞((0, 1)) be a non-increasing viscosity supersolution to
f(r, ∂rz, ∂

2
rz) = 0 in (0, 1) such that ‖w‖L∞((0,1)) > 0 and w(1) = 0, and define r0 ∈ [0, 1]

by
r0 := inf

{
r ∈ (0, 1] : w(r) < ‖w‖L∞((0,1))

}
.

If r1 ∈ D(w) and r2 ∈ D(w) are such that r0 < r1 < r2, then

rβ−1
1 χ(∂rw(r1)) +

rβ1
β
≥ rβ−1

2 χ(∂rw(r2)) +
rβ2
β
,

the parameter β and the function χ being defined in (3.1.5) and (3.2.2), respectively.

Proof. The properties of w imply r0 ∈ [0, 1). As w is non-increasing and Lipschitz
continuous, the definition of r0 yields that there is a sequence (%n)n≥1 such that %n ∈ D(w),
∂rw(%n) < 0 and %n ↘ r0 as n → ∞. Pick r1 ∈ D(w) ∩ (r0, 1). For n large enough, we
have r1 > %n. Since w is clearly also a supersolution to (3.2.4), we infer from Lemma 3.2.1
that

r
(N−1)/(p−1)
1 ∂rw(r1) ≤ %(N−1)/(p−1)

n ∂rw(%n) < 0

for n large enough. Consequently,

r
(N−1)/(p−1)
1 ∂rw(r1) < 0 for r1 ∈ D(w) ∩ (r0, 1). (3.2.5)
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Assume now for contradiction that there are r1, r2 ∈ (r0, 1) ∩D(w) such that r1 < r2 and

rβ−1
1 χ(∂rw(r1)) +

rβ1
β
< rβ−1

2 χ(∂rw(r2)) +
rβ2
β
.

As ∂rw(r1) < 0 by (3.2.5), we have χ(∂rw(r1)) < 0 and we can choose two real numbers
η1 and η2 such that

rβ−1
1 χ(∂rw(r1)) +

rβ1
β
< η1 < η2 < rβ−1

2 χ(∂rw(r2)) +
rβ2
β
, η1 <

rβ1
β
,

and

a := 1− β(η2 − η1)

rβ2 − r
β
1

∈ (0, 1).

Indeed we first choose η1 ∈ (rβ−1
1 χ(∂rw(r1))+(rβ1 /β), rβ1 /β) and then η2 > η1 close enough

to η1 in order to have a ∈ (0, 1). Setting now

A := η1 − (1− a)
rβ1
β

= η2 − (1− a)
rβ2
β
,

let Φ denote the solution to

rβ−1χ(∂rΦ(r)) + a
rβ

β
= A, r ∈ [r1, r2], (3.2.6)

such that Φ(r1) = 0. Observe that the choice of a and A ensures that

rβ−1
i χ(∂rΦ(ri)) +

rβi
β

= ηi for i = 1, 2. (3.2.7)

Due to

A− ar
β
1

β
= η1 −

rβ1
β
< 0

we conclude by (3.2.6) that

χ(∂rΦ(r)) = r−(β−1)

(
A− ar

β

β

)
≤ r−(β−1)

(
A− ar

β
1

β

)
< 0 for r ∈ [r1, r2].

This implies that ∂rΦ(r) < 0 for r ∈ [r1, r2], so that Φ ∈ C2([r1, r2]) by (3.2.6). In addition,

(−∂rΦ(r))p−1−q =
p− 1− q
p− 1

(
a

β
r −Ar−(β−1)

)
, r ∈ [r1, r2],

hence

∂rΦ(r) = −
[
p− 1− q
p− 1

(
a

β
r −Ar−(β−1)

)]1/(p−1−q)
, r ∈ [r1, r2].
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Furthermore, due to (3.2.7) and the choice of η1, we obtain

rβ−1
1 χ(∂rw(r1)) +

rβ1
β
< η1 = rβ−1

1 χ(∂rΦ(r1)) +
rβ1
β
.

This implies χ(∂rw(r1)) < χ(∂rΦ(r1)) and, since χ is increasing,

∂rw(r1) < ∂rΦ(r1).

Similarly, we conclude
∂rw(r2) > ∂rΦ(r2).

Now w − Φ is a continuous function in [r1, r2] and thus attains its minimum at some
rm ∈ [r1, r2]. The above two inequalities prevent rm to be equal to r1 or r2 and, since w
is a viscosity supersolution to f(r, ∂rv, ∂

2
rv) = 0 in (0, 1), we have

− 1

rN−1
m

∂r
(
rN−1|∂rΦ(r)|p−2∂rΦ(r)

)
(rm)− |∂rΦ(rm)|q ≥ 0.

But as ∂rΦ < 0, (3.2.6) implies

−∂r
(
rN−1|∂rΦ(r)|p−2∂rΦ(r)

)
= ∂r

(
rN−1|∂rΦ(r)|p−1

)
= ∂r

(∣∣∣∣p− 1− q
p− 1

rβ−1χ(∂rΦ(r))

∣∣∣∣(p−1)/(p−1−q)
)

= −arβ−1

∣∣∣∣p− 1− q
p− 1

rβ−1χ(∂rΦ(r))

∣∣∣∣[(p−1)/(p−1−q)]−2(p− 1− q
p− 1

rβ−1χ(∂rΦ(r))

)
= ar(β−1)(p−1)/(p−1−q)

∣∣∣∣p− 1− q
p− 1

χ(∂rΦ(r))

∣∣∣∣[(p−1)/(p−1−q)]−1

= arN−1|∂rΦ(r)|q for r ∈ [r1, r2], (3.2.8)

so that

− 1

rN−1
m

∂r
(
rN−1|∂rΦ(r)|p−2∂rΦ(r)

)
(rm)− |∂rΦ(rm)|q = (a− 1)|∂rΦ(rm)|q < 0

since a < 1, and a contradiction.

In a similar way we now establish that the left-hand side of (3.2.3) is non-decreasing for
viscosity subsolutions to (3.2.1).

Lemma 3.2.3 Let w ∈W 1,∞((0, 1)) be a non-increasing viscosity subsolution to
f(r, ∂rz, ∂

2
rz) = 0 in (0, 1) such that ‖w‖L∞((0,1)) > 0 and w(1) = 0, and define r0 ∈ [0, 1]

by
r0 := inf

{
r ∈ (0, 1] : w(r) < ‖w‖L∞((0,1))

}
.

If r1 ∈ D(w) and r2 ∈ D(w) are such that r0 < r1 < r2, then

rβ−1
1 χ(∂rw(r1)) +

rβ1
β
≤ rβ−1

2 χ(∂rw(r2)) +
rβ2
β
.
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Proof. The properties of w imply r0 ∈ [0, 1). Assume for contradiction that there are
r1, r2 ∈ (r0, 1) ∩D(w) such that r1 < r2 and

rβ−1
1 χ(∂rw(r1)) +

rβ1
β
> rβ−1

2 χ(∂rw(r2)) +
rβ2
β
.

We may then choose η1, η2 ∈ R such that

rβ−1
1 χ(∂rw(r1)) +

rβ1
β
> η1 > η2 > rβ−1

2 χ(∂rw(r2)) +
rβ2
β
,

and define

a := 1 +
β(η1 − η2)

rβ2 − r
β
1

> 1 and A := η1 + (a− 1)
rβ1
β

= η2 + (a− 1)
rβ2
β
.

Let Φ denote the solution to

rβ−1χ(∂rΦ(r)) + a
rβ

β
= A, r ∈ [r1, r2], (3.2.9)

such that Φ(r1) = 0. Thanks to the choice of a and A, we have

rβ−1
i χ(∂rΦ(ri)) +

rβi
β

= ηi for i = 1, 2, (3.2.10)

and the monotonicity of w implies that

A− ar
β
1

β
= η1 −

rβ1
β
< rβ−1

1 χ(∂rw(r1)) ≤ 0.

Consequently,

χ(∂rΦ(r)) = r−(β−1)

(
A− ar

β

β

)
≤ r−(β−1)

(
A− ar

β
1

β

)
< 0 for r ∈ [r1, r2],

hence ∂rΦ(r) < 0 for r ∈ [r1, r2]. We then conclude from (3.2.9) that Φ ∈ C2([r1, r2]).
Furthermore, due to (3.2.10), the choice of η1 and η2, and the monotonicity of χ, we obtain

∂rw(r1) > ∂rΦ(r1) and ∂rw(r2) < ∂rΦ(r2).

Now w−Φ is a continuous function in [r1, r2] and thus attains its maximum at some point
rm ∈ [r1, r2]. The above two inequalities prevent rm to be equal to r1 or r2 and, since w
is a viscosity subsolution to f(r, ∂rv, ∂

2
rv) = 0 in (0, 1), we have

− 1

rN−1
m

∂r
(
rN−1|∂rΦ(r)|p−2∂rΦ(r)

)
(rm)− |∂rΦ(rm)|q ≤ 0.
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But, owing to ∂rΦ(r) < 0, (3.2.9) and a > 1, we conclude similarly to (3.2.8) that

− 1

rN−1
m

∂r
(
rN−1|∂rΦ(r)|p−2∂rΦ(r)

)
(rm)− |∂rΦ(rm)|q = (a− 1)|∂rΦ(rm)|q > 0

and end up with a contradiction.

We are now in a position to prove Theorem 3.1.1. The keystone of the proof is that, accord-
ing to Lemmas 3.2.2 and 3.2.3, any non-increasing viscosity solution to f(r, ∂rv, ∂

2
rv) = 0

in (0, 1) satisfying w(1) = 0 has to fulfil (3.2.3).

Proof of Theorem 3.1.1.
Let w ∈ W 1,∞((0, 1)) be a non-increasing viscosity solution to f(r, ∂rv, ∂

2
rv) = 0 in (0, 1)

satisfying w(1) = 0. Either w ≡ 0 = w1 or M := ‖w‖L∞((0,1)) > 0 and we define r0 ∈ [0, 1)
by

r0 := inf{r ∈ (0, 1] : w(r) < M}.

Now, owing to Lemmas 3.2.2 and 3.2.3, there is a constant γ ∈ R such that

rβ−1χ(∂rw(r)) +
rβ

β
= γ (3.2.11)

for any r ∈ (r0, 1) ∩D(w) and thus a.e. in (r0, 1). Combining the monotonicity of w and
χ with (3.2.11), we, moreover, deduce that

γ ≤ rβ0
β

(3.2.12)

and

∂rw(r) = −
[
p− 1− q
p− 1

(
r

β
− γr−(β−1)

)]1/(p−1−q)
for a.e. r ∈ (r0, 1).

Integrating and using the boundary condition w(1) = 0, we obtain

w(r) =

1∫
r

[
p− 1− q
(p− 1)β

(
ρ− γβρ−(β−1)

)]1/(p−1−q)
dρ for any r ∈ [r0, 1].

Recalling w(r) ≡M for r ∈ [0, r0] and the definition of c0, we conclude

w(r) = c0

1∫
max{r,r0}

(
ρ− γβρ−(β−1)

)1/(p−1−q)
dρ, r ∈ [0, 1]. (3.2.13)

It remains to show that γ = rβ0 /β in order to obtain that w = wr0 .
Consider first the case r0 = 0. Since β > 1, the Lipschitz continuity of w yields γ = 0 =
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rβ0 /β by letting r ↘ 0 in (3.2.11).

Next, if r0 ∈ (0, 1), we assume for contradiction that γ < rβ0 /β. Then we fix ϑ ∈ [0, r0)
such that γ < ϑβ/β and choose Λ > 1 such that

Λp−1−q < 1 + ϑβ − γβ.

This choice of Λ implies that the function

g(r) :=
(

1− γβr−β
)
− Λp−1−q

(
1− ϑβr−β

)
, r ∈ (r0, 1),

satisfies

g′(r) = β2r−β−1

(
γ − Λp−1−q ϑ

β

β

)
≤ β2r−β−1

(
γ − ϑβ

β

)
< 0, r ∈ (r0, 1),

and thus

g(r) ≥ g(1) ≥ 1− γβ − Λp−1−q + ϑβ > 0, r ∈ [r0, 1].

Consequently, (
1− γβr−β

)
> Λp−1−q

(
1− ϑβr−β

)
, r ∈ [r0, 1],

and it follows from (3.2.13) that

∂rw(r) = −c0r
1/(p−1−q)

(
1− γβr−β

)1/(p−1−q)

< −c0r
1/(p−1−q)Λ

(
1− ϑβr−β

)1/(p−1−q)
= Λ∂rwϑ(r), r ∈ (r0, 1).

In particular, w(r)− Λwϑ(r) ≤ w(r0)− Λwϑ(r0) for r ∈ [r0, 1]. Furthermore,

w(r)− Λwϑ(r) = w(r0)− Λwϑ(r) ≤ w(r0)− Λwϑ(r0), r ∈ [0, r0],

thanks to the monotonicity of wϑ, and the function w − Λwϑ has a global maximum at
r0. Since wϑ ∈ C2((ϑ, 1)), ϑ < r0, and w is a viscosity subsolution to f(r, ∂rv, ∂

2
rv) = 0 in

(0, 1), we conclude that

f(r0, ∂r(Λwϑ)(r0), ∂2
r (Λwϑ)(r0)) ≤ 0.

However, as Λ > 1 and ϑ < r0, we clearly have

f(r0, ∂r(Λwϑ)(r0), ∂2
r (Λwϑ)(r0)) =

(
Λp−1 − Λq

)
|∂rwϑ(r0)|q > 0,

and the contradiction. Therefore, γ = rβ0 /β and w = wr0 , which completes the proof.
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3.3 Some properties of solutions to (3.1.1)

We now focus on time-dependent solutions to (3.1.1) and establish some qualitative proper-
ties of non-negative and radially symmetric viscosity solutions to (3.1.1) which are needed
to analyse their large time behaviour.

Proposition 3.3.1 Assume that u0, p, and q fulfil (3.1.2) and (3.1.3). There is a unique
non-negative viscosity solution u ∈ C(B̄ × [0,∞)) to (3.1.1) such that u(x, t) = 0 for
x ∈ ∂B and x 7−→ u(x, t) is radially symmetric and belongs to W 1,∞(B) for all t ≥ 0. In
addition, there is a constant A0 > 0 depending only on p, q, and u0 such that

0 ≤ u(x, t) ≤ A0 and −A0 ≤ ∇u(x, t) · x
|x|
≤W (t) , (x, t) ∈ B̄ × [0,∞), (3.3.1)

with

W (t) :=
((

2‖∇u0‖L∞(B)

)2−p
+ (p− 2)(N − 1)t

)−1/(p−2)
if p > 2 ,

W (t) := 2‖∇u0‖L∞(B) e
−(N−1)t if p = 2 .

Since W (t) −→ 0 as t→∞, the upper bound on ∇u in (3.3.1) ensures that, as a function
of r, u(t) becomes more and more monotone as time increases. Its proof relies on the
comparison principle applied to the equation satisfied by ∂ru and thus explicitly makes
use of the assumed radial symmetry of the solution. It would be interesting to figure out
whether a similar property is enjoyed by solutions to (3.1.1) starting from arbitrary initial
data.

Proof of Proposition 3.3.1. We first derive the expected properties on suitable ap-
proximations to (3.1.1) which we introduce now. For ε ∈ (0, 1), let aε ∈ C∞([0,∞)) and
bε ∈ C∞([0,∞)) be two functions such that:

• aε is bounded and increasing and aε(ξ) := (ε2 + ξ)(p−2)/2 for ξ ∈ [0, ε−1],

• bε is increasing, Lipschitz continuous, and bε(ξ) := (ε2 + ξ)q/2 − εq for ξ ∈ [0, ε−1].

In addition, owing to the properties (3.1.2) of u0, there exists a sequence (u0ε)ε∈(0,1) of
non-negative and radially symmetric functions in C∞(B̄) such that

‖u0ε‖L∞(B) ≤ ‖u0‖L∞(B) + ε , ‖∇u0ε‖L∞(B) ≤ 2 ‖∇u0‖L∞(B), (3.3.2)

and
lim
ε→0
‖u0ε − u0‖C(B̄) = 0.

Fix ε ∈ (0, 1). According to the properties of aε, bε and u0ε, it follows from [A3.13] that
the initial-boundary value problem

∂tuε = div(aε(|∇uε|2)∇uε) + bε(|∇uε|2), x ∈ B, t ∈ (0,∞),

uε = 0, x ∈ ∂B, t ∈ (0,∞),

uε|t=0 = u0ε, x ∈ B,
(3.3.3)
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has a unique non-negative classical solution uε. In addition, x 7−→ uε(t, x) is radially
symmetric for every t ≥ 0 and the comparison principle entails that

0 ≤ uε(x, t) ≤ ‖u0ε‖L∞(B) ≤ ‖u0‖L∞(B) + ε, (x, t) ∈ B̄ × [0,∞). (3.3.4)

We next derive some estimates on the gradient of uε and begin with the normal trace
∂ruε(1, t). Let Lε be the parabolic operator

Lεz := ∂tz −
1

rN−1
∂r
(
rN−1aε

(
|∂rz|2

)
∂rz
)
− bε

(
|∂rz|2

)
, (r, t) ∈ (0, 1)× (0,∞),

and fix

A0 ∈ (
√

3ε, ε−1/2) such that A0 ≥ 21/(p−1−q) + 2
(
1 + ‖u0‖L∞(B) + ‖∇u0‖L∞(B)

)
.

(3.3.5)
Then, thanks to the properties of aε, bε and (3.3.5), the function ψ defined by ψ(r) :=
A0(1− r) for r ∈ [0, 1] satisfies

Lεψ(r) =
1

rN−1
∂r
(
rN−1aε

(
A2

0

)
A0

)
− bε

(
A2

0

)
=
N − 1

r
aε
(
A2

0

)
A0 − bε

(
A2

0

)
≥

(
ε2 +A2

0

)(p−2)/2
A0 −

(
ε2 +A2

0

)q/2
+ εq

≥
(
ε2 +A2

0

)(p−2)/2
(√

ε2 +A2
0 − ε

)
−
(
ε2 +A2

0

)q/2
≥

(
ε2 +A2

0

)(p−1)/2

(
1− ε√

ε2 +A2
0

)
−
(
ε2 +A2

0

)q/2
≥ 1

2

(
ε2 +A2

0

)(p−1)/2 −
(
ε2 +A2

0

)q/2 ≥ 0, r ∈ (0, 1].

Furthermore, (3.3.2), (3.3.4) and (3.3.5) entail that

uε

(
1

2
, t

)
≤ 1 + ‖u0‖L∞(B) ≤

A0

2
= ψ

(
1

2

)
, t ≥ 0 ,

and

u0ε(r) = −
∫ 1

r
∂ru0ε(%) d% ≤ 2‖∇u0‖L∞(B)(1− r) ≤ ψ(r) , r ∈

(
1

2
, 1

)
.

Since Lεuε = 0 in (1/2, 1) × (0,∞), the comparison principle ensures that uε(r, t) ≤
A0(1 − r) for (r, t) ∈ (1/2, 1) × (0,∞). Since uε(1, t) = 0, this implies in particular that
0 ≤ −∂ruε(1, t) ≤ A0 for t ≥ 0. Recalling that uε(t) is radially symmetric and smooth, we
thus have

−A0 ≤ ∂ruε(1, t) ≤ 0 = ∂ruε(0, t) , t ≥ 0 . (3.3.6)

We next estimate the gradient of uε in B. For that purpose, we introduce the parabolic
operator

Mεz := ∂tz − ∂r
[(
aε
(
z2
)

+ 2a′ε
(
z2
)
z2
)
∂rz
]
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−
[
N − 1

r

(
aε
(
z2
)

+ 2a′ε
(
z2
)
z2
)

+ 2b′ε
(
z2
)
z2

]
∂rz +

N − 1

r2
aε
(
z2
)
z

for (r, t) ∈ (0, 1)× (0,∞) and readily deduce from (3.3.3) that

Mε∂ruε = 0 in (0, 1)× (0,∞). (3.3.7)

Observe next that ∂ruε(r, 0) ≥ −2‖∇u0‖L∞(B) ≥ −A0 by (3.3.2) and (3.3.5) and

Mε(−A0) = −N − 1

r2
aε
(
A2

0

)
A0 ≤ 0 ,

which, together with (3.3.6), (3.3.7) and the comparison principle implies that

−A0 ≤ ∂ruε(r, t), (r, t) ∈ [0, 1]× [0,∞). (3.3.8)

Finally, let Wε ∈ C1([0,∞)) be the solution to the ordinary differential equation

dWε

dt
+ (N − 1) aε

(
W 2
ε

)
Wε = 0, Wε(0) = 2‖∇u0‖L∞(B). (3.3.9)

Then Wε is positive and decreasing, Wε(0) ≥ ∂ruε(r, 0) for r ∈ (0, 1) by (3.3.2), and
MεWε ≥ 0 in (0, 1)× (0,∞) by (3.3.9). Recalling (3.3.7), we deduce from the comparison
principle that

∂ruε(r, t) ≤Wε(t), (r, t) ∈ [0, 1]× [0,∞). (3.3.10)

Finally, we argue as in Lemma 5 of [A3.12] to deduce from (3.3.3), (3.3.4), (3.3.8) and
(3.3.10) that there is a constant C depending on ‖∇u0‖L∞(B), p, q and N , such that

|uε(x, t1)− uε(x, t2)| ≤ C(|t1 − t2|+ |t1 − t2|1/2) (3.3.11)

for any x ∈ B̄, t1, t2 ∈ [0,∞) and ε ∈ (0, 1). Indeed, consider t1 6= t2 and set τ :=
|t1− t2|1/2 > 0 and L := max{A0, 2‖∇u0‖L∞(B)}. Since (3.3.8), (3.3.10) and the Dirichlet
boundary conditions imply that |uε(x, t)| ≤ Ldist(x, ∂B) for (x, t) ∈ B̄ × [0,∞), we have

|uε(x0, t1)− uε(x0, t2)| ≤ 2Ldist(x0, ∂B) ≤ 2Lτ if dist(x0, ∂B) ≤ τ. (3.3.12)

If dist(x0, ∂B) > τ and ε ∈ (0, 1/L), we infer from (3.3.3), the properties of (aε, bε), and
|∇uε| ≤ L in B × [0,∞) that

|uε(x0, t1)− uε(x0, t2)|

=
1

|B|τN

∣∣∣∣∣∣∣
∫

{|x−x0|<τ}

(uε(x0, t1)− uε(x0, t2))dx

∣∣∣∣∣∣∣
=

1

|B|τN

∣∣∣∣∣
∫

{|x−x0|<τ}

(uε(x, t)− uε(x0, t))dx
∣∣∣t=t2
t=t1
−

t2∫
t1

∫
{|x−x0|<τ}

∂tuε(x, t)dxdt

∣∣∣∣∣
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≤ 2L

|B|τN

∫
{|x−x0|<τ}

|x− x0|dx

+
1

|B|τN

∣∣∣∣∣
t2∫
t1

∫
{|x−x0|<τ}

[
div(aε(|∇uε|2)∇uε) + bε(|∇uε|2)

]
(x, t)dxdt

∣∣∣∣∣
≤ 2LN

N + 1
τ +

1

|B|τN

∣∣∣∣∣∣∣
t2∫
t1

∫
{|x−x0|<τ}

(ε2 + |∇uε|2)q/2(x, t)dxdt

∣∣∣∣∣∣∣
+

1

|B|τN

∣∣∣∣∣∣∣
t2∫
t1

∫
{|x−x0|=τ}

[
aε(|∇uε|2)|∇uε|

]
(y, t)dSdt

∣∣∣∣∣∣∣
≤ 2LN

N + 1
τ + (1 + L2)q/2|t1 − t2|+

N

τ
(1 + L2)(p−2)/2L|t1 − t2|

≤ 2LN

N + 1
τ + (1 + L2)q/2 τ2 +N(1 + L2)p/2 τ.

Combining (3.3.12) and the above estimate gives the claim (3.3.11).

We can now pass to the limit as ε → 0. Owing to (3.3.4), (3.3.8), (3.3.10) and (3.3.11),
(uε)ε is bounded in, say, C0,1/2(B × (0,∞)) because the uniform Lipschitz continuity in r
implies a uniform C0,1/2-bound in r; thus (uε)ε is relatively compact in C(B̄ × [0, T ]) for
all T > 0. It follows from the stability theorem in Section 6 of [A3.10] and the comparison
principle for (3.1.1) (Theorem 2.1 in [A3.11]) that (uε)ε converges uniformly towards the
unique viscosity solution u to (3.1.1) on compact subsets of B̄ × [0,∞). The properties
of u and the bounds listed in Proposition 3.3.1 then readily follow from this convergence,
the properties of uε, (3.3.4), (3.3.8) and (3.3.10), the function W being the solution to the
ordinary differential equation

dW

dt
+ (N − 1) |W |p−2W = 0, W (0) = 2‖∇u0‖L∞(B).

In fact, W (t) =
(
W (0)2−p + (p− 2)(N − 1)t

)−1/(p−2)
if p > 2 and W (t) := W (0)e−(N−1)t

if p = 2 for t ≥ 0.

By (3.3.1), the trajectory {u(t) : t ≥ 0} of the solution u to (3.1.1) is bounded in L∞(B).
More precise information are gathered in the next lemma.

Lemma 3.3.2 Assume that u0, p and q fulfil (3.1.2) and (3.1.3). Let u be the viscosity
solution to (3.1.1) described in Proposition 3.3.1. Then t 7−→ ‖u(t)‖L∞(B) is a non-
increasing function and

M∞ := lim
t→∞
‖u(t)‖L∞(B) > 0. (3.3.13)
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Proof. Any positive constant being obviously a supersolution to (3.1.1), the time mono-
tonicity of the L∞(B)-norm of u readily follows from the comparison principle. Next,
since u0 6≡ 0 by (3.1.2), there is x0 ∈ B, % > 0, and m > 0 such that

B%(x0) := {x ∈ RN : |x− x0| < %} ⊂ B and u0(x) ≥ m for x ∈ B%(x0).

Introducing vλ(x) := λ(p−q)/(p−1−q)w0(|x − x0|/λ) for x ∈ Bλ(x0) and λ ∈ (0, 1) (the
function w0 being defined in Theorem 3.1.1), a simple computation shows that vλ is
a solution to −∆pvλ − |∇vλ|q = 0 in Bλ(x0) with vλ(x) = 0 ≤ u(x, t) for (x, t) ∈
∂Bλ(x0) × (0,∞). Furthermore, if λ = λm := min{1 − |x0|, (mα/c0)(p−1−q)/(p−q)} , we
have vλm(x) ≤ m ≤ u0(x) for x ∈ Bλm(x0). The comparison principle (Theorem 2.1 in
[A3.11]) then warrants that u(x, t) ≥ vλm(x) for (x, t) ∈ Bλm(x0) × (0,∞). In particu-
lar, ‖u(t)‖L∞(B) ≥ ‖vλm‖L∞(Bλm (x0)) for all t ≥ 0, whence M∞ ≥ ‖vλm‖L∞(Bλm (x0)) > 0.

3.4 Convergence to steady states

We introduce the half-relaxed limits

u∗(x) := lim inf
(s,ε)→(t,0)

u(x, ε−1s), x ∈ B̄,

and
u∗(x) := lim sup

(s,ε)→(t,0)
u(x, ε−1s), x ∈ B̄,

which are well defined and do not depend on t > 0. Moreover, we infer from the stability
theorem (see Lemma 6.1 in [A3.10]) that

u∗ is a viscosity subsolution to F (∇z,D2z) = 0 in B, (3.4.1)

u∗ is a viscosity supersolution to F (∇z,D2z) = 0 in B. (3.4.2)

Next we state some useful properties of the half-relaxed limits.

Lemma 3.4.1 The half-relaxed limits u∗ and u∗ enjoy the following properties:

u∗ ∈W 1,∞(B), u∗ ∈W 1,∞(B), (3.4.3)

0 ≤ u∗(x) ≤ u∗(x), x ∈ B̄, (3.4.4)

u∗ and u∗ are radially symmetric and non-increasing, (3.4.5)

u∗(0) = u∗(0) = M∞ := lim
t→∞
‖u(t)‖L∞(B) > 0, (3.4.6)

u∗(x) = u∗(x) = 0 for x ∈ ∂B. (3.4.7)

Proof. By (3.3.1) there is L := max {A0,W (0)} > 0 such that

u(x, ε−1s) ≤ u(y, ε−1s) + L|x− y| for all (x, y, ε−1s) ∈ B̄ × B̄ × [0,∞) , (3.4.8)
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from which we deduce that u∗ and u∗ are Lipschitz continuous in B by taking the lim sup
or lim inf in ε and s. This proves (3.4.3), while (3.4.4) comes directly from the definition
of u∗ and u∗ and the facts that u is non-negative, radially symmetric for any t ≥ 0 and
vanishes identically on ∂B × (0,∞). The proof of (3.4.7) uses, in addition, the uniform
Lipschitz and C0,1/2-bounds we have for u in space and time, respectively.
In order to prove (3.4.5), we use Proposition 3.3.1: there is a decreasing function W such
that W (t)→ 0 as t→∞ and

u(x, t) ≤ u(y, t) +W (t)(|x| − |y|) for (x, y) ∈ B̄ × B̄ such that |x| ≥ |y|. (3.4.9)

Using this inequality with t = ε−1s and taking the lim sup or lim inf in ε and s lead to
either u∗(x) ≤ u∗(y) or u∗(x) ≤ u∗(y) for any (x, y) ∈ B̄ × B̄ such that |x| ≥ |y| because
W (t)→ 0 as t→∞, hence to (3.4.5).
It remains to show (3.4.6). To this end, we recall that M∞ is well-defined and positive by
(3.3.13) and first claim that

lim
t→∞

u(0, t) = M∞. (3.4.10)

Indeed, (3.4.9) implies

u(x, t) ≤ u(0, t) +W (t)|x| ≤ u(0, t) +W (t) ≤ ‖u(t)‖L∞(B) +W (t), x ∈ B,

whence
‖u(t)‖L∞(B) ≤ u(0, t) +W (t) ≤ ‖u(t)‖L∞(B) +W (t),

and (3.4.10) due to W (t)→ 0 as t→∞.
Moreover, by the definition of the half-relaxed limits, we have u∗(0) = u∗(0) = M∞ and

‖u∗‖L∞(B) ≤ ‖u∗‖L∞(B) ≤M∞.

This completes the proof of (3.4.6).

Now, owing to the monotonicity and radial symmetry of u∗ and u∗, there are r∗ ∈ [0, 1]
and r∗ ∈ [0, 1] such that

u∗(x) = M∞ if |x| ≤ r∗ and u∗(x) < M∞ if |x| ∈ (r∗, 1], (3.4.11)

u∗(x) = M∞ if |x| ≤ r∗ and u∗(x) < M∞ if |x| ∈ (r∗, 1]. (3.4.12)

Due to (3.4.4), (3.4.6) and (3.4.7), we have

0 ≤ r∗ ≤ r∗ < 1. (3.4.13)

Next, we show that Λu∗ is a strict supersolution to the stationary equation in a subset of
B for Λ > 1.

Lemma 3.4.2 Fix Λ > 1 and δ ∈ (0, 1−r∗). Then there are rδ ∈ (r∗, r∗+ δ) and εδ,Λ > 0
such that Λu∗ is a viscosity supersolution to f(r, ∂rz, ∂

2
rz) = εδ,Λ in (rδ, 1). In addition,

εδ,Λ → 0 as Λ↘ 1.
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Proof. Fix δ ∈ (0, 1−r∗). Then, due to (3.4.3), (3.4.5) and (3.4.11), there is rδ ∈ (r∗, r∗+δ)
such that u∗ is differentiable at rδ and ∂ru∗(rδ) < 0. Since u∗ is a viscosity supersolution
to f(r, ∂rz, ∂

2
rz) = 0 in (0, 1), it is also a viscosity supersolution to f0(r, ∂rz, ∂

2
rz) = 0 in

(0, 1) and it follows from Lemma 3.2.1 that

∂ru∗(r) ≤ r(N−1)/(p−1)∂ru∗(r) ≤ r(N−1)/(p−1)
δ ∂ru∗(rδ) =: −mδ < 0

for a.e. r ∈ (rδ, 1). Integrating and using the continuity of u∗ we conclude that

u∗(r) ≤ u∗(r1)−mδ(r − r1) (3.4.14)

for all r1 ∈ [rδ, 1] and r ∈ [r1, 1].
Consider Λ > 1, Φ ∈ C2((rδ, 1)) and assume that Λu∗ − Φ has a local minimum at some
r0 ∈ (rδ, 1). Then u∗ − (Φ/Λ) has a local minimum at r0 and (3.4.2) implies

− 1

rN−1
0

∂r

(
rN−1

∣∣∣∣∂r (Φ

Λ

)∣∣∣∣p−2

∂r

(
Φ

Λ

))
(r0)−

∣∣∣∣∂r (Φ

Λ

)
(r0)

∣∣∣∣q ≥ 0,

− 1

rN−1
0

∂r

(
rN−1 |∂rΦ|p−2 ∂rΦ

)
(r0)− Λp−1−q |∂rΦ(r0)|q ≥ 0.

Thus, we have

− 1

rN−1
0

∂r
(
rN−1|∂rΦ|p−2∂rΦ

)
(r0)− |∂rΦ(r0)|q ≥

(
Λp−1−q − 1

)
|∂rΦ(r0)|q. (3.4.15)

Now, since Λu∗−Φ has a local minimum at r0, we infer from (3.4.14) that, for r ∈ [r0, r0+η]
with η > 0 small enough,

u∗(r0) ≤ Φ(r0)

Λ
+ u∗(r)−

Φ(r)

Λ
≤ Φ(r0)

Λ
+ u∗(r0)−mδ(r − r0)− Φ(r)

Λ
.

Hence,
Φ(r)

Λ
− Φ(r0)

Λ
≤ −mδ(r − r0)

and thus
1

Λ
∂rΦ(r0) ≤ −mδ < 0

which implies |∂rΦ(r0)| ≥ Λmδ. Consequently, (3.4.15) becomes

f(r0, ∂rΦ(r0), ∂2
rΦ(r0)) ≥

(
Λp−1−q − 1

)
Λqmq

δ =: εδ,Λ > 0,

which ends the proof.

We are now able to prove that the half-relaxed limits u∗ and u∗ coincide.

Lemma 3.4.3 We have u∗ = u∗ on B̄.
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Proof. We fix Λ > 1 > λ > 0 such that λ > r∗ and

δ :=
M∞

‖∇u∗‖L∞(B)

(
1− λ(p−q)/(p−1−q)

)
∈ (0, λ− r∗).

Defining now

U(r) := Λu∗(r), r ∈ [0, 1], and V (r) := λ(p−q)/(p−1−q)u∗
( r
λ

)
, r ∈ [0, λ],

we obtain due to (3.4.13)

U(r) ≥ u∗(r) = M∞ ≥ V (r) for r ∈ [0, r∗]. (3.4.16)

Furthermore, we infer from the Lipschitz continuity of u∗ that, for r ∈ (r∗, r∗ + δ],

U(r) ≥ u∗(r) ≥ u∗ (r∗)− ‖∇u∗‖L∞(B) |r − r∗|
= M∞ − ‖∇u∗‖L∞(B) |r − r∗| ≥M∞ − δ‖∇u∗‖L∞(B)

≥ λ(p−q)/(p−1−q)M∞ ≥ V (r).

Recalling (3.4.16), we have thus shown that

U(r) ≥ V (r) for r ∈ [0, r∗ + δ] . (3.4.17)

Next, we define Iλ := (r∗ + δ, λ). On the one hand, V is a viscosity subsolution to
f(r, ∂rz, ∂

2
rz) = 0 in Iλ. Indeed, take Φ ∈ C2(Iλ) and assume that V − Φ has a lo-

cal maximum at r1 ∈ Iλ. Then u∗ − Ψ has a local maximum at r1/λ, where Ψ(r) :=
λ−(p−q)/(p−1−q)Φ(λr) for r ∈ ((r∗ + δ)/λ, 1). Owing to (3.4.1), we obtain

f
(r1

λ
, ∂rΨ

(r1

λ

)
, ∂2
rΨ
(r1

λ

))
≤ 0.

Consequently,

0 ≥ λq/(p−1−q)f
(r1

λ
, λ−1/(p−1−q)∂rΦ(r1), λ1−1/(p−1−q)∂2

rΦ(r1)
)

= −(p− 1)|∂rΦ(r1)|p−2∂2
rΦ(r1)− N − 1

r1
|∂rΦ(r1)|p−2∂rΦ(r1)− |∂rΦ(r1)|q

= f(r1, ∂rΦ(r1), ∂2
rΦ(r1))

and V is a viscosity subsolution to f(r, ∂rz, ∂
2
rz) = 0 in Iλ. On the other hand, it follows

from Lemma 3.4.2 that U is a viscosity supersolution to f(r, ∂rz, ∂
2
rz) = εδ,Λ in Iλ with

some εδ,Λ > 0. As furthermore V (r) = 0 ≤ U(r) for r = λ and U(r) ≥ V (r) for r = r∗ + δ
due to (3.4.17), we conclude that

U(r) ≥ V (r) for r ∈ [r∗ + δ, λ]

by Section 5C in [A3.10]. Using (3.4.17), we end up with

Λu∗(r) ≥ λ(p−q)/(p−1−q)u∗
( r
λ

)
for r ∈ [0, λ].
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Letting now Λ↘ 1 and λ↗ 1, we conclude u∗ ≥ u∗ in [0, 1] which, together with (3.4.4),
implies u∗ = u∗.

Finally, we prove Theorem 3.1.3.

Proof of Theorem 3.1.3.

Defining u∞ := u∗ = u∗ by Lemma 3.4.3, (3.4.1), (3.4.2) and Lemma 3.4.1 imply that
u∞ is a radially symmetric, non-increasing, and Lipschitz continuous viscosity solution to
F (∇z,D2z) = 0 in B satisfying u∞ = 0 on ∂B. Moreover, ‖u∞‖L∞(B) = M∞ > 0 due to
(3.4.6). Hence, owing to Theorem 3.1.1, there is a unique ϑ ∈ [0, 1) such that u∞ = wϑ.

In particular, the equality u∗ = u∗ and the definition of u∗ and u∗ provide the uniform con-
vergence of u(t) towards u∗ = wϑ in every compact subset of B as t→∞, see Lemme 4.1
in [A3.3], or Lemma V.1.9 in [A3.2]. Combining this local convergence with (3.4.3) and
(3.4.7) gives

lim
t→∞
‖u(t)− wϑ‖C(B̄) = 0

and the claim is proved.
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Abstract

The large time behaviour of nonnegative solutions to a quasilinear degenerate diffusion
equation with a source term depending solely on the gradient is investigated. After a
suitable rescaling of time, convergence to a unique profile is shown for global solutions.
The proof relies on the half-relaxed limits technique within the theory of viscosity solutions
and on the construction of suitable supersolutions and barrier functions to obtain optimal
temporal decay rates and boundary estimates. Blowup of weak solutions is also studied.

