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1. Introduction

Diffusion is an important aspect of various processes in the natural sciences. Corre-