Key words: convergence, diffusive Hamilton-Jacobi equation, friendly giant, viscosity
solution, half-relaxed limits, blowup
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4.1 Introduction

Qualitative properties of nonnegative solutions to

∂tu−∆pu = |∇u|q , (t, x) ∈ Q := (0,∞)× Ω , (4.1.1)

4Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université de Toulouse, F–31062 Toulouse
cedex 9, France. E-mail: Philippe.Laurencot@math.univ-toulouse.fr
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u = 0 , (t, x) ∈ (0,∞)× ∂Ω , (4.1.2)

u(0) = u0 , x ∈ Ω , (4.1.3)

vary greatly according to the relative strength of the (possibly nonlinear and degenerate)
diffusion ∆pu := div

(
|∇u|p−2 ∇u

)
and the source term |∇u|q which is measured by the

exponents p ≥ 2 and q > 0. More precisely, if q ∈ (0, p− 1), the comparison principle fails
to be valid for the corresponding stationary equation [A4.3] and the existence of non-zero
steady states is expected. The latter is known to be true for p = 2 and q ∈ (0, 1) for a
general bounded domain Ω [A4.5, A4.17] and for p > 2 and q ∈ (0, p − 1) if Ω = B(0, 1)
is the open unit ball of RN [A4.6, A4.24]. A complete classification of nonnegative steady
states seems nevertheless to be lacking in general, except in space dimension N = 1
[A4.17, A4.24] and when Ω = B(0, 1) for radially symmetric solutions [A4.6]. In these
two particular cases, there is a one-parameter family (wϑ)ϑ∈[0,1] of stationary solutions
to (4.1.1)-(4.1.2) with the properties w0 = 0 and wϑ < wϑ′ in Ω if ϑ < ϑ′. In addition,
each nonnegative solution to (4.1.1)-(4.1.3) converges as t → ∞ to one of these steady
states [A4.6, A4.17, A4.24] and the available classification of the steady states plays an
important role in the convergence proof. The classification of nonnegative steady states
to (4.1.1)-(4.1.2) and the large time behaviour of nonnegative solutions to (4.1.1)-(4.1.3)
thus remain unsolved problems when q ∈ (0, p− 1) and Ω is an arbitrary bounded domain
of RN , N ≥ 2.
The situation is more clear for q ≥ p−1 as the comparison principle [A4.3] guarantees that
zero is the only stationary solution to (4.1.1)-(4.1.2). Convergence to zero of nonnegative
solutions to (4.1.1)-(4.1.3) is then expected in that case but the dynamics turn out to be
more complicated as the gradient source term |∇u|q induces finite time blowup for some
solutions. More precisely, when p = 2, global existence and convergence to zero for large
times of solutions to (4.1.1)-(4.1.3) are shown in [A4.8, A4.23, A4.25] when either q ∈ [1, 2]
or q > 2 and ‖u0‖C1 is sufficiently small. The smallness condition on u0 for p = 2 and
q > 2 cannot be removed as finite time gradient blowup occurs for “large” initial data
in that case [A4.22]. The blowup of the gradient then takes place on the boundary of Ω
[A4.23] and additional information on the blowup rate and location of the blowup points
are provided in [A4.14, A4.18]. In addition, the continuation of solutions after the blowup
time is studied in [A4.4] within the theory of viscosity solutions. Coming back to the
convergence to zero of global solutions, still for p = 2, the temporal decay rate and the
limiting profile are identified in [A4.8] when q ∈ (1, 2] and shown to be that of the linear
heat equation.
To our knowledge, the slow diffusion case p > 2 has not been studied and the main purpose
of this paper is to investigate what happens when q ≥ p− 1 and p > 2. Our results may
be summarized as follows: let Ω be a bounded domain of RN with smooth boundary ∂Ω
(at least C2) and consider an initial condition u0 having the following properties:

u0 ∈ C0(Ω̄) := {z ∈ C(Ω̄) : z = 0 on ∂Ω} , u0 ≥ 0 , u0 6≡ 0 . (4.1.4)

Then

(a) if q = p − 1, there is a unique global (viscosity) solution u to (4.1.1)-(4.1.3) and
t1/(p−2)u(t) converges as t→∞ to a unique profile f which does not depend on u0.
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In addition, u∞ : (t, x) 7−→ t−1/(p−2) f(x) is the unique solution to (4.1.1)-(4.1.2)
with an initial condition identically infinite in Ω, see Theorem 4.1.2 below. The
availability of solutions having infinite initial value in Ω (also called friendly giants)
and their stability are well-known for the porous medium equation ∂tz −∆zm = 0,
m > 1, the p-Laplacian equation ∂tz −∆pz = 0, p > 2, and some related equations
sharing a similar variational structure, see [A4.19, A4.21, A4.26] for instance, but
also for the semilinear diffusive Hamilton-Jacobi equation with gradient absorption
∂tz −∆z + |∇z|q = 0, q > 1 [A4.11].

(b) if q ∈ (p − 1, p], there is a unique global (viscosity) solution u to (4.1.1)-(4.1.3) and
t1/(p−2)u(t) converges as t → ∞ to a unique profile f0 which does not depend on
u0. In that case, (t, x) 7−→ t−1/(p−2) f0(x) is the unique solution to the p-Laplacian
equation ∂tz − ∆pz = 0 with homogeneous Dirichlet boundary conditions and an
initial condition identically infinite in Ω, see Theorem 4.1.4 below. Therefore, the
gradient source term |∇u|q does not show up in the large time dynamics.

(c) if q > p and u0 is sufficiently small, there is a unique global (viscosity) solution u to
(4.1.1)-(4.1.3) and t1/(p−2)u(t) converges as t→∞ to f0 as in the previous case, see
Theorem 4.1.4 below.

(d) if q > p and u0 is sufficiently large, then there is no global Lipschitz continuous weak
solution to (4.1.1)-(4.1.3), see Proposition 4.5.3 below. Let us point out that, since
the notion of solution used for this result differs from that used for the previous cases,
it only provides an indication that the smallness condition is needed in case (c).

Before stating precisely the main results, we point out that (4.1.1) is a quasilinear degen-
erate parabolic equation which is unlikely to have classical solutions. It turns out that a
suitable framework for the well-posedness of the initial-boundary value problem (4.1.1)-
(4.1.3) is the theory of viscosity solutions (see, e.g., [A4.1, A4.2, A4.10]) and we first define
the notion of solutions to be used throughout this paper.

Definition 4.1.1 Consider u0 ∈ C0(Ω̄) satisfying (4.1.4). A function u ∈ C([0,∞)× Ω̄)
is a solution to (4.1.1)-(4.1.3) if u is a viscosity solution to (4.1.1) in Q and satisfies

u(t, x) = 0 , (t, x) ∈ (0,∞)× ∂Ω , and u(0, x) = u0(x) , x ∈ Ω̄ .

We begin with the case p > 2 and q = p− 1.

Theorem 4.1.2 Assume that p > 2, q = p−1, and consider u0 ∈ C0(Ω̄) satisfying (4.1.4).
Then, there is a unique solution u to (4.1.1)-(4.1.3) in the sense of Definition 4.1.1 and

lim
t→∞

∥∥∥t1/(p−2) u(t)− f
∥∥∥
∞

= 0 , (4.1.5)

where f ∈ C0(Ω̄) is the unique positive solution to

−∆pf − |∇f |p−1 − f

p− 2
= 0 in Ω, f > 0 in Ω , f = 0 on ∂Ω . (4.1.6)
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Furthermore, if u0 ∈W 1,∞(Ω), then ∇u(t) ∈ L∞(Ω) for all t ≥ 0 and

`[u0] := sup
t≥0
{‖∇u(t)‖∞} <∞ . (4.1.7)

Let us emphasize here that Theorem 4.1.2 not only gives a description of the large time
behaviour of u, but also provides the existence and uniqueness of the positive solution f to
(4.1.6). To investigate the large time behaviour of u, no Liapunov functional seems to be
available and we instead use the half-relaxed limits technique [A4.7, A4.10]. To this end,
several steps are needed, including a comparison principle for (4.1.6) which is established
in Section 4.2 and upper bounds which guarantee on the one hand that the solutions to
(4.1.1)-(4.1.3) decay at the expected temporal decay rate and on the other hand that there
is no loss of boundary conditions as discussed for instance in [A4.4]. The latter is achieved
by the construction of suitable barrier functions. Also of importance is the positivity of
the half-relaxed limits which allows us to apply the comparison lemma from Section 4.2.

Remark 4.1.3 Consider G0 ∈ W 1,∞(Ω) satisfying (4.1.4) and denote the corresponding
solution to (4.1.1)-(4.1.3) with q = p−1 by G. Owing to the homogeneity of the equation in
that case, the function g defined by g(t, x) = G(t/`[G0]p−2, x)/`[G0] for (t, x) ∈ [0,∞)× Ω̄
is a solution to (4.1.1)-(4.1.2) with q = p− 1 and initial condition G0/`[G0] and satisfies
‖∇g(t)‖∞ ≤ 1 for all t ≥ 0. As we shall see below in Section 4.5, g turns out to be
a supersolution of (4.1.1)-(4.1.2) for any q > p − 1 and plays an important role in the
construction of global solutions to (4.1.1)-(4.1.2) for q > p, see Theorem 4.1.4.

We next turn to the case q > p− 1 and establish the following result.

Theorem 4.1.4 Assume that p > 2, q > p − 1, and consider u0 ∈ C0(Ω̄) satisfying
(4.1.4). If q > p, assume further that there is G0 ∈W 1,∞(Ω) satisfying (4.1.4) such that

u0(x) ≤ G0(x)

`[G0]
, x ∈ Ω̄ , (4.1.8)

where `[G0] is defined in (4.1.7). Then, there is a unique solution u to (4.1.1)-(4.1.3) in
the sense of Definition 4.1.1 and

lim
t→∞

∥∥∥t1/(p−2) u(t)− f0

∥∥∥
∞

= 0 , (4.1.9)

where f0 ∈ C0(Ω̄) is the unique positive solution to

−∆pf0 −
f0

p− 2
= 0 in Ω, f0 > 0 in Ω , f0 = 0 on ∂Ω . (4.1.10)

For q ∈ [p−1, p], the well-posedness of (4.1.1)-(4.1.3) easily follows from [A4.12] as already
noticed in [A4.4] for p = 2. For q > p and an initial condition u0 satisfying (4.1.8), it
is a consequence of the Perron method and the comparison principle [A4.10]. As for the
large time behaviour, the existence and uniqueness of f0 is shown in [A4.19] and the main
contribution of Theorem 4.1.4 is the convergence (4.1.9). The convergence proof follows
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the same lines as that of Theorem 4.1.2 but a new difficulty has to be overcome in the
case q = p for the boundary estimates. We also show that, when q ∈ (p− 1, p], powers of
the positive solution f to (4.1.6) with an exponent in (0, 1] allow us to construct separate
variables supersolutions to (4.1.1)-(4.1.2).
Finally, the announced blowup result is proved in Section 4.5.3 by a classical argument
[A4.15, A4.20].

For further use, we introduce some notations: for ξ ∈ RN and X ∈ S(N), S(N) being the
space of N ×N real-valued symmetric matrices, we define the functions F0 and F by

F0(ξ,X) := −|ξ|p−2 tr(X)− (p− 2) |ξ|p−4 〈Xξ, ξ〉 , (4.1.11)

F (ξ,X) := F0(ξ,X)− |ξ|q . (4.1.12)

4.2 A comparison lemma

An important tool for the uniqueness of the positive solution to (4.1.6) and the iden-
tification of the half-relaxed limits is the following comparison lemma between positive
supersolutions and nonnegative subsolutions to the elliptic equation in (4.1.6).

Lemma 4.2.1 Let w ∈ USC(Ω̄) and W ∈ LSC(Ω̄) be respectively a bounded upper semi-
continuous (usc) viscosity subsolution and a bounded lower semicontinuous (lsc) viscosity
supersolution to

−∆pζ − |∇ζ|p−1 − ζ

p− 2
= 0 in Ω , (4.2.1)

such that

w(x) = W (x) = 0 for x ∈ ∂Ω , (4.2.2)

W (x) > 0 for x ∈ Ω . (4.2.3)

Then
w ≤W in Ω̄ . (4.2.4)

We remark that under the additional assumption w > 0 the result of Lemma 4.2.1 would
follow from [A4.9, Theorem 2.1] which applies to a more general class of elliptic equations.
However, we use different arguments to prove Lemma 4.2.1.
Proof. For n ≥ N0 large enough, Ωn := {x ∈ Ω : d(x, ∂Ω) > 1/n} is a non-empty open
subset of Ω. Since Ωn is compact and W is lower semicontinuous, the function W has a
minimum in Ωn and the positivity (4.2.3) of W in Ωn implies that

µn := min
Ωn

{W} > 0 . (4.2.5)

Similarly, the compactness of Ω̄ \Ωn and the upper semicontinuity and boundedness of w
ensure that w has at least one point of maximum xn in Ω̄ \ Ωn and we set

ηn := w(xn) = max
Ω̄\Ωn

{w} ≥ 0 , (4.2.6)
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the maximum being nonnegative since ∂Ω ⊂ Ω̄ \Ωn and w vanishes on ∂Ω by (4.2.2). We
claim that

lim
n→∞

ηn = 0 . (4.2.7)

Indeed, owing to the compactness of Ω̄ and the definition of Ωn, there are y ∈ ∂Ω and a
subsequence of (xn)n≥N0 (not relabeled) such that xn → y as n→∞. Since w(y) = 0, we
deduce from the upper semicontinuity of w that

lim
ε→0

sup {w(x) : x ∈ B(y, ε) ∩ Ω̄} ≤ 0 .

Given ε > 0 small enough, there is nε large enough such that xn ∈ B(y, ε) ∩ Ω̄ for n ≥ nε
from which we deduce that

0 ≤ ηn = w(xn) ≤ sup {w(x) : x ∈ B(y, ε) ∩ Ω̄} , n ≥ nε .

Therefore,
0 ≤ lim sup

n→∞
ηn ≤ sup {w(x) : x ∈ B(y, ε) ∩ Ω̄} ,

and letting ε→ 0 allows us to conclude that zero is a cluster point of (ηn)n≥N0 as n→∞.
The claim (4.2.7) then follows from the monotonicity of (ηn)n≥N0 .
Now, fix s ∈ (0,∞). For δ > 0 and n ≥ N0, we define

zn(t, x) := (t+ s)−1/(p−2) w(x)− s−1/(p−2) ηn , (t, x) ∈ [0,∞)× Ω̄ ,

Zδ(t, x) := (t+ δ)−1/(p−2) W (x) , (t, x) ∈ [0,∞)× Ω̄ .

It then follows from the assumptions on w and W that zn and Zδ are respectively a
bounded usc viscosity subsolution and a bounded lsc viscosity supersolution to

∂tζ −∆pζ − |∇ζ|p−1 = 0 in (0,∞)× Ω ,

and satisfy

Zδ(t, x) = 0 ≥ −s−1/(p−2) ηn = zn(t, x) , (t, x) ∈ (0,∞)× ∂Ω .

Moreover, if

0 < δ <

[
µn

1 + ‖w‖∞

]p−2

s , (4.2.8)

it follows from (4.2.5) and (4.2.8) that, for x ∈ Ωn,

Zδ(0, x) = δ−1/(p−2) W (x) ≥ δ−1/(p−2) µn ≥ s−1/(p−2) ‖w‖∞ ≥ zn(0, x) ,

and from (4.2.6) that, for x ∈ Ω̄ \ Ωn,

Zδ(0, x) ≥ 0 ≥ s−1/(p−2) (w(x)− ηn) = zn(0, x) .

We are then in a position to apply the comparison principle [A4.10, Theorem 8.2] to
conclude that

zn(t, x) ≤ Zδ(t, x) , (t, x) ∈ [0,∞)× Ω̄ , (4.2.9)
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for any δ > 0 and n ≥ N0 satisfying (4.2.8). According to (4.2.8), the parameter δ can be
taken to be arbitrarily small in (4.2.9) from which we deduce that

(t+ s)−1/(p−2) w(x)− s−1/(p−2) ηn ≤ t−1/(p−2) W (x) , (t, x) ∈ (0,∞)× Ω̄ ,

for n ≥ N0. We next pass to the limit as n→∞ with the help of (4.2.7) to conclude that

(t+ s)−1/(p−2) w(x) ≤ t−1/(p−2) W (x) , (t, x) ∈ (0,∞)× Ω̄ .

We finally let s→ 0 and take t = 1 in the above inequality to obtain (4.2.4).

A straightforward consequence of Lemma 4.2.1 is the uniqueness of the friendly giant.

Corollary 4.2.2 There is at most one positive viscosity solution to (4.1.6).

Arguing in a similar way, we have a similar result for the p-Laplacian:

Lemma 4.2.3 Let w ∈ USC(Ω̄) and W ∈ LSC(Ω̄) be respectively a bounded usc viscosity
subsolution and a bounded lsc viscosity supersolution to

−∆pζ −
ζ

p− 2
= 0 in Ω , (4.2.10)

satisfying (4.2.2) and (4.2.3). Then w ≤W in Ω̄.

4.3 Well-posedness: q ∈ [p− 1, p]

Proposition 4.3.1 Assume that q ∈ [p−1, p] and consider u0 ∈ C0(Ω̄) satisfying (4.1.4).
Then, there is a unique solution u to (4.1.1)-(4.1.3) in the sense of Definition 4.1.1.

Proof. Since the comparison principle holds true for (4.1.1)-(4.1.3) by [A4.10, The-
orem 8.2], Proposition 4.3.1 follows at once from [A4.12, Corollary 6.2] provided that
Σp
− = Σp

+ = (0,∞)× ∂Ω, where the sets Σp
− and Σp

+ are defined as follows: denoting the
distance d(x, ∂Ω) from x ∈ Ω̄ to ∂Ω by d(x), d is a smooth function in a neighbourhood
of ∂Ω in Ω̄ and (t, x) ∈ (0,∞)× ∂Ω belongs to Σp

− if either

lim inf
(y,α)→(x,0)

[
F

(
∇d(y) + oα(1)

α
,−∇d(y)⊗∇d(y) + oα(1)

α2

)
+
oα(1)

α

]
> 0 , (4.3.1)

or

lim inf
(y,α)→(x,0)

[
F

(
∇d(y) + oα(1)

α
,
D2d(y) + oα(1)

α

)
+
oα(1)

α

]
> 0 . (4.3.2)

Similarly, (t, x) ∈ (0,∞)× ∂Ω belongs to Σp
+ if either

lim sup
(y,α)→(x,0)

[
F

(
−∇d(y) + oα(1)

α
,
∇d(y)⊗∇d(y) + oα(1)

α2

)
+
oα(1)

α

]
< 0 , (4.3.3)
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or

lim sup
(y,α)→(x,0)

[
F

(
−∇d(y) + oα(1)

α
,−D

2d(y) + oα(1)

α

)
+
oα(1)

α

]
< 0 . (4.3.4)

Now, consider t > 0 and x ∈ ∂Ω. For y ∈ Ω̄ sufficiently close to x and α ∈ (0, 1), we have

αp
[
F

(
∇d(y) + oα(1)

α
,−∇d(y)⊗∇d(y) + oα(1)

α2

)
+
oα(1)

α

]
= |∇d(y) + oα(1)|p−2 (|∇d(y)|2 + oα(1)) + (p− 2) |∇d(y) + oα(1)|p−4 (|∇d(y)|4

+oα(1))− αp−q |∇d(y) + oα(1)|q + αp−1 oα(1)

= (p− 1) |∇d(y)|p − αp−q |∇d(y)|q + oα(1) .

Since |∇d(x)| = 1 and p ≥ q, the right-hand side of the above inequality converges as
(y, α)→ (x, 0) either to p− 1 if q < p or to p− 2 if q = p, both limits being positive since
p > 2. Therefore, the condition (4.3.1) is satisfied so that (t, x) belongs to Σp

−. Similarly,
for y ∈ Ω̄ sufficiently close to x and α ∈ (0, 1), we have

αp
[
F

(
−∇d(y) + oα(1)

α
,
∇d(y)⊗∇d(y) + oα(1)

α2

)
+
oα(1)

α

]
= −|∇d(y) + oα(1)|p−2 (|∇d(y)|2 + oα(1))− (p− 2) |∇d(y) + oα(1)|p−4 (|∇d(y)|4

+oα(1))− αp−q |∇d(y) + oα(1)|q + αp−1 oα(1)

= −(p− 1) |∇d(y)|p − αp−q |∇d(y)|q + oα(1) ,

from which we readily infer that the condition (4.3.3) is satisfied. Therefore, (t, x) belongs
to Σp

+ and we have thus shown that ΣP
− = Σp

+ = (0,∞)× ∂Ω as expected.

4.4 Large time behaviour: q ∈ [p− 1, p]

As already mentioned in the Introduction, the proofs of Theorems 4.1.2 and 4.1.4 involve
several steps: we first show in the next section (Section 4.4.1) that the temporal decay
rate of ‖u(t)‖∞ is indeed t−1/(p−2). To this end we construct suitable supersolutions which
differ according to whether q = p−1 or q > p−1. In a second step (Section 4.4.2), we prove
boundary estimates for large times which guarantee that no loss of boundary conditions
occurs throughout the time evolution. Here again, we need to perform different proofs for
q ∈ [p−1, p) and q = p. The half-relaxed limits technique is then employed in Section 4.4.3
to show the expected convergence after introducing self-similar variables, and the existence
of a positive solution f to (4.1.6) as well. The last result of this section states that, if u0

is bounded from above by B fβ for some B > 0 and β ∈ (0, 1], a similar bound holds true
for u(t) for positive times but with a possibly lower exponent β (Section 4.4.4).
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4.4.1 Upper bounds

Lemma 4.4.1 Assume that q = p − 1. There is C1 > 0 depending only on p, q, Ω, and
‖u0‖∞ such that

u(t, x) ≤ C1 (1 + t)−1/(p−2) , (t, x) ∈ (0,∞)× Ω̄ . (4.4.1)

Proof. Consider x0 6∈ Ω̄ and R0 > 0 such that Ω ⊂ B(x0, R0). For A > 0, R > R0, t ≥ 0,
and x ∈ RN , we put r = |x− x0|,

S(t, x) := A (1 + t)−1/(p−2) σ(r) , σ(r) :=
p− 1

p

(
epR/(p−1) − epr/(p−1)

)
,

and assume that

A ≥ max


(

epR/(p−1)

(p− 1)(p− 2)

)1/(p−2)

,
‖u0‖∞
σ(R0)

 . (4.4.2)

Since x0 does not belong to Ω̄, the function S is C∞-smooth in [0,∞)× Ω̄ and it follows
from (4.4.2) that, for (t, x) ∈ Q,

(1 + t)(p−1)/(p−2)
{
∂tS(t, x) + F (∇S(t, x), D2S(t, x))

}
= − A

p− 2
σ(r)−Ap−1 |σ′(r)|p−1

−(p− 1) Ap−1 |σ′(r)|p−2 σ′′(r)− (N − 1) Ap−1 |σ′(r)|p−2σ′(r)

r

= A

[
Ap−2

(
p− 1 +

N − 1

r

)
epr − σ(r)

(p− 2)

]
≥ A

(
(p− 1) Ap−2 − epR/(p−1)

(p− 2)

)
≥ 0 .

Therefore, the condition (4.4.2) guarantees that S is a supersolution to (4.1.1) in Q. In
addition, since |x− x0| < R0 < R for x ∈ Ω, we have

u(t, x) = 0 ≤ A (t+ 1)−1/(p−2) σ(R0) ≤ S(t, x) , (t, x) ∈ (0,∞)× ∂Ω ,

and
u0(x) ≤ ‖u0‖∞ ≤ A σ(R0) ≤ S(0, x) , x ∈ Ω̄ ,

by (4.4.2). The comparison principle then implies that u(t, x) ≤ S(t, x) for (t, x) ∈
[0,∞)× Ω̄, and Lemma 4.4.1 follows from this inequality.

Lemma 4.4.2 Assume that q > p − 1. There is C1 > 0 depending only on p, q, Ω, and
‖u0‖∞ such that

u(t, x) ≤ C1 (1 + t)−1/(p−2) , (t, x) ∈ (0,∞)× Ω̄ . (4.4.3)
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Proof. Consider x0 6∈ Ω̄ and R0 > 0 such that Ω ⊂ B(x0, R0). For A > 0, δ > 0, R > R0,
t ≥ 0, and x ∈ RN , we put r = |x− x0|,

S(t, x) := A (1 + δt)−1/(p−2) ϕ(r) , ϕ(r) :=
p− 1

p

(
Rp/(p−1) − rp/(p−1)

)
,

and assume that

A =

(
N

2R
q/(p−1)
0

)1/(q−p+1)

, R =

(
R
p/(p−1)
0 +

p‖u0‖∞
(p− 1)A

)(p−1)/p

, δ =
N(p− 2)Ap−2

2Rp/(p−1)
.

Since x0 does not belong to Ω̄, the function S is C∞-smooth in [0,∞)× Ω̄ and it follows
from the properties Ω ⊂ B(x0, R0) and q > p− 1 that, for (t, x) ∈ Q,

(1 + δt)(p−1)/(p−2)
{
∂tS(t, x) + F (∇S(t, x), D2S(t, x))

}
= − Aδ

p− 2
ϕ(r) +N Ap−1 −Aq (1 + δt)−(q−p+1)/(p−2) rq/(p−1)

≥ Ap−1

[
N −Aq−p+1 R

q/(p−1)
0 − δRp/(p−1)

(p− 2)Ap−2

]
≥ 0 .

Therefore, the function S is a supersolution to (4.1.1) in Q and the choice of A and R also
guarantees that

u0(x) ≤ ‖u0‖∞ ≤ A ϕ(R0) ≤ S(0, x) , x ∈ Ω̄ .

Finally,

u(t, x) = 0 ≤ A (1 + δt)−1/(p−2) ϕ(R0) ≤ S(t, x) , (t, x) ∈ (0,∞)× ∂Ω ,

since |x − x0| < R0 < R for x ∈ Ω and we infer from the comparison principle that
u(t, x) ≤ S(t, x) for (t, x) ∈ [0,∞)× Ω̄. Lemma 4.4.2 then follows from this inequality.

4.4.2 Lipschitz estimates

Lemma 4.4.3 Assume that q ∈ [p− 1, p). Then there is L1 > 0 depending only on p, q,
Ω, and ‖u0‖∞ such that

|u(t, x)| = |u(t, x)− u(t, x0)| ≤ L1

(1 + t)1/(p−2)
|x− x0| , (t, x, x0) ∈ [1,∞)× Ω̄× ∂Ω .

Proof. Since the boundary ∂Ω of Ω is smooth, it satisfies the uniform exterior sphere
condition by [A4.13, Section 14.6], that is, there is RΩ > 0 such that, for each x0 ∈ ∂Ω,
there is y0 ∈ RN satisfying |x0 − y0| = RΩ and B(y0, RΩ) ∩ Ω = ∅.
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We fix positive real numbers A, M , and δ such that

A := max

{
M,

eC1

e− 1
,

(
4ep−1

p− 2

)1/(p−2)
}
, M :=

21/(p−2)‖u0‖∞
21/(p−2) − 1

, (4.4.4)

and

0 < δ < min

{
1,

(p− 2)RΩ

N − 1
,

(
1

2Aq−p+1

)1/(p−q)
}
, Ωδ := {x ∈ Ω : d(x, ∂Ω) > δ} 6= ∅ ,

(4.4.5)
the constant C1 being defined in Lemma 4.4.1 if q = p−1 and Lemma 4.4.2 if q ∈ (p−1, p).
We next consider t0 ≥ 1, x0 ∈ ∂Ω, and let y0 ∈ RN be such that |x0 − y0| = RΩ and
B(y0, RΩ) ∩ Ω = ∅. We define the open subset Uδ,x0 of RN by

Uδ,x0 := {x ∈ Ω : RΩ < |x− y0| < RΩ + δ} ,

and the function

Sδ,x0(t, x) :=
A

(1 + t)1/(p−2)

(
1− e−(|x−y0|−RΩ)/δ

)
+

M

(1 + t)1/(p−2)
− M

(1 + t0)1/(p−2)

for (t, x) ∈ [0, t0]×Uδ,x0 . Since y0 6∈ Uδ,x0 , the function Sδ,x0 is C∞-smooth in [0, t0]×Uδ,x0 .
For (t, x) ∈ (0, t0)× Uδ,x0 , we set r := |x− y0| −RΩ ∈ (0, δ) and compute

(1 + t)(p−1)/(p−2)

Ap−1
(∂tSδ,x0 −∆pSδ,x0 − |∇Sδ,x0 |q) (t, x)

= − 1− e−r/δ

(p− 2)Ap−2
− (N − 1)e−(p−1)r/δ

(r +RΩ)δp−1
+

(p− 1)e−(p−1)r/δ

δp

−e
−qr/δ

δq
Aq−p+1

(1 + t)(q−p+1)/(p−2)
− M

(p− 2)Ap−1

≥ e−(p−1)r/δ

δp

[
p− 1− N − 1

r +RΩ
δ − Aq−p+1 δp−q

e(q−p+1)r/δ
− δpe(p−1)r/δ

(p− 2)Ap−2
− Mδpe(p−1)r/δ

(p− 2)Ap−1

]

≥ e−(p−1)r/δ

δp

[
p− 1− N − 1

RΩ
δ −Aq−p+1 δp−q − ep−1

(p− 2)Ap−2
− Mep−1

(p− 2)Ap−1

]
≥ e−(p−1)r/δ

δp

[
1−Aq−p+1 δp−q − 2ep−1

(p− 2)Ap−2

]
≥ 0 ,

the last two inequalities being a consequence of the choice (4.4.4) and (4.4.5) of δ, A, and
M . Therefore, Sδ,x0 is a supersolution to (4.1.1) in (0,∞)×Uδ,x0 . Moreover, since t0 ≥ 1,
we have

Sδ,x0(0, x) ≥M − M

21/(p−2)
= ‖u0‖∞ ≥ u0(x) , x ∈ Uδ,x0 , (4.4.6)

by (4.4.4). It also follows from (4.4.1) and (4.4.3) that u(t, x) ≤ C1 (1+t)−1/(p−2) for t ≥ 0
and x ∈ Ω̄. Then, if (t, x) ∈ (0, t0) × ∂Uδ,x0 , either x ∈ ∂Ω and u(t, x) = 0 ≤ Sδ,x0(t, x).
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Or r = |x− y0| −RΩ = δ and it follows from (4.4.4) that

Sδ,x0(t, x) ≥ A(1− e−1)

(1 + t)1/(p−2)
≥ C1

(1 + t)1/(p−2)
≥ u(t, x) .

We then deduce from the comparison principle [A4.10, Theorem 8.2] that u(t, x) ≤
Sδ,x0(t, x) for t ∈ [0, t0] and x ∈ Uδ,x0 . In particular, for t = t0,

u(t0, x) ≤ A

(1 + t0)1/(p−2)

(
1− e−(|x−y0|−RΩ)/δ

)
, x ∈ Uδ,x0 .

Consequently,

0 ≤ u(t0, x)− u(t0, x0) = u(t0, x) ≤ A

(1 + t0)1/(p−2)

(
1− e−(|x−y0|−RΩ)/δ

)
, x ∈ Uδ,x0 ,

whence, since |x0 − y0| −RΩ = 0,

0 ≤ u(t0, x)− u(t0, x0) ≤ A

δ(1 + t0)1/(p−2)
|x− x0| , x ∈ Uδ,x0 . (4.4.7)

Consider finally x ∈ Ω and x0 ∈ ∂Ω. If |x− x0| ≥ δ/2, it follows from (4.4.1) and (4.4.3)
that

|u(t0, x)− u(t0, x0)| = u(t0, x) ≤ 2C1

δ(1 + t0)1/(p−2)
|x− x0| .

If |x− x0| < δ/2, let y0 ∈ RN be such that |x0 − y0| = RΩ and B(y0, RΩ) ∩ Ω = ∅. Since
x ∈ Ω, |x− y0| > RΩ and

|x− y0| ≤ |x− x0|+ |x0 − y0| < RΩ + δ .

Consequently, x ∈ Uδ,x0 and we infer from (4.4.7) that

|u(t0, x)− u(t0, x0)| ≤ A

δ(1 + t0)1/(p−2)
|x− x0| .

We have thus established Lemma 4.4.3 with L1 := max {2C1, A}/δ for (t, x, x0) ∈ [1,∞)×
Ω × ∂Ω. The extension to [1,∞) × Ω̄ × ∂Ω then readily follows thanks to the continuity
of u up to the boundary of Ω.

The previous proof does not apply to the case q = p as the term Aq−p+1 δp−q cannot be
made arbitrarily small by a suitable choice of δ. Still, a similar result is valid for q = p
but first requires a change of variable.

Lemma 4.4.4 Assume that q = p. Then there is L1 > 0 depending only on p, Ω, and
‖u0‖∞ such that

|u(t, x)| = |u(t, x)− u(t, x0)| ≤ L1

(1 + t)1/(p−2)
|x− x0| , (t, x, x0) ∈ [1,∞)× Ω̄× ∂Ω .
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Proof. We define h := eu/(p−1) − 1 and notice that

u

p− 1
≤ h ≤ eu/(p−1)

p− 1
u . (4.4.8)

By (4.1.1)-(4.1.3) and [A4.2, Corollaire 2.1] (or [A4.1, Proposition 2.5]), h is a viscosity
solution to

∂t

[(
1 + h

p− 1

)p−1
]
−∆ph = 0 in Q , (4.4.9)

h = 0 on (0,∞)× ∂Ω , (4.4.10)

h(0) = eu0/(p−1) − 1 in Ω . (4.4.11)

We fix positive real numbers A, M , and δ such that

A := max

{
1,M,

eC1

(p− 1)(e− 1)
eC1/(p−1)

}
, M :=

21/(p−2)e‖u0‖∞/(p−1)

21/(p−2) − 1
, (4.4.12)

and

0 < δ < min

{
1,

(p− 2)RΩ

N − 1
,

(
p− 2

2ep−1

)1/p ( 3

p− 1

)−(p−2)/p
}
, Ωδ 6= ∅ , (4.4.13)

the constant C1 and the set Ωδ being defined in Lemma 4.4.2 and (4.4.5), respectively.
We next consider t0 ≥ 1, x0 ∈ ∂Ω, and let y0 ∈ RN be such that |x0 − y0| = RΩ and
B(y0, RΩ) ∩ Ω = ∅, the definition of RΩ and the existence of y0 being stated at the
beginning of the proof of Lemma 4.4.3. We still define the open subset Uδ,x0 of RN by

Uδ,x0 := {x ∈ Ω : RΩ < |x− y0| < RΩ + δ} ,

and the function

Sδ,x0(t, x) :=
A

(1 + t)1/(p−2)

(
1− e−(|x−y0|−RΩ)/δ

)
+

M

(1 + t)1/(p−2)
− M

(1 + t0)1/(p−2)

for (t, x) ∈ [0, t0]×Uδ,x0 . Since y0 6∈ Uδ,x0 , the function Sδ,x0 is C∞-smooth in [0, t0]×Uδ,x0 .
For (t, x) ∈ (0, t0)× Uδ,x0 , we set r := |x− y0| −RΩ ∈ (0, δ) and compute

(1 + t)(p−1)/(p−2)

Ap−1

(
∂t

[(
1 + Sδ,x0

p− 1

)p−1
]
−∆pSδ,x0

)
(t, x)

= − (1− e−r/δ)
(p− 2)(p− 1)p−2

(1 + Sδ,x0)p−2

Ap−2
− M

(p− 2)(p− 1)p−2

(1 + Sδ,x0)p−2

Ap−1

+
(p− 1)e−(p−1)r/δ

δp
− (N − 1)e−(p−1)r/δ

(r +RΩ)δp−1

≥ e−(p−1)r/δ

δp

[
p− 1− N − 1

RΩ
δ − δp e(p−1)r/δ

(p− 2)(p− 1)p−2

(
1 + 2A

A

)p−2
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−Mδpe(p−1)r/δ(1 + 2A)p−2

(p− 2)(p− 1)p−2Ap−1

]

≥ e−(p−1)r/δ

δp

[
1− 2δp ep−1

(p− 2)

(
3

p− 1

)p−2
]
≥ 0 ,

the last two inequalities being a consequence of the choice (4.4.12) and (4.4.13) of δ, A,
and M . Therefore, Sδ,x0 is a supersolution to (4.4.9) in (0,∞) × Uδ,x0 . Moreover, since
t0 ≥ 1, we have

Sδ,x0(0, x) ≥M − M

21/(p−2)
= e‖u0‖∞/(p−1) ≥ h(0, x) , x ∈ Uδ,x0 ,

by (4.4.12). It next follows from (4.4.3) and (4.4.8) that

h(t, x) ≤ eu(t,x)/(p−1)

p− 1
u(t, x) ≤ C1e

C1/(p−1)

p− 1
(1+t)−1/(p−2) , (t, x) ∈ [0,∞)×Ω̄ . (4.4.14)

Then, if (t, x) ∈ (0, t0) × ∂Uδ,x0 , either x ∈ ∂Ω and h(t, x) = 0 ≤ Sδ,x0(t, x). Or r =
|x− y0| −RΩ = δ and it follows from (4.4.12) and (4.4.14) that

Sδ,x0(t, x) ≥ A(1− e−1)

(1 + t)1/(p−2)
≥ C1e

C1/(p−1)

(p− 1)(1 + t)1/(p−2)
≥ h(t, x) .

We then deduce from the comparison principle [A4.10, Theorem 8.2] that h(t, x) ≤
Sδ,x0(t, x) for t ∈ [0, t0] and x ∈ Uδ,x0 . In particular, owing to (4.4.8), for t = t0,

u(t0, x)

p− 1
≤ h(t0, x) ≤ A

(1 + t0)1/(p−2)

(
1− e−(|x−y0|−RΩ)/δ

)
, x ∈ Uδ,x0 ,

and we argue as in the proof of Lemma 4.4.3 to complete the proof.

We next proceed as in [A4.16] to deduce the Lipschitz continuity of u(t) from Lemmas 4.4.3
and 4.4.4 if u0 is Lipschitz continuous.

Corollary 4.4.5 Assume that q ∈ [p − 1, p] and u0 ∈ W 1,∞(Ω) satisfies (4.1.4). Then
there is L2 > 0 depending only on p, q, Ω, and ‖u0‖W 1,∞(Ω) such that

|u(t, x)− u(t, y)| ≤ L2 |x− y| , (t, x, y) ∈ [0,∞)× Ω̄× Ω̄ .

Proof. In a first step we show that Lemma 4.4.3 and Lemma 4.4.4 are also valid for small
times t ∈ [0, 1]. To this end we first note that the Lipschitz continuity of u0 implies the
existence of L0 > 0 such that

|u0(x)− u0(y)| ≤ L0|x− y|, (x, y) ∈ Ω̄× Ω̄. (4.4.15)
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We now assume q ∈ [p− 1, p) and proceed similarly to the proof of Lemma 4.4.3. Keeping
the notations of Lemma 4.4.3, we choose M = 0 and two positive real numbers A and δ
such that

A := max

{
eL0,

eC1

e− 1
,

(
4ep−1

p− 2

)1/(p−2)
}

(4.4.16)

and (4.4.5) is satisfied. We next fix t0 > 0 and x0 ∈ ∂Ω and define as in Lemma 4.4.3

Sδ,x0(t, x) :=
A

(1 + t)1/(p−2)

(
1− e−(|x−y0|−RΩ)/δ

)
, (t, x) ∈ [0, t0]× Uδ,x0 .

Owing to (4.4.5) and (4.4.16), Sδ,x0 is a supersolution to (4.1.1) in (0,∞) × Uδ,x0 and
Sδ,x0(t, x) ≥ u(t, x) for (t, x) ∈ (0, t0) × ∂Uδ,x0 , the computations being the same as in
Lemma 4.4.3. Also, in view of (4.4.15), (4.4.16), and the mean value theorem we obtain

Sδ,x0(0, x) = A
(

1− e−(|x−y0|−RΩ)/δ
)
≥ A e−1 |x− y0| −RΩ

δ
=
A

eδ
dist(x, ∂B(y0, RΩ))

≥ A

eδ
dist(x, ∂Ω) ≥ L0 dist(x, ∂Ω) ≥ u0(x), x ∈ Uδ,x0 , (4.4.17)

where we have used that B(y0, RΩ) ∩ Ω = ∅ and u0 vanishes identically on ∂Ω. The
comparison principle then ensures that Sδ,x0 ≥ u in [0, t0]×Uδ,x0 and we next argue as in
the end of the proof of Lemma 4.4.3 to conclude that

0 ≤ u(t, x) = u(t, x)− u(t, x0) ≤ L1

(1 + t)1/(p−2)
|x− x0| , (t, x, x0) ∈ [0,∞)× Ω̄× ∂Ω ,

(4.4.18)
with L1 := max {2C1, A}/δ. Using similar changes in the proof of Lemma 4.4.4, we can
establish (4.4.18) also in the case q = p.
Setting next L2 := max{L0, L1} and borrowing an idea from the proof of [A4.16, Theo-
rem 5], we fix h ∈ RN such that Ω ∩ Ωh 6= ∅, where Ωh := {x ∈ RN : x − h ∈ Ω}. Then
the functions u1(t, x) := u(t, x − h) − L2|h| and u2(t, x) := u(t, x − h) + L2|h| defined
for (t, x) ∈ [0,∞) × Ωh are viscosity solutions to (4.1.1) in (0,∞) × Ωh with Dirichlet
boundary conditions u2(t, x) = −u1(t, x) = L2|h| for (t, x) ∈ (0,∞) × ∂Ωh. In view of
(4.4.15) and (4.4.18), we have u1 ≤ u ≤ u2 on the parabolic boundary of (0,∞)×(Ω∩Ωh),
so that the comparison principle [A4.10, Theorem 8.2] guarantees that u1 ≤ u ≤ u2 in
[0,∞)× Ω ∩ Ωh. This completes the proof of the claim.

4.4.3 Convergence

Let U be the solution to the p-Laplacian equation with homogeneous Dirichlet boundary
conditions

∂tU −∆pU = 0 , (t, x) ∈ Q , (4.4.19)

U = 0 , (t, x) ∈ (0,∞)× ∂Ω , (4.4.20)



138 ARTICLE 4: CONVERGENCE TO SEPARATE VARIABLES SOLUTIONS

U(0) = u0 , x ∈ Ω . (4.4.21)

Owing to the nonnegativity of |∇u|q, the comparison principle [A4.10, Theorem 8.2] en-
sures that

0 ≤ U(t, x) ≤ u(t, x) , (t, x) ∈ [0,∞)× Ω̄ . (4.4.22)

We introduce the scaling variable s = ln t for t > 0 and the new unknown functions v and
V defined by

u(t, x) = t−1/(p−2) v(ln t, x) , (t, x) ∈ (0,∞)× Ω̄ , (4.4.23)

U(t, x) = t−1/(p−2) V (ln t, x) , (t, x) ∈ (0,∞)× Ω̄ . (4.4.24)

Then v is a viscosity solution to

∂sv −∆pv − e−(q−p+1)s/(p−2) |∇v|q − v

p− 2
= 0 , (s, x) ∈ Q , (4.4.25)

v = 0 , (s, x) ∈ (0,∞)× ∂Ω , (4.4.26)

v(0) = u(1) , x ∈ Ω . (4.4.27)

In addition, owing to (4.4.1) (if q = p − 1), (4.4.3) (if q > p − 1), Lemma 4.4.3 (if
q ∈ [p− 1, p)), Lemma 4.4.4 (if q = p), and (4.4.22), we have

V (s, x) ≤ v(s, x) ≤ C1 , (s, x) ∈ [0,∞)× Ω̄ , (4.4.28)

|v(s, x)− v(s, y)| ≤ L1 |x− y| , (s, x, y) ∈ [0,∞)× Ω̄× ∂Ω . (4.4.29)

We next define for ε ∈ (0, 1)

wε(s, x) := v
(s
ε
, x
)
, (s, x) ∈ [0,∞)× Ω̄ ,

and the half-relaxed limits

w∗(x) := lim inf
(σ,y,ε)→(s,x,0)

wε(σ, y) , w∗(x) := lim sup
(σ,y,ε)→(s,x,0)

wε(σ, y) ,

for (s, x) ∈ (0,∞)× Ω̄. Observe that w∗ and w∗ are well-defined according to (4.4.28) and
indeed do not depend on s > 0. In addition, it readily follows from (4.4.26) and (4.4.29)
that

w∗(x) = w∗(x) = 0 , x ∈ ∂Ω . (4.4.30)

Also, wε is a solution to

ε ∂swε −∆pwε − e−((q−p+1)s)/((p−2)ε) |∇wε|q −
wε
p− 2

= 0 in Q , (4.4.31)

wε = 0 on (0,∞)× ∂Ω , (4.4.32)

wε(0) = u(1) in Ω . (4.4.33)

At this point, we distinguish the two cases q = p− 1 and q ∈ (p− 1, p]:
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Case 1: q = p − 1. We use the stability of semicontinuous viscosity solutions [A4.10,
Lemma 6.1] to deduce from (4.4.31) that

w∗ is a supersolution to (4.2.1) in Ω , (4.4.34)

w∗ is a subsolution to (4.2.1) in Ω . (4.4.35)

In addition, as V (s) → f0 in L∞(Ω) as s → ∞ by [A4.19, Theorem 1.3], it also follows
from (4.4.28) and the definition of w∗ and w∗ that

f0(x) ≤ w∗(x) ≤ w∗(x) ≤ C1 , x ∈ Ω̄ . (4.4.36)

Since f0 > 0 in Ω by [A4.19, Theorem 1.1], we deduce from (4.4.36) that w∗ and w∗ are
positive and bounded in Ω and vanish on ∂Ω by (4.4.30). Owing to (4.4.34) and (4.4.35),
we are then in a position to apply Lemma 4.2.1 to conclude that w∗ ≤ w∗ in Ω̄. Recalling
(4.4.36), we have thus shown that w∗ = w∗ in Ω̄. Setting f := w∗ = w∗, we infer from
(4.4.30), (4.4.34), (4.4.35), and (4.4.36) that f ∈ C0(Ω̄) is a positive viscosity solution to
(4.2.1) so that it solves (4.1.6). We have thus proved the existence of a positive solution
to (4.1.6), its uniqueness being granted by Corollary 4.2.2. A further consequence of the
equality w∗ = w∗ is that ‖wε(1) − f‖∞ → 0 as ε → 0 (see, e.g., [A4.2, Lemme 4.1] or
[A4.1, Lemma 5.1.9]). In other words,

lim
s→∞

‖v(s)− f‖∞ = 0 , (4.4.37)

which implies (4.1.5) once written in terms of u. Finally, Corollary 4.4.5 gives the last
statement of Theorem 4.1.2.

Case 2: q ∈ (p−1, p]. We use once more the stability of semicontinuous viscosity solutions
[A4.10, Lemma 6.1] to deduce from (4.4.31) that

w∗ is a supersolution to (4.2.10) in Ω , (4.4.38)

w∗ is a subsolution to (4.2.10) in Ω . (4.4.39)

In addition, as V (s) → f0 in L∞(Ω) as s → ∞ by [A4.19, Theorem 1.3], it also follows
from (4.4.28) and the definition of w∗ and w∗ that

f0(x) ≤ w∗(x) ≤ w∗(x) ≤ C1 , x ∈ Ω̄ . (4.4.40)

Since f0 > 0 in Ω by [A4.19, Theorem 1.1] and a solution to (4.2.10), we apply Lemma 4.2.3
to conclude that w∗ ≤ f0 in Ω̄. Recalling (4.4.40), we have proved that w∗ = w∗ = f0 in
Ω̄. We then complete the proof of Theorem 4.1.4 for q ∈ (p− 1, p] in the same way as that
of Theorem 4.1.2.

4.4.4 Improved upper bounds

Interestingly, the positive solution f to (4.1.6) can be also used to construct supersolutions
to (4.1.1)-(4.1.2) for q ∈ (p− 1, p].
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Proposition 4.4.6 Assume that q ∈ (p − 1, p] and there are β ∈ (0, 1] and B > 0 such
that

u0(x) ≤ B f(x)β , x ∈ Ω̄ . (4.4.41)

Then there is γ ∈ (0, β] such that

u(t, x) ≤ ‖f‖1−γ∞

γ
(
‖f‖p−2

∞ + γt
)1/(p−2)

f(x)γ ≤ f(x)γ

γ‖f‖γ∞
, (t, x) ∈ [0,∞)× Ω̄ . (4.4.42)

Proof. We fix γ ∈ (0, 1) such that

γ ≤ min

{
p− 2

p− 1
, β,

1

B‖f‖β∞

}
, (4.4.43)

and, for (t, x) ∈ [0,∞)× Ω̄, we define

Σ(t, x) =
Af(x)γ

γ(1 + δt)1/(p−2)
with A :=

1

‖f‖γ∞
and δ =

γ

‖f‖p−2
∞

.

We claim that

Σ is a supersolution to (4.1.1) in Q for q ∈ [p− 1, p] . (4.4.44)

Indeed, let φ ∈ C2(Q) and consider (t0, x0) ∈ Q where Σ− φ has a local minimum. Since
Σ is smooth with respect to the time variable, this property implies that

∂tφ(t0, x0) = − δA

γ(p− 2)

f(x0)γ

(1 + δt0)(p−1)/(p−2)
, (4.4.45)

and that x 7→ Σ(t0, x)− φ(t0, x) has a local minimum at x0. In other words, the function

x 7→ f(x)γ − γ (1 + δt0)1/(p−2) φ(t0, x)/A has a local minimum at x0 and we infer from
(4.1.6), the positivity of f in Ω, and [A4.2, Corollaire 2.1] (or [A4.1, Proposition 2.5]) that
g := fγ is a viscosity solution to

−∆pg −
(1− γ)(p− 1)

γ

|∇g|p

g
− |∇g|p−1 − γp−1

p− 2
g(1−(1−γ)(p−1))/γ = 0 in Ω .

Consequently,

− γ
p−1

Ap−1
(1 + δt0)(p−1)/(p−2) ∆pφ(t0, x0)

−(1− γ)(p− 1)γp−1

Ap
(1 + δt0)p/(p−2) |∇φ(t0, x0)|p

f(x0)γ

− γ
p−1

Ap−1
(1 + δt0)(p−1)/(p−2) |∇φ(t0, x0)|p−1 − γp−1

p− 2
f(x0)1−(1−γ)(p−1) ≥ 0 ,
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from which we deduce, since γ ∈ (0, 1),

−∆pφ(t0, x0) ≥ (1− γ)(p− 1)

A
(1 + δt0)1/(p−2) |∇φ(t0, x0)|p

f(x0)γ

+ |∇φ(t0, x0)|p−1 +
Ap−1

p− 2

f(x0)1−(1−γ)(p−1)

(1 + δt0)(p−1)/(p−2)
. (4.4.46)

By (4.4.45) and (4.4.46), we have

∂tφ(t0, x0)−∆pφ(t0, x0)− |∇φ(t0, x0)|q ≥ |∇φ(t0, x0)|p−1

f(x0)γ
R1

+
Ap−1f(x0)1−(1−γ)(p−1)

(1 + δt0)(p−1)/(p−2)

R2

p− 2
, (4.4.47)

with

R1 :=
(1− γ)(p− 1)

A
(1 + δt0)1/(p−2)|∇φ(t0, x0)|+ f(x0)γ − f(x0)γ |∇φ(t0, x0)|q−p+1 ,

R2 := 1− δ

γAp−2
f(x0)(1−γ)(p−2) .

On the one hand, (4.4.43) guarantees that (1−γ)(p−1) ≥ 1 which, together with Young’s
inequality and the assumption q ∈ (p− 1, p], leads us to

R1 ≥ ‖f‖γ∞ |∇φ(t0, x0)|+ f(x0)γ − (q − p+ 1) f(x0)γ |∇φ(t0, x0)| − (p− q) f(x0)γ ≥ 0 .

On the other hand, the choice of A and δ gives

R2 = 1−
(
f(x0)

‖f‖∞

)(1−γ)(p−2)

≥ 0 .

Combining the previous two inequalities with (4.4.47) completes the proof of the claim
(4.4.44).

Now, u = Σ = 0 on (0,∞)× ∂Ω while, since β ≥ γ, we infer from (4.4.43) and the choice
of A that, for x ∈ Ω̄,

u0(x) ≤ B f(x)β =
Af(x)γ

γ

γBf(x)β−γ

A
≤ Σ(0, x)

γB‖f‖β−γ∞
A

≤ Σ(0, x) .

We then deduce from the comparison principle [A4.10, Theorem 8.2] that u(t, x) ≤ Σ(t, x)
for (t, x) ∈ [0,∞)× Ω̄ and the proof of Proposition 4.4.6 is complete.
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4.5 Well-posedness and blowup: q > p

4.5.1 Well-posedness

We finally turn to the case q > p and first show that a suitable solution to (4.1.1)-(4.1.2)
with q = p−1 allows us to construct a supersolution to (4.1.1) when q > p which vanishes
identically on the boundary of Ω.

Lemma 4.5.1 Consider G0 ∈W 1,∞(Ω) satisfying (4.1.4) and let G be the corresponding
solution to (4.1.1)-(4.1.3) with q = p − 1. Setting g(t, x) := G(`[G0]2−pt, x)/`[G0] for
(t, x) ∈ Q̄, the parameter `[G0] being defined in (4.1.7), g is a solution to (4.1.1)-(4.1.2)
with initial condition G0/`[G0] and q = p − 1 such that |∇g| ≤ 1 in Q̄. Moreover, g is a
supersolution to (4.1.1) in Q for any q > p− 1.

Proof. Owing to the definition (4.1.7) of `[G0], we clearly have |∇g| ≤ 1 in Q̄.
Next, let φ ∈ C2(Q) and consider (t0, x0) ∈ Q where g − φ has a local minimum. Since g
is 1-Lipschitz continuous with respect to the space variable, this property implies that

|∇φ(t0, x0)| ≤ 1 . (4.5.1)

Moreover, introducing ψ(t, x) := `[G0]φ(`[G0]p−2t, x) for (t, x) ∈ Q̄, the function G − ψ
has a local minimum at (t0`[G0]2−p, x0), so that

∂tψ(t0`[G0]2−p, x0)−∆pψ(t0`[G0]2−p, x0)− |∇ψ(t0`[G0]2−p, x0)|p−1 ≥ 0 ,

and thus
∂tφ(t0, x0)−∆pφ(t0, x0)− |∇φ(t0, x0)|p−1 ≥ 0 . (4.5.2)

Hence, g is a supersolution to (4.1.1) with q = p − 1. In a similar way, it can be shown
that g is also a subsolution and therefore a solution to (4.1.1) with q = p− 1.
Furthermore, we infer from (4.5.1), (4.5.2), and the property q > p− 1 that

∂tφ(t0, x0)−∆pφ(t0, x0)− |∇φ(t0, x0)|q ≥ |∇φ(t0, x0)|p−1
(
1− |∇φ(t0, x0)|q−p+1

)
≥ 0 ,

which completes the proof of Lemma 4.5.1.

Proposition 4.5.2 Assume that q > p and consider an initial condition u0 satisfying
(4.1.4) for which there is G0 ∈W 1,∞(Ω) satisfying (4.1.4) such that

u0(x) ≤ G0(x)

`[G0]
, x ∈ Ω̄ . (4.5.3)

Then there is a unique solution u to (4.1.1)-(4.1.3) in the sense of Definition 4.1.1 and it
satisfies

u(t, x) ≤ g(t, x) :=
1

`[G0]
G

(
t

`[G0]p−2
, x

)
, (t, x) ∈ [0,∞)× Ω̄ , (4.5.4)

where G denotes the solution to (4.1.1)-(4.1.2) with initial condition G0 and q = p− 1.
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Proof. On the one hand, the solution U to the p-Laplacian equation (4.4.19)-(4.4.21) is
clearly a subsolution to (4.1.1) in Q. On the other hand, the function g defined in (4.5.4) is
a supersolution to (4.1.1) in Q by Lemma 4.5.1 and is thus also a supersolution to (4.4.19).
Since U = g = 0 on (0,∞) × ∂Ω and U(0, x) = u0(x) ≤ g(0, x) for x ∈ Ω̄ by (4.5.3), the
comparison principle [A4.10, Theorem 8.2] applied to the p-Laplacian equation (4.4.19)
ensures that U ≤ g in [0,∞)× Ω̄. This property and the simultaneous vanishing of U and
g on (0,∞)× ∂Ω allow us to use the classical Perron method to establish the existence of
a solution u to (4.1.1)-(4.1.3) in the sense of Definition 4.1.1 which satisfies (4.5.4). The
uniqueness next follows from the comparison principle [A4.10, Theorem 8.2].

4.5.2 Large time behaviour

We first recall that Lemma 4.4.2 is also valid in that case. It next readily follows from
Lemma 4.4.3 and (4.5.4) that

0 ≤ u(t, x) = u(t, x)− u(t, x0) ≤ g(t, x) ≤ L1

(1 + t)1/(p−2)
|x− x0| ,

(t, x, x0) ∈ [0,∞)× Ω̄× ∂Ω .

The convergence proof is then the same as that performed in Section 4.4.3 for q ∈ (p−1, p].

4.5.3 Blowup

Let us first recall that, by a weak solution to (4.1.1)-(4.1.3), we mean a nonnegative
function u ∈ C([0,∞)× Ω̄) which belongs to L∞(0, T ;W 1,∞(Ω)) and satisfies

d

dt

∫
Ω
u(t, x) ψ(x) dx =

∫
Ω

(
−|∇u(t, x)|p−2 ∇u(t, x) · ∇ψ(x) + |∇u(t, x)|q ψ(x)

)
dx

(4.5.5)
for any ψ ∈ H1

0 (Ω) and T > 0. We now show that such a solution cannot exist for all
times if q > p and u0 is sufficiently large.

Proposition 4.5.3 Assume that q > p and define r := q/(q− p). There is a positive real
number κ depending on Ω, p, and q such that, if ‖u0‖r+1 > κ, then (4.1.1)-(4.1.3) has no
global weak solution.

Proof. We argue as in [A4.15, Theorem 2.4] and use classical approximation arguments
to deduce from (4.5.5) and Hölder’s and Young’s inequalities that

1

r + 1

d

dt
‖u‖r+1

r+1 =

∫
Ω
ur |∇u|q dx− q

q − p

∫
Ω
ur−1 |∇u|p dx

≥
∫

Ω
ur |∇u|q dx− q

q − p
|Ω|(q−p)/q

(∫
Ω
ur |∇u|q dx

)p/q
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≥
∫

Ω
ur |∇u|q dx− p

q

∫
Ω
ur |∇u|q dx−

(
q

q − p

)p/(q−p)
|Ω|

≥ q − p
q

∫
Ω
ur |∇u|q dx−

(
q

q − p

)p/(q−p)
|Ω|

≥ q − p
q

(
q − p

q − p+ 1

)q ∫
Ω

∣∣∣∇(u(q−p+1)/(q−p)
)∣∣∣q dx

−
(

q

q − p

)p/(q−p)
|Ω|.

We now use the Poincaré inequality to obtain that

1

r + 1

d

dt
‖u‖r+1

r+1 ≥ κ1

∫
Ω
ur+q dx− κ2

for some constants κ1 > 0 and κ2 > 0 depending only on Ω, p, and q. Since q > 1, we use
again Hölder’s inequality to deduce

1

r + 1

d

dt
‖u‖r+1

r+1 ≥
κ1

|Ω|(q−1)/(r+1)
‖u‖r+qr+1 − κ2 .

Since q > 1, this clearly contradicts the global existence as soon as ‖u0‖r+1 is sufficiently
large.

Acknowledgments

The authors would like to thank Matteo Bonforte and Michael Winkler for helpful discus-
sions and comments. This work was done during a visit of Ph. Laurençot to the Fakultät
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by Tomasz Cieślak5 and Christian Stinner

This article is published in:

Journal of Differential Equations 252 (2012), 5832–5851.

http://www.sciencedirect.com/science/article/pii/S0022039612000800

Abstract

In this paper we consider quasilinear Keller-Segel type systems of two kinds in higher
dimensions. In the case of a nonlinear diffusion system we prove an optimal (with respect
to possible nonlinear diffusions generating explosion in finite time of solutions) finite-time
blowup result. In the case of a cross-diffusion system we give results which are optimal pro-
vided one assumes some proper non-decay of a nonlinear chemical sensitivity. Moreover,
we show that once we do not assume the above mentioned non-decay, our result cannot
be as strong as in the case of nonlinear diffusion without nonlinear cross-diffusion terms.
To this end we provide an example, interesting by itself, of global-in-time unbounded
solutions to the nonlinear cross-diffusion Keller-Segel system with chemical sensitivity de-
caying fast enough, in a range of parameters in which there is a finite-time blowup result
in a corresponding case without nonlinear cross-diffusion.
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5.1 Introduction

This work deals with radially symmetric nonnegative solution couples (u, v) of the parabolic-
parabolic Keller-Segel system

ut = ∇ · (φ(u)∇u)−∇ · (ψ(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(5.1.1)

in a ball Ω = BR ⊂ Rn, where n ≥ 3, R > 0, and the initial data are supposed to satisfy
u0 ∈ C0(Ω̄) and v0 ∈W 1,∞(Ω) such that u0 > 0 and v0 > 0 in Ω̄.
Moreover, we assume that φ, ψ ∈ C2([0,∞)) and that there is β ∈ C2([0,∞)) such that

φ(s) > 0, ψ(s) = sβ(s), and β(s) > 0 for s ∈ [0,∞) (5.1.2)

are satisfied.
Systems of this kind were introduced in [A5.12] to describe the motion of cells which
are diffusing and moving towards the gradient of a substance called chemoattractant, the
latter being produced by the cells themselves. In particular, the essentiality of both non-
linear diffusion as well as nonlinear chemosensitivity were emphasized in [A5.9] where it
was explained that they can be used to model the so-called volume-filling effect. The
Keller-Segel system has been studied extensively by many authors and the main issue of
the investigation was chemotactic collapse of cells interpreted as finite-time blowup of the
component u of a solution to (5.1.1). It is however worth to be underlined that despite
the fact that the original Keller-Segel model was a system of parabolic equations the main
results concerning the finite-time blowup of solutions to (5.1.1) were usually proved for
its parabolic-elliptic simplification. There were a few methods introduced to investigate
the phenomenon of finite-time explosion of solutions in that case. Two main methods
among them being the change of variables leading to a reduction of the parabolic-elliptic
simplification of (5.1.1) to a single equation obeying a maximum principle introduced in
[A5.11] and the so-called moment method making strong use of the fact that the sec-
ond equation of the parabolic-elliptic simplification of (5.1.1) is a Poisson equation, see
[A5.2, A5.13]. Those two methods and their ramifications led to a variety of results con-
cerning appearance of chemotactic collapse in both semilinear (i.e. φ ≡ 1, ψ(s) = s) and
quasilinear Keller-Segel systems. In particular, there have been characterized values of
initial mass distinguishing between finite-time blowup and global existence of bounded
solutions to the two-dimensional semilinear version of (5.1.1) in both radially symmetric
ond non-radial settings (see [A5.13, A5.14, A5.15]). Moreover, it has been shown that in
higher dimensions a finite-time blowup of solutions to the semilinear version of (5.1.1) can
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occur independently of the initial mass provided that the initial data are concentrated
enough [A5.13]. Finally, in the case of a quasilinear system, for any space dimension n
there have been identified critical nonlinearities such that if φ and ψ satisfy the supercrit-
ical relation, then solutions to (5.1.1) stay bounded for any time while for those satisfying
the subcritical relation solutions blow up in finite-time independently of the magnitude of
initial mass provided the data are concentrated enough, see [A5.6].

However, all those results are available only for a parabolic-elliptic simplification of (5.1.1).
In the case of the original fully parabolic version the investigation of chemotactic collapse
turned out to be a much more challenging issue. So far the only two existing results in
the literature stating the occurrence of finite-time blowup of solutions to (5.1.1) are those
in [A5.8], where an example of a special solution to the semilinear version of (5.1.1) in
dimension n = 2 blowing up in a finite-time is shown, and the result in [A5.5] where the
explosion of solutions to the one-dimensional Keller-Segel system with appropriately weak
diffusion of cells and sufficiently fast diffusion of chemoattractant is shown. The break-
through has been made recently in [A5.19]. Introducing a new method M. Winkler shows
there that in dimensions n ≥ 3 generic solutions to the semilinear version of (5.1.1) blow
up in finite time independently of the size of initial mass. In the present paper we general-
ize his method to the quasilinear case. This way, to the best of our knowledge, we obtain
a first result concerning a finite-time blowup of solutions to the fully parabolic quasilinear
Keller-Segel system in higher dimensions. So far the only result in that direction was
achieved in dimension n = 1 and only for large initial masses in [A5.5]. Moreover, the
result concerning a chemotactic collapse in the case where β(u) ≡ 1 is optimal. Namely,
we show that in dimension n ≥ 3, for φ(u) ≤ Cup, p < 1 − 2

n and some constant C > 0,
independently of the size of initial mass, one can find generic radially symmetric initial
data leading to finite-time blowup (see Corollary 5.1.4). This result is optimal in view
of the result in [A5.16] guaranteeing global existence of bounded solutions to (5.1.1) with
ψ ≡ 1 for φ satisfying φ(u) ≥ Cuq, q > 1 − 2

n for some constant C > 0. Moreover, in
Corollary 5.1.5 we prove that in the case of full nonlinear cross-diffusion we obtain a result
at least as good as in the parabolic-elliptic case, compare [A5.6]. Furthermore, it is also
an optimal result for a fully parabolic problem when restricting ourselves to polynomial
nonlinearities, see [A5.17]. Theorem 5.1.1, which is our main achievement, shows that
restricting ourselves to the case of ψ(u) not decaying when u is large, we obtain the result
which is a counterpart of the existence of global-in-time solutions in [A5.4]. Finally, we
show (see Theorem 5.1.6) that without assuming a lack of decay of ψ(u) one cannot expect
the existence of critical exponents distinguishing between boundedness of solutions and
finite-time blowup. It turns out that the possible asymptotic behavior of solutions to the
nonlinear cross-diffusion system (5.1.1) can be more complicated. We show that under
the proper choice of parameters (corresponding to the choice of parameters which yield
finite-time blowup in a semilinear case) one can construct global-in-time radially symmet-
ric solutions admitting infinite-time blowup. This result seems to be quite interesting by
itself since the phenomenon of infinite-time blowup does not seem to be that often met in
parabolic equations.

To be more precise when formulating our finite-time blowup results we have to introduce
the following notation. Suppose that there exist positive constants s0, a, and b such that
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the functions

G(s) :=

s∫
s0

σ∫
s0

φ(τ)

ψ(τ)
dτ dσ, s > 0, and H(s) :=

s∫
0

σφ(σ)

ψ(σ)
dσ, s ≥ 0, (5.1.3)

fulfill

G(s) ≤ a s2−α, s ≥ s0, with some α >
2

n
, (5.1.4)

as well as

H(s) ≤ γ ·G(s) + b(s+ 1), s > 0, with some γ ∈
(

0,
n− 2

n

)
. (5.1.5)

We remark that H in (5.1.3) is well-defined due to the positivity of β in [0,∞).
It is well-known that the function

F(u, v) :=
1

2

∫
Ω
|∇v|2 +

1

2

∫
Ω
v2 −

∫
Ω
uv +

∫
Ω
G(u) (5.1.6)

is a Liapunov functional for (5.1.1) with dissipation rate

D(u, v) :=

∫
Ω
v2
t +

∫
Ω
ψ(u) ·

∣∣∣φ(u)

ψ(u)
∇u−∇v

∣∣∣2. (5.1.7)

More precisely, any classical solution to (5.1.1) satisfies

d

dt
F(u(·, t), v(·, t)) = −D(u(·, t), v(·, t)) for all t ∈ (0, Tmax(u0, v0)), (5.1.8)

where Tmax(u0, v0) ∈ (0,∞] denotes the maximal existence time of (u, v) (see [A5.18,
Lemma 2.1]).

In order to prove our result of finite-time blowup, we need to impose the additional con-
dition that there exists c0 > 0 such that

ψ(s) ≥ c0 s, s ≥ 0, (5.1.9)

which in view of (5.1.2) means that β(s) ≥ c0 > 0 for s ≥ 0.
Then we have the following result for blowup in finite time.

Theorem 5.1.1 Suppose that Ω = BR ⊂ Rn with some n ≥ 3 and R > 0, assume that
(5.1.4), (5.1.5), and (5.1.9) are satisfied, and let m > 0 and A > 0 be given. Then there
exist positive constants T (m,A) and K(m) such that for any

(u0, v0) ∈ B(m,A) :=

{
(u0, v0) ∈ C0(Ω̄)×W 1,∞(Ω)

∣∣∣∣ u0 and v0 are radially

symmetric and positive in Ω̄,
∫

Ω u0 = m, ‖v0‖W 1,2(Ω) ≤ A,

and F(u0, v0) ≤ −K(m) · (1 +A2)

}
, (5.1.10)

the corresponding solution (u, v) of (5.1.1) blows up at the finite time Tmax(u0, v0) ∈
(0,∞), where Tmax(u0, v0) ≤ T (m,A).
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Moreover, the set B(m,A) has the following properties.

Theorem 5.1.2 Let Ω = BR ⊂ Rn with some n ≥ 3 and R > 0, let B(m,A) be as defined
in (5.1.10), and assume that (5.1.4) is fulfilled.

(i) Then for any m > 0 there exists A > 0 such that B(m,A) 6= ∅.

(ii) Suppose that (5.1.4) holds with some α > 4
n+2 and, moreover, let p ∈ (1, 2n

n+2) such
that p > 2−α. Then for any m > 0 and A > 0, the set B(m,A) is dense in the space
of all radially symmetric positive functions in C0(Ω̄)×W 1,∞(Ω) with respect to the
topology in Lp(Ω)×W 1,2(Ω). In particular, given positive radial functions (u0, v0) ∈
C0(Ω̄)×W 1,∞(Ω) and ε > 0, there exist positive radial (u0ε, v0ε) ∈ C0(Ω̄)×W 1,∞(Ω)
such that

‖u0ε − u0‖Lp(Ω) + ‖v0ε − v0‖W 1,2(Ω) < ε

and the solution (uε, vε) of (5.1.1) with initial data (u0ε, v0ε) blows up in finite time.

Furthermore, we state three corollaries which cover interesting special cases. Corollary
5.1.3 is an immediate consequence of Theorem 5.1.1 while Corollary 5.1.4 follows since
(5.1.5) is satisfied which, in the case that φ is decreasing, is deduced in view of the

possibility of choosing s0 > e
1
γ and integration by parts, and, in case of sq/φ(s) → c

as s → ∞, is implied by [A5.18, Corollary 5.2]. Moreover, Corollary 5.1.5 follows from
Theorem 5.1.1, because [A5.18, Corollary 5.2] shows that the functions φ and ψ given in
Corollary 5.1.5 satisfy (5.1.4) and (5.1.5). Corollary 5.1.4 is optimal in view of the results
given in [A5.16].

Corollary 5.1.3 Assume that ψ(s) = s for s ≥ 0 and that (5.1.4) and (5.1.5) are fulfilled.
Moreover, let Ω = BR ⊂ Rn with some n ≥ 3 and R > 0, and let m > 0 and A >
0 be given. Then there exist positive constants T (m,A) and K(m) such that for any
(u0, v0) ∈ B(m,A) the corresponding solution (u, v) of (5.1.1) blows up at the finite time
Tmax(u0, v0) ≤ T (m,A).

Corollary 5.1.4 Assume that ψ(s) = s for s ≥ 0 and that φ(s) ≤ Csq, s ≥ 1, for some
q < 1 − 2

n and C > 0. Furthermore, suppose that either φ is a decreasing function or
that there exists c > 0 such that sq/φ(s) → c as s → ∞. Let Ω = BR ⊂ Rn with some
n ≥ 3 and R > 0, and let m > 0 and A > 0 be given. Then there exist positive constants
T (m,A) and K(m) such that for any (u0, v0) ∈ B(m,A) the corresponding solution (u, v)
of (5.1.1) blows up at the finite time Tmax(u0, v0) ≤ T (m,A).

Corollary 5.1.5 Assume that φ(s) = (s+ 1)−p and ψ(s) = s(s+ 1)q−1, s ≥ 0, with q ≥ 1
and p ∈ R such that p+ q > 2

n . Moreover, let Ω = BR ⊂ Rn with some n ≥ 3 and R > 0,
and let m > 0 and A > 0 be given. Then there exist positive constants T (m,A) and K(m)
such that for any (u0, v0) ∈ B(m,A) the corresponding solution (u, v) of (5.1.1) blows up
at the finite time Tmax(u0, v0) ≤ T (m,A).
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In view of [A5.17] the latter result is optimal in the case q ≥ 1, while in view of [A5.18] it
remains an interesting question whether Corollary 5.1.5 can be extended to the case q < 1.
In the following theorem, in particular, we provide a negative answer to this question.
However, it still remains open to find critical exponents (if possible) distinguishing between
finite- and infinite-time blowup of solutions when q < 1.

Theorem 5.1.6 Let Ω = BR ⊂ Rn with some n ≥ 3 and R > 0. Moreover, assume that
lims→∞ φ(s) = 0, that there exists a positive constant D > 0 such that for any s > 0

β(s)

φ(s)
≤ D (5.1.11)

and that there exist constants D1 > 0 and γ1 > n such that for any s > 0

β(s) ≤ D1s
−γ1 . (5.1.12)

Assume also that (5.1.4) and (5.1.5) hold. Then there exists a radially symmetric global-
in-time solution (u, v) to (5.1.1) blowing up in infinite time with respect to the L∞-norm.

Remark 5.1.7 Notice that for α ∈ ( 2
n , 1) in (5.1.4), choosing φ(u) = β(u) we make sure

that (5.1.4) and (5.1.5) are satisfied mutually with (5.1.11) and (5.1.12) indicating that
the assumptions of Theorem 5.1.6 are not contradictory.

5.2 Preliminaries

In this section we state some known results concerning local existence of solutions to
(5.1.1) as well as some useful properties of the solutions.

Lemma 5.2.1 Suppose that (u0, v0) ∈ C0(Ω̄)×W 1,∞(Ω) are radially symmetric and pos-
itive in Ω̄, and let q ∈ (n,∞). Then there exist Tmax(u0, v0) ∈ (0,∞] and a classical
solution (u, v) of (5.1.1) in Ω × (0, Tmax(u0, v0)), where u and v are radially symmetric
functions and satisfy

u ∈ C0([0, Tmax(u0, v0));C0(Ω̄)) ∩ C2,1(Ω̄× (0, Tmax(u0, v0))),

v ∈ C0([0, Tmax(u0, v0));W 1,q(Ω)) ∩ C2,1(Ω̄× (0, Tmax(u0, v0))).

Moreover,

either Tmax(u0, v0) =∞, or ‖u(·, t)‖L∞(Ω) →∞ as t↗ Tmax(u0, v0)

is fulfilled, equation (5.1.8) holds and we have∫
Ω
u(x, t)dx =

∫
Ω
u0 for all t ∈ (0, Tmax(u0, v0)), (5.2.1)∫

Ω
v(x, t)dx ≤ max

{∫
Ω
u0,

∫
Ω
v0

}
for all t ∈ (0, Tmax(u0, v0)). (5.2.2)
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Proof. The claims concerning existence and regularity of the solution follow from well-
known parabolic regularity theory and fixed point arguments, and the extensibility crite-
rion also is proved by standard arguments. For details, we refer the reader to [A5.1, A5.10,
A5.20]. Moreover, the energy equation (5.1.8) is proved in [A5.18, Lemma 2.1] and the
mass identities (5.2.1) and (5.2.2) immediately follow from integrating the first and second
equation in (5.1.1), respectively, by using the Neumann boundary conditions along with
an ODE comparison. Conservation of radial symmetry is a consequence of uniqueness of
solutions and the adequate form of equations in (5.1.1).

Next, we state a consequence of the Gagliardo-Nirenberg and the Young inequalities which
will be used in forthcoming proofs and which is given in [A5.19, Lemma 2.2] (see [A5.7]
for details of the proof).

Lemma 5.2.2 There is C > 0 such that

‖ϕ‖L2(Ω) ≤ C‖∇ϕ‖
n
n+2

L2(Ω)
‖ϕ‖

2
n+2

L1(Ω)
+ C‖ϕ‖L1(Ω) for all ϕ ∈W 1,2(Ω). (5.2.3)

In addition, for any ε > 0 there exists C(ε) > 0 such that

‖ϕ‖2L2(Ω) ≤ ε‖∇ϕ‖
2
L2(Ω) + C(ε)‖ϕ‖2L1(Ω) for all ϕ ∈W 1,2(Ω). (5.2.4)

The following pointwise upper bound for the function v will be an important ingredient
to prove finite-time blowup. The result is given in [A5.19, Lemma 3.2] and its proof is
exactly the same as the one performed in [A5.19, Section 3] since there only the second
equation in (5.1.1) is used.

Lemma 5.2.3 Let p ∈ (1, n
n−1). Then there is C(p) > 0 such that whenever u0 ∈ C0(Ω̄)

and v0 ∈W 1,∞(Ω) are positive in Ω̄ and radially symmetric, the solution of (5.1.1) satisfies

v(r, t) ≤ C(p) ·
(
‖u0‖L1(Ω) + ‖v0‖L1(Ω) + ‖∇v0‖L2(Ω)

)
· r−

n−p
p (5.2.5)

for all (r, t) ∈ (0, R)× (0, Tmax(u0, v0)).

5.3 Finite-time blowup: estimates for the Liapunov func-
tional

In this section, we estimate the Liapunov functional F in terms of the dissipation rate D
and frequently use the ideas from [A5.19, Section 4], where the case φ(u) = 1 and ψ(u) = u
is studied. In order to be able to handle the more general system (5.1.1), we introduce
new estimates in Lemma 5.3.4 along with a more careful choice of some constants and the
use of the terms contained in F which were not used in [A5.19].
Following the ansatz of [A5.19], in view of the previous section we fix m > 0, M > 0,
B > 0, and κ > n− 2 and assume that∫

Ω
u = m and

∫
Ω
v ≤M (5.3.1)
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and
v(x) ≤ B|x|−κ for all x ∈ Ω (5.3.2)

are satisfied. Moreover, we define the space

S(m,M,B, κ) :=

{
(u, v) ∈ C1(Ω̄)× C2(Ω̄)

∣∣∣∣ u and v are positive and radially

symmetric satisfying ∂v
∂ν = 0 on ∂Ω, (5.3.1), and (5.3.2)

}
. (5.3.3)

The goal of this section is to prove that the inequality

F(u, v)

Dθ(u, v) + 1
≥ −C(m,M,B, κ) for all (u, v) ∈ S(m,M,B, κ) (5.3.4)

holds with some constants θ ∈ (0, 1) and C(m,M,B, κ) > 0 (see Theorem 5.3.6). Here it
will be important to state precisely the dependence of C on M and B.
The main ingredient of the proof of (5.3.4) is the following estimate of

∫
Ω uv.

Lemma 5.3.1 Let (5.1.5) and (5.1.9) be fulfilled. Then there are C(m,κ) > 0 and

θ :=
1

1 + n
(2n+4)κ

∈
(1

2
, 1
)

(5.3.5)

such that all (u, v) ∈ S(m,M,B, κ) satisfy∫
Ω
uv ≤ C(m,κ) ·

(
1 +M2 +B

2n+4
n+4

)
·

(∥∥∥∆v − v + u
∥∥∥2θ

L2(Ω)

+

∥∥∥∥∥ φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

∥∥∥∥∥
L2(Ω)

+ 1

)
+

1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u). (5.3.6)

Lemma 5.3.1 is a generalization of [A5.19, Lemma 4.1] and our proof, which will be given
after proving several claims in the forthcoming lemmata, is based on the ideas given in
[A5.19, Section 4] along with some additional estimates in order to cope with the more
general functions φ and ψ.
For notational convenience, we abbreviate

f := −∆v + v − u (5.3.7)

and

g :=

(
φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

)
· x
|x|
, x 6= 0, (5.3.8)

for (u, v) ∈ S(m,M,B, κ).
The first step towards the proof of Lemma 5.3.1 is the following estimate which is com-
pletely similar to [A5.19, Lemma 4.2]. But as our different choice of the constants and
their precise dependence on M are important for the sequel, we give the proof for the
reader’s convenience.
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Lemma 5.3.2 For any ε ∈ (0, 1) there exists C(ε) > 0 such that for all (u, v) ∈ S(m,M,B, κ)∫
Ω
uv ≤ (1 + ε)

∫
Ω
|∇v|2 + C(ε) ·

(
1 +M2

)
·
(∥∥∥∆v − v + u

∥∥∥ 2n+4
n+4

L2(Ω)
+ 1

)
(5.3.9)

is fulfilled.

Proof. Multiplying (5.3.7) by v and integrating by parts over Ω we have∫
Ω
uv =

∫
Ω
|∇v|2 +

∫
Ω
v2 −

∫
Ω
fv. (5.3.10)

Now given ε ∈ (0, 1), by Lemma 5.2.2 and (5.3.1) we can fix c1 = C1 · (1 + M) > 0 and
c2 = C2(ε) ·M2 > 0 such that

‖v‖L2(Ω) ≤ c1 ·
(
‖∇v‖

n
n+2

L2(Ω)
+ 1
)

(5.3.11)

and ∫
Ω
v2 ≤ ε

2

∫
Ω
|∇v|2 + c2. (5.3.12)

Applying the Cauchy-Schwarz inequality along with (5.3.11) and Young’s inequality (with

exponents 2n+4
n and 2n+4

n+4 ), we obtain c3 = C3(ε) · (1 +M
2n+4
n+4 ) > 0 such that

−
∫

Ω
fv ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ c1 · (‖∇v‖

n
n+2

L2(Ω)
+ 1) · ‖f‖L2(Ω)

≤ ε

2

∫
Ω
|∇v|2 + c3‖f‖

2n+4
n+4

L2(Ω)
+ c1‖f‖L2(Ω). (5.3.13)

Since 2n+4
n+4 > 1, we use Young’s inequality once more and deduce that

c1‖f‖L2(Ω) ≤ c1‖f‖
2n+4
n+4

L2(Ω)
+ c1

is satisfied. Combining the latter inequality with (5.3.10), (5.3.12), and (5.3.13), the
claimed estimate (5.3.9) is proved, where we use 2n+4

n+4 < 2 to deduce the estimate (1+M2)
in (5.3.9).

In view of Lemma 5.3.2, the next step is to estimate
∫
|∇v|2. This is first done in the

annulus Ω\Br0 , where the value of r0 will be fixed in Lemma 5.3.5 below. Since in [A5.19,
Lemma 4.3] only equation (5.3.7) is used we could simply repeat its proof. However we
give it in details in order to state the exact dependence of the constants on M and B
which will be of importance further.

Lemma 5.3.3 For any r0 ∈ (0, R) and ε ∈ (0, 1), there exists a constant C(ε,m, κ) > 0
such that all (u, v) ∈ S(m,M,B, κ) satisfy∫

Ω\Br0
|∇v|2 ≤ ε

∫
Ω
uv + ε

∫
Ω
|∇v|2 + C(ε,m, κ) ·

(
1 +M

2n+4
n+4 +B

2n+4
n+4

)
·

{
r
− 2n+4

n
κ

0
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+
∥∥∥∆v − v + u

∥∥∥ 2n+4
n+4

L2(Ω)

}
. (5.3.14)

Proof. Let α1 ∈ (0, 1) be arbitrary. As v > 0, a multiplication of (5.3.7) by vα1 and an
integration by parts over Ω implies

α1

∫
Ω
vα1−1|∇v|2 ≤ α1

∫
Ω
vα1−1|∇v|2 +

∫
Ω
vα1+1 =

∫
Ω
uvα1 +

∫
Ω
fvα1 . (5.3.15)

Using next (5.3.2) and α1 ∈ (0, 1), we obtain

α1

∫
Ω
vα1−1|∇v|2 ≥ α1B

α1−1r
(1−α1)κ
0 ·

∫
Ω\Br0

|∇v|2,

whence (5.3.15) yields∫
Ω\Br0

|∇v|2 ≤ B1−α1

α1
r
−(1−α1)κ
0

∫
Ω
uvα1 +

B1−α1

α1
r
−(1−α1)κ
0

∫
Ω
fvα1 . (5.3.16)

In view of α1 ∈ (0, 1) and Young’s inequality, for any η > 0 there is c1(η,B) = C1(η)·B > 0
such that

B1−α1

α1
r
−(1−α1)κ
0 vα1(r) ≤ ηv(r) + c1(η,B)r−κ0 for all r ∈ (0, R). (5.3.17)

The choice η := ε implies

B1−α1

α1
r
−(1−α1)κ
0

∫
Ω
uvα1 ≤ ε

∫
Ω
uv + c1(ε,B)r−κ0

∫
Ω
u

= ε

∫
Ω
uv + c1(ε,B)mr−κ0

≤ ε

∫
Ω
uv + c1(ε,B)mR

n+4
n
κr
− 2n+4

n
κ

0 (5.3.18)

due to (5.3.1) and u ≥ 0.

Furthermore, using (5.3.17) with η := 1 along with the Cauchy-Schwarz inequality, we
deduce that

B1−α1

α1
r
−(1−α1)κ
0

∫
Ω
fvα1 ≤

∫
Ω
|f |v + c1(1, B)r−κ0

∫
Ω
|f |,

≤ ‖f‖L2(Ω)‖v‖L2(Ω) + c1(1, B)r−κ0

√
|Ω|‖f‖L2(Ω). (5.3.19)

Since by Lemma 5.2.2 and (5.3.1), there exists c2(M) = C2 · (1 +M) > 0 such that

‖v‖L2(Ω) ≤ c2(M) ·
(
‖∇v‖

n
n+2

L2(Ω)
+ 1
)
≤ c2(M) ·

(
‖∇v‖

n
n+2

L2(Ω)
+Rκr−κ0

)
,
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from (5.3.19) we infer

B1−α1

α1
r
−(1−α1)κ
0

∫
Ω
fvα1 ≤ c3(M,B, κ) ·

(
‖f‖L2(Ω)‖∇v‖

n
n+2

L2(Ω)
+ r−κ0 ‖f‖L2(Ω)

)
with some c3(M,B, κ) = C3(κ) · (1 +M +B) > 0. Applying Young’s inequality,

c3(M,B, κ)‖f‖L2(Ω)‖∇v‖
n
n+2

L2(Ω)
≤ ε‖∇v‖2L2(Ω) + c4(ε,M,B, κ)‖f‖

2n+4
n+4

L2(Ω)

and

c3(M,B, κ)r−κ0 ‖f‖L2(Ω) ≤ c3(M,B, κ)‖f‖
2n+4
n+4

L2(Ω)
+ c3(M,B, κ)r

− 2n+4
n

κ

0

hold with some c4(ε,M,B, κ) = C4(ε, κ) ·
(
1 +M

2n+4
n+4 +B

2n+4
n+4

)
> 0. Thus, (5.3.19) finally

turns into

B1−α1

α1
r
−(1−α1)κ
0

∫
Ω
fvα1 ≤ ε

∫
Ω
|∇v|2 +

(
c4(ε,M,B, κ) + c3(M,B, κ)

)
· ‖f‖

2n+4
n+4

L2(Ω)

+c3(M,B, κ)r
− 2n+4

n
κ

0 .

In conjunction with (5.3.16) and (5.3.18), the claim (5.3.14) is proved.

Next we prove a corresponding estimate of ∇v on the ball Br0 . Our proof is based on ideas
from [A5.19, Lemma 4.4] which are generalized to the problem (5.1.1). We recall that G
and H are defined in (5.1.3) and remark that the following proof is the only place where
we use the assumption (5.1.9). Moreover, it is important that r0 can be chosen arbitrarily
small in order to obtain a subquadratic power of ‖f‖L2(Ω) in Lemma 5.3.5.

Lemma 5.3.4 Assume that (5.1.5) and (5.1.9) are satisfied. Then there exist µ = µ(γ) ∈
(0, 2) and C(m) > 0 such that for all r0 ∈ (0, R) and (u, v) ∈ S(m,M,B, κ)∫

Br0

|∇v|2 ≤ µ

∫
Ω
G(u) + C(m) ·

{
r0 ·

∥∥∥∆v − v + u
∥∥∥2

L2(Ω)

+

∥∥∥∥∥ φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

∥∥∥∥∥
L2(Ω)

+ ‖v‖2L2(Ω) + 1

}
(5.3.20)

is fulfilled.

Proof. As (5.1.5) implies (4(n−1)
n−2 − 2)γ < 2, we can fix δ ∈ (0, 2n−2

R ] small enough such
that

µ :=

(
4(n− 1)

n− 2
eδR − 2

)
· γ ∈ (0, 2) (5.3.21)

is fulfilled. As u and v are radially symmetric, (5.3.7) and (5.3.8) yield the identities

(rn−1vr)r = −rn−1u− rn−1f + rn−1v (5.3.22)
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and

vr =
φ(u)

ψ(u)
ur −

g√
ψ(u)

. (5.3.23)

Multiplying (5.3.22) by rn−1vr and using (5.3.23) as well as Young’s inequality, we obtain

1

2

(
(rn−1vr)

2
)
r

= −r2n−2uvr − r2n−2fvr + r2n−2vvr

≤ −r2n−2uφ(u)

ψ(u)
ur + r2n−2 u√

ψ(u)
g +

δ

2
(rn−1vr)

2 +
1

2δ
r2n−2f2

+
1

2
r2n−2(v2)r for all r ∈ (0, R). (5.3.24)

Defining y(r) := (rn−1vr)
2, r ∈ [0, R], we obtain

yr ≤ −2r2n−2uφ(u)

ψ(u)
ur + 2r2n−2 u√

ψ(u)
g + δy +

1

δ
r2n−2f2 + r2n−2(v2)r, r ∈ (0, R),

along with y(0) = 0 due to the regularity of v. Thus, an integration implies

r2n−2v2
r (r) = y(r) ≤ −2

∫ r

0
eδ(r−ρ)ρ2n−2u(ρ)φ(u(ρ))

ψ(u(ρ))
ur(ρ) dρ

+2

∫ r

0
eδ(r−ρ)ρ2n−2 u(ρ)√

ψ(u(ρ))
g(ρ) dρ

+
1

δ

∫ r

0
eδ(r−ρ)ρ2n−2f2(ρ)dρ

+

∫ r

0
eδ(r−ρ)ρ2n−2(v2)r(ρ)dρ (5.3.25)

for all r ∈ (0, R). Integrating by parts and using the nonnegativity of H (defined in
(5.1.3)), we obtain

−2

∫ r

0
eδ(r−ρ)ρ2n−2u(ρ)φ(u(ρ))

ψ(u(ρ))
ur(ρ) dρ

= 4(n− 1)

∫ r

0
eδ(r−ρ)ρ2n−3H(u(ρ)) dρ

−2δ

∫ r

0
eδ(r−ρ)ρ2n−2H(u(ρ)) dρ− 2r2n−2H(u(r))

≤ 4(n− 1)eδR
∫ r

0
ρ2n−3H(u(ρ)) dρ− 2r2n−2H(u(r)), r ∈ (0, R). (5.3.26)

Next, denoting by ωn the (n−1)-dimensional measure of the sphere ∂B1 and applying the
Cauchy-Schwarz inequality as well as (5.1.9), we deduce that

2

∫ r

0
eδ(r−ρ)ρ2n−2 u(ρ)√

ψ(u(ρ))
g(ρ) dρ
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≤ 2

(∫ R

0
ρn−1 u2(ρ)

ψ(u(ρ))
dρ

) 1
2

·
(∫ r

0
e2δ(r−ρ) · ρ3n−3g2(ρ) dρ

) 1
2

≤ 2

(
1

c0

∫ R

0
ρn−1u(ρ) dρ

) 1
2

·
(
e2δRr2n−2

∫ R

0
ρn−1g2(ρ) dρ

) 1
2

≤ 2eδR

wn
√
c0
·
√
m · rn−1 · ‖g‖L2(Ω), r ∈ (0, R). (5.3.27)

Similarly, we estimate the third term on the right-hand side of (5.3.25) according to

1

δ

∫ r

0
eδ(r−ρ)ρ2n−2f2(ρ) dρ ≤ eδR

δ
· rn−1 ·

∫ R

0
ρn−1f2(ρ) dρ

=
eδR

δωn
· rn−1 · ‖f‖2L2(Ω) for all r ∈ (0, R). (5.3.28)

As δ ≤ 2n−2
R yields (2n − 2)ρ2n−3 ≥ δρ2n−2 for all ρ ∈ (0, R), integrating by parts we

furthermore arrive at∫ r

0
eδ(r−ρ)ρ2n−2(v2)r(ρ) dρ = r2n−2v2(r)

−
∫ r

0
eδ(r−ρ) · [(2n− 2)ρ2n−3 − δρ2n−2] · v2(ρ) dρ

≤ r2n−2v2(r) for all r ∈ (0, R). (5.3.29)

Hence, (5.3.25)-(5.3.29) imply that there is a constant c1(m) > 0 such that

r2n−2v2
r (r) ≤ 4(n− 1)eδR

∫ r

0
ρ2n−3H(u(ρ)) dρ− 2r2n−2H(u(r))

+
c1(m)

ωn
rn−1‖g‖L2(Ω) +

c1(m)

ωn
rn−1‖f‖2L2(Ω) + r2n−2v2(r), r ∈ (0, R).

Multiplying this inequality by ωnr
1−n and integrating over r ∈ (0, r0), we have∫

Br0

|∇v|2 = ωn

∫ r0

0
rn−1v2

r (r) dr

≤ 4(n− 1)eδRωn

∫ r0

0
r1−n

∫ r

0
ρ2n−3H(u(ρ)) dρ dr

−2ωn

∫ r0

0
rn−1H(u(r)) dr + c1(m)r0‖g‖L2(Ω)

+c1(m)r0‖f‖2L2(Ω) + ωn

∫ r0

0
rn−1v2(r) dr

≤ 4(n− 1)eδRωn

∫ r0

0
r1−n

∫ r

0
ρ2n−3H(u(ρ)) dρ dr

−2

∫
Br0

H(u) + c1(m)R‖g‖L2(Ω)
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+c1(m)r0‖f‖2L2(Ω) + ‖v‖2L2(Ω). (5.3.30)

Finally, Fubini’s theorem, n ≥ 3, the nonnegativity of H, (5.1.5), and (5.3.21) yield

4(n− 1)eδRωn

∫ r0

0
r1−n

∫ r

0
ρ2n−3H(u(ρ)) dρ dr − 2

∫
Br0

H(u)

= 4(n− 1)eδRωn

∫ r0

0

(∫ r0

ρ
r1−n dr

)
ρ2n−3H(u(ρ)) dρ− 2

∫
Br0

H(u)

=
4(n− 1)

n− 2
eδRωn

∫ r0

0

(
ρ2−n − r2−n

0

)
ρ2n−3H(u(ρ)) dρ− 2

∫
Br0

H(u)

≤ 4(n− 1)

n− 2
eδRωn

∫ r0

0
ρn−1H(u(ρ)) dρ− 2

∫
Br0

H(u)

=

(
4(n− 1)

n− 2
eδR − 2

)∫
Br0

H(u) ≤
(

4(n− 1)

n− 2
eδR − 2

)∫
Ω
H(u)

≤
(

4(n− 1)

n− 2
eδR − 2

)∫
Ω

(γG(u) + b(u+ 1)) = µ

∫
Ω
G(u) + c2(m)

with some c2(m) > 0. Upon a combination with (5.3.30), the claim is proved.

The final step towards the proof of (5.3.6) is now a combination of Lemma 5.3.3 and
Lemma 5.3.4. The proof is very similar to the one given in [A5.19, Lemma 4.5], but as
we have to choose some constants in a different way, we give the proof for completeness
of our arguments.

Lemma 5.3.5 Suppose that (5.1.5) and (5.1.9) are fulfilled and let θ ∈ (1
2 , 1) and µ ∈

(0, 2) be as defined in (5.3.5) and (5.3.21), respectively. Then for any ε ∈ (0, 1
2) there

exists C(ε,m, κ) > 0 such that∫
Ω
|∇v|2 ≤ C(ε,m, κ) ·

(
1 +M2 +B

2n+4
n+4

)
·
(∥∥∥∆v − v + u

∥∥∥2θ

L2(Ω)

+
∥∥∥ φ(u)√

ψ(u)
∇u−

√
ψ(u)∇v

∥∥∥
L2(Ω)

+ 1

)
+

ε

1− 2ε

∫
Ω
uv +

µ

1− 2ε

∫
Ω
G(u) (5.3.31)

is fulfilled for all (u, v) ∈ S(m,M,B, κ).

Proof. We fix ε ∈ (0, 1
2) and set β := (2n+4)κ

n which implies θ = β
β+1 . Next we define

r0 := min{R2 , ‖f‖
− 2
β+1

L2(Ω)
} ∈ (0, R). Hence, by Lemma 5.3.3 there is c1 = C1(ε,m, κ) ·

(
1 +

M
2n+4
n+4 +B

2n+4
n+4

)
> 0 such that∫

Ω\Br0
|∇v|2 ≤ ε

∫
Ω
uv + ε

∫
Ω
|∇v|2 + c1 ·

(
r−β0 + ‖f‖

2n+4
n+4

L2(Ω)

)
. (5.3.32)
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Applying next Lemma 5.3.4, we get a constant c2 = c2(m) such that∫
Br0

|∇v|2 ≤ µ
∫

Ω
G(u) + c2 ·

(
r0‖f‖2L2(Ω) + ‖g‖L2(Ω) + ‖v‖2L2(Ω) + 1

)
. (5.3.33)

Adding both inequalities, we deduce that

(1− ε)
∫

Ω
|∇v|2 ≤ ε

∫
Ω
uv + µ

∫
Ω
G(u) + c1r

−β
0 + c1‖f‖

2n+4
n+4

L2(Ω)

+c2r0‖f‖2L2(Ω) + c2(‖g‖L2(Ω) + 1) + c2‖v‖2L2(Ω). (5.3.34)

Next, by Lemma 5.2.2 and (5.3.1) there exists c3 = C3(ε,m) ·M2 > 0 such that

c2‖v‖2L2(Ω) ≤ ε
∫

Ω
|∇v|2 + c3,

which inserted into (5.3.34) yields

(1− 2ε)

∫
Ω
|∇v|2 ≤ ε

∫
Ω
uv + µ

∫
Ω
G(u) + c2(‖g‖L2(Ω) + 1) + c3 + I, (5.3.35)

where we set

I := c1r
−β
0 + c1‖f‖

2n+4
n+4

L2(Ω)
+ c2r0‖f‖2L2(Ω).

In case of ‖f‖L2(Ω) ≤ ( 2
R)

β+1
2 , we have r0 = R

2 and conclude that

I ≤ c1 ·
( 2

R

)β
+ c1 ·

( 2

R

)β+1
2
· 2n+4
n+4

+ c2 ·
R

2
·
( 2

R

)β+1
,

which in conjunction with (5.3.35) proves (5.3.31) in this case.

Furthermore, in the case ‖f‖L2(Ω) > ( 2
R)

β+1
2 we have r0 = ‖f‖

− 2
β+1

L2(Ω)
and therefore

I ≤ c1‖f‖
2β
β+1

L2(Ω)
+ c1‖f‖

2n+4
n+4

L2(Ω)
+ c2‖f‖

2− 2
β+1

L2(Ω)
= (c1 + c2)‖f‖

2β
β+1

L2(Ω)
+ c1‖f‖

2n+4
n+4

L2(Ω)
.

In view of κ > n− 2 and n ≥ 3, we calculate

β
n+2

2

=
2

n+ 2
· (2n+ 4)κ

n
>

4(n− 2)

n
≥ 4

3
> 1

which implies that 2θ = 2β
β+1 >

2n+4
n+4 . Applying once more Young’s inequality, we obtain

I ≤ (2c1 + c2)‖f‖
2β
β+1

L2(Ω)
+ c1,

which inserted into (5.3.35) proves (5.3.31) in the case ‖f‖L2(Ω) > ( 2
R)

β+1
2 and thereby

completes the proof.
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Next, we complete the proof of the announced estimate (5.3.6).

Proof of Lemma 5.3.1.

Let µ ∈ (0, 2) be as defined in Lemma 5.3.4. In view of µ < 2 there exists η ∈ (0, 1
2) such

that µ(1− η) < 1. Keeping this value of η fixed, we moreover fix ε ∈ (0, 1
4) small enough

such that
µ(1 + ε− η)

1− 3ε− ε2 + εη
≤ 1 and

η(1− 2ε)

1− 3ε− ε2 + εη
≤ 1

2
. (5.3.36)

An application of Lemma 5.3.2 implies the existence of c1 = C1 · (1 +M2) > 0 such that∫
Ω
uv ≤ η

∫
Ω
|∇v|2 + (1 + ε− η)

∫
Ω
|∇v|2 + c1 ·

(
‖f‖

2n+4
n+4

L2(Ω)
+ 1

)
.

Furthermore, by Lemma 5.3.5 there is c2 = C2(m,κ) ·
(
1 +M2 +B

2n+4
n+4

)
> 0 such that∫

Ω
uv ≤ η

∫
Ω
|∇v|2 +

ε(1 + ε− η)

1− 2ε

∫
Ω
uv +

µ(1 + ε− η)

1− 2ε

∫
Ω
G(u)

+c2(1 + ε− η) ·
(
‖f‖2θL2(Ω) + ‖g‖L2(Ω) + 1

)
+ c1 ·

(
‖f‖

2n+4
n+4

L2(Ω)
+ 1

)
.

A rearrangement of the terms yields∫
Ω
uv ≤ η(1− 2ε)

1− 3ε− ε2 + εη

∫
Ω
|∇v|2 +

µ(1 + ε− η)

1− 3ε− ε2 + εη

∫
Ω
G(u)

+c3 ·
(
‖f‖2θL2(Ω) + ‖f‖

2n+4
n+4

L2(Ω)
+ ‖g‖L2(Ω) + 1

)

with some c3 = C3(m,κ) ·
(
1 + M2 + B

2n+4
n+4

)
> 0. As 2n+4

n+4 < 2θ (which has been shown
in Lemma 5.3.5), a further application of the Young inequality along with (5.3.36) implies
(5.3.6).

The final result of this section is to show that the Liapunov functional F can be estimated
according to (5.3.4). The proof uses the idea of [A5.19, Theorem 5.1] as a basic ingredient,
but in fact our estimates also make use of the other terms which are contained in F .

Theorem 5.3.6 Assume that (5.1.5) and (5.1.9) are satisfied and let θ ∈ (1
2 , 1) be as

defined in (5.3.5). Then there exists C(m,κ) > 0 such that

F(u, v) ≥ −C(m,κ) ·
(

1 +M2 +B
2n+4
n+4

)
·
(
Dθ(u, v) + 1

)
(5.3.37)

is fulfilled for all (u, v) ∈ S(m,M,B, κ), where F and D are given in (5.1.6) and (5.1.7),
respectively.
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Proof. In view of (5.3.7), (5.3.8), and θ > 1
2 , an application of Young’s inequality to

(5.3.6) implies the existence of c1 = C1(m,κ) ·
(
1 +M2 +B

2n+4
n+4

)
> 0 such that∫

Ω
uv ≤ c1

((
‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)θ
+ 1

)
+

1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u).

Hence, we conclude that

F(u, v) =
1

2

∫
Ω
|∇v|2 +

1

2

∫
Ω
v2 −

∫
Ω
uv +

∫
Ω
G(u)

≥ −c1 ·
(

(‖f‖2L2(Ω) + ‖g‖2L2(Ω))
θ + 1

)
.

As (5.1.7), (5.3.7), and (5.3.8) implyD(u, v) = ‖f‖2L2(Ω)+‖g‖
2
L2(Ω), the proof is complete.

5.4 Finite-time blowup: proof of the main results

In view of Theorem 5.3.6 and θ ∈ (0, 1), we derive an ODI for the function y(t) :=
−F(u(·, t), v(·, t)) with superlinear nonlinearity. This shows that the solution (u, v) blows
up in finite time if −F(u0, v0) is large. The following result and its proof are completely
the same as in [A5.19, Lemma 5.2], so that we confine ourselves to giving only a sketch of
the main ideas of the proof.

Lemma 5.4.1 Suppose that (5.1.5) and (5.1.9) are fulfilled, let θ ∈ (1
2 , 1) be as defined

in (5.3.5) and let m > 0, A > 0 and κ > n − 2. Then there exist K = K(m,A, κ) =
k(m,κ) · (1 +A2) > 0 and C = C(m,A, κ) > 0 such that for any

(u0, v0) ∈ B̃(m,A, κ) :=

{
(u0, v0) ∈ C0(Ω̄)×W 1,∞(Ω)

∣∣∣∣ u0 and v0 are radially

symmetric and positive in Ω̄,
∫

Ω u0 = m, ‖v0‖W 1,2(Ω) ≤ A,

and F(u0, v0) ≤ −K
}

(5.4.1)

the corresponding solution (u, v) of (5.1.1) satisfies

F(u(·, t), v(·, t)) ≤ F(u0, v0)

(1− Ct)
θ

1−θ
for all t ∈ (0, Tmax(u0, v0)). (5.4.2)

In particular, (u, v) blows up in finite time Tmax(u0, v0) ≤ 1
C .

Proof. We only give a sketch of the main ideas and refer to [A5.19, Lemma 5.2] for further
details.
We fix c1 > 0 such that

‖ϕ‖L1(Ω) ≤ c1‖ϕ‖W 1,2(Ω) for all ϕ ∈W 1,2(Ω).
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Moreover, in view of κ > n − 2 and Lemma 5.2.3, there is c2 = c2(κ) > 0 such that for
any (u0, v0) ∈ B̃(m,A, κ) the solution (u, v) to (5.1.1) fulfills

v(r, t) ≤ c2 ·
(
‖u0‖L1(Ω) + ‖v0‖L1(Ω) + ‖∇v0‖L2(Ω)

)
· r−κ (5.4.3)

for all (r, t) ∈ (0, R) × (0, Tmax(u0, v0)). Setting B := c2(m + c1A + A) and M :=
max{m, c1A}, Lemma 5.2.1 and (5.4.3) imply that (u(·, t), v(·, t)) ∈ S(m,M,B, κ) for
all t ∈ (0, Tmax(u0, v0)) provided that (u0, v0) ∈ B̃(m,A, κ). In view of Theorem 5.3.6 and
our definition of B and M , there is a constant c3 = C3(m,κ) ·

(
1 +A2

)
such that

F(u(·, t), v(·, t)) ≥ −c3 ·
(
Dθ(u(·, t), v(·, t)) + 1

)
(5.4.4)

is satisfied for all t ∈ (0, Tmax(u0, v0)) provided that (u0, v0) ∈ B̃(m,A, κ). Hence, we set
K(m,A, κ) = 2c3, C(m,A, κ) = 1−θ

2c3θ
, and y(t) := −F(u(·, t), v(·, t)), t ∈ [0, Tmax(u0, v0)),

for (u0, v0) ∈ B̃(m,A, κ). As y is nondecreasing by (5.1.8) and therefore satisfies y(t) ≥ 2c3

for t ∈ (0, Tmax(u0, v0)), (5.4.4) and (5.1.8) imply

y′(t) ≥
(y(t)

2c3

) 1
θ

for all t ∈ (0, Tmax(u0, v0)),

which implies (5.4.2).

The proof of Theorem 5.1.1 is now immediate.

Proof of Theorem 5.1.1.
We fix an arbitrary κ > n − 2. Then the claim directly follows from Lemma 5.4.1 by
defining K(m) := k(m,κ) and T (m,A) := 1

C(m,A,κ) , where k(m,κ) and C(m,A, κ) are
provided in Lemma 5.4.1.

Let us next show that the set B(m,A) defined in (5.1.10) has the properties claimed in
Theorem 5.1.2. Since the condition

F(u0, v0) ≤ −K(m) · (1 +Aτ ) (5.4.5)

in (5.1.10) is given with τ = 2, we can use the functions constructed in [A5.18, Lemma 4.1]
to deduce that B(m,A) 6= ∅ without any additional restriction on α (which is given in
(5.1.4)). In case of τ > 2, this is not possible. Moreover, as (5.4.5) cannot be imposed for
τ < 2 in view of the Liapunov functional F , the condition (5.4.5) with τ = 2 seems to be
optimal for defining B(m,A).

Proof of Theorem 5.1.2.
Part (ii) of the claim immediately follows from [A5.19, Lemma 6.1]. In fact, given m > 0,
p ∈ (1, 2n

n+2) as well as radial and positive functions u ∈ C0(Ω̄) and v ∈ W 1,∞(Ω) with
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∫
Ω u = m, sequences (uk)k∈N ⊂ C0(Ω̄) and (vk)k∈N ⊂ W 1,∞(Ω) of radially symmetric

positive functions with
∫

Ω uk = m for all k ∈ N are constructed, which satisfy

uk → u in Lp(Ω), vk → v in W 1,2(Ω), and

∫
Ω
ukvk →∞ as k →∞. (5.4.6)

Combining this with (5.1.4) and our additional condition p > 2− α, we find some C > 0
such that

1

2

∫
Ω
|∇vk|2 +

1

2

∫
Ω
v2
k +

∫
Ω
G(uk) ≤ C for all k ∈ N.

Thus, (5.4.6) implies F(uk, vk)→ −∞ as k →∞ which proves part (ii) of the claim.

In view of part (ii), it is sufficient to prove part(i) of the claim in the case α ∈ ( 2
n , 1). To

this end we notice that, given m > 0 and

γ2 ∈ ((1− α)n, n− 2), (5.4.7)

by [A5.18, Lemma 4.1] there exists η0 > 0 such that for any η ∈ (0, η0) there are radial
and positive functions uη, vη ∈ C∞(Ω̄) with

∫
Ω uη = m satisfying∫

Ω
|∇vη|2 ≤ c1η

−(−n+2γ2+2),

∫
Ω
v2
η ≤ c1η

−(−n+2γ2),∫
Ω
G(uη) ≤ c1η

−(1−α)n,

∫
Ω
uηvη ≥ c2η

−γ2

for all η ∈ (0, η0) with positive constants c1 and c2. Hence, (5.4.7) implies that there are
c3, c4 > 0 and η1 ∈ (0, η0) such that

‖vη‖W 1,2(Ω) ≤ Aη := c3η
−(γ2+1−n

2
) and F(uη, vη) ≤ −c4η

−γ2 for all η ∈ (0, η1)

are fulfilled. Since γ2 < n − 2 implies γ2 > 2(γ2 + 1 − n
2 ), we conclude that there exist

η2 ∈ (0, η1) and c5 > 0 such that

F(uη, vη) ≤ −K(m)
(
1 +A2

η

)
for all η ∈ (0, η2).

Hence, (uη, vη) ∈ B(m,Aη) for η small enough.

5.5 Unbounded global-in-time solutions

The last section is devoted to the proof of Theorem 5.1.6. To this end we provide the
following lemma.

Lemma 5.5.1 Let Ω ⊂ Rn with some n ≥ 2. Moreover assume that (5.1.11) and (5.1.12)
are satisfied. Then there exists p > n such that for any solution (u, v) to (5.1.1) and any
T ∈ (0,∞) with T ≤ Tmax(u0, v0) there is C > 0 such that u admits the estimate

‖u(·, t)‖Lp(Ω) ≤ C, t ∈
(
T

2
, T

)
. (5.5.1)
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Before proving the above lemma let us show how to infer Theorem 5.1.6 from it.
Proof of Theorem 5.1.6.
We fix T ∈ (0,∞) with T ≤ Tmax(u0, v0) and first use the second equation in (5.1.1). By
a standard regularity result in the theory of parabolic equations, see [A5.10, Lemma 4.1]
for example, (5.5.1) yields a uniform estimate of the L∞-norm of ∇v on (T2 , T ). Then by
(5.1.11) and [A5.3, Theorem 2.2] we arrive at the uniform estimate of ‖u‖L∞(Ω) on (T2 , T ).
Hence, in view of Lemma 5.2.1, we have shown the existence of a global-in-time solution
to (5.1.1) whatever initial data we start with. On the other hand choosing Ω = BR and
radially symmetric initial data, since (5.1.5) and (5.1.4) are satisfied, we conclude with
the use of [A5.18, Theorem 5.1] that the solutions we arrived at are unbounded.

Next we complete this section by proving Lemma 5.5.1.
Proof of Lemma 5.5.1.
Multiplying the first equation of (5.1.1) by up−1, p ∈ (n, γ1], and the second one by ∆v,
we arrive at

1

p

d

dt

∫
Ω
updx+ (p− 1)

∫
Ω
φ(u) |∇u|2 up−2dx = (p− 1)

∫
Ω
up−1β(u)∇v∇u dx, (5.5.2)

and
1

2

d

dt

∫
Ω
|∇v|2dx+

1

2

∫
Ω
|∆v|2 dx+

∫
Ω
|∇v|2dx ≤ 1

2

∫
Ω
u2dx. (5.5.3)

Since
up−1β(u) = u

p−2
2 u

p
2

√
β(u)

√
β(u),

in view of (5.1.11) we infer from (5.5.2) that

1

p

d

dt

∫
Ω
updx+

p− 1

2

∫
Ω
φ(u) |∇u|2 up−2dx ≤ C

∫
Ω
upβ(u)|∇v|2dx. (5.5.4)

Next adding (5.5.4) and (5.5.3) and applying (5.1.12) we arrive at

d

dt

(∫
Ω
updx+

∫
Ω
|∇v|2dx

)
≤ C

(∫
Ω
updx

) 2
p

+ C

∫
Ω
|∇v|2

≤ C

(∫
Ω
updx+

∫
Ω
|∇v|2dx+ 1

)
, (5.5.5)

which in turn, by Grönwall’s lemma, yields the claimed estimate of ‖u‖Lp(Ω).
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[A5.11] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial
differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992),
819–824.

[A5.12] E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as
an instability, J. Theoret. Biol. 26 (1970), 399–415.

[A5.13] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv.
Math. Sci. Appl. 5 (1995), 581–601.

[A5.14] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling
chemotaxis in two-dimensional domains, J. Inequal. Appl. 6 (2001), 37–55.



168 REFERENCES (ARTICLE 5)

[A5.15] T. Nagai, T. Senba, and K. Yoshida, Application of the Trudinger-Moser
inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. 40 (1997), 411–
433.

[A5.16] T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis, Ab-
stract Appl. Anal. (2006), Art. ID 23061, 21 pp.

[A5.17] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic
Keller-Segel system with subcritical sensitivity, J. Differential Equations 252
(2012), 692–715.

[A5.18] M. Winkler, Does a ‘volume-filling effect’ always prevent chemotactic collapse?
Math. Methods Appl. Sci. 33 (2010), 12–24.

[A5.19] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-
parabolic Keller-Segel system, J. Math Pures Appl. 100 (2013), 748–767
(arXiv:1112.4156v1).

[A5.20] D. Wrzosek, Long time behaviour of solutions to a chemotaxis model with
volume-filling effect, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 431–444.



Article 6:
Competitive exclusion in a two-
species chemotaxis model
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6.1 Introduction

We consider two biological species which compete for the resources and migrate towards
a higher concentration of a chemical produced by themselves. Here the movement of the
two populations is governed by diffusion and chemotaxis. We further assume that the
populations proliferate, that the mutual competition between them takes place according
to the classical Lotka-Volterra dynamics and that the chemical signal diffuses much faster
than the two populations. Denoting the population densities by u(x, t) and v(x, t) and
the concentration of the chemoattractant by w(x, t), classical models (see [A6.11]) lead to
the system

ut = d1∆u− χ1∇ · (u∇w) + µ1u(1− u− a1v), x ∈ Ω, t > 0,

vt = d2∆v − χ2∇ · (v∇w) + µ2v(1− v − a2u), x ∈ Ω, t > 0,

−∆w + λw = ku+ v, x ∈ Ω, t > 0,

(6.1.1)

under homogeneous Neumann boundary conditions

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0, (6.1.2)

and initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (6.1.3)

in a bounded domain Ω ⊂ Rn, n ≥ 1, with smooth boundary, where di, χi, µi, ai (i = 1, 2),
λ and k are positive parameters.

In order to describe the competition of two species, the associated Lotka-Volterra ODE
system {

u′ = µ1u(1− u− a1v), t > 0,

v′ = µ2v(1− v − a2u), t > 0,

has been studied extensively. It is well-known that if

a1 > 1 > a2 ≥ 0 (6.1.4)

and both species are initially positive then the second population outcompetes the first
in the sense that u(t) → 0 and v(t) → 1 as t → ∞. A proof of this result and of
extensions to systems with more populations is given in [A6.23, Theorem 2.1]. It is the
objective of the present work to investigate in how far this phenomenon, usually referred
to as competitive exclusion, can be observed also in cases when both species move toward
increasing concentrations of a signal which they produce themselves.

The influence of chemotaxis on the dynamics of biological species competing for resources
like nutrients or space is for instance pointed out in [A6.2, A6.6, A6.7, A6.17]. Particular
fields of relevance include economically important situations when different bacteria inter-
act with crop plants, where beyond standard kinetics, the respective overall competitive
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fitnesses are crucially affected by chemotaxis and motility, see [A6.1, A6.18, A6.22]. Deriva-
tions of related mathematical models can be found in [A6.8, A6.10, A6.13] and some basic
mathematical aspects such as the global existence of solutions to models which involve both
chemotaxis and competition are addressed in [A6.9, A6.24]. Moreover, for some particular
models the existence and stability of steady states reflecting either competitive exclu-
sion or coexistence have already been studied analytically, see [A6.3, A6.4, A6.19, A6.24];
however, to the best of our knowledge the literature does not provide any qualitative infor-
mation on the solution behavior in the context of competitive exclusion when chemotaxis
as well as competitive terms involving both species are present.

Concerning the problem considered in this paper, in case of a1, a2 ∈ [0, 1) it has been shown
in [A6.16] that (6.1.1)-(6.1.3) possesses a unique positive steady state and conditions on
the parameters µi and χi are established which ensure its global asymptotic stability. In
contrast to this result of coexistence of the species we shall show here that in presence of
(6.1.4) competitive exclusion will take place, provided that the influence of chemotaxis is
sufficiently small.

In order to state our results in this direction, let us introduce the ratios

q1 :=
χ1

µ1
and q2 :=

χ2

µ2
. (6.1.5)

It turns out that in our analysis, besides the number k these parameters will play the role
of key parameters with regard to the effect in question. In particular, we shall see that
if both q1 and q2 are sufficiently small then competitive exclusion occurs for any solution
(u, v, w) with v 6≡ 0.

More precisely, in addition to (6.1.4) our overall assumptions are

k, q1 and q2 are nonnegative and such that q1 ≤ a1, q2 <
1
2 and

kq1 + max
{
q2 ,

a2 − a2q2

1− 2q2
,
kq2 − a2q2

1− 2q2

}
< 1. (6.1.6)

Observe that these can be rewritten in separate conditions for k, q2 and q1 in such a way
that we require

k ≥ 0,

q2 ∈ [0, 1
2) is such that q2 <

{
1−a2
2−a2

if k ≤ a2(2−a2)
1−a2

,

1
2−a2+k if k > a2(2−a2)

1−a2
,

q1 ∈ [0, a1] satisfies kq1 < 1−max
{
q2 ,

a2 − a2q2

1− 2q2
,
kq2 − a2q2

1− 2q2

}
. (6.1.7)

Here, the latter hypothesis (6.1.7) itself is equivalent to saying that kq1 + q2 < 1 and{
kq1 + (2− a2)q2 + a2 − 2kq1q2 < 1 if kq2 < a2,

kq1 + (2− a2 + k)q2 − 2kq1q2 < 1 if kq2 ≥ a2.
(6.1.8)
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Prescribing the above conditions, we obtain the following main result on competitive
exclusion.

Theorem 6.1.1 Assume (6.1.4), and suppose that k and the numbers q1 and q2 defined
in (6.1.5) satisfy (6.1.6). Then for any choice of nonnegative initial data u0 ∈ C0(Ω̄) and
v0 ∈ C0(Ω̄) satisfying v0 6≡ 0, the problem (6.1.1)-(6.1.3) possesses a uniquely determined
global-in-time classical solution (u, v, w) such that u ≥ 0, v > 0 and w > 0 in Ω̄ × (0,∞)
and

u(·, t)→ 0, v(·, t)→ 1 and w(·, t)→ 1

λ
as t→∞, (6.1.9)

uniformly with respect to x ∈ Ω. Moreover, either u ≡ 0 in Ω̄ × [0,∞) or u > 0 in
Ω̄× (0,∞) is satisfied.

Let us illustrate how the condition (6.1.6) becomes easier to handle in some special cases.

Remark 6.1.2 i) In the prototypical case when χ1 = χ2 ≡ χ and µ1 = µ2 ≡ µ, (6.1.6)
reduces to the condition that q := χ

µ satisfies q < 1
k+1 and

q <


2+k−a2−

√
(k+2−a2)2−8k(1−a2)

4k if a2 > kq

2+2k−a2−
√

(2k+2−a2)2−8k

4k if a2 ≤ kq.
(6.1.10)

ii) If in the above case we moreover have k = 1 then (6.1.10) becomes

q <

{
4−a2−

√
8−8a2+a2

2

4 if a2 ≤ q
1−a2

2 if a2 > q.
(6.1.11)

We observe that the first case can only occur if a2 <
4−a2−

√
8−8a2+a2

2

4 is satisfied, which is
equivalent to a2 <

1
3 in view of a2 ∈ [0, 1). Hence, the first case in (6.1.11) is equivalent

to

a2 <
1

3
and a2 ≤ q <

4− a2 −
√

8− 8a2 + a2
2

4
.

The second case in (6.1.11) is equivalent to

q < min

{
a2,

1− a2

2

}
=

{
a2 if a2 <

1
3

1−a2
2 if a2 ∈ [1

3 , 1).

Combining both cases we conclude

q <

{
4−a2−

√
8−8a2+a2

2

4 if a2 <
1
3

1−a2
2 if a2 ∈

[
1
3 , 1
)
.

(6.1.12)

iii) In the limit case k = 0, (6.1.10) requires that

q <
1− a2

2− a2
(6.1.13)
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iv) Finally, in the borderline case a2 = 0, (6.1.13) reads

q <
1

2
(6.1.14)

and is thus consistent with the conditions already found in [A6.15, Theorem 5.1].

Remark 6.1.3 The global existence statement in Theorem 6.1.1 remains valid if (6.1.6)
is replaced with the weaker requirement that kq1 + q2 < 1. In fact, Lemma 6.2.2 below will
show that in this case the interplay of diffusion and kinetics in (6.1.1) is strong enough
to overbalance chemotactic cross-diffusion in such a way that all solutions are global and
remain bounded.

The plan of this paper is as follows. In Section 6.2 we show the local existence of a solution
along with its positivity properties and prove the existence of a global bounded solution
once kq1 + q2 < 1 is satisfied. Section 6.3 contains relations between the possible limits
of u and v which are established by using comparison methods in combination with some
algebraic inequalities. In particular we show that v(t) → 1 if u(t) → 0 is satisfied. In
Section 6.4 we then prove that u converges to 0 in the cases kq2 < a2 and kq2 ≥ a2,
respectively, and complete the proof of Theorem 6.1.1. The final Section 6.5 contains our
conclusions and a discussion.

6.2 Preliminaries: boundedness

In this section we state some basic properties of the solutions to (6.1.1)-(6.1.3) and give
a criterion for their boundedness. We start with the local existence of a solution and its
positivity properties.

Lemma 6.2.1 Suppose that u0, v0 ∈ C0(Ω̄) are nonnegative such that v0 6≡ 0. Then there
exists Tmax ∈ (0,∞] and a unique classical solution (u, v, w) of (6.1.1)-(6.1.3) which is
nonnegative and belongs to C0(Ω̄× [0, Tmax)) ∩C2,1(Ω̄× (0, Tmax)). Moreover, v > 0 and
w > 0 in Ω̄ × (0, Tmax) and either u ≡ 0 in Ω̄ × [0, Tmax) or u > 0 in Ω̄ × (0, Tmax) are
satisfied. Furthermore, we have the following extensibility criterion:

If Tmax <∞, then lim sup
t↗Tmax

(
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)

)
=∞. (6.2.1)

Proof. The local existence and regularity of the solution as well as the extensibility
criterion (6.2.1) can be proved by a slight adaption of well-known methods. We thus may
confine ourselves with an outline of the proof and refer the reader e.g. to [A6.20], where
details are given in a closely related situation.
For small T ∈ (0, 1), in the space

X := C0([0, T ];C0(Ω̄))× C0([0, T ];C0(Ω̄))

we consider the closed set

S :=
{

(u, v) ∈ X
∣∣∣ ‖u‖L∞((0,T );L∞(Ω)) ≤ R+ 1 and ‖v‖L∞((0,T );L∞(Ω)) ≤ R+ 1

}
,
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where R := ‖u0 + v0‖L∞(Ω). For (u, v) ∈ S, we introduce a mapping Φ on S by letting
w ∈

⋂
1<p<∞ L

∞((0, T );W 2,p(Ω)) denote the (weak) solution of{
−∆w + λw = ku+ v, x ∈ Ω,
∂w
∂ν = 0, x ∈ ∂Ω,

(6.2.2)

and then defining

Φ(u, v)(t) :=

(
Φ1(u, v)(t)

Φ2(u, v)(t)

)

:=

ed1t∆u0 +
∫ t

0 e
d1(t−s)∆

[
− χ1∇ · (u∇w) + f1(u, v)

]
(s)ds

ed2t∆v0 +
∫ t

0 e
d2(t−s)∆

[
− χ2∇ · (v∇w) + f2(u, v)

]
(s)ds


for t ∈ [0, T ], where (eτ∆)τ≥0 denotes the Neumann heat semigroup, and where

f1(u, v) := µ1u(1− u− a1v) and f2(u, v) := µ2v(1− v − a2u), u ∈ R, v ∈ R.

Then by a straightforward reasoning involving standard elliptic regularity properties and
known smoothing estimates for the heat semigroup ([A6.14]), it is possible to show that
if T = T (R) is sufficiently small then Φ is a contraction on S. The accordingly existing
fixed point (u, v) of Φ, along with w as gained from (6.2.2), can then, again by standard
regularity arguments, shown to be smooth in Ω̄× (0, T ) and continuous in Ω̄× [0, T ] in all
its components, and to solve (6.1.1) classically in Ω×(0, T ). Since the choice of T depends
on R only, (6.2.1) is now immediate.
An application of the strong maximum principle to the first and second equation of (6.1.1)
implies the claim concerning the positivity of u and v. Hence, ku + v is positive in
Ω̄× (0, Tmax) and the strong elliptic maximum principle applied to the third equation of
(6.1.1) yields positivity also of w.
Finally, taking differences U := u1 − u2 and V := v1 − v2 of two supposedly existing
solutions (ui, vi, wi) in Ω × (0, T ) for some T > 0, i ∈ {1, 2}, upon testing the equations
for U and V obtained from (6.1.1) by U and V , respectively, in a straightforward manner
one can derive an inequality of the form

1

2

d

dt

{∫
Ω
U2 +

∫
Ω
V 2
}
≤ C(T ′)

{∫
Ω
U2 +

∫
Ω
V 2
}

for all t ∈ (0, T ′),

valid for any fixed T ′ ∈ (0, T ) and some C(T ′) > 0 depending on the bounded quantities
‖ui‖L∞(Ω×(0,T ′)) and ‖vi‖L∞(Ω×(0,T ′)), i ∈ {1, 2}. This clearly implies uniqueness.

We now let Lj = Lj(x, t), j ∈ {1, 2}, the parabolic operators

Ljϕ := dj∆ϕ− χj∇w(x, t) · ∇ϕ, (x, t) ∈ Ω× (0, Tmax), (6.2.3)

for ϕ ∈ C2(Ω). Then the first and third equation of (6.1.1) show that

ut − L1u = u ·
{
− χ1∆w + µ1(1− u− a1v)

}
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= u ·
{
µ1 − (µ1 − kχ1)u− (a1µ1 − χ1)v − λχ1w

}
(6.2.4)

in Ω× (0, Tmax). Similarly, the second and third equation of (6.1.1) imply

vt − L2v = v ·
{
− χ2∆w + µ2(1− v − a2u)

}
= v ·

{
µ2 − (µ2 − χ2)v + (kχ2 − a2µ2)u− λχ2w

}
(6.2.5)

in Ω× (0, Tmax). The final result of this section asserts boundedness of the solution once
the ratios q1 and q2 defined in (6.1.5) are small enough.

Lemma 6.2.2 Assume that
kq1 + q2 < 1. (6.2.6)

Then Tmax =∞ and both u and v are bounded in Ω× (0,∞).

Proof. According to the fact that u, v and w are all nonnegative by Lemma 6.2.1, we
have

P1u := ut − L1u− u ·
{
µ1 − (µ1 − kχ1)u+ χ1v

}
≤ 0 in Ω× (0, Tmax) and

P2v := vt − L2v − v ·
{
µ2 − (µ2 − χ2)v + kχ2u

}
≤ 0 in Ω× (0, Tmax), (6.2.7)

where L1 and L2 are defined in (6.2.3). We now observe that (6.2.6) is equivalent to

(µ1 − kχ1)(µ2 − χ2) > kχ1χ2

and hence to

µ1 − kχ1

χ1
>

kχ2

µ2 − χ2
.

We can thus pick ξ > 0 large enough such that

ξ ≥ max
{
‖u0‖L∞(Ω) ,

µ2 − χ2

kχ2
‖v0‖L∞(Ω)

}
(6.2.8)

and that

µ1 − kχ1 − µ1

ξ

χ1
>
kχ2 + µ2

ξ

µ2 − χ2
,

which enables us to find A > 0 fulfilling

µ1 − kχ1 − µ1

ξ

χ1
> A >

kχ2 + µ2

ξ

µ2 − χ2
. (6.2.9)

Then the constant functions defined by

u(x, t) := ξ and v(x, t) := Aξ, (x, t) ∈ Ω̄× [0, Tmax),
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satisfy

u(x, 0) = ξ ≥ u0(x) and v(x, 0) = Aξ >
kχ2

µ2 − χ2
· ξ ≥ v0(x) for all x ∈ Ω (6.2.10)

by (6.2.8). Moreover, (6.2.9) warrants that

P1u = −ξ ·
{
µ1 − (µ1 − kχ1)ξ + χ1 ·Aξ

}
> 0 in Ω× (0, Tmax)

and

P2v = −Aξ ·
{
µ2 − (µ2 − χ2) ·Aξ + kχ2ξ

}
> 0 in Ω× (0, Tmax).

In view of (6.2.7) and (6.2.10), the comparison principle for cooperative reaction-diffusion
systems (see for instance [A6.14, Proposition 52.22]) allows us to conclude that u ≤ u and
v ≤ v in Ω × (0, Tmax), which by Lemma 6.2.1 entails that Tmax = ∞ and that u and v
are globally bounded.

6.3 Some technical inequalities

According to the above boundedness result, under the assumption (6.1.6) we know that

L1 := lim sup
t→∞

(
max
x∈Ω̄

u(x, t)
)
,

L2 := lim sup
t→∞

(
max
x∈Ω̄

v(x, t)
)
, and

l2 := lim inf
t→∞

(
min
x∈Ω̄

v(x, t)
)

(6.3.1)

define finite real numbers satisfying

L1 ≥ 0 and 0 ≤ l2 ≤ L2.

Proving Theorem 6.1.1 then amounts to verifying that L1 = 0 and L2 = l2 = 1, because
the large time behavior of w is then uniquely determined according to the following.

Lemma 6.3.1 For each t ∈ (0, Tmax), we have

min
y∈Ω̄

v(y, t) ≤ λw(x, t) ≤ k ·max
y∈Ω̄

u(y, t) + max
y∈Ω̄

v(y, t) for all x ∈ Ω̄. (6.3.2)

Proof. The proof repeats a standard elliptic comparison argument: If ϕ ∈ C2(Ω̄) denotes
an arbitrary function satisfying ∂ϕ

∂ν < 0 on ∂Ω, then for any ε > 0, at each point x0 ∈ Ω̄
where z := w(·, t) + εϕ attains its maximum we necessarily have x0 ∈ Ω and hence
∆z(x0) ≤ 0. Since ∆z = λz − ku− v + ε(∆ϕ− λϕ), this implies that

λz(x) ≤ λz(x0) ≤ ku(x0, t) + v(x0, t)− ε(∆ϕ− λϕ)(x0)
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≤ k ·max
y∈Ω̄

u(y, t) + max
y∈Ω̄

v(y, t) + ε ·max
y∈Ω̄
|∆ϕ(y)− λϕ(y)|.

Taking ε ↘ 0 we arrive at the right inequality in (6.3.2), whereas the left can be seen
similarly on dropping the nonnegative term k ·miny∈Ω̄ u(y, t).

A first trivial observation linking the asymptotic of (u, v, w) to L1, L2 and l2 then is the
following.

Lemma 6.3.2 Assume (6.2.6). Then for all ε > 0 there exists tε > 0 such that

u(x, t) ≤ L1 + ε for all x ∈ Ω̄ and t ≥ tε, (6.3.3)

that
l2 − ε ≤ v(x, t) ≤ L2 + ε for all x ∈ Ω̄ and t ≥ tε, (6.3.4)

and that

l2 − ε ≤ λw(x, t) ≤ k(L1 + ε) + (L2 + ε) for all x ∈ Ω̄ and t ≥ tε. (6.3.5)

Proof. That (6.3.3) and (6.3.4) can be achieved for suitably large tε is an immediate
consequence of the definitions in (6.3.1). Then applying Lemma 6.3.1 for fixed t ≥ tε we
readily obtain (6.3.5).

Next we compare u with a suitable spatially homogeneous function and obtain an upper
bound for L1 in terms of l2.

Lemma 6.3.3 Assume (6.1.6). Then the numbers L1 and l2 defined in (6.3.1) fulfill the
relation

(1− kq1)L1 ≤ (1− a1l2)+ . (6.3.6)

Proof. If u ≡ 0 in Ω̄ × [0,∞), then (6.3.6) is fulfilled in view of L1 = 0. Otherwise,
according to (6.2.4), taking L1 as in (6.2.3) we recall that

ut = L1u+ u ·
{
µ1 − (µ1 − kχ1)u− (a1µ1 − χ1)v − λχ1w

}
in Ω× (0,∞),

where (6.1.6) ensures that a1µ1 − χ1 ≥ 0. Thus, if for fixed ε > 0 we take tε as given by
Lemma 6.3.2, then (6.3.4) and (6.3.5) yield

−(a1µ1 − χ1)v ≤ −(a1µ1 − χ1) · (l2 − ε) in Ω× (tε,∞)

and

−λχ1w ≤ −χ1 · (l2 − ε) in Ω× (tε,∞),

and therefore we obtain

ut ≤ L1u+ u ·
{
µ1 − (µ1 − kχ1)u− a1µ1(l2 − ε)

}
in Ω× (tε,∞).
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Since L1 annihilates spatially homogeneous functions, a parabolic comparison argument
hence implies that

u(x, t) ≤ u(t) for all x ∈ Ω̄ and t ≥ tε, (6.3.7)

where u denotes the solution of the initial-value problem{
u′ = u ·

{
µ1 − (µ1 − kχ1)u− a1µ1(l2 − ε)

}
, t > tε,

u(tε) = maxx∈Ω̄ u(x, tε).

Since u(·, tε) is positive in Ω̄ by Lemma 6.2.1, it is clear that

u(t)→ max
{

0 ,
µ1 − a1µ1(l2 − ε)

µ1 − kχ1

}
as t→∞,

which in conjunction with (6.3.7) yields the inequality

lim sup
t→∞

(
max
x∈Ω̄

u(x, t)
)
≤ max

{
0 ,

µ1 − a1µ1(l2 − ε)
µ1 − kχ1

}
.

Taking ε↘ 0 now shows that indeed (6.3.6) must be valid.

In order to study the large time behavior of v we need to distinguish two cases depending on
the sign of kq2−a2. We again use comparison arguments involving spatially homogeneous
functions and first give the result for kq2 < a2.

Lemma 6.3.4 Suppose that (6.1.6) holds, and that kq2 < a2. Then

(1− q2)L2 ≤ (1− q2l2)+ (6.3.8)

and
(1− q2)l2 ≥ 1− a2L1 − q2L2. (6.3.9)

Proof. The procedure is similar to that in Lemma 6.3.3: Given ε > 0, we take tε > 0 as
provided by Lemma 6.3.2. We recall that by (6.2.5) we have

vt = L2v + v ·
{
µ2 − (µ2 − χ2)v − (a2µ2 − kχ2)u− λχ2w

}
in Ω× (0,∞) (6.3.10)

with L2 given by (6.2.3). Since a2µ2 − kχ2 is nonnegative according to our hypothesis
kq2 < a2, using that u ≥ 0 we can estimate

−(a2µ2 − kχ2)u ≤ 0 in Ω× (0,∞),

whereas by (6.3.5),

−λχ2w ≤ −χ2 · (l2 − ε) in Ω× (tε,∞).

Thus, (6.3.10) implies that

vt ≤ L2v + v ·
{
µ2 − (µ2 − χ2)v − χ2(l2 − ε)

}
in Ω× (tε,∞),
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whence by comparison we find that

v(x, t) ≤ v(t) for all x ∈ Ω̄ and t ≥ tε,

if we let v denote the solution of{
v′ = v ·

{
µ2 − (µ2 − χ2)v − χ2(l2 − ε)

}
, t > tε,

v(tε) = maxx∈Ω̄ v(x, tε).

In light of the long time asymptotics of v, this entails that

lim sup
t→∞

(
max
x∈Ω̄

v(x, t)
)
≤ max

{
0 ,

µ2 − χ2(l2 − ε)
µ2 − χ2

}
for any ε > 0 and hence

L2 ≤ max
{

0 ,
µ2 − χ2l2
µ2 − χ2

}
,

which proves (6.3.8).

Similarly, (6.3.9) can be obtained by going back to (6.3.10) and using (6.3.3) and (6.3.5)
to estimate

−(a2µ2 − kχ2)u ≥ −(a2µ2 − kχ2) · (L1 + ε) in Ω× (tε,∞)

and

−λχ2w ≥ −χ2 · (kL1 + L2 + (k + 1)ε) in Ω× (tε,∞),

again because kχ2 ≤ a2µ2. We thereupon obtain

vt − L2v ≥ v ·
{
µ2 − (µ2 − χ2)v − (a2µ2 − kχ2) · (L1 + ε)− χ2(kL1 + L2 + (k + 1)ε)

}
= v ·

{
µ2 − (µ2 − χ2)v − a2µ2 · (L1 + ε)− χ2(L2 + ε)

}
in Ω× (tε,∞),

whence
v(x, t) ≥ v(t) for all x ∈ Ω̄ and t ≥ tε (6.3.11)

by the comparison principle, where{
v′ = v ·

{
µ2 − (µ2 − χ2)v − a2µ2(L1 + ε)− χ2(L2 + ε)

}
, t > tε,

v(tε) = minx∈Ω̄ v(x, tε).
(6.3.12)

Now an important observation, singling out the particular steady state solution (ũ, ṽ, w̃) ≡
(1, 0, kλ) for which (6.3.9) does not hold, is that v(tε) is positive thanks to the positivity
of v in Ω̄× (0,∞) asserted by Lemma 6.2.1. Consequently, v again approaches the larger
of the equilibria of (6.3.12), that is, we have

v(t)→ max
{

0 ,
µ2 − a2µ2(L1 + ε)− χ2(L2 + ε)

µ2 − χ2

}
as t→∞,

which in the limit ε↘ 0 clearly implies (6.3.9).

In case of kq2 ≥ a2 we proceed in a similar way.
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Lemma 6.3.5 Assume (6.1.6), and suppose that kq2 ≥ a2. Then

(1− q2)L2 ≤
(

1 + (kq2 − a2)L1 − q2l2

)
+

(6.3.13)

and
(1− q2)l2 ≥ 1− kq2L1 − q2L2. (6.3.14)

Proof. Again using (6.2.5) as a starting point, given ε > 0 we take tε > 0 as given by
Lemma 6.3.2 and estimate

(kχ2 − a2µ2)u ≤ (kχ2 − a2µ2) · (L1 + ε) in Ω× (tε,∞)

and

−λχ2w ≤ −χ2 · (l2 − ε) in Ω× (tε,∞).

We thereupon obtain from the identity

vt = L2v + v ·
{
µ2 − (µ2 − χ2)v + (kχ2 − a2µ2)u− λχ2w

}
in Ω× (0,∞), (6.3.15)

as obtained in (6.2.5), that

vt ≤ L2v + v ·
{
µ2 − (µ2 − χ2)v + (kχ2 − a2µ2)(L1 + ε)− χ2(l2 − ε)

}
in Ω× (tε,∞).

By comparison with spatially homogeneous ODE solutions in the same manner as in
Lemma 6.3.4, we thereby derive the inequality

lim sup
t→∞

(
max
x∈Ω̄

v(x, t)
)
≤ max

{
0 ,

µ2 + (kχ2 − a2µ2)(L1 + ε)− χ2(l2 − ε)
µ2 − χ2

}
,

which on taking ε↘ 0 yields (6.3.13).
Similarly, inserting the lower estimates

(kχ2 − a2µ2)u ≥ 0 in Ω× (0,∞)

and

−λχ2w ≥ −χ2 · (kL1 + L2 + (k + 1)ε) in Ω× (tε,∞)

into (6.3.15) shows that

vt ≥ L2v + v ·
{
µ2 − (µ2 − χ2)v − χ2(kL1 + L2 + (k + 1)ε)

}
in Ω× (tε,∞),

which on comparison entails that

lim inf
t→∞

(
min
x∈Ω̄

v(x, t)
)
≥ µ2 − χ2(kL1 + L2 + (k + 1)ε)

µ2 − χ2

and thereby proves (6.3.14).

Using the estimates shown in this section, we are now able to prove that v(t) → 1 in
L∞(Ω) as t→∞ if we assume L1 = 0.
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Lemma 6.3.6 Assume that (6.1.6) holds, and suppose that L1 = 0. Then L2 = l2 = 1.

Proof. We first observe that q2l2 ≤ 1, for otherwise by either (6.3.8) or by (6.3.13) in
combination with L1 = 0 we would have L2 = 0 and hence could draw the conclusion that
l2 = 0 which is absurd in view of (6.3.9) and (6.3.14).
Accordingly, in light of the hypothesis L1 = 0, Lemma 6.3.4 and Lemma 6.3.5 show that
in both cases kq2 < a2 and kq2 ≥ a2, the inequalities

(1− q2)L2 ≤ 1− q2l2 (6.3.16)

and

(1− q2)l2 ≥ 1− q2L2 (6.3.17)

hold, which on subtraction imply

(1− q2)(L2 − l2) ≤ q2(L2 − l2).

Since (6.1.6) implies that q2 <
1
2 , this asserts that L2 ≤ l2 and hence L2 = l2. Therefore,

once more applying (6.3.16) shows that L2 ≤ 1, while similarly (6.3.17) entails that l2 ≥ 1.
This completes the proof.

6.4 Asymptotic behavior

According to Lemmas 6.2.1, 6.2.2, 6.3.2 and 6.3.6, in order to prove Theorem 6.1.1 it
remains to show that L1 = 0 is indeed valid. This will be done by considering again two
cases depending on the sign of kq2 − a2.

6.4.1 The case kq2 < a2

Combining Lemmas 6.3.3 and 6.3.4, we complete the proof of Theorem 6.1.1 for kq2 < a2.

Lemma 6.4.1 Suppose that (6.1.6) holds as well as kq2 < a2. Then L1 = 0.

Proof. Let us suppose on the contrary that L1 be positive. Then Lemma 6.3.3 says that

(1− kq1)L1 ≤ 1− a1l2 (6.4.1)

and hence

l2 <
1

a1
. (6.4.2)

Here we observe that by (6.4.2) we also have 1 − q2l2 > 1 − q2
a1
≥ 1 − 1

a1
> 0 due to the

fact that (6.1.6) entails that q2 ≤ 1. Consequently, Lemma 6.3.4 asserts that

(1− q2)L2 ≤ 1− q2l2 (6.4.3)
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and
(1− q2)l2 ≥ 1− a2L1 − q2L2. (6.4.4)

Now combining (6.4.4) with (6.4.1) yields

q2L2 ≥ 1− a2L1 − (1− q2)l2

≥ 1− a2 ·
1− a1l2
1− kq1

− (1− q2)l2

= 1− a2

1− kq1
+
( a1a2

1− kq1
− 1 + q2

)
· l2,

which in light of (6.4.3) shows that

1− q2

q2
·
{

1− a2

1− kq1
+
( a1a2

1− kq1
− 1 + q2

)
· l2
}
≤ (1− q2)L2 ≤ 1− q2l2.

Thus, necessarily

1− q2

q2
·
(

1− a2

1− kq1

)
− 1 ≤

{
− 1− q2

q2
·
( a1a2

1− kq1
− 1 + q2

)
− q2

}
· l2,

which on multiplication by (1− kq1)q2 can be seen to be equivalent to{
1− a1a2− kq1− (2− a1a2)q2 + 2kq1q2

}
· l2 ≥ 1− a2− kq1− (2− a2)q2 + 2kq1q2. (6.4.5)

Since according to (6.1.8),

I := 1− a2 − kq1 − (2− a2)q2 + 2kq1q2

is positive, (6.4.5) is thus only possible if also

J := 1− a1a2 − kq1 − (2− a1a2)q2 + 2kq1q2

is positive. Therefore, (6.4.5) implies that

l2 ≥
I

J
,

which in conjunction with (6.4.2) says that a1I < J , that is,

a1 − a1a2 − a1kq1 − a1(2− a2)q2 + 2a1kq1q2 < 1− a1a2 − kq1 − (2− a1a2)q2 + 2kq1q2.

A simple rearrangement thus yields

(a1 − 1) · (1− kq1 − 2q2 + 2kq1q2) < 0,

which is incompatible with the assumption I > 0, because a1 > 1 and

1− kq1 − 2q2 + 2kq1q2 = I + a2(1− q2) ≥ I > 0

thanks to the fact that q2 < 1 by (6.1.6). This contradiction shows that actually L1 must
vanish.



6.4. ASYMPTOTIC BEHAVIOR 183

6.4.2 The case kq2 ≥ a2

Finally, a combination of Lemmas 6.3.3 and 6.3.5 completes the proof of Theorem 6.1.1
also for kq2 ≥ a2 like in the preceding section. The details of the proof are given in the
following Lemma.

Lemma 6.4.2 Let (6.1.6) hold, and assume that kq2 ≥ a2. Then L1 = 0.

Proof. If L1 was positive, again Lemma 6.3.3 would yield

l2 <
1

a1
(6.4.6)

and

L1 ≤
1− a1l2
1− kq1

. (6.4.7)

On the other hand, since (6.4.6) and kq2 ≥ a2 imply 1 + (kq2 − a2)L1 − q2l2 > 1 − q2
a1
≥

1− 1
a1
> 0, Lemma 6.3.5 says that

(1− q2)L2 ≤ 1 + (kq2 − a2)L1 − q2l2, (6.4.8)

which combined with (6.4.7) implies

(1− q2)L2 ≤ 1 + (kq2 − a2) · 1− a1l2
1− kq1

− q2l2

=
(

1 +
kq2 − a2

1− kq1

)
−
{a1(kq2 − a2)

1− kq1
+ q2

}
· l2, (6.4.9)

because kq2 ≥ a2. Moreover, the second statement in Lemma 6.3.5 asserts that

(1− q2)l2 ≥ 1− kq2L1 − q2L2,

which in view of (6.4.7) and (6.4.9) becomes

(1− q2)l2 ≥ 1− kq2 ·
1− a1l2
1− kq1

− q2

1− q2
·
(

1 +
kq2 − a2

1− kq1

)
+

q2

1− q2
·
{a1(kq2 − a2)

1− kq1
+ q2

}
· l2.

When multiplied by (1− kq1)(1− q2), this yields{
(1− kq1)(1− q2)2 − a1kq2(1− q2)− a1q2(kq2 − a2)− q2

2(1− kq1)
}
· l2

≥ (1− kq1)(1− q2)− kq2(1− q2)− (1− kq1)q2 − q2(kq2 − a2),

which can be simplified so as to become

J · l2 ≥ I,
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where

I := 1− kq1 − (2 + k − a2)q2 + 2kq1q2

is positive thanks to (6.1.8), and hence also

J := 1− kq1 − (2− a1a2 + ka1)q2 + 2kq1q2

must be positive. We thus have l2 ≥ I
J , whence we may conclude using (6.4.6) that

a1I < J , that is,

a1 − a1kq1 − (2a1 + ka1 − a1a2)q2 + 2a1kq1q2 < 1− kq1 − (2− a1a2 + ka1)q2 + 2kq1q2.

However, this is equivalent to

(a1 − 1)(1− kq1)(1− 2q2) < 0,

which contradicts (6.1.6), because clearly kq1 < 1 and q2 <
1
2 .

6.5 Conclusions and discussion

In this paper we have considered two biological species which compete for the same re-
sources and migrate chemotactically towards a higher concentration of a chemical sub-
stance, which they produce. The problem is modeled by using a system of three partial
differential equations: two nonlinear parabolic equations to describe the evolution of the
biological species and a linear PDE to model the behavior of the chemical. This chemi-
cal diffuses considerably faster than the living organism, and it is thus assumed that the
evolution of the chemical signal is governed by an elliptic equation.

The system contains several parameters which measure different aspects in the system:
chemotaxis effects, competition, diffusion, chemical production and decay. In the case
when competition is absent, it is known that due to chemotaxis, the considered system
may produce finite-time blow-up ([A6.5]), while if on the other hand chemotactic effects
are blinded out, then the competitive terms keep the solution bounded and guarantee
their global existence. A natural and challenging question has been posed in the literature
for such systems: Which are the constraints and the threshold values that decide between
driving the system toward global existence, or enforcing blow-up? This question remains
open even in the case of a single species. In that case the competitive term is simplified
to a logistic growth function (cf. [A6.15] for partial results).

A second question concerns the influence of chemotaxis effects on the stability of the
homogeneous steady states determined by the competitive terms. The presence of a large
number of parameters in the system makes this question difficult to answer. In the case
where the competitive terms are weak in the sense that in (6.1.1) we have ai ∈ [0, 1)
for i = 1, 2, a partial answer is given in [A6.16] within some range of the chemotactic
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parameters. In this paper we have studied the problem under the assumption that when
compared to the latter setting, one of the species is significantly more aggressive in terms
of competition.

In this framework, characterized by the assumption (6.1.4), we have seen that if in (6.1.5),
both ratios qi, i = 1, 2, between the chemotactic sensitivities χi and the competition
parameters µi are suitably small then all nontrivial solutions will be global in time and
bounded, and that they approach the homogeneous steady state in which the aggressive
subpopulation is at its carrying capacity and the less aggressive species has died out. This
inter alia shows that the phenomenon of (asymptotic) extinction of one species, known to
be valid for the associated Lotka-Volterra ODE system without diffusion and chemotaxis,
persists also in such systems with chemotactic interaction, provided the latter is sufficiently
weak. Global existence of solutions is obtained under the assumption q1k + q2 < 1. In
that case competition prevents blow-up but extra assumptions are required to prove the
stability claim in (6.1.9).

We do not know in how far the set (6.1.6) of hypotheses under which our results have
been derived is optimal. After all, in some known borderline cases our approach yields
requirements which are consistent with assumptions made in the literature for correspond-
ingly simplified models (cf. the discussion in Remark 6.1.2). In light of results from the
literature on corresponding single-species systems, it seems natural to conjecture that for
suitably large values of qi, solutions may exhibit more colorful dynamics. Indeed, in such
a setting numerical simulations indicate that chaotic behavior may occur ([A6.12]). It is
conceivable that some solutions may even blow up in finite time, but a substantial influ-
ence of the space dimension n on the occurrence of such explosion phenomena is most
likely to be expected: In the single-species case, for instance, although some examples of
high-dimensional blow-up phenomena despite logistic-type growth restrictions have been
found for n ≥ 5 ([A6.21]), it is known that blow-up never occurs when n ≤ 2 ([A6.15]). In
particular, the detection of explosions must thus be restricted to the case n ≥ 3 in which
even numerical approaches seem delicate. As opposed to this, our assumptions in this
paper are completely independent of n, and moreover they are fully explicit; thereby our
results reveal, in a quantitative manner, a stability feature of the competitive exclusion
phenomenon with respect to chemotactic interaction.
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Abstract

Cancer cell migration is an essential feature in the process of tumor spread and establish-
ing of metastasis. It characterizes the invasion observed on the level of the cell population,
but it is also tightly connected to the events taking place on the subcellular level. These
are conditioning the motile and proliferative behavior of the cells, but are also influenced
by it. In this work we propose a multiscale model linking these two levels and aiming to
assess their interdependence. On the subcellular, microscopic scale it accounts for inte-
grin binding to soluble and insoluble components present in the peritumoral environment,
which is seen as the onset of biochemical events leading to changes in the cell’s ability
to contract and modify its shape. On the macroscale of the cell population this leads to
modifications in the diffusion and haptotaxis performed by the tumor cells and implicitly
to changes in the tumor environment. We prove the (local) well posedness of our model
and perform numerical simulations in order to illustrate the model predictions.
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7.1 Introduction

Tumor cells are able to migrate through the surrounding tissue and degrade it on their way
toward blood vessels and distal organs where they initiate and develop further tumors,
a process known as metastasis [A7.14]. According to the structure of the peritumoral
environment, the movement of cancer cells is diffusion- or transport-dominated and also
influenced by two mechanisms: chemotaxis and haptotaxis. The former defines the cell
motion in response to a chemoattractant (or chemorepellent) concentration. As such
gradients may lack in the solution, the differences in the concentration of an adhesive
molecule e.g., along an extracellular matrix (ECM) can be relevant instead. The cells
need to adhere to the ECM fibers in order to be able to move [A7.1], hence they will
migrate from a region of low concentration of relevant adhesive molecules to an area with
a higher concentration, a process called haptotaxis [A7.7]. Thereby, the contact with the
surrounding tissue stimulates the production of proteolytic enzymes (matrix degrading
enzymes (MDEs) like matrix metalloproteinases), which degrade the tissue fibers [A7.15],
thus creating interstices to be occupied during the migration process toward neighboring
blood vessels.

When characterizing tumor migration, the spatial scales of interest range from the sub-
cellular level to the macroscopic one (tissue and cell populations), while the time scales
stretch from seconds (or even shorter) at the intracellular level up to months for the dou-
bling times of tumors.

Most of the existing models for cancer invasion can be assigned to three categories:
Microscopic models are concerned with the events at the subcellular level initiating and
controling (tumor) cell migration. These processes are usually characterized with systems
of ordinary differential equations (ODEs) for the concentrations of the involved biochemical
substances. For instance, some of these models focus on the expression of MDEs and
proteolysis [A7.6], whereas others emphasize cell polarization and onset of lamellipod
protrusion [A7.24], a crucial step in integrin-mediated haptotactic motility.

In the mesoscopic framework, cell migration is characterized by Boltzmann-like kinetic
transport equations for the cell density function, in which the integral operators char-
acterize innovations of the cell velocities instead of modeling particle collisions as in gas
theory. This approach has been introduced by Othmer, Dunbar & Alt [A7.28] in order to
provide a description of cell dispersal via velocity jump processes. It was extended e.g.,
by Hillen [A7.17] to model the mesenchymal motion of cancer cells and the subsequent
tissue modification. Bellomo et al. [A7.5] proposed a general framework for such kinetic
models on the mesoscopic level (also allowing for the inclusion of the “cell state” to reflect
dynamics on the microlevel) that they called the kinetic theory of active particles (KTAP).
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Macroscopic descriptions can be derived from mesoscopic models by means of averaging
processes leading to evolution equations for the moments of the cell distribution function.
This was done, at least formally, in, e.g., [A7.17] in the context of mesenchymal motion of
tumor cells, whereas rigorous results on hyperbolic and parabolic limits of kinetic equa-
tions for chemotaxis were obtained, e.g., in [A7.8] and [A7.29] respectively. Further models
for cell population migration that rely only on mass balance equations were proposed by
Anderson et al. [A7.2] and Chaplain & Lolas [A7.9], for example.

Combining two or all three of these modeling levels leads to a multiscale setting, which
has received increasing interest over the last decade. Many – in particular those involv-
ing couplings between micro and mesoscales – align to the general KTAP by Bellomo et
al. In [A7.32, A7.20, A7.21] multiscale models for bacterial dispersal and respectively for
cancer cell migration through tissue networks have been deduced and analyzed. On the
subcellular level the latter account for integrin binding to ECM fibers or to proteolytic
rests resulting from the degradation of such fibers, whereas the behavior of individual cells
on the mesoscopic scale is described via a Boltzmann-type transport equation for the cell
density function. This in turn is further coupled with an integro-differential ODE for the
ECM fiber density and a reaction-diffusion equation (RD-PDE) for the chemoattractant
concentration. Bridging the gap between the scales, the macroscopic fiber density influ-
ences the vector field of subcellular states. A related model for glioma invasion focusing on
haptotaxis and the interaction between tumor cells and brain tissue via integrin binding
on the microlevel was studied in [A7.12]. Due to its high dimensionality and the large
differences between the scales, the numerical handling of such a micro-meso-macro model
is a challenging issue. A way out is to use adequate scalings to obtain macroscopic limits,
as in [A7.12, A7.34]. Another way uses a nonparametric density estimation technique from
statistics to assess the density of cells directly on the macrolevel, without needing to de-
duce the corresponding reaction-diffusion (transport) equations (RD(T)-PDEs), but only
relying on simulations of the involved basic stochastic processes [A7.30, A7.31, A7.32].

Yet another way to avoid the difficulties with the numerics of a full micro-meso-macro
model is to directly connect the microscopic and the macroscopic levels, leading to a much
simplified (but still multiscale) approach, which concentrates on the population evolution
at the macroscopic level and uses systems of RD(T)-PDEs. These are coupled with ODEs
modeling processes inside or on the surface of a cell. The coefficients in the macroscopic
formulation (for, e.g., diffusion, chemotaxis, haptotaxis) can depend in a nonlinear way on
the solutions and even on the microscale dynamics. In this work we use such an approach:
motivated by the more complex micro-meso-macro setting in [A7.20, A7.21] we propose a
micro-macro model for the influence of integrin binding dynamics on tumor invasion by
way of a contractivity function. The latter captures the effects of subcellular dynamics
on the ability of a cell to polarize and modify its shape by restructuring its cytoskeleton.
The integrins on the cell surface bind (reversibly) to insoluble (ECM fibers) and soluble
(proteolytic rests of ECM fibers) ligands which are present in the peritumoral environ-
ment, hence initiating a whole network of intracellular signaling cascades (see e.g., [A7.23]
and the references therein), the outcome of which are – as already mentioned – changes
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in the cell’s flexibility. These, however, are expected to need some time to happen, which
is modeled by a time lag in the equation characterizing the evolution of the contractivity
function. Further, these events on the subcellular level have consequences for the cell’s
migratory behavior, influencing both its diffusive spread and the haptotaxis, which we
model by letting the respective coefficients depend on the cell contractivity function, see
equation (7.2.5) below.

The paper has the following structure: In Section 7.2 we introduce our multiscale model
characterizing the evolution of cancer cell density, concentration of proteolytic rests, den-
sity of tissue fibers, contractivity function, and concentrations of integrins bound to ECM
fibers and to fiber residuals degraded during the interaction with tumor cells. The proof
of the existence and uniqueness of a solution to this system is done in Section 7.3, fol-
lowed in Section 7.4 by a nondimensionalization preliminary to the numerical simulations
performed in Section 7.5. Finally, a discussion of the results is provided in Section 7.6.

7.2 The Model

7.2.1 The subcellular level

We provide a simplified description of the events on the subcellular level by considering
as in [A7.20, A7.21, A7.25] merely the integrin binding dynamics on the cell surface. For
the sake of completeness we recall here the corresponding kinetic model for the binding of
ECM-proteins v and proteolytic products l to free integrins denoted by R. The reversible
binding of integrins to ECM-proteins leads to a complex Rv according to the equation

v +R
k1−−⇀↽−−
k−1

Rv.

The corresponding equation for the formation and dissociation of complexes Rl of integrin
and proteolytic product reads

l +R
k2−−⇀↽−−
k−2

Rl.

We denote the concentrations of integrins of an individual cell bound to ECM-molecules
by y1 and the concentration of integrins of the same cell bound to the proteolytic product
l by y2. The total concentration of integrins (bound or unbound) of each cell is assumed
to be conserved and given by R0 ∈ R+. Thus, R0−y1−y2 is the concentration of unbound
integrins on the cell’s surface. Hence, one has y = (y1, y2) ∈ Y with

Y := {(y1, y2) ∈ (0, R0)2 | y1 + y2 < R0}. (7.2.1)

The state equations for the cell surface dynamics then read

∂y

∂t
= G(y, v(t,x), l(t,x)) (7.2.2)
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with the mapping G : Y × [0,∞)× [0,∞)→ R2 defined by

G(y, v, l) :=

(
k1(R0 − y1 − y2)v − k−1y1

k2(R0 − y1 − y2)l − k−2y2

)
. (7.2.3)

Thereby, the coefficients k1 and k2 denote the binding rates between integrins and ECM
fibers and between integrins and proteolytic residuals, respectively, while k−1 and k−2 are
the corresponding detaching rates.

On the other hand, since contractivity is the outcome of a sequence of biochemical pro-
cesses initiated by binding of integrins, activation of multiple signaling proteins and in-
volving e.g., actin polimerization, restructuring of the cell’s cytoskeleton, formation of
protrusions, polarization etc. (see e.g., [A7.19] and the references therein), it is reason-
able to assume that it depends on some delay corresponding to the time passed between
integrin binding and the effects on the cell’s ability to reorganize its shape by contraction.
This leads to an equation of the form

κt = −qκ+H(y(t− τ)) in (0, T )× Ω (7.2.4)

where H is a contractivity source term depending on the subcellular dynamics and their
above mentioned subsequent effects and with τ denoting a constant delay in taking in-
fluence on the contractivity. Another choice for the time lag is e.g., to use a distributed
one, as in the next section. A precise form for the function H is provided at the end of
Subsection 7.2.2 below. 10

7.2.2 The macroscopic level

The evolution of cancer cell density c(t,x) is influenced by the random motility Jrandom

and the directional flow Jdirectional. The former characterizes cell diffusion into the tissue
and is given by

Jrandom = −ϕ(κ, c, v)∇c

with the random motility function ϕ(κ, c, v) depending on the contractivity function κ, on
the cell density itself, and on the density v(t,x) of tissue fibers, as the spread of cancer
cells is conditioned by their neighbors and surroundings.

On the other hand, Jdirectional corresponds to the cancer cell flux due to spatial gradients
of stimulating chemotactic and haptotactic responses:

Jdirectional = Jchemotaxis + Jhaptotaxis = f(c, l)c∇l + ψ(κ, v)c∇v

where f(c, l) and ψ(κ, v) are the chemotactic and haptotactic functions, respectively. As
in [A7.20, A7.21, A7.25], in our present model the role of the chemoattractant is played

10It should be proportional to the amount of integrins bound to ECM fibers and inversely proportional to
the amount of integrins bound to the chemoattractant molecules, as the latter hints on the cell successfully
following the chemoattractant gradient, hence there is less need of enhancing contractivity –via shape
change, restructuring of the cytoskeleton, reorientation etc.
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by the proteolytic residuals following the degradation of tissue by the cells performing
mesenchymal motion [A7.13, A7.18]. We denote with l(t,x) their concentration.

Then, due to the equilibrium of fluxes we obtain the first equation in system (7.2.5) below.
Thereby, the last term on the right-hand side models cell proliferation with crowding effects
and the proliferation rate and the carrying capacity are denoted by µc and Kc, respectively.

The ECM fibers are supposed to be degraded through interaction with the cancer cells
with the rate δv. They also reestablish and remodel themselves while competing with the
diffusive cancer cells for space. This is described by a term similar to the proliferation
in the equation for cancer cells with the corresponding production rate µv and carrying
capacity Kv. Crowding effects are accounted for as well. Further, the ECM does not
diffuse, but can be only degraded by the cells producing matrix degrading enzymes. These
considerations lead to the second equation in system (7.2.5).

The chemoattractant concentration satisfies a reaction-diffusion equation with a source
term reflecting the degradation of tissue fibers under the influence of the migrating tumor
cells, along with a simple decay term. The diffusion constant, production and decay rates
are denoted with α, δl and β, respectively.

Finally, combining the equations on micro and macro levels, we obtain the following system
of equations:

ct = ∇ · (ϕ(κ, c, v)∇c)−∇ · (ψ(κ, v)c∇v)−∇ · (f(c, l)c∇l)
+µcc

(
1− c

Kc
− η1

v
Kv

)
,

vt = −δvcv + µvv
(

1− η2
c
Kc
− v

Kv

)
,

lt = α∆l + δlcv − βl,

yt = G(v, l,y),

κt = −qκ+H(y(t− τ))

(7.2.5)

in (0, T ) × Ω, where Ω ⊂ Rn is a bounded domain with a smooth enough boundary and
with n ∈ {1, 2, 3}. Here η1, η2 ∈ (0, 1) are parameters characterizing growth reduction due
to the competition between the cancer cells and the tissue fibers (see e.g., [A7.16]).

We further assume the boundary conditions

∂c

∂ν
=
∂v

∂ν
=

∂l

∂ν
= 0 on (0, T )× ∂Ω, (7.2.6)

where ν denotes the outward unit normal vector on ∂Ω, and the initial conditions

c(0,x) = c0(x), v(0,x) = v0(x), l(0,x) = l0(x),
κ(0,x) = κ0(x), y(t,x) = y0(x),

t ∈ (−∞, 0], x ∈ Ω. (7.2.7)

In our model we consider

ϕ(κ, c, v) =
Dcκ

1 + cv
KcKv

, ψ(κ, v) =
DHκv

Kv + v
, f(c, l) =

Dk

1 + cl
Kcλ

, H(y) =
My1

R0 + y2
(7.2.8)
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for the random motility, haptotaxis and chemotaxis functions and for the function mod-
eling the influence of the integrin binding on the contractivity, respectively. Here Kc and
Kv are the carrying capacities for the cancer cells and ECM, respectively, and λ is an
appropriate reference variable for the proteolytic rests.

7.3 Local Existence

7.3.1 The case with distributed delay

In this case we start by considering a distributed delay

κ(t,x) =

∫ ∞
0

qe−quH̃(y(t− u,x)) du, (t,x) ∈ (0, T )× Ω, (7.3.1)

for the characterization of the cell contractivity. Using the transformation s = t − u,
(7.3.1) is equivalent to

κ(t,x) =

∫ t

−∞
qe−q(t−s)H̃(y(s,x)) ds, (t,x) ∈ (0, T )× Ω.

In view of (7.2.7) this means that κ fulfills (7.2.4) with τ = 0, H(y) := qH̃(y) and the
initial condition

κ(0,x) =

∫ 0

−∞
qeqsH̃(y0(x)) ds = H̃(y0(x)) =: κ0(x), x ∈ Ω.

Hence, the distributed delay corresponds to the case τ = 0 for the problem (7.2.5)-(7.2.7).

Thus, we fix τ = 0, p ∈ (n+2
2 ,∞) and define the spaces

X :=
{
u ∈ Lp(0, T ;W 2,p(Ω)) : ut ∈ Lp(0, T ;Lp(Ω))

}
,

Z := L2p(0, T ;W 1,2p(Ω)), V := C1(0, T ;C0(Ω̄)).

Then we have the following local existence result for the case with distributed delay.

Theorem 7.3.1 Assume τ = 0, p ∈ (n+2
2 ,∞),

c0, v0, l0 ∈W 2,p(Ω), κ0 ∈W 1,2p(Ω), y0 ∈ (W 1,2p(Ω))2,
∂c0
∂ν

=
∂v0

∂ν
=
∂l0
∂ν

= 0

on ∂Ω, 0 < c0 < Kc, 0 < v0 < Kv, l0 > 0, κ0 > 0 and y0 ∈ Y for all x ∈ Ω̄
(7.3.2)

together with (7.2.3) and let

H ∈ C1(Ȳ ), f ∈ C1([0,∞)2), ϕ ∈ C1([0,∞)3), ψ ∈ C1([0,∞)2) be

nonnegative such that for any 0 < a < b <∞ there exists δa,b > 0 with

ϕ(κ, c, v) ≥ δa,b for all (κ, c, v) ∈ [a, b]× [0, b]2.

(7.3.3)
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Then there is T > 0 such that there exists a unique solution to (7.2.5)-(7.2.7) satisfying

c, l ∈ X, v ∈ X ∩ V, κ ∈ Z ∩ V, y ∈ Z2 ∩ V 2 such that 0 ≤ c ≤ Kc,

0 < v ≤ Kv, l ≥ 0, κ > 0 and y ∈ Y for all (t,x) ∈ [0, T )× Ω̄.
(7.3.4)

Proof. We define

X0 :=

{
c ∈ X : c ≥ 0, ‖c‖X ≤ γ := ‖c0‖W 2,p(Ω) + 1,

∂c

∂ν
= 0 on (0, T )× ∂Ω

}
,

fix T0 ∈ (0,∞) such that c0 ∈ X0 for all T ∈ (0, T0] and define the map F : X0 → X0 with
F(c̃) = c, where c is defined in the following way: Given c̃ ∈ X0, we let v, l, κ, y and c
denote the solutions of the problems{

vt = −δv c̃v + µvv
(

1− η2
c̃
Kc
− v

Kv

)
in (0, T )× Ω,

v(0,x) = v0(x) in Ω,
(7.3.5)


lt = α∆l + δlc̃v − βl in (0, T )× Ω,

∂l
∂ν = 0 on (0, T )× ∂Ω,

l(0,x) = l0(x) in Ω,

(7.3.6)

{
yt = G(v, l,y) in (0, T )× Ω,

y(0,x) = y0(x) in Ω,
(7.3.7)

{
κt = −qκ+H(y(t)) in (0, T )× Ω,

κ(0,x) = κ0(x) in Ω,
(7.3.8)



ct = ∇ · (ϕ(κ, c̃, v)∇c)−∇ · (ψ(κ, v)c∇v)−∇ · (f(c̃, l)c∇l)

+µcc
(

1− c̃
Kc
− η1

v
Kv

)
in (0, T )× Ω,

∂c
∂ν = 0 on (0, T )× ∂Ω,

c(0,x) = c0(x) in Ω.

(7.3.9)

In order to obtain a unique solution of (7.2.5)-(7.2.7) for T ∈ (0, T0] small enough, we
proceed in several steps. In view of the highly nonlinear couplings between the equa-
tions contained in (7.2.5), we use the approximations (7.3.5)-(7.3.9) which can be solved
consecutively for given c̃. In Step 1, we provide estimates and regularity properties for
the solutions to (7.3.5)-(7.3.9) which allow us to deduce that the above mapping F is
well-defined for T > 0 small enough. In Step 2, we then iteratively define a sequence of
solutions to (7.3.5)-(7.3.9) and prove its convergence to a weak solution of the original
problem (7.2.5)-(7.2.7) by using the estimates from the first step and standard compact-
ness arguments. Finally, the uniqueness of solutions to (7.2.5)-(7.2.7) is shown in Step 3
by the aid of Gronwall’s lemma.
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Step 1: Estimates
For given c̃ ∈ X0, (7.3.5) is an ODE of Bernoulli type which is explicitly solvable. Using
(7.3.2) along with the nonnegativity of c̃, an ODE comparison principle implies that

0 ≤ v ≤ Kv in [0, T ]× Ω̄ (7.3.10)

is fulfilled, since 0 and Kv are constant sub- and supersolutions to (7.3.5), respectively. As
X is continuously embedded into C0([0, T ]×Ω̄) due to p > n+2

2 (see [A7.22, Lemma II.3.3])
and ‖c̃‖X ≤ γ, we obtain from (7.3.10) that vt ≥ −C1v with some C1 > 0 depending on
γ. In view of T ≤ T0 and (7.3.2) this implies

v(t,x) ≥ e−C1T0

(
min
x∈Ω̄

v0(x)

)
=: C2 > 0, (t,x) ∈ (0, T )× Ω. (7.3.11)

Hence, z := 1
v is uniformly bounded in (0, T )× Ω and satisfies the linear ODE

zt =

(
−µv + c̃

(
δv + η2

µv
Kc

))
z +

µv
Kv

in (0, T )× Ω. (7.3.12)

In view of (7.3.2), (7.3.10), (7.3.11) and c̃ ∈ X0, we therefore conclude that v fulfills

C2 ≤ v ≤ Kv in [0, T ]× Ω̄, ‖v‖X + ‖v‖V ≤ C3,
∂v

∂ν
= 0 on (0, T )× ∂Ω (7.3.13)

with some C3 depending on γ and T0, where v ∈ V as c̃, c0 are continuous due to p > n+2
2

and vt is continuous and uniformly bounded by (7.3.5).

In view of c̃ ∈ X0 and (7.3.13), we have that c̃v is uniformly bounded in (0, T )×Ω. Hence,
by [A7.22, Theorem IV.9.1] (and the remark at the end of Section IV.9 concerning the
Neumann problem) there is a unique solution l of (7.3.6) which satisfies

l ≥ 0 in (0, T )× Ω and ‖l‖X ≤ C4 (7.3.14)

with some C4 depending on γ and T0, where the nonnegativity of l follows from the com-
parison principle and the nonnegativity of c̃, v and l0.

Now (7.3.7) is a linear ODE for y. As furthermore G satisfies the subtangential condition
with respect to Y for all nonnegative v and l, we obtain that Y is a positive invariant set
for (7.3.7). Thus, in view of (7.3.2), (7.3.13) and (7.3.14) we deduce that there is a unique
solution y of (7.3.7) such that

y(t,x) ∈ Y for (t,x) ∈ [0, T ]× Ω̄ and ‖y‖Z2 + ‖y‖V 2 ≤ C5 (7.3.15)

hold with some constant C5 depending on γ and T0, since X is continuously embedded
into Z and C0([0, T ]×Ω̄) due to p > n+2

2 (see [A7.22, Lemma II.3.3]) and as the continuity
of v and l along with (7.3.7) imply y ∈ V 2.



198 ARTICLE 7: ON A MULTISCALE MODEL INVOLVING CONTRACTIVITY

As (7.3.8) is a linear ODE for κ and H is nonnegative, we deduce from (7.3.2), (7.3.13)-
(7.3.15) and the comparison principle that (7.3.8) has a unique solution which fulfills

0 < C6 := e−qT0

(
min
x∈Ω̄

κ0(x)

)
≤ κ(t,x) ≤ C7 for (t,x) ∈ (0, T )× Ω,

‖κ‖Z + ‖κ‖V ≤ C8

(7.3.16)

with some constants depending on γ and T0, as (7.3.8) is a linear ODE and H(y) ∈
C0([0, T ]× Ω̄) and κ0 ∈ C0(Ω̄) hold in view of the continuity of H, (7.3.15) and the con-
tinuous embedding of W 1,2p(Ω) into C0(Ω̄) for p > n+2

2 .

Finally, (7.3.9) is a linear parabolic equation for c, of the form

ct = aiicxixi + aicxi + ac,

where

aii := ϕ(κ, c̃, v),

ai :=
∂ϕ

∂κ
(κ, c̃, v)κxi +

∂ϕ

∂c
(κ, c̃, v)c̃xi +

∂ϕ

∂v
(κ, c̃, v)vxi − ψ(κ, v)vxi − f(c̃, l)lxi ,

a := −ψ(κ, v)vxixi −
∂ψ

∂κ
(κ, v)κxivxi −

∂ψ

∂v
(κ, v)(vxi)

2 − f(c̃, l)lxixi

−∂f
∂c

(c̃, l)c̃xi lxi −
∂f

∂l
(c̃, l)(lxi)

2 + µc

(
1− c̃

Kc
− η1

v

Kv

)
.

In view of (7.3.3) and (7.3.13)-(7.3.16) and due to the continuous embedding of X into Z,
aii is continuous in [0, T ] × Ω̄ and there are positive constants C9 and C10 depending on
γ and T0 such that

C9 ≤ aii ≤ C10 for (t,x) ∈ [0, T ]×Ω̄, ‖ai‖L2p((0,T )×Ω) +‖a‖Lp((0,T )×Ω) ≤ C10. (7.3.17)

Hence, by Theorem IV.9.1, its proof and the remark at the end of Section IV.9 in [A7.22],
there is some T1 ≤ T0 such that for any T ∈ (0, T1] there is a unique solution c of (7.3.9)
fulfilling

‖c‖X ≤ ‖c0‖W 2,p(Ω) + ε(T ), (7.3.18)

where ε(T ) → 0 as T ↘ 0. Hence, there exists T2 ∈ (0, T1] such that ‖c‖X ≤ γ for all
T ∈ (0, T2]. As c satisfies the boundary condition (7.2.6) and the comparison principle
implies c ≥ 0 in (0, T )×Ω, we conclude that F is a well-defined self-mapping for T ∈ (0, T2].

Step 2: Existence
For m ≥ 1 let vm, lm, ym, κm and cm denote the solutions to (7.3.5)-(7.3.9) with c̃ := cm−1.
In particular, we have cm = F(cm−1). Due to Step 1, we have ‖cm‖X ≤ γ for all m ∈ N.
As X = Lp(0, T ;W 2,p(Ω)) ∩W 1,p(0, T ;Lp(Ω)) is reflexive, X is continuously embedded
into Cα([0, T ]× Ω̄) for 0 < α < 1− n+2

2p (see [A7.22, Lemma II.3.3]) and X is compactly
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embedded into Lp(0, T ;W 1,2p(Ω)) due to p > n+2
2 and the Aubin-Lions lemma (see [A7.33,

Theorem III.2.1]). Hence, there exists a subsequence of (cm)m∈N (not relabeled) and c ∈ X
such that

cm ⇀ c weakly in X,

cm → c strongly in Lp(0, T ;W 1,2p(Ω)) and in C0([0, T ]× Ω̄)
(7.3.19)

for m→∞. In particular, as X is continuously embedded into Z, we have

∇cm → ∇c a.e. in (0, T )× Ω and ∇cm ⇀ ∇c weakly in L2p((0, T )× Ω) (7.3.20)

for m→∞ up to a further choice of a subsequence.

In a similar way, since vm fulfills (7.3.13) for all m ∈ N, there is a subsequence such that

vm ⇀ v weakly in X,

vm → v strongly in Lp(0, T ;W 1,2p(Ω)) and in C0([0, T ]× Ω̄),

∇vm → ∇v a.e. in (0, T )× Ω and ∇vm ⇀ ∇v weakly in L2p((0, T )× Ω)

(7.3.21)

for m→∞. Hence, in view of (7.3.19) and (7.3.21) and as vm solves (7.3.5) with c̃ = cm−1

for m ∈ N, v is a solution to∫ T

0

∫
Ω
−vΦt dxdt =

∫ T

0

∫
Ω

[
−δvcv + µvv

(
1− η2

c

Kc
− v

Kv

)]
Φ dxdt

for all Φ ∈ C∞0 ((0, T )×Ω) so that v solves the second equation of (7.2.5) in the weak sense.
As its right-hand side is continuous in [0, T ]×Ω̄, we deduce that v ∈ V is a classical solution
of this equation. Due to (7.3.21) and (7.3.13), v further satisfies (7.2.6), (7.2.7) and (7.3.4).

Using (7.3.14), we obtain a further subsequence such that

lm ⇀ l weakly in X,

lm → l strongly in Lp(0, T ;W 1,2p(Ω)) and in C0([0, T ]× Ω̄),

∇lm → ∇l a.e. in (0, T )× Ω and ∇lm ⇀ ∇l weakly in L2p((0, T )× Ω)

(7.3.22)

for m → ∞. In view of (7.3.14) and (7.3.21) and since lm satisfies (7.3.6) with c̃ = cm−1

for m ∈ N, this implies that l is a weak solution to the third equation of (7.2.5) such that
(7.2.6), (7.2.7) and (7.3.4) are fulfilled.

Moreover, (7.3.15) also implies that (ym)m is uniformly bounded in (W 1,2p((0, T )× Ω))2

and this space is compactly embedded into (C0([0, T ] × Ω̄))2, due to p > n+2
2 . Thus, we

can choose another subsequence such that

ym ⇀ y weakly in Z2 and in (W 1,2p((0, T )× Ω))2,

ym → y strongly in (C0([0, T ]× Ω̄))2
(7.3.23)
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for m → ∞. Combined with (7.3.21), (7.3.22) and (7.3.7) for m ∈ N, this implies that y
is a weak solution to the fourth equation of (7.2.5). As its right-hand side is continuous
in [0, T ]× Ω̄, we deduce that y ∈ V 2 is a classical solution of this equation. Furthermore,
(7.2.7) and (7.3.4) are satisfied due to (7.3.15).

In a similar way, by (7.3.16) we obtain a subsequence such that

κm ⇀ κ weakly in Z and in W 1,2p((0, T )× Ω),

κm → κ strongly in C0([0, T ]× Ω̄)
(7.3.24)

for m → ∞. Together with (7.3.23) and (7.3.8) for m ∈ N, this implies that κ is a weak
solution to (7.2.4). Due to the continuity in [0, T ]× Ω̄ of the right hand side in (7.2.4), we
deduce that κ ∈ V is a classical solution of this equation. Furthermore, (7.2.7) and (7.3.4)
hold, due to (7.3.16).

Now cm is a weak solution to
∂tcm = ∇ · (ϕ(κm, cm−1, vm)∇cm)−∇ · (ψ(κm, vm)cm∇vm)

−∇ · (f(cm−1, lm)cm∇lm) + µccm

(
1− cm−1

Kc
− η1

vm
Kv

)
in (0, T )× Ω,

∂cm
∂ν = 0 on (0, T )× ∂Ω,

(7.3.25)
which satisfies the initial condition cm(0,x) = c0(x) for x ∈ Ω and m ∈ N. Hence, by
letting m→∞ in each of the integral terms involved in the weak formulation of (7.3.25)
and by using (7.3.19)-(7.3.24), we conclude that c is a weak solution to the first equation
of (7.2.5) such that (7.2.6) and (7.2.7) are fulfilled. In view of (7.3.19) and cm ≥ 0 we
further have c ∈ X ∩ C0([0, T ]× Ω̄) and c ≥ 0. As c0 < KC in Ω̄, by choosing T ∈ (0, T2]
small enough we have 0 ≤ c ≤ KC in [0, T ]× Ω̄. Altogether, S := (c, v, l,y, κ) is a solution
to (7.2.5)-(7.2.7) which satisfies (7.3.4).

Step 3: Uniqueness

We now fix T as chosen in Step 2 and let S(j) := (c(j), v(j), l(j),y(j), κ(j)), j ∈ {1, 2},
denote two solutions to (7.2.5)-(7.2.7) satisfying (7.3.4). As X is continuously embedded
into Z and L∞((0, T )×Ω) due to [A7.22, Lemma II.3.3] and p > n+2

2 , by (7.3.13)-(7.3.16)
and (7.3.18), there exists C11 > 0 such that

‖c(j)‖L∞((0,T )×Ω) + ‖∇c(j)‖L2p((0,T )×Ω) + ‖v(j)‖L∞((0,T )×Ω)

+ ‖∇v(j)‖L2p((0,T )×Ω) + ‖l(j)‖L∞((0,T )×Ω) + ‖∇l(j)‖L2p((0,T )×Ω)

+ ‖y(j)‖(L∞((0,T )×Ω))2 + ‖κ(j)‖L∞((0,T )×Ω) + ‖∇κ(j)‖L2p((0,T )×Ω) ≤ C11

(7.3.26)

is fulfilled for j ∈ {1, 2}.
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Since z(j) := 1
v(j) satisfies (7.3.12) with c̃ = c(j), we have

(
z(1) − z(2)

)
t

=

(
−µv + c(1)

(
δv + η2

µv
Kc

))(
z(1) − z(2)

)
+

(
δv + η2

µv
Kc

)(
c(1) − c(2)

)
z(2)

which implies

(
z(1) − z(2)

)
(t,x) =

(
δv + η2

µv
Kc

)∫ t

0
exp

(∫ t

s

(
− µv + c(1)(σ,x)

·
(
δv + η2

µv
Kc

))
dσ

)[(
c(1) − c(2)

)
z(2)
]

(s,x) ds (7.3.27)

for (t,x) ∈ (0, T )× Ω.

Hence, we deduce from (7.3.12), (7.3.13) and (7.3.26) that 1
Kv
≤ z(j) ≤ 1

C2
,

∣∣∣∇z(j)
∣∣∣ (t,x) ≤ C12

(∫ t

0

∣∣∣∇c(j)
∣∣∣ (σ,x) dσ + |∇v0|(x)

)
,∣∣∣∇z(1) −∇z(2)

∣∣∣ (t,x) ≤ C12

∫ t

0

(∣∣∣∇z(2)
∣∣∣ (s,x) +

∫ t

0

∣∣∣∇c(1)
∣∣∣ (σ,x) dσ

)
·
∣∣∣c(1) − c(2)

∣∣∣ (s,x) ds

+C12

∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) ds (7.3.28)

are satisfied for (t,x) ∈ (0, T )× Ω and j ∈ {1, 2}.
Therefore, we have

∣∣∣v(1) − v(2)
∣∣∣ (t,x) =

∣∣∣∣∣z(2) − z(1)

z(1)z(2)

∣∣∣∣∣ (t,x) ≤ C13

∫ t

0

∣∣∣c(1) − c(2)
∣∣∣ (s,x) ds,

∣∣∣∇v(1) −∇v(2)
∣∣∣ (t,x) =

∣∣∣∣∣− ∇z(1)

(z(1))2
+
∇z(2)

(z(2))2

∣∣∣∣∣ (t,x)

=

∣∣∣∣∣∇(z(2) − z(1))

(z(2))2
+

((z(1))2 − (z(2))2)∇z(1)

(z(1))2(z(2))2

∣∣∣∣∣ (t,x)

≤ C13

[
|∇v0|(x) +

∫ t

0

(∣∣∣∇c(1)
∣∣∣+
∣∣∣∇c(2)

∣∣∣) (σ,x) dσ

]
·
∫ t

0

∣∣∣c(1) − c(2)
∣∣∣ (s,x) ds+ C13

∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) ds (7.3.29)

for (t,x) ∈ (0, T )× Ω.
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In particular, by Hölder’s inequality this implies∫
Ω

∣∣∣v(1) − v(2)
∣∣∣2 (t,x) dx ≤ C2

13

∫
Ω
t

∫ t

0

∣∣∣c(1) − c(2)
∣∣∣2 (s,x) dsdx

≤ C2
13t

2 sup
s∈(0,t)

∫
Ω

∣∣∣c(1) − c(2)
∣∣∣2 (s,x)dx

≤ C2
13T

2
∥∥∥c(1) − c(2)

∥∥∥2

L∞(0,t;L2(Ω))
(7.3.30)

and ∫ t

0

∫
Ω

∣∣∣v(1) − v(2)
∣∣∣2 (s,x) dxds ≤ C2

13T
2

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds (7.3.31)

for t ∈ (0, T ).

In view of (7.2.5)-(7.2.7), L := l(1) − l(2) satisfies

Lt = α∆L− βL+ δl

(
c(1)v(1) − c(2)v(2)

)
in (0, T )× Ω (7.3.32)

together with the homogeneous Neumann boundary condition and L(0,x) = 0 for x ∈ Ω.
Hence, by [A7.22, Theorem IV.9.1] (and the remark at the end of Section IV.9 concerning
the Neumann problem) we obtain

‖L‖L2(0,t;W 2,2(Ω)) ≤ C14

∥∥∥c(1)v(1) − c(2)v(2)
∥∥∥
L2((0,t)×Ω)

for all t ∈ (0, T ) and deduce from (7.3.26) and (7.3.31) that∥∥∥l(1) − l(2)
∥∥∥2

L2((0,t)×Ω)
+
∥∥∥∇l(1) −∇l(2)

∥∥∥2

L2((0,t)×Ω)

≤ C15

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds (7.3.33)

is fulfilled for all t ∈ (0, T ).
Moreover, by using (7.3.32), L(0,x) = 0 for x ∈ Ω, (7.3.26), (7.3.30) and Young’s inequal-
ity, we obtain∫

Ω

∣∣∣l(1) − l(2)
∣∣∣2 (t,x) dx = 2

∫ t

0

∫
Ω
LLt(s,x) dxds

= −2α

∫ t

0

∫
Ω
|∇L|2(s,x) dxds− 2β

∫ t

0

∫
Ω
L2(s,x) dxds

+2δl

∫ t

0

∫
Ω
L
(
c(1)v(1) − c(2)v(2)

)
(s,x) dxds

≤
δ2
l

2β

∫ t

0

∫
Ω

(
c(1)v(1) − c(2)v(2)

)2
(s,x) dxds
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≤ C16

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))
(7.3.34)

for t ∈ (0, T ).

Since y(j) is a solution to a linear ODE, we obtain (similarly as done above for z(j)) from
(7.3.26), (7.3.29), and the regularity of G that∣∣∣y(1)

i − y
(2)
i

∣∣∣ (t,x) ≤ C17

∫ t

0

(∣∣∣c(1) − c(2)
∣∣∣+
∣∣∣l(1) − l(2)

∣∣∣) (s,x) ds (7.3.35)

holds for t ∈ (0, T ) and i ∈ {1, 2}. Thus, in a similar manner we have∣∣∣κ(1) − κ(2)
∣∣∣ (t,x) ≤ C18

∫ t

0

(∣∣∣c(1) − c(2)
∣∣∣+
∣∣∣l(1) − l(2)

∣∣∣) (s,x) ds (7.3.36)

for t ∈ (0, T ) due to (7.3.26), (7.3.35) and the regularity of H.

Next in order to abbreviate notation we define ϕj := ϕ(κ(j), c(j), v(j)), ψj := ψ(κ(j), v(j))
and fj := f(c(j), l(j)) for j ∈ {1, 2}. As 2p ≥ 2 and c(j) is a weak solution to the first
equation of (7.2.5) fulfilling (7.2.6), (7.2.7) and (7.3.26), we deduce that

1

2

∫
Ω

(
c(1) − c(2)

)2
(t,x)dx

=
1

2

∫ t

0

∫
Ω

d

dt

(
c(1) − c(2)

)2
(s,x) dxds

=

∫ t

0

∫
Ω
∇
(
c(1) − c(2)

) [
− ϕ1∇c(1) + ϕ2∇c(2) + ψ1c

(1)∇v(1) − ψ2c
(2)∇v(2)

+f1c
(1)∇l(1) − f2c

(2)∇l(2)
]
(s,x) dxds

+

∫ t

0

∫
Ω
µc

(
c(1) − c(2)

) [
c(1)

(
1− c(1)

Kc
− η1

v(1)

Kv

)

−c(2)

(
1− c(2)

Kc
− η1

v(2)

Kv

)]
(s,x) dxds

= −
∫ t

0

∫
Ω
ϕ1

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

+

∫ t

0

∫
Ω
ψ1c

(1)∇
(
v(1) − v(2)

)
∇
(
c(1) − c(2)

)
(s,x) dxds

+

∫ t

0

∫
Ω
∇
(
c(1) − c(2)

) [
(ϕ2 − ϕ1)∇c(2) +

(
ψ1c

(1) − ψ2c
(2)
)
∇v(2)

+
(
f1c

(1) − f2c
(2)
)
∇l(2)

]
(s,x) dxds
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+

∫ t

0

∫
Ω
f1c

(1)∇
(
l(1) − l(2)

)
∇
(
c(1) − c(2)

)
(s,x) dxds

+

∫ t

0

∫
Ω
µc

(
c(1) − c(2)

) [
c(1)

(
1− c(1)

Kc
− η1

v(1)

Kv

)

−c(2)

(
1− c(2)

Kc
− η1

v(2)

Kv

)]
(s,x) dxds

=: −I1 + I2 + I3 + I4 + I5 (7.3.37)

holds for t ∈ (0, T ).

We further define

g(t,x) :=
(∣∣c(1) − c(2)

∣∣+
∣∣l(1) − l(2)

∣∣) (t,x),

h(t,x) :=
(∣∣∇c(2)

∣∣+
∣∣∇v(2)

∣∣+
∣∣∇l(2)

∣∣) (t,x)
(7.3.38)

for (t,x) ∈ (0, T )× Ω.
In view of (7.3.26)-(7.3.36), (7.3.16) and (7.3.3) there are positive constants ε and C19

such that
ϕ1 ≥ ε in (0, T )× Ω (7.3.39)

and (
|ϕ1 − ϕ2|+

∣∣∣ψ1c
(1) − ψ2c

(2)
∣∣∣+
∣∣∣f1c

(1) − f2c
(2)
∣∣∣) (t,x)

≤ C19

(
g(t,x) +

∫ t

0
g(s,x) ds

)
,

‖h‖L2p((0,t)×Ω) ≤ C19

(7.3.40)

are fulfilled for t ∈ (0, T ).

Next we fix

r :=
2p

p− 1
and a :=

1
2 −

1
r

1
n

=
n

2p
(7.3.41)

and remark that p > n+2
2 yields a ∈ (0, 1). Therefore, by the inequalities of Gagliardo-

Nirenberg and Young, there exist constants CGN > 0 and Cε > 0 such that

‖u‖Lr(Ω) ≤ CGN
(
‖∇u‖aL2(Ω)‖u‖

1−a
L2(Ω)

+ ‖u‖L2(Ω)

)
≤ ε‖∇u‖L2(Ω) + Cε‖u‖L2(Ω) (7.3.42)

is satisfied for all u ∈W 1,2(Ω).

Furthermore, by (7.3.2) and (7.3.26) there is C20 > 0 such that w(t,x) := h(t,x) +
|∇v0|(x) +

∫ t
0 (|∇c(1)|+ |∇c(2)|)(σ,x) dσ satisfies

‖w‖L2p((0,t)×Ω) ≤ C20 (7.3.43)
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for all t ∈ (0, T ).

Thus, (7.3.29), (7.3.33), (7.3.34) and (7.3.40)-(7.3.43) along with a ∈ (0, 1) and p(1−a) =
2p−n

2 > 1 and the inequalities of Hölder and Young yield

I2 + I3

≤
∫ t

0

∫
Ω
ψ1c

(1)∇
(
v(1) − v(2)

)
∇
(
c(1) − c(2)

)
(s,x)dxds

+C19

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) · h(s,x)

(
g(s,x) +

∫ s

0
g(σ,x) dσ

)
dxds

≤ C21

∫
Ω

∫ t

0

∫ s

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (σ,x)dσ

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x)dsdx

+C21

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) · w(s,x)

∫ s

0
g(σ,x) dσdxds

+C19

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x) · h(s,x) · g(s,x) dxds

≤ C21

∫
Ω

∫ t

0

1

2

d

ds

(∫ s

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (σ,x)dσ

)2

dsdx

+C21

∫ t

0

∫ s

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·
(∫

Ω
|g|

2p
p−1 (σ,x) dx

) p−1
2p

dσds+ C19

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|h|2p(s,x) dx

) 1
2p

·
(∫

Ω
|g|

2p
p−1 (s,x) dx

) p−1
2p

ds

≤ C21

∫
Ω

1

2

(∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣ (s,x)ds

)2

dx

+C21

∫ t

0

∫ s

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·

[
ε

(∫
Ω
|∇g|2(σ,x) dx

) 1
2

+ Cε

(∫
Ω
g2(σ,x) dx

) 1
2

]
dσds

+C19CGN

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|h|2p(s,x) dx

) 1
2p

·

[(∫
Ω
|∇g|2(s,x) dx

)a
2

·
(∫

Ω
g2(s,x) dx

) 1−a
2

+

(∫
Ω
g2(s,x) dx

) 1
2

]
ds

≤ C21
t

2

∫
Ω

∫ t

0

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dsdx

+εC21t
1
2

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2
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·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·
(∫ s

0

∫
Ω
|∇g|2(σ,x) dxdσ

) 1
2

ds

+CεC21T
1
2

∫ t

0

(∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dx

) 1
2

·
(∫

Ω
|w|2p(s,x) dx

) 1
2p

·
(∫ s

0

∫
Ω
g2(σ,x) dxdσ

) 1
2

ds

+
ε

36

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds+

ε

72

∫ t

0

∫
Ω
|∇g|2(s,x) dxds

+C22

∫ t

0

(∫
Ω
|h|2p(s,x) dx

) 1
p(1−a)

∫
Ω
g2(s,x) dxds

+C22

∫ t

0

(∫
Ω
|h|2p(s,x) dx

) 1
p
∫

Ω
g2(s,x) dxds

≤ C21
t

2

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+εC21t
1
2

[(∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (σ,x) dxdσ

) 1
2

+

(∫ t

0

∫
Ω

∣∣∣∇l(1) −∇l(2)
∣∣∣2 (σ,x) dxdσ

) 1
2
]

·
(∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

) 1
2

·

(∫ t

0

(∫
Ω
|w|2p(s,x) dx

) 1
p

ds

) 1
2

+CεC21T
1
2

(∫ t

0

∫
Ω
g2(σ,x) dxdσ

) 1
2

·
(∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

) 1
2

·

(∫ t

0

(∫
Ω
|w|2p(s,x) dx

) 1
p

ds

) 1
2

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 (s,x) dxds

+
ε

36

∫ t

0

∫
Ω

∣∣∣∇l(1) −∇l(2)
∣∣∣2 (s,x) dxds

+C22

(
sup
s∈(0,t)

∫
Ω
g2(s,x) dx

)
·
(
C

2
1−a
19 t

p(1−a)−1
p(1−a) + C2

19t
p−1
p

)
≤

(
C21

t

2
+ εC21t

1
2 · C20t

p−1
2p

)∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds
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+
9εC2

21T

2
· C2

20T
p−1
p · C15

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+C2
εC

2
21T ·

9

2ε
· C2

20T
p−1
p · (2C15 + 2)

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+
ε

18

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+
ε

36
· C15

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+C22

(
C

4p
2p−n
19 t

2p−n−2
2p−n + C2

19t
p−1
p

)
· (2C16 + 2)

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))

≤
(
C21

t

2
+ εC21C20t

2p−1
2p +

ε

6

)∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+C23

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+C24

(
t

2p−n−2
2p−n + t

p−1
p

)∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))
(7.3.44)

for t ∈ (0, T ).

Thus, fixing t0 := min{ ε
3C21

, (6C20C21)
− 2p

2p−1 , (8C24)
− 2p−n

2p−n−2 , (8C24)
− p
p−1 , T}, inserting

(7.3.39) and (7.3.44) into (7.3.37) and using Young’s inequality along with (7.3.26), (7.3.29)
and (7.3.33), we conclude that

1

2

∫
Ω

(
c(1) − c(2)

)2
(t,x)dx

≤ −ε
∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds+

ε

2

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds

+C23

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds+

1

4

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))

+
ε

2

∫ t

0

∫
Ω

∣∣∣∇c(1) −∇c(2)
∣∣∣2 dxds+

C25

ε

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

+C26

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

≤ C27

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds+

1

4

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,t;L2(Ω))

holds for all t ∈ (0, t0). As the right-hand side of the last inequality is nondecreasing for
t ∈ (0, t0), we obtain∥∥∥c(1) − c(2)

∥∥∥2

L∞(0,t;L2(Ω))
= sup

s∈(0,t)

∫
Ω

(
c(1) − c(2)

)2
(s,x)dx
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≤ 4C27

∫ t

0

∥∥∥c(1) − c(2)
∥∥∥2

L∞(0,s;L2(Ω))
ds

for t ∈ (0, t0). In view of c(1)(0,x) = c(2)(0,x) = c0(x), Gronwall’s lemma implies that
c(1) = c(2) in [0, t0]× Ω.

As all the constants depend on T but not on t0, by repeating this argument we have
c(1) = c(2) in [mt0,min{(m + 1)t0, T}] × Ω for all m ∈ N such that mt0 ≤ T . Hence,
c(1) = c(2) in [0, T ]× Ω. In view of (7.3.29)-(7.3.36), we further deduce that the solutions
(c(j), v(j), l(j),y(j), κ(j)), j ∈ {1, 2}, to (7.2.5)-(7.2.7) coincide. Thus, the proof of the the-
orem is completed.

7.3.2 The case with constant delay

Now we consider the case with a constant delay τ > 0 in equation (7.2.4) for the cell
contractivity. We prove the local existence by using the method of steps which is well-
known in the context of delay differential equations (see e.g., [A7.3, A7.4] and the references
therein).

Theorem 7.3.2 Suppose that τ > 0 and p ∈ (n+2
2 ,∞) and let (7.3.2), (7.3.3) and (7.2.3)

be fulfilled. Then there exists T > 0 such that (7.2.5)-(7.2.7) has a unique solution satis-
fying (7.3.4).

Proof. We take T > 0 as defined in Theorem 7.3.1 and set tm := min{mτ, T} for m ∈ N0

and m0 := max{m ∈ N0 : tm < T}. Then, in view of (7.2.7), ỹ(t,x) := y(t−τ,x) satisfies
ỹ(t,x) = y0(x) for (t,x) ∈ [0, t1] × Ω̄ and therefore fulfills ỹ ∈ Z2 ∩ V 2 and ỹ ∈ Y in
[0, t1]× Ω̄ due to (7.3.2).

Hence, (7.2.4) is a linear ODE in (0, t1] × Ω so that the existence of a unique solution
S(1) := (c(1), v(1), l(1),y(1), κ(1)) to (7.2.5)-(7.2.7) in [0, t1]× Ω satisfying (7.3.4) is proved
in exactly the same way as in Theorem 7.3.1 (in fact, even statements (7.3.16), (7.3.24)
and (7.3.36) concerning κ remain unchanged).

Now assume that we have a solution S(m) to (7.2.5)-(7.2.7) in [0, tm]×Ω satisfying (7.3.4)
for some m ≤ m0. Then ỹ ∈ Z2∩V 2 and ỹ ∈ Y in [0, tm+1]×Ω̄ hold due to (7.3.4). Hence,
by Theorem 7.3.1 there exists a unique solution S(m+1) to (7.2.5)-(7.2.7) in [0, tm+1]× Ω
satisfying (7.3.4). In view of the uniqueness, we have S(m+1) = S(m) in [0, tm] × Ω. By
mathematical induction we obtain a unique solution to (7.2.5)-(7.2.7) in [0, T )×Ω which
fulfills (7.3.4).
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7.4 Nondimensionalization

Before performing our numerical simulations, we write system (7.2.5) in terms of dimen-
sionless variables. To this end we rescale

c̃ :=
c

Kc
, ṽ :=

v

Kv
, l̃ :=

l

λ
, x̃ =

x

L
,

t̃ :=
t

T
, ỹ1 =

y1

R0
, ỹ2 =

y2

R0
, θ̃ =

t

χT
,

(7.4.1)

where L is the reference length scale, T is the reference time unit, λ is the reference
concentration of proteolytic rests. Since the processes on the subcellular level are much
faster than the ones on the macrolevel we set t̃ = χθ̃ where χ ∈ (0, 1).

After using (7.2.8) and the transformations (7.4.1), we obtain the nondimensionalized
system for (7.2.5) as



c̃t̃ = ∇ ·
(
D̃c

κ

1 + c̃ṽ
∇c̃
)
−∇ ·

(
D̃Hκṽ

1 + ṽ
c̃∇ṽ

)
−∇ ·

(
D̃k

1 + c̃l̃
c̃∇l̃

)
+µ̃cc̃ (1− c̃− η1ṽ) ,

ṽt̃ = −δ̃v c̃ṽ + µ̃vṽ (1− η2c̃− ṽ) ,

l̃t̃ = α̃∆l̃ + δ̃lc̃ṽ − β̃l̃,
˙̃y1 = k̃1(1− ỹ1 − ỹ2)ṽ − k̃−1ỹ1,

˙̃y2 = k̃2(1− ỹ1 − ỹ2)l̃ − k̃−2ỹ2

κ̇ = −q̃κ+
M̃ỹ1(θ̃ − τ̃)

1 + ỹ2(θ̃ − τ̃)

(7.4.2)

with ‘upper dot’ denoting the time derivative with respect to θ̃ and the dimensionless
parameters

D̃c =
DcT

L2
, D̃H =

DHTKv

L2
, D̃k =

DkTλ

L2
, µ̃c = µcT,

δ̃v = δvKcT, µ̃v = µvT,

α̃ =
αT

L2
, δ̃l =

KcKvTδl
λ

, β̃ = βT,

k̃1 = Kvk1χT, k̃−1 = k−1χT, k̃2 = λk2χT, k̃−2 = k−2χT,

q̃ = qχT, M̃ = MχT, τ̃ =
τ

χT
.

For the ease of notation we omit the tildes and continue with system (7.4.2).



210 ARTICLE 7: ON A MULTISCALE MODEL INVOLVING CONTRACTIVITY

7.5 Numerical Results

In this section we investigate the qualitative behavior of the model via numerical simula-
tions in 1-D. To this end we consider (7.4.2) with the initial conditions

c(0, x) = exp

(
−x2

ε

)
, x ∈ [0, 1] and ε > 0,

v(0, x) = 1− exp

(
−x2

ε

)
, x ∈ [0, 1] and ε > 0,

l(0, x) = ζc(0, x), x ∈ [0, 1] and ζ ∈ [0, 1),

(7.5.1)

for the cancer cell density, ECM density, and concentration of proteolytic residuals, re-
spectively. We assume that initially the space is mainly occupied by the ECM, while there
is a cluster of cancer cells which have already penetrated a short distance into the tissue.
The initial density of proteolytic rests is proportional to the initial cancer cell density.
Throughout our numerical simulations we take ε = 0.01, ζ = 0.3, and impose homoge-
neous Neumann boundary conditions as in equation (7.2.6), hence we assume that there
is no flux of tumor cells, ECM fibers and proteolytic residuals across the boundary of the
domain Ω = (0, 1).
On the subcellular level we expect the concentration y1 of the integrins binding to ECM
fibers to increase on the left side of the domain (due to the high concentration of fibers) and
to decrease on the rest of the domain (as cancer cells have not reached that portion yet).
On the other hand, the initial concentration y2 of integrins binding to the soluble ligand
originating from proteolysis depends on the initial densities of c and l and thus should
decrease throughout the spatial domain. Hence, we choose a gamma probability density
function for y1, whereas for the initial y2 we take a function with a decaying exponential
profile (see Figure 7.1). Moreover, since contractivity is mainly the outcome of biochemical
processes initiated by the binding of integrins to the ECM fibers, we consider κ0 to be
proportional to y1(0).
For the discretization of the model we use the finite difference method (FDM). We divide
the space interval [0, 1] into k parts with k + 1 nodes, with the space step ∆x (in our
computations ∆x = 0.01). We start solving system (7.4.2) with the equation for the ECM
density v. We use forward differences for the time derivatives in our system which after
the discretization of the ECM equation leads to

vn+1
i =

1

1 + δvcni ∆t
[vni + ∆tµvv

n
i (1− η2c

n
i − vni )], i = 0, 1, 2, ..., k, (7.5.2)

with n denoting the time level. We choose the time increment for the macrolevel as
∆t = χ∆t, where ∆t = 0.01 is the time step for the events on the microscale. In our
computations we use χ = 0.01.
In order to discretize the diffusion term on the right-hand side of the equation for prote-
olytic residuals, we use the central difference and obtain

ln+1
i − lni

∆t
= α ·

ln+1
i−1 − 2ln+1

i + ln+1
i+1

(∆x)2
+ δlc

n
i v

n+1
i − βln+1

i , i = 0, 1, ..., k. (7.5.3)
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Figure 7.1: Initial condition for the vector y of bound integrins

leading to the (k + 1)× (k + 1) linear system of equations

All
n+1 = ln + ϑ̃

ñ
l , (7.5.4)

where ln+1 is the vector containing the values of l for the k + 1 space nodes at (n+1)-th

time level, Al is the tridiagonal matrix coming from the FDM discretization and ϑ̃
ñ
l is the

vector with the entries ∆tδlc
n
i v

n+1
i for i = 0, 1, 2, ..., k where we make use of the updated

values vn+1
i found by solving (7.5.2).

Before solving the equation for the evolution of cancer cell density, we solve the ODEs
on the microlevel in order to update the values for the contractivity κ. The correspond-
ing system of delay differential equations is discretized by using the semi-implicit Euler
method:

(yn+1
1 )i =

1

1 + k−1∆t+ k1v
n+1
i ∆t

[(yn1 )i + k1∆t(1− (yn2 )i)v
n+1
i ],

(yn+1
2 )i =

1

1 + k−2∆t+ k2l
n+1
i ∆t

[(yn2 )i + k2∆t(1− (yn+1
1 )i)l

n+1
i ],

κn+1
i =

1

1 + q∆t

[
κni +

∆tM(ŷ1)i
1 + (ŷ2)i

]
,

(7.5.5)

where (ŷm)i, is the vector containing the values of ym (m = 1, 2) at the space node i
(i = 0, 1, 2, ...k) and at time (n+ 1)∆t− τ , with τ denoting the delay.

For the discretization of the PDE for cancer cells we use a nonstandard finite difference
scheme [A7.27, A7.10, A7.26] which handles the diffusion part explicitly and the reaction
terms implicitly. While adapting the method into the first three terms on the right-hand
side of the first equation in (7.4.2) we handle the diffusion, haptotaxis, and chemotaxis
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coefficients explicitly (w.r.t c) and the rest implicitly:

∇(ϕ(κ, c, v)∇c)|xi =
1

2(∆x)2

∑
k∈Ni

(ϕ(κn+1
k , cnk , v

n+1
k ) + ϕ(κn+1

i , cni , v
n+1
i ))

·(cn+1
k − cn+1

i ),

∇(ψ(κ, v)c∇v)|xi =
1

2(∆x)2

∑
k∈Ni

(ψ(κn+1
k , vn+1

k )cn+1
k + ψ(κn+1

i , vn+1
i )cn+1

i )

·(vn+1
k − vn+1

i ),

∇(f(c, l)c∇l)|xi =
1

2(∆x)2

∑
k∈Ni

(f(cnk , l
n+1
k )cn+1

k + f(cni , l
n+1
i )cn+1

i )

·(ln+1
k − ln+1

i ), (7.5.6)

where Ni = {i− 1, i+ 1} is the index set pointing at the direct neighbors of the node xi.
After employing (7.5.6) for the discretization of the equation for cancer cells we get

Acc
n+1 = cn + ϑ̃

ñ
c , (7.5.7)

with the (k + 1)× (k + 1) tridiagonal matrix Ac and the vector ϑ̃
ñ
c of length k + 1 which

has entries ∆tµcc
n
i (1− cni − η1v

n+1
i ) for i = 0, 1, 2, ..., k.

In our simulations we fixed the following parameters:

Dc = 10−3, DH = 1, Dk = 0.5, µc = 1, η1 = 0.05,

δv = 10, µv = 0.3, η2 = 0.9, α = 1, δl = 0.05, β = 0.15,

k1 = 2, k−1 = 0.06, k2 = 0.31, k−2 = 0.048, q = 3, M = 1,

which are chosen from the parameter ranges given in Table 7.1.

We illustrate the variations of the cancer cell density, ECM density, concentration of
proteolytic rests, and contractivity function in space. As mentioned in Section 7.2, the cell
contractivity is the outcome of a sequence of biochemical processes and thus we introduce
a delay (τ) in our system characterizing the time elapsed between integrin binding and
the reorganization of the cell’s shape by contractivity. In order to see the effect of the
delay we draw the set of plots in Figure 7.2. We show the evolution of cancer cells, ECM
fibers, protelytic rests, and contractivity function at different times with a time lag τ = 4
and respectively without delay. As expected, the invasion of cancer cells is faster in the
case without delay.
Still in the case with a time lag of τ = 4, we are now interested in the effects of includ-
ing subcellular dynamics. To this aim we compare the pure macroscopic setting (hence
κ = 1) with our multiscale model (7.4.2). The simulations are shown for a sequence of
time steps in Figure 7.3. Observe that accounting for the subcellular dynamics slows down
the invasion of tumor cells into the tissue, but leads at later times to higher peaks of the
aggregates at the invasion front. This is what one would expect from a qualitative point of
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Parameters Range Source

Dc (Diffusion coefficient for c) 10−5 − 10−3 [A7.9]
DH (Haptotaxis coefficient) 10−3 − 1 consistent with [A7.9]
Dk (Chemotaxis coefficient) 10−3 − 1 consistent with [A7.9]
µc (Proliferation of cancer cells) 0.05− 2 [A7.9]
δv (Rate of degradation of ECM) 1-20 [A7.9]
µv (Proliferation of ECM) 0.15-2.5 [A7.9]
α (Diffusion coefficient for l) 0.001− 1 [A7.9]
β (Decay of l) 0.13− 0.95 [A7.9]
δl (Production rate of l) 0.05− 1 [A7.9]
k2 (association rate constant for y2) 3× 10−1 − 1 consistent with [A7.11]
k−2 (dissociation rate constant for y2) 4× 10−2 − 10−1 consistent with [A7.11]

Table 7.1: Parameter ranges in the model

view, too. The genuinely macroscopic setting also seems to exacerbate the tissue degrada-
tion, while the two settings do not appear to make any difference to the concentration of
proteolytic enzymes. Furthermore, notice that ignoring the microscale predicts a decrease
in the original tumor, which is actually not expected in practice.

7.6 Discussion

In this work we proposed and analyzed a mathematical model for tumor cell migration
through tissue networks, influenced both by haptotaxis and chemotaxis. Our multiscale
setting is connecting the macroscopic level of cell population, fiber density, and chemoat-
tractant concentration with the microscopic one of integrin binding dynamics. The cou-
pling is realized with the aid of a contractivity function involved in the diffusion and
haptotaxis coefficients of the cancer cell equation written on the macroscale. The time
lag between integrin binding and translation of the initiated signal into motile behavior
of the cell population is accounted for via a delay term in the equation for the contrac-
tivity function. The multiscality and the coupling between different types of equations
increase the complexity of the resulting system, for which we proved the (local) existence
of a unique solution. Due to the lack of a priori bounds for the cancer cell density, the
global existence result is still out of reach unless generous assumptions are made on the
problem’s data, which, however, are usually not satisfied in the framework of a concrete
biological problem inferring a large variety of fluctuations.

But including microscale dynamics is not only interesting from a mathematical point of
view; it can help gaining a deeper insight into the processes involved in and influenced by
tumor cell migration. Hence, the cell-ECM interaction modeled by integrin dynamics as
in (7.2.4) has been found to play a crucial role in explaining fingering patterns for glioma
[A7.12] in a micro-meso setting, while in the context of bacterial motion the intracellu-
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Figure 7.2: Evolution of tumor cell density (blue), ECM fiber density (red), concentration
of proteolytic rests (green), and contractivity function (purple) in the cases with τ = 0
(dash-dot line) and with τ = 4 (solid line).

lar excitation-adaptation mechanism was shown to influence the motile, aggregation or
tactic behavior of the corresponding cell population, see, e.g., [A7.34, A7.32]. The model
proposed in [A7.26] in order to assess the effects of heat shock proteins (HSP) on tumor in-
vasion also aligns to the micro-macro approach proposed in this work, however, it provides
a much simplified, rather phenomenological description of the events on the subcellular
level connected to HSP dynamics.
The numerical simulations and the comparisons performed in Section 7.5 illustrate the ef-
fects of introducing the microscopic dynamics: the ’classical’, purely macroscopic diffusion-
haptotaxis-chemotaxis model overestimates the effective distance invaded in the tissue by
the cancer cells and underestimates the peaks of their aggregates at the front of the inva-
sion for later times. Furthermore, that setting predicts a decrease in the original tumor,
which seems unrealistic from a biological point of view.
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Figure 7.3: Evolution of tumor cell density (blue), ECM fiber density (red), concentration
of proteolytic rests (green), and contractivity function (purple) in the pure macroscopic
setting (dash-dot line) and with κ (solid line) satisfying the last equation in (7.4.2).
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Finally, we would like to stress out that the model presented here is merely a paradigm
for further multiscale settings, in which enhanced attention can be paid to a more detailed
description of subcellular events and hence to their effects on the population spread. The
validation of the model predictions would be desirable, which calls for the availability of
adequate medical data.
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We propose a model for acid-mediated tumor invasion involving two different scales: the
microscopic one, for the dynamics of intracellular protons and their exchange with their
extracellular counterparts, and the macroscopic scale of interactions between tumor cell
and normal cell populations, along with the evolution of extracellular protons. We also
account for the tactic behavior of cancer cells, the latter being assumed to biase their
motion according to a gradient of extracellular protons (following [A8.2, A8.31] we call
this pH taxis). A time dependent (and also time delayed) carrying capacity for the tumor
cells in response to the effects of acidity is considered as well. The global well posedness of
the resulting multiscale model is proved with a regularization and fixed point argument.
Numerical simulations are performed in order to illustrate the behavior of the model.

Key words: tumor cell migration, multiscale models, pH-taxis, time-delayed carrying
capacities, reaction-diffusion-taxis equations
MSC 2010: 35Q92, 92C17, 35K57, 35B40

11Technische Universität Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Str. 31,
67663 Kaiserslautern, Germany. E-mail: surulescu@mathematik.uni-kl.de

12Bülent Ecevit University, Faculty of Arts and Sciences, Department of Mathematics, 67100 Zonguldak,
Turkey. E-mail: gulnihal.meral@beun.edu.tr

219



220 ARTICLE 8: A MULTISCALE MODEL FOR PH-TACTIC INVASION

8.1 Introduction

A recent approach to cancer invasion is based on the role of the peritumoral environment
in determining cancer malignancy. Gatenby & Gillies [A8.12] suggested that biochemical
events therein may drive the selection of the cancerous phenotype, and such informations
can be used to conceive new therapies. Hypoxia and acidity, for instance, are factors that
can trigger the progression from benign to malignant growth [A8.10, A8.42]. Cancer cells
upregulate certain mechanisms which allow for extrusion of excessive protons and hence
acidify their surroundings. This triggers apoptosis of normal cells and thus allows the neo-
plastic tissue to extend into the space becoming available. Moreover, the pH was found to
directly influence the metastatic potential of tumor cells [A8.1, A8.28]. The mathematical
modeling of acid-mediated tumor invasion seems to have begun some decades ago with the
work by Gatenby & Gawlinski [A8.9], who proposed a model involving reaction-diffusion
equations to describe the interaction between the density of normal cells, tumor cells, and
the concentration of H+ ions produced by the latter. The well posedness of that model
was investigated in [A8.26], thereby also explicitly allowing for crowding effects (due to
competition with cancer cells) in the growth of normal cells. Still in the framework of
[A8.9], traveling waves were used to characterize the aggressive action of cancer cells on
their surroundings [A8.7]. Further developments of Gatenby & Gawlinski’s model involve
both vascular and avascular growth of multicellular tumor spheroids, assuming rotational
symmetry, for which existence and qualitative properties of the solutions were investigated
[A8.35].

The mentioned models all have a monoscale character and describe the interaction of
cancer and normal cell populations, coupled with the evolution of extracellular H+ con-
centration and possibly also with the concentration of matrix degrading enzymes [A8.27].
However, this macroscale dynamics is regulated by and influences the intracellular proton
dynamics [A8.22, A8.37, A8.42]. Webb et al. [A8.43, A8.44] proposed some mathematical
settings for the interdependence between the activity of several membrane ion transport
systems and the changes in the peritumoral space. The models involve even more bio-
logical details, like intracellular proton buffering, effects on the expression/activation of
matrix metalloproteinases (MMPs) and proton removal by vasculature. Webb, Sherratt,
and Fish [A8.43] also account for the influence of alkaline intracellular pH on the growth of
tumor cells, hence their model can be seen as a first step towards multiscale settings. How-
ever, the spatial dependence is essential for assessing the actual invasive behavior. This
leads to more complex models, coupling the subcellular level with the macroscopic scale
of populations. Some models of this new class involving both the subcellular and the pop-
ulation levels have been recently proposed and analyzed [A8.29, A8.30, A8.36, A8.39]. A
multiscale setting addressing acid-mediated tumor invasion has been presented in [A8.17];
it also accounts for stochasticity, which is a relevant feature inherent to many biological
processes occurring on all modeling levels and in particular, it seems to greatly influence
subcellular dynamics and individual cell behavior [A8.8, A8.14, A8.38]. Further multiscale
settings concerning tumor cell migration -so far, however, not necessarily in connection
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with acidosis- take into account more modeling levels and allow for a relatively detailed
description of processes taking place on the mesoscale, i.e., on the rank of individual cells
and their interactions with their environment [A8.3, A8.6, A8.19, A8.24].

Here we propose a multiscale model for acid-mediated cancer invasion, to be developed
in Section 8.2 and analyzed w.r.t. global well posedness in Section 8.3. We present some
numerical simulations in Section 8.4 to illustrate its performance and eventually give in
Section 8.5 a short discussion of the results.

8.2 The model

We denote by c(x, t) the density of cancer cells, by n(x, t) the density of normal cells,
and by h(x, t) and y(x, t) the concentrations of extracellular and intracellular protons,
respectively.

8.2.1 Subcellular dynamics

Glycolysis is a metabolic pathway for rather inefficient energy production and normally
used by cells under hypoxic conditions. Nevertheless, cancer cells consistently rely on the
glucose metabolism even in normoxic conditions. The high glycolytic rate of neoplastic
tissues is clinically used to diagnose and assess (via positron emission tomography, shortly
PET) tumor responses to treatment [A8.11]. Cancer cells seem to use this aerobic gly-
colytic phenotype for invasion and metastasis, as -unlike normal cells- they are able to
develop resistance against acid-induced toxicity. Environmental acidosis has been found
to be directly related to enhanced tumor proliferation [A8.25] and regulating angiogenesis
[A8.18]. The proton dynamics inside and outside tumor cells is controlled by a plethora
of processes. Relying on the facts in [A8.4, A8.44] and following [A8.17], we describe the
intracellular proton dynamics with the aid of the equation

dy

dt
= −R(y, h)− αy + g(c), (8.2.1)

where R(y, h) denotes the decay term for intracellular H+ due to membrane transporters
(e.g., NDCBE, NHE, and AE) 13, production by aerobic glycolysis (possibly depending
on microenvironmental vascularization), and buffering by organelles. It describes a (satu-
rated) growth with respect to the concentration y of intracellular protons and decay with
respect to the extracellular proton concentration h and takes in the nondimensionalized
model the form given in (8.2.6) below. The coefficient α in (8.2.1) denotes some decay
constant, and g(c) represents a source term due to the production (with saturation) by
cancer cells. Observe that (8.2.1) is an ordinary differential equation (ODE), the variable
x denoting the position of a cell having the intracellular proton concentration y(x, t) and
being seen as a parameter in that ODE.

13NDCBE (Na+ dependent Cl−-HCO−3 exchanger), NHE (Na+ and H+ exchanger) and AE (Cl−-HCO−3
or anion exchanger) are specific transporters present on the cell membrane.



222 ARTICLE 8: A MULTISCALE MODEL FOR PH-TACTIC INVASION

8.2.2 Extracellular proton concentration

In order to maintain an advantageous intracellular pH, cancer cells upregulate proton
extrusion through membrane transporters, leading to acidosis of the tumor environment.
The concentration of extracellular protons h is a macroscopic quantity explicitly depending
on time and position. It is produced the same way the intracellular protons decay by
transport through the cell membrane and it diffuses through the extracellular space with
a diffusion constant Dh:

∂th = Dh∆h+R(y, h) (8.2.2)

8.2.3 Cell dynamics on the macroscale

On the population level we are interested in the dynamics of tumor cells in interdependence
with the normal cells and under the influence of proton concentrations. The evolution of
cancer cell density is characterized by nonlinear diffusion, with the diffusion coefficient de-
pending on the solution, more precisely inversely proportional to the interactions between
cancer and normal cells, as these are slowing down the diffusivity. Furthermore, we assume
the tumor cells to biase their motion in response to a gradient of extracellular protons and
call this behavior pH-taxis. The notion has been firstly proposed in the context of bacteria
avoiding acidic regions (hence the protons playing the role of a chemorepellent) [A8.20]
and more recently also in reference to motility of cancer cells, the latter being enhanced in
the direction of extracellular pH gradient [A8.2, A8.31]. The pH-tactic sensitivity function
f(h, c) (a concrete choice of which is proposed in (8.2.6) below) is nonlinearly depending
on the tumor cell density and the interaction of cancer cells with extracellular protons.
The tumor cell proliferation is modeled with a logistic growth with crowding. Thereby,
the carrying capacity Kc of cancer cells depends on the extracellular proton concentration
to stress out that the cancer cells are allowed to infer an enhanced growth due to more
space becoming available through normal cell killing by acidity. However, at the same
time the tumor cell density cannot exceed a certain threshold, according to the acidity
level: a too acidic environment is baneful even for cancer cells. The time delay expresses
the fact that their adaptation of the carrying capacity to the acidosis in the peritumoral
region is not instantaneous. 14 The proliferation rate µc(y) depends on the intracellular
proton concentration. Indeed, malignant cells whose intracellular medium gets alkalinized
were found to exhibit enhanced proliferation [A8.5, A8.16, A8.46], which motivates the
choice of µc in (8.2.6).

The normal cell dynamics is much easier to describe: normal tissue is not diffusing, it is
only degraded by the environmental acidity (i.e., by the action of extracellular protons) and
normal cell proliferation is supposed to be well enough described by logistic growth with
crowding, also against tumor cells. The carrying capacity of the latter is still depending on
the acidity, but now no longer needs to infer a time lag, as the focus is on the proliferation
of normal cells.

14The idea of introducing time-lagged carrying capacities was previously used by Yukalov et al. [A8.47]
in a simpler ODE framework to model punctuated evolution in a population under several regimes.
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Altogether, our multiscale model for acid-mediated tumor invasion takes the following
form: 

∂tc = ∇ · (ϕ(c, n)∇c)−∇ · (f(h, c)∇h)

+µc(y)c
(

1− c
Kc(h(·,t−τ)) − η1

n
Kn

)
in Ω× (0, T ),

∂tn = −δnhn+ µnn
(

1− η2
c

Kc(h(·,t)) −
n
Kn

)
in Ω× (0, T ),

∂th = Dh∆h+R(y, h) in Ω× (0, T ),

∂ty = −R(y, h)− αy + g(c) in Ω× (0, T ),

(8.2.3)

where Ω ⊂ RN is a bounded domain with smooth boundary and N ≤ 3. Denoting by ν
the outward unit normal on ∂Ω, we further endow (8.2.3) with the boundary conditions

∂νc = ∂νh = 0 on ∂Ω× (0, T ) (8.2.4)

and initial conditions

c(x, 0) = c0(x), n(x, 0) = n0(x), y(x, 0) = y0(x) for x ∈ Ω,
h(x, t) = h0(x, t) for x ∈ Ω, t ∈ [−τ, 0].

(8.2.5)

For the coefficient functions involved in (8.2.3), we propose

ϕ(c, n) := Dc
1+ cn

C0Kn

, f(h, c) := Mc
1+ ch

C0H0

, µc(y) := κ1

1+ y
Y0

,

Kc(h) := C0+bh
1+dh2 , g(c) := ρc

1+ c
C0

, R(y, h) := γhy

1+ y2

Y 2
0

+αhh2
− βhh

1+ y2

Y 2
0

(8.2.6)

and assume that all the constants in (8.2.3) and (8.2.6) are positive along with η1, η2 ∈
(0, 1).

8.3 Global existence

In order to prove the existence of a global weak solution to (8.2.3), let

ϕ, f,R ∈ C1([0,∞)2), µc,Kc, g ∈ C1([0,∞)) such that g ∈ L∞((0,∞))

and g ≥ 0, µc > 0, Kc > 0 on [0,∞).
(8.3.1)

Moreover, we assume that there exist H0, Y0 ∈ (0,∞) such that

R(y, 0) ≥ 0, R(y,H0) ≤ 0 for all y ∈ [0, Y0], R(0, h) ≤ 0 for all h ∈ [0, H0],

−R(Y0, h)− αY0 + ‖g‖L∞((0,∞)) ≤ 0 for all h ∈ [0, H0].
(8.3.2)

H0 and Y0 are upper bounds for the concentrations of the extra- and intracellular protons,
respectively. As R describes the effect of the proton exchange between the interior of the
cancer cell and its environment, e.g. the first two conditions in (8.3.2) mean that there is
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no proton transport into the tumor cell if there are no extracellular protons, while protons
cannot leave the cell if the extracellular proton concentration is at its maximal value.

With H0 and Y0 as defined above, we further assume that there exist positive constants
C1 and C2 such that

0 ≤ f(h, c) ≤ C1(1 + c),
C2

1 + c
≤ ϕ(c, n) ≤ C1 ∀(c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0],

(8.3.3)
and that for any a ∈ (0, H0) there is Ca > 0 such that

f(h, c) ≤ Ca for all (c, h) ∈ [0,∞)× [a,H0]. (8.3.4)

Observe that the functions given in (8.2.6) satisfy (8.3.1)-(8.3.4). Concerning the initial
data suppose that

c0, n0, y0 ∈ C0(Ω̄), h0 ∈ C0([−τ, 0];W 1,q(Ω)),

c0 ≥ 0, 0 ≤ n0 ≤ Kn, 0 ≤ y0 ≤ Y0 in Ω̄, δ ≤ h0 ≤ H0 in Ω̄× [−τ, 0]
(8.3.5)

with some q ∈ (N + 2,∞) and δ > 0. The following solution concept will be appropriate.

Definition 8.3.1 Let T ∈ (0,∞). A weak solution to (8.2.3)-(8.2.5) consists of nonneg-
ative functions

c ∈ L∞(Ω× (0, T )) ∩ L2((0, T );W 1,2(Ω)), n, y ∈ L∞(Ω× (0, T )),
h ∈ L∞(Ω× (−τ, T )) ∩ L2((0, T );W 1,2(Ω))

which satisfy for all ψ ∈ C∞0 (Ω̄× [0, T )) the equations

−
∫ T

0

∫
Ω
c∂tψ −

∫
Ω
c0ψ(·, 0) = −

∫ T

0

∫
Ω
ϕ(c, n)∇c · ∇ψ +

∫ T

0

∫
Ω
f(h, c)∇h · ∇ψ

+

∫ T

0

∫
Ω
µc(y)c

(
1− c

Kc(h(·, t− τ))
− η1

n

Kn

)
ψ, (8.3.6)

−
∫ T

0

∫
Ω
n∂tψ −

∫
Ω
n0ψ(·, 0) =

∫ T

0

∫
Ω

(
−δnhn+ µnn

(
1− η2c

Kc(h)
− n

Kn

))
ψ, (8.3.7)

−
∫ T

0

∫
Ω
h∂tψ −

∫
Ω
h0ψ(·, 0) = −Dh

∫ T

0

∫
Ω
∇h · ∇ψ +

∫ T

0

∫
Ω
R(y, h)ψ, (8.3.8)

−
∫ T

0

∫
Ω
y∂tψ −

∫
Ω
y0ψ(·, 0) =

∫ T

0

∫
Ω

(−R(y, h)− αy + g(c))ψ. (8.3.9)

If (c, n, h, y) is a weak solution to (8.2.3)-(8.2.5) for all T ∈ (0,∞), then we call it a global
weak solution to (8.2.3)-(8.2.5).

Now we state the main result of this section which establishes the existence of a global
weak solution.
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Theorem 8.3.2 Let Ω ⊂ RN be a bounded domain with smooth boundary and N ∈ N
and assume that (8.3.1)-(8.3.5) are fulfilled. Then there exists a global weak solution to
(8.2.3)-(8.2.5) in the sense of Definition 8.3.1 satisfying

c ∈ L∞loc(Ω̄× [0,∞)), 0 ≤ n ≤ Kn and 0 ≤ y ≤ Y0 in Ω× (0,∞),

h ∈ L∞((0,∞);W 1,q(Ω)), 0 ≤ h ≤ H0 in Ω× (−τ,∞).
(8.3.10)

If in addition c0 ∈ Cβ(Ω̄) is satisfied with some β ∈ ( 1
N+2 , 1), then there is a unique global

weak solution within the class of functions satisfying the conditions of Definition 8.3.1 and
h ∈ Lrloc([0,∞);W 1,r(Ω)) for some r > N + 2.

In order to prove this result, we use the following regularized problems for ε ∈ (0, 1):

∂tcε = ∇ · (ϕε(cε, nε)∇cε)−∇ · (fε(hε, cε)∇hε)

+µc(yε)cε

(
1− cε

Kc(hε(·,t−τ)) − η1
nε
Kn

)
in Ω× (0, Tε),

∂tnε = −δnhεnε + µnnε

(
1− η2

cε
Kcε(hε(·,t)) −

nε
Kn

)
in Ω× (0, Tε),

∂thε = Dh∆hε +R(yε, hε) in Ω× (0, Tε),

∂tyε = −R(yε, hε)− αyε + g(cε) in Ω× (0, Tε),

∂νcε = ∂νhε = 0 on ∂Ω× (0, Tε),

cε(x, 0) = c0ε(x), nε(x, 0) = n0ε(x), yε(x, 0) = y0ε(x) for x ∈ Ω,
hε(x, t) = h0ε(x, t) for x ∈ Ω, t ∈ [−τ, 0].

(8.3.11)

Here, we choose families of functions c0ε, n0ε, h0ε, y0ε, ϕε and fε, ε ∈ (0, 1), satisfying

c0ε, n0ε, y0ε ∈ C3(Ω̄), h0ε ∈ C3(Ω̄× [−τ, 0]), δ
2 ≤ h0ε ≤ H0 in Ω̄× [−τ, 0],

c0ε ≥ 0, 0 ≤ n0ε ≤ Kn, 0 ≤ y0ε ≤ Y0 in Ω̄,

∂νc0ε = ∂νh0ε = 0 on ∂Ω,

ϕε ∈ C3([0,∞)2) ∩W 2,∞([0,∞)× [0,Kn]), max{ε, C̃2
1+c} ≤ ϕε(c, n) ≤ C̃1

fε ∈ C3([0,∞)2) ∩W 2,∞([0, H0]× [0,∞)), 0 ≤ fε(h, c) ≤ C̃1(1 + c),

Kcε ∈ C3([0,∞)), 0 < a2 ≤ Kcε(h) ≤ a1

(8.3.12)
with positive constants C̃1, C̃2, a1, a2 for all (c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0] and any
ε ∈ (0, 1) as well as

c0ε → c0 and n0ε → n0 and y0ε → y0 in C0(Ω̄)

h0ε → h0 in C0([−τ, 0];W 1,q(Ω)), ϕε → ϕ in C1([0, r0]× [0,Kn]),

fε → f in C1([0, H0]× [0, r0]), Kcε → Kc in C1([0, H0])

(8.3.13)

as ε↘ 0 for all r0 > 0. Furthermore, we assume that for any a ∈ (0, H0) there is C̃a > 0
such that

fε(h, c) ≤ C̃a for all (c, h) ∈ [0,∞)× [a,H0] (8.3.14)

and all ε ∈ (0, 1).
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8.3.1 Global existence for the regularized problems

We first state the local existence of classical solutions for (8.3.11) along with an extensi-
bility criterion and prove this result like in [A8.36, Lemma 3.1].

Lemma 8.3.3 Let ε ∈ (0, 1) and assume that (8.3.1), (8.3.2) and (8.3.12) are fulfilled.
Then there exist a maximal existence time Tε ∈ (0,∞] and functions cε, nε, hε ∈ C2,1(Ω̄×
[0, Tε)) and yε ∈ C1([0, Tε);C

0(Ω̄)) which solve (8.3.11) in the classical sense and satisfy

cε ≥ 0, 0 ≤ nε ≤ Kn, 0 ≤ yε ≤ Y0 in Ω̄× [0, Tε),

0 ≤ hε ≤ H0 in Ω̄× [−τ, Tε).
(8.3.15)

If moreover Tε <∞ holds, then

lim sup
t↗Tε

(
‖cε(·, t)‖C0(Ω̄) + ‖hε(·, t)‖W 1,q(Ω)

)
=∞ (8.3.16)

is fulfilled, where q ∈ (N + 2,∞) is defined in (8.3.5).

Proof. We fix β ∈ (0, 1), T := 1 and set

A := ‖c0ε‖C2+β(Ω̄) + ‖n0ε‖C2+β(Ω̄) + ‖h0ε‖C2+β(Ω̄) + ‖h0ε‖
Cβ,

β
2 (Ω̄×[−τ,0])

+ ‖y0ε‖Cβ(Ω̄) <∞.

Moreover, let c0εt(x), n0εt(x) and h0εt(x) denote the right-hand side of the first, second
and third equation of (8.3.11) evaluated at (x, t) = (x, 0), respectively, so that

B := ‖c0ε‖Cβ(Ω̄) + ‖c0εt‖C0(Ω̄) + ‖h0ε‖Cβ(Ω̄) + ‖h0εt‖C0(Ω̄)

+‖n0ε‖C1+β(Ω̄) + ‖n0εt‖C1(Ω̄) ≤ C3(A) <∞ (8.3.17)

holds with some constant C3(A) depending on A. Then we define

X :=
{

(cε, hε, nε) ∈ (Cβ,
β
2 (Ω̄× [0, T ]))2 × C1+β, 1+β

2 (Ω̄× [0, T ]) :

cε ≥ 0, 0 ≤ hε ≤ H0, 0 ≤ nε ≤ Kn,

‖cε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖hε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖nε‖
C1+β,

1+β
2 (Ω̄×[0,T ])

≤ B + 3
}
.

Given fixed (cε, hε, nε) ∈ X, by (8.3.1), (8.3.2), (8.3.12), the theory of ODEs (see, e.g.,
[A8.33]) and the comparison principle, there is a solution yε ∈ C1((0, T );C0(Ω̄)) to the
fourth equation of (8.3.11) with initial data y0ε such that

0 ≤ yε ≤ Y0 in Ω̄× [0, T ], ‖yε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖∂tyε‖C0(Ω̄×[0,T ]) ≤ C4(A), (8.3.18)

where the latter Hölder estimate with repect to x follows from the regularity properties
(8.3.1) and an application of Gronwall’s inequality to yε(x1, t) − yε(x2, t). Next, (8.3.1),
(8.3.2), (8.3.12), (8.3.18) along with [A8.21, Theorems V.7.4 and IV.5.3] and the parabolic

comparison principle imply the existence of a solution h̃ε ∈ C2+β,1+β
2 (Ω̄ × [0, T ]) to the
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third equation of (8.3.11) with the homogeneous Neumann boundary condition and initial
data h0ε, satisfying

0 ≤ h̃ε ≤ H0 in Ω̄× [−τ, T ],

‖h̃ε‖
Cβ,

β
2 (Ω̄×[−τ,T ])

+ ‖h̃ε‖
C2+β,1+

β
2 (Ω̄×[0,T ])

≤ C5(A)
(8.3.19)

with some constant C5(A) > 0. Using next (8.3.1), (8.3.12), (8.3.18) and (8.3.19), by
the comparison principle, [A8.21, Theorem III.5.1] and [A8.23, Theorem 1.1] there exists

a weak solution c̃ε ∈ C1+β1,
1+β1

2 (Ω̄ × [0, T ]) ∩ W 1, 1
2

2 (Ω̄ × [0, T ]) to the first equation of
(8.3.11) (with h̃ε instead of hε) satisfying the respective boundary and initial conditions,
where β1 ∈ (0, β]. By the last reference and [A8.21, Theorem IV.5.3], we further obtain

that c̃ε ∈ C2+β1,1+
β1
2 (Ω̄× [0, T ]) is a classical solution satisfying

c̃ε ≥ 0 in Ω̄× [0, T ], ‖c̃ε‖
C2+β1,1+

β1
2 (Ω̄×[0,T ])

≤ C6(A) (8.3.20)

with a positive constant C6(A). Combining this with (8.3.12) and (8.3.19), we apply the
theory of ODEs (see e.g. Theorem 2 in [A8.33, Section 2.3]) and the comparison principle

to get a solution ñε ∈ C2+β1,1+
β1
2 (Ω̄× [0, T ]) to the second equation of (8.3.11) (with c̃ε,

h̃ε instead of cε, hε) with initial data n0ε, such that

0 ≤ ñε ≤ Kn in Ω̄× [0, T ],

‖ñε‖
C2+β1,1+

β1
2 (Ω̄×[0,T ])

+ ‖∂tñε‖
C1+β1,

1+β1
2 (Ω̄×[0,T ])

≤ C7(A),
(8.3.21)

with some positive constant C7(A), where the Hölder estimate with respect to x is done
as described above for yε. In particular, recalling the definitions of c0εt, h0εt and n0εt

before (8.3.17), from (8.3.19)-(8.3.21) we obtain c0εt(x) = ∂tc̃ε(x, 0), h0εt(x) = ∂th̃ε(x, 0)
and n0εt(x) = ∂tñε(x, 0) for x ∈ Ω̄ so that there is T0 ∈ (0, T ] only depending on A such
that

‖c̃ε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖h̃ε‖
Cβ,

β
2 (Ω̄×[0,T ])

+ ‖nε‖
C1+β,

1+β
2 (Ω̄×[0,T ])

≤ B + 3. (8.3.22)

Here we used that ‖ψ‖
C
β
2 ([0,T0])

≤ ‖ψ‖C1([0,T0]) holds for ψ ∈ C1([0, T0]) due to T0 ≤ 1.

Hence, setting T := T0, the map F : X → X, F (cε, hε, nε) := (c̃ε, h̃ε, ñε) is well-defined
and compact due to (8.3.19)-(8.3.22) so that F has a fixed point (cε, hε, nε) by Schauder’s
fixed point theorem. The above reasoning thus ensures the existence of a classical solution
to (8.3.11) in Ω× (0, T ) which has the claimed regularity properties and satisfies (8.3.15).
Next, let Tε <∞ and assume for contradiction that (8.3.16) does not hold. Then there is
C8 > 0 such that

‖cε‖L∞(Ω×(0,Tε)) + ‖hε‖L∞((0,Tε);W 1,q(Ω)) ≤ C8. (8.3.23)

Combining this estimate with (8.3.1), (8.3.12), (8.3.15) and (8.3.11), we have

∂tcε = ∇ · (aε(x, t,∇cε)) + bε(x, t) in Ω× (0, Tε),
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where

aε(x, t, ξ) · ξ ≥
C̃2

2(1 + C8)
|ξ|2 − ψ0(x, t), |aε(x, t, ξ)| ≤ C̃1|ξ|+ ψ1(x, t)

holds for all (x, t, ξ) ∈ Ω× (0, Tε)×RN with ψ0, ψ
2
1 ∈ L∞((0, Tε);L

q
2 (Ω)) and bε ∈ L∞(Ω×

(0, Tε)). Hence, in view of q
2 >

N
2 , [A8.34, Theorem 1.3 and Remark 1.4] and (8.3.1) imply

that

‖cε‖
Cβ2,

β2
2 (Ω̄×[0,Tε])

≤ C9 (8.3.24)

with some C9 > 0 and β2 ∈ (0, 1). By using the same results and possibly diminishing β2,
we also have

‖hε‖
Cβ2,

β2
2 (Ω̄×[0,Tε])

≤ C10,

where C10 > 0 and β2 ∈ (0, 1). Hence, (8.3.18) and (8.3.19) are valid with T = Tε and
β = β2 so that a combination with (8.3.24) yields

‖nε‖
Cβ2,

β2
2 (Ω̄×[0,Tε])

≤ C11

with some C11 > 0. Thus, we are able to apply [A8.23, Theorem 1.1] to obtain

‖cε‖
C1+β3,

1+β3
2 (Ω̄×[0,Tε])

≤ C12

with constants C12 > 0 and β3 ∈ (0, β2]. Now this implies

‖nε‖
C1+β3,

1+β3
2 (Ω̄×[0,Tε])

≤ C13

with some C13 > 0 due to (8.3.19) and [A8.33, Theorem 2 in Section 2.3]. Finally, as A
with β = β3 is finite, (8.3.18)-(8.3.21) yield

A1 := ‖cε‖
C2+β4,1+

β4
2 (Ω̄×[0,Tε])

+ ‖nε‖
C2+β4,1+

β4
2 (Ω̄×[0,Tε])

+ ‖hε‖
C2+β4,1+

β4
2 (Ω̄×[0,Tε])

+‖hε‖
Cβ4,

β4
2 (Ω̄×[−τ,Tε])

+ ‖y0ε‖
Cβ4,

β4
2 (Ω̄×[0,Tε])

<∞

with some β4 ∈ (0, β3]. Therefore, by the first part of this proof the solution can be
extended to a classical solution of (8.3.11) in Ω× (0, Tε + T0

2 ) with some T0 = T0(A1) > 0
which contradicts the maximality of Tε and proves (8.3.16).

In order to prove the global existence for the solution to (8.3.11), we will show appropriate
bounds on cε and ∇hε which are independent of ε. To this end, we remark that (8.3.1),
(8.3.12) and (8.3.13) imply

0 < a2 ≤ Kc(h) ≤ a1, 0 < b2 ≤ µc(y) ≤ b1, |R(y, h)| ≤MR

for all h ∈ [0, H0], y ∈ [0, Y0]
(8.3.25)
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with positive constants b1, b2,MR. Moreover, we denote by (et∆)t≥0 the heat semigroup
in Ω with homogeneous Neumann boundary conditions and define λ1 > 0 to be the first
nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions. It is well-known
(see e.g. [A8.45, Lemma 1.3]) that there exists C3 > 0 such that

‖∇et∆v‖Lρ(Ω) ≤ C3

(
1 + t

− 1
2
−N

2
( 1
r
− 1
ρ

)
)
e−λ1t‖v‖Lr(Ω) for all t > 0

‖∇et∆w‖Lp(Ω) ≤ C3e
−λ1t‖∇w‖Lp(Ω) for all t > 0

(8.3.26)

holds for any v ∈ Lr(Ω), w ∈ W 1,p(Ω), 1 ≤ r ≤ ρ ≤ ∞ and p ∈ [2,∞). Using these
estimates, we prove the following elementary bounds for cε and hε.

Lemma 8.3.4 Let q ∈ (N + 2,∞) be as defined in (8.3.5). There exists C > 0 such that
for all ε ∈ (0, 1) we have∫

Ω
cε(x, t) dx ≤ m := max

{
sup
ε∈(0,1)

∫
Ω
c0ε dx,

a1b1|Ω|
b2

}
<∞ for all t ∈ (0, Tε), (8.3.27)

‖hε(·, t)‖W 1,q(Ω) ≤ C for all t ∈ (0, Tε). (8.3.28)

Proof. Integrating the first equation of (8.3.11) and using (8.3.15), (8.3.25) along with
the Cauchy-Schwarz inequality, we have

d

dt

∫
Ω
cε ≤ b1

∫
Ω
cε −

b2
a1

∫
Ω
c2
ε ≤ b1

∫
Ω
cε −

b2
a1|Ω|

(∫
Ω
cε

)2

for all t ∈ (0, Tε),

so that (8.3.27) follows by an ODE comparison and (8.3.13).
Next, we use the Neumann heat semigroup and Lemma 8.3.3 to obtain from (8.3.11)

hε(·, t) = etDh∆h0ε(·, 0) +

∫ t

0
e(t−s)Dh∆R(yε(·, s), hε(·, s)) ds, t ∈ (0, Tε).

In view of q ≥ 2, (8.3.15), (8.3.25) and (8.3.26), this implies

‖∇hε(·, t)‖Lq(Ω)

≤ ‖∇etDh∆h0ε(·, 0)‖Lq(Ω) +

∫ t

0
‖∇e(t−s)Dh∆R(yε(·, s), hε(·, s))‖Lq(Ω) ds

≤ C3‖h0ε(·, 0)‖W 1,q(Ω)

+ C3

∫ t

0

(
1 + (Dh(t− s))−

1
2

)
e−λ1Dh(t−s)‖R(yε(·, s), hε(·, s))‖Lq(Ω) ds

≤ C3 sup
ε∈(0,1)

‖h0ε(·, 0)‖W 1,q(Ω) + C3MR|Ω|
1
q

∫ ∞
0

(
1 + (Dhσ)−

1
2

)
e−λ1Dhσ dσ

for all t ∈ (0, Tε), which proves (8.3.28) due to (8.3.13) and (8.3.15).

The next lemma is the main step toward the global existence. It uses Lemma 8.3.4 as
a starting point to obtain bounds in L∞((0, T );Lp(Ω)) for any finite p. We adapt ideas
from [A8.40, Lemma 3.3] for its proof.
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Lemma 8.3.5 Let T ∈ (0,∞) such that T ≤ Tε. Then there are C(T ) > 0 and C̃(T ) > 0
such that

hε(x, t) ≥ C(T ) for all (x, t) ∈ Ω̄× [0, T ), (8.3.29)∫ T

0

∫
Ω
|∇cε|2(x, t) dxdt ≤ C̃(T ) (8.3.30)

are fulfilled for every ε ∈ (0, 1). Moreover, for any p ∈ [1,∞) there exists Cp(T ) > 0 such
that for all ε ∈ (0, 1) we have

‖cε(·, t)‖Lp(Ω) ≤ Cp(T ) for all t ∈ (0, T ). (8.3.31)

Proof. In view of (8.3.1), (8.3.2) and (8.3.15), there exists CR > 0 such that the third
equation in (8.3.11) implies

∂thε ≥ Dh∆hε +R(yε, 0)− CRhε ≥ Dh∆hε − CRhε in Ω× (0, Tε)

for all ε ∈ (0, 1). Hence, by (8.3.12) and the comparison principle, we have

hε(x, t) ≥
δ

2
e−CRt for all (x, t) ∈ Ω̄× [0, Tε) (8.3.32)

and all ε ∈ (0, 1), which proves (8.3.29).
Next, we fix p ∈ [2,∞) and T ∈ (0,∞) such that T ≤ Tε. Defining a := C(T ) > 0 with
C(T ) from (8.3.29), testing the first equation in (8.3.11) by (1 + cε)

p−1 and using (8.3.12),
(8.3.14), (8.3.15), (8.3.25) as well as the inequalities of Young and Hölder, we obtain

1

p

d

dt

∫
Ω

(1 + cε)
p =

∫
Ω

(1 + cε)
p−1∂tcε

≤ −(p− 1)

∫
Ω
ϕε(cε, nε)(1 + cε)

p−2|∇cε|2

+(p− 1)

∫
Ω
fε(hε, cε)(1 + cε)

p−2∇cε · ∇hε

+b1

∫
Ω
cε(1 + cε)

p−1 − b2
a1

∫
Ω
c2
ε(1 + cε)

p−1

≤ − C̃2(p− 1)

2

∫
Ω

(1 + cε)
p−3|∇cε|2 +

C̃2
a(p− 1)

2C̃2

∫
Ω

(1 + cε)
p−1|∇hε|2

+

(
b1 +

2b2
a1

)∫
Ω

(1 + cε)
p − b2

a1

∫
Ω

(1 + cε)
p+1

≤ − 2C̃2

p− 1

∫
Ω
|∇(1 + cε)

p−1
2 |2

+
C̃2
a(p− 1)

2C̃2

(∫
Ω

(1 + cε)
(p−1)q
q−2

) q−2
q
(∫

Ω
|∇hε|q

) 2
q

+

(
b1 +

2b2
a1

)∫
Ω

(1 + cε)
p − b2

a1|Ω|
1
p

(∫
Ω

(1 + cε)
p

) p+1
p

(8.3.33)
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for all t ∈ (0, T ) in view of q > 2. Abbreviating θ := q
q−2 ∈ (1, N+2

N ), the Gagliardo-
Nirenberg inequality and (8.3.27) yield(∫

Ω
(1 + cε)

(p−1)θ

) 1
θ

=
∥∥∥(1 + cε)

p−1
2

∥∥∥2

L2θ(Ω)

≤ CGN
∥∥∥∇(1 + cε)

p−1
2

∥∥∥2d

L2(Ω)

∥∥∥(1 + cε)
p−1

2

∥∥∥2(1−d)

L
2
p−1 (Ω)

+ CGN

∥∥∥(1 + cε)
p−1

2

∥∥∥2

L
2
p−1 (Ω)

≤ CGN
(

(m+ |Ω|)(p−1)(1−d)
∥∥∥∇(1 + cε)

p−1
2

∥∥∥2d

L2(Ω)
+ (m+ |Ω|)p−1

)
(8.3.34)

for all t ∈ (0, Tε), since

d :=
p−1

2 −
1
2θ

1
N −

1
2 + p−1

2

∈ (0, 1)

is satisfied due to θ ∈ (1, N+2
N ) and p ≥ 2. In view of (8.3.28) and d < 1, by inserting

(8.3.34) into (8.3.33) and applying Young’s inequality we arrive at

1

p

d

dt

∫
Ω

(1 + cε)
p +

C̃2

p− 1

∫
Ω
|∇(1 + cε)

p−1
2 |2

≤
(
b1 +

2b2
a1

)∫
Ω

(1 + cε)
p − b2

a1|Ω|
1
p

(∫
Ω

(1 + cε)
p

) p+1
p

+ C4(a, p) (8.3.35)

for all t ∈ (0, T ) and ε ∈ (0, 1) with some positive constant C4(a, p). This proves (8.3.31)
upon an ODE comparison due to (8.3.13) and (8.3.27). Then, integrating (8.3.35) for
p = 3 with respect to t ∈ (0, T ) and using (8.3.31), we conclude that (8.3.30) is valid.

Now we are in the position to obtain the global existence for the regularized problem
(8.3.11) by using a result from [A8.40].

Lemma 8.3.6 For any ε ∈ (0, 1), the solution to (8.3.11) obtained in Lemma 8.3.3 exists
globally in time, which means that Tε =∞. Furthermore, for any T ∈ (0,∞) there exists
C∞(T ) > 0 such that

0 ≤ cε ≤ C∞(T ) in Ω̄× [0, T ] (8.3.36)

holds for any ε ∈ (0, 1).

Proof. We fix T ∈ (0,∞) with T ≤ Tε. Keeping the notation from [A8.40, Appendix A],
by (8.3.11), (8.3.12), (8.3.14) and Lemmas 8.3.3-8.3.5, we have

∂tcε ≤ ∇ · (Dε(x, t, cε)∇cε) +∇ · (Fε(x, t)) +Gε(x, t), (x, t) ∈ Ω× (0, T ),

where cε and Fε satisfy the homogeneous Neumann boundary condition, Dε and Fε are C1-
functions andGε is continuous such that Fε ∈ L∞((0, T );Lq1(Ω)), Gε ∈ L∞((0, T );Lq2(Ω)),
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cε ∈ L∞((0, T );Lp0(Ω)) and Dε(x, t, cε) ≥ C̃2(1 + cε)
m̃−1 for m̃ = 0, q1 = q > N + 2 and

all p0 ∈ (1,∞) and q2 ∈ (N+2
2 ,∞]. In view of m̃ = 0, we may apply [A8.40, Lemma A.1]

with some p0 > max{1, N2 } and obtain a constant C∞(T ) > 0 such that

‖cε‖L∞(Ω×(0,T )) ≤ C∞(T ).

As C∞(T ) depends on C̃2, supε∈(0,1) ‖c0ε‖L∞(Ω) and the norms of cε, Fε and Gε in the
spaces mentioned above, we conclude that C∞(T ) does not depend on ε ∈ (0, 1) and just
depends on T via (8.3.29) and (8.3.31). Hence, in view of (8.3.28), the criterion (8.3.16)
proves the lemma.

Let us finalize this subsection with the following remark.

Remark 8.3.7 The conditions imposed on ϕ and f in (8.3.3) and (8.3.4) are motivated
by biological considerations and are in particular satisfied for the example given in (8.2.6).
If we assume instead

0 ≤ f(h, c) ≤ C1,
C2

1 + c
≤ ϕ(c, n) ≤ C1 ∀(c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0]

and corresponding estimates for ϕε and fε, then ‖cε‖L∞(Ω×(0,∞)) ≤ C∞ holds for some
C∞ > 0 which does not depend on ε ∈ (0, 1), as the constants Cp and C∞ do not depend
on T any more. This result remains true if we only assume the nonnegativity of h0 and
h0ε instead of their strict positivity as we do not need (8.3.29) in this setting.
With appropriately adapted proofs of Lemmas 8.3.5 and 8.3.6, the result ‖cε‖L∞(Ω×(0,∞)) ≤
C∞ holds for some C∞ > 0 which does not depend on ε ∈ (0, 1), if we assume

0 ≤ f(h, c) ≤ C1(1 + c)m1 , C2(1 + c)−m2 ≤ ϕ(c, n) ≤ C1(1 + c)m3

for all (c, n, h) ∈ [0,∞)× [0,Kn]× [0, H0] with some real numbers mj, j = 1, 2, 3, satisfying
2m1 +m2 < 3 as well as h0 ∈ C0([−τ, 0];W 1,∞(Ω)) and the nonnegativity of h0.

8.3.2 Existence of a global weak solution to the original problem

In order to obtain a global weak solution to (8.2.3), we next prove appropriate precompact-
ness properties of the solutions to (8.3.11) which are based on the results of the preceding
subsection.

Lemma 8.3.8 Let T ∈ (0,∞) be arbitrary. For the global solutions to (8.3.11) from
Lemma 8.3.3 we have that (cε)ε∈(0,1), (nε)ε∈(0,1), (hε)ε∈(0,1) and (yε)ε∈(0,1) are strongly
precompact in L2(Ω× (0, T )).

Proof. Throughout this proof we will frequently make use of (8.3.12), (8.3.15), (8.3.25),
(8.3.28), (8.3.30) and (8.3.36) without explicitly mentioning this every time. Using these
properties, there exists a constant C4(T ) > 0 such that for all ψ ∈ C∞0 (Ω) and all ε ∈ (0, 1)
we obtain from (8.3.11) and the Hölder inequality that∫

Ω
∂tcεψ = −

∫
Ω
ϕε(cε, nε)∇cε · ∇ψ +

∫
Ω
fε(hε, cε)∇hε · ∇ψ
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+

∫
Ω
µc(yε)cε

(
1− cε

Kc(hε(·, t− τ))
− η1

nε
Kn

)
ψ

≤

[
C4(T ) +

(∫
Ω
|∇cε|2

) 1
2

]
‖ψ‖

W 1,2
0 (Ω)

for all t ∈ (0, T ).

Hence, (∂tcε)ε∈(0,1) is uniformly bounded in L2((0, T ); (W 1,2
0 )∗) by (8.3.30). As furthermore

(cε)ε∈(0,1) is uniformly bounded in L2((0, T );W 1,2(Ω)), W 1,2(Ω) is compactly embedded

into L2(Ω) and L2(Ω) ⊂ (W 1,2
0 )∗, the Aubin-Lions lemma (see [A8.41, Theorem 2.1 in

Chapter III]) implies the strong precompactness of (cε)ε∈(0,1) in L2((0, T );L2(Ω)).

Similarly, (∂thε)ε∈(0,1) and (hε)ε∈(0,1) are uniformly bounded in L2((0, T ); (W 1,2
0 )∗) and

L2((0, T );W 1,2(Ω)), respectively, in view of q ≥ 2, so that (hε)ε∈(0,1) is strongly precom-
pact in L2((0, T );L2(Ω)).

In order to prove the claimed results for (nε)ε∈(0,1), we recall that by Kolmogorov-Riesz
for a bounded domain D ⊂ Rs with s ∈ N a set M ⊂ L2(D) is strongly precompact in
L2(D) if and only if

sup
F∈M

‖F‖L2(D) <∞ and lim
z→0

(
sup
F∈M

‖F z − F‖L2(D)

)
= 0,

where z ∈ Rs and F z(ζ) := F (ζ + z) for ζ ∈ D such that ζ + z ∈ D and F z(ζ) = 0
if ζ + z 6∈ D. Setting D := Ω × (0, T ) and ζ := (x, t) ∈ D, for z ∈ RN+1 we obtain
from an integration of the second equation of (8.3.11) and the regularity and boundedness
properties of its right-hand side that∫

Ω
(nzε − nε)2(·, t) dx

≤
∫

Ω
(nz0ε − n0ε)

2 dx+ C5(T )

∫ t

0

∫
Ω

(|nzε − nε|+ |czε − cε|+ |hzε − hε|) |nzε − nε| dxds

≤
∫

Ω
(nz0ε − n0ε)

2 dx

+ C6(T )

∫ t

0

∫
Ω

(
(nzε − nε)2 + (czε − cε)2 + (hzε − hε)2

)
dxds (8.3.37)

with some positive constants C5(T ) and C6(T ) for all t ∈ (0, T ) and all ε ∈ (0, 1). Hence,
by Gronwall’s inequality there exists C7(T ) > 0 such that

sup
ε∈(0,1)

‖nzε − nε‖L2(Ω×(0,T )) ≤ C7(T ) sup
ε∈(0,1)

(
‖nz0ε − n0ε‖L2(Ω)

+‖czε − cε‖L2(Ω×(0,T )) + ‖hzε − hε‖L2(Ω×(0,T ))

)
. (8.3.38)

As (cε)ε∈(0,1), (hε)ε∈(0,1) are strongly precompact in L2(Ω × (0, T )) and (n0ε)ε∈(0,1) is
strongly precompact in L2(Ω) due to (8.3.13), the right-hand side of (8.3.38) converges to
zero as z → 0 by Kolmogorov-Riesz. Since furthermore (nε)ε∈(0,1) is uniformly bounded
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in L2(Ω× (0, T )), the mentioned criterion yields the strong precompactness of (nε)ε∈(0,1)

in L2(Ω× (0, T )).
Similar arguments also show that (yε)ε∈(0,1) is strongly precompact in L2(Ω× (0, T )).

With these compactness properties at hand, we are able to prove the existence of a global
weak solution to the original problem (8.2.3).

Proof of Theorem 8.3.2.
By Lemma 3.8, (8.3.13), (8.3.15), (8.3.28), (8.3.30), (8.3.36) as well as a standard extrac-
tion argument involving diagonal sequences, there are a sequence (εj)j∈N ⊂ (0, 1) such
that εj ↘ 0 as j →∞ and functions

c ∈ L∞loc(Ω̄× [0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω)), n, y ∈ L∞(Ω× (0,∞)),

h ∈ L∞(Ω× (−τ,∞)) ∩ L∞((0,∞);W 1,q(Ω))

satisfying (8.3.10) such that

cε → c, nε → n, yε → y strongly in L2
loc([0,∞);L2(Ω)) and a.e. in Ω× (0,∞),

hε → h strongly in L2
loc([−τ,∞);L2(Ω)) and a.e. in Ω× (−τ,∞),

∇cε ⇀ ∇c, ∇hε ⇀ ∇h weakly in L2
loc([0,∞);L2(Ω))

as ε = εj ↘ 0. Combining these properties with (8.3.1), (8.3.12) and (8.3.13), for any
fixed T ∈ (0,∞) we may then pass to the limit as εj ↘ 0 in the weak formulation of
(8.3.11) corresponding to (8.3.6)-(8.3.9) and use the dominated convergence theorem to
conclude that (c, n, h, y) is a global weak solution to (8.2.3)-(8.2.5).
In order to prove the uniqueness claim, let in addition c0 ∈ Cβ(Ω̄) be fulfilled with some
β ∈ ( 1

N+2 , 1) and assume that (cj , nj , hj , yj), j = 1, 2, are global weak solutions to (8.2.3)-
(8.2.5) such that for all T ∈ (0,∞) there is C4(T ) > 0 with

‖cj‖L∞(Ω×(0,T )) + ‖∇cj‖L2(Ω×(0,T )) + ‖nj‖L∞(Ω×(0,T ))

+‖hj‖L∞(Ω×(0,T )) + ‖∇hj‖Lr(Ω×(0,T )) + ‖yj‖L∞(Ω×(0,T )) ≤ C4(T ) (8.3.39)

for j = 1, 2 and some r > N + 2 which is independent of T ∈ (0,∞) and satisfies
1 − N+1

r < β. Observe that the global weak solution constructed above satisfies (8.3.39)
in view of q > N + 2.
We next fix an arbitrary T ∈ (0,∞). Then, similarly to (8.3.37) and (8.3.38), we obtain
from (8.3.7), (8.3.9), (8.3.1), (8.3.39) and Gronwall’s inequality that there is C5(T ) > 0
such that

|n1 − n2|(x, t) ≤ C5(T )

∫ t

0
(|c1 − c2|+ |h1 − h2|)(x, s) ds, (8.3.40)

|y1 − y2|(x, t) ≤ C5(T )

∫ t

0
(|c1 − c2|+ |h1 − h2|)(x, s) ds (8.3.41)

are fulfilled for a.e. (x, t) ∈ Ω× (0, T ). Furthermore, (8.3.8), (8.3.1) and (8.3.39) imply∫
Ω
|h1 − h2|2(x, t) dx ≤ −Dh

∫ t

0

∫
Ω
|∇(h1 − h2)|2 dxds
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+C6(T )

∫ t

0
(|h1 − h2|2 + |y1 − y2|2) dxds

for a.e. t ∈ (0, T ) with some C6(T ) > 0. Hence, using (8.3.41) along with Gronwall’s
inequality we conclude that there is C7(T ) > 0 such that∫

Ω
|h1 − h2|2(x, t) dx ≤ C7(T )

∫ t

0
|c1 − c2|2(x, s) dxds, (8.3.42)∫ t

0

∫
Ω
|∇(h1 − h2)|2 dxds ≤ C7(T )

∫ t

0
|c1 − c2|2(x, s) dxds (8.3.43)

for a.e. t ∈ (0, T ). Next, in view of (8.3.1), (8.3.39) and c0 ∈ Cβ(Ω̄), we may ap-
ply [A8.34, Theorem 1.3 and Remark 1.4] to obtain that cj , hj ∈ Cγ,

γ
2 (Ω̄ × [0, T ]) for

some γ ∈ (0, β) (like in the proof of (8.3.24)) which also implies nj , yj ∈ C0(Ω̄ × [0, T ]),
j = 1, 2, due to (8.3.40), (8.3.41). Therefore, the closed operator Bj(t) with Bj(t)u :=
−∇ · (ϕ(cj(·, t), nj(·, t))∇u) for u ∈ W 1,r(Ω), defines a continuous map Bj : [0, T ] →
L(W 1,r(Ω),W−1,r(Ω)) by [A8.15, (6.3)]. As furthermore −Bj is uniformly elliptic on
[0, T ], cj solves

∂tu(t) + Bj(t)u(t) = fj(t), t ∈ [0, T ], u(0) = c0

with fj ∈ Lr((0, T );W−1,r(Ω)) and c0 ∈ W 1− 1
r
,r(Ω) due to (8.3.1), (8.3.6), (8.3.39),

β > 1 − N+1
r and the smoothness of ∂Ω, we may apply the result of maximal parabolic

regularity from [A8.15, Theorem 5.4, Remark 5.5, Proposition 6.1] to conclude that
cj ∈ W 1,r((0, T );W−1,r(Ω)) ∩ Lr((0, T );W 1,r(Ω)). Here, the regularity of c0 and [A8.15,
Theorem 6.14] shows that we can apply the maximal regularity result also to u(0) = c0 6≡ 0.
Hence,

‖∇cj‖Lr(Ω×(0,T )) ≤ C8(T ) (8.3.44)

is satisfied for j = 1, 2 with some C8(T ) > 0. Finally, using (8.3.39)-(8.3.44), we can apply
the method from the uniqueness proof in [A8.29, Theorem 3.1] (starting at [A8.29, (3.37)]
and setting ψ ≡ 0, l := h and 2p := r > N + 2) to conclude that there is t0 ∈ (0, T )
sufficiently small (just depending on T ) such that

‖c1 − c2‖2L∞((0,t);L2(Ω)) ≤ C9(T )

∫ t

0
‖c1 − c2‖2L∞((0,s);L2(Ω)) ds

holds for all t ∈ (0, t0) with some C9(T ) > 0. Hence, an application of Gronwall’s in-
equality yields c1 = c2 a.e. in Ω× (0, t0) so that (8.3.40)-(8.3.42) and an iteration of this
argument show that the two global weak solutions coincide a.e. in Ω× (0, T ).

8.4 Numerical simulations

For the numerical simulations we first introduce the dimensionless variables

c̃ =
c

C0
, ñ =

n

Kn
, h̃ =

h

H0
, ỹ =

y

Y0
, x̃ =

x

L
, t̃ =

t

T
, θ =

t

χT
,
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where Kn is the carrying capacity of the normal cells, C0 is the reference carrying capacity
of the cancer cells, H0 and Y0 are the reference concentrations of extracellular and intra-
cellular protons, L is the reference length scale and T is the reference time unit. As the
processes on the subcellular scale are much faster than those on the macroscale, θ = t̃

χ
with some χ ∈ (0, 1) represents the time on the microscale.

Using these variables and (8.2.6), we transform (8.2.3) to the nondimensionalized system

∂tc = ∇ ·
(

Dc
1+cn∇c

)
−∇ · ( Mc

1+ch∇h) + κ1
1+y c

(
1− c

Kc(h(·,t−τ)) − η1n
)
,

∂tn = −δnhn+ µnn
(

1− η2
c

Kc(h(·,t)) − n
)
,

∂th = Dh∆h+ γhy
1+y2+αhh2 − βhh

1+y2 ,

∂θy = − γyy
1+y2+αhh2 +

βyh
1+y2 − αy + ρc

1+c ,

(8.4.1)

in Ω× (0, T ) with Ω := (0, 1) ⊂ R, where we omit the tildes in variables and constants for
the ease of notation.

We endow (8.4.1) with the boundary and initial conditions (8.2.4)-(8.2.5) and set

c0(x) := exp
(
−x2

ε

)
, n0(x) := 1− exp

(
−x2

ε

)
, y0(x) := ξyc0(x),

h0(x, t) := ξhc0((x− x0)+)

for x ∈ [0, 1] and t ∈ [−τ, 0], where (s)+ := max{s, 0} for s ∈ R. Here the choice of h0

accounts for an already elevated intratumoral acidosis, which decays towards the tumor
border. This is done to include the fact that a too acidic environment is harmful also for
cancer cells.

We perform numerical simulations by using an implicit-explicit finite difference scheme
as in [A8.29] and choosing the parameters τ = 8, χ = 0.01, Dc = 2 · 10−6, M = 10−3,
Dh = 0.1, η1 = 0.35, η2 = 0.05, ξy = 0.3, ξh = 0.5 and x0 = 0.1.

We provide some time snapshots for two different choices of the carrying capacity Kc of the
cancer cells. First, we choose Kc(h) = 1+bh

1+dh2 with d > 0 so that a too acidic environment
of the tumor causes a smaller carrying capacity, which leads to a decrease in the original
tumor (see Figure 8.1). In contrast to this, for Kc(h) = 1 + bh the original tumor infers
enhanced growth, but does not seem to affect the invasion speed (see Figure 8.2). The
classical choice of a constant carrying capacity (see Figure 8.3) does not allow the tumor
to adapt its growth to the environmental acidity.

8.5 Discussion

In this work we proposed a multiscale model for acid-mediated tumor invasion which
assigns more importance to the intracellular proton dynamics on the microscale leading to
the behavior of the interacting normal and cancer cell populations on the macroscale. The
coupling between the two scales is realized through the spatio-temporal evolution of the
extracellular protons, which are controlled by and influence the dynamics of the processes
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Figure 8.1: Evolution of tumor cell (blue) and normal cell densities (red), concentrations of
extracellular (green) and intracellular protons (black), and carrying capacity Kc(h(t− τ))
of cancer cells (purple) with Kc(h) = 1+h

1+3h2 for model (8.4.1).
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Figure 8.2: Evolution of tumor cell (blue) and normal cell densities (red), concentrations of
extracellular (green) and intracellular protons (black) and carrying capacity Kc(h(t− τ))
of cancer cells (purple) with Kc(h) = 1 + h

2 for model (8.4.1).

taking place both on the microscale and on the macroscale. Moreover, we account for pH-
taxis, which characterizes the tactic behavior of tumor cells in response to an extracellular
pH gradient, a feature which was only lately proposed in the context of cancer invasion
[A8.2, A8.31]. The model was shown to be well posed in the weak sense; the result
holds even for a more general case than the concrete situation described in Section 8.2.
The global boundedness of the solution remains, however, open (unless for supplementary
assumptions, see Remark 8.3.7). Numerical simulations illustrate the behavior of the
solution as predicted by our model. Thereby, the choice of the carrying capacity as a
(delayed) function of the extracellular proton concentration was shown to be relevant:
as expected, a larger carrying capacity will enhance tumor growth (though it seems to
hardly have an effect on the invasion speed, but proving this mathematically is still an
open issue). This would endorse the therapeutical approach aiming to reduce the acidity
in the tumor environment to control the neoplasm development [A8.13, A8.32].
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Figure 8.3: Evolution of tumor cell (blue) and normal cell densities (red), concentrations of
extracellular (green) and intracellular protons (black) and carrying capacity Kc of cancer
cells (purple) with Kc = 1 for model (8.4.1).

References (Article 8)

[A8.1] O.R. Abakarova, The metastatic potential of tumors depends on the pH of host
tissues, Bull. Exp. Biol. Med. 120 (1995), 1227–1229.

[A8.2] P. Bartel, F.T. Ludwig, A. Schwab, and C. Stock, pH-taxis: Directional
tumor cell migration along pH-gradients, Acta Physiologica 204 (2012), pp.113.

[A8.3] N. Bellomo, A. Bellouquid, J. Nieto, and J. Soler, Complexity and
mathematical tools toward the modelling of multicellular growing systems, Math.
Comput. Modelling 51 (2010), 441–451.

[A8.4] M.J. Boyer and I.F. Tannock, Regulation of intracellular pH in tumor cell
lines: influence of microenvironmental conditions, Cancer Res. 52 (1992), 4441–
4447.

[A8.5] J. Chiche, M.C. Brahimi-Horn, and J. Pouysségur, Tumour hypoxia in-
duces a metabolic shift causing acidosis: a common feature in cancer, J. Cellular
Molecular Medicine 14 (2010), 771–794.

[A8.6] C. Engwer, T. Hillen, M.P. Knappitsch, and C. Surulescu, Glioma
follow white matter tracts; a multiscale DTI-based model, submitted.

[A8.7] A. Fasano, M.A. Herrero, and M.R. Rodrigo, Slow and fast invasion waves
in a model of acid-mediated tumour growth, Math. Biosci. 220 (2009), 45–56.

[A8.8] N. Garijo, R. Manzano, R. Osta, and M.A. Perez, Stochastic cellular
automata model of cell migration, proliferation and differentiation: validation
with in vitro cultures of muscle satellite cells, J. Theoret. Biol. 314 (2012), 1–9.

[A8.9] R.A. Gatenby and E.T. Gawlinski, A reaction-diffusion model of cancer
invasion, Cancer Res. 56 (1996), 5745–5753.



REFERENCES (ARTICLE 8) 239

[A8.10] R.A. Gatenby and E.T. Gawlinski, The glycolytic phenotype in carcinogen-
esis and tumor invasion: insights through mathematical models, Cancer Res. 63
(2003), 3847–3854.

[A8.11] R.A. Gatenby and R.J. Gillies, Why do cancers have high aerobic glycolysis?
Nature Rev. Cancer 4 (2004), 891–899.

[A8.12] R.A. Gatenby and R.J. Gillies, Glycolysis in cancer: a potential target for
therapy, Int. J. Biochem. Cell Biol. 39 (2007), 1358–1366.

[A8.13] L.E. Gerweck, S. Vijayappa, and S. Kozin, Tumor pH controls the in vivo
efficacy of weak acid and base chemotherapeutics, Molecular Cancer Therapeutics
5 (2006), 1275–1279.

[A8.14] A. Groh and A.K. Louis, Stochastic modelling of biased cell migration and
collagen matrix modification, J. Math. Biol. 61 (2010), 617–647.

[A8.15] R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for di-
vergence operators including mixed boundary conditions, J. Differential Equations
247 (2009), 1354–1396.

[A8.16] S. Harguindey, G. Orive, J. Luis Pedraz, A. Paradiso, and
S.J. Reshkin, The role of pH dynamics and the Na+/H+ antiporter in the
etiopathogenesis and treatment of cancer. Two faces of the same coin-one single
nature, Biochim Biophys Acta - Reviews on Cancer 1756 (2005), 1–24.

[A8.17] S. Hiremath and C. Surulescu, A stochastic multiscale model for acid medi-
ated cancer invasion, preprint TU Kaiserslautern (2014).

[A8.18] C. Jang and Z. Arany, Metabolism: sweet enticements to move, Nature 500
(2013), 409–411.

[A8.19] J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue
networks, Math. Models Methods Appl. Sci. 22 (2012), 1150017.

[A8.20] M. Kihara and R.M. Macnab, Cytoplasmic pH mediates pH taxis and weak-
acid repellent taxis of bacteria, J. Bacteriology 145 (1981), 1209–1221.
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Meral, and José Ignacio Tello for numerous fruitful discussions and for becoming jointly
acquainted with new research topics. I particularly thank Tomek, Philippe, and José Igna-
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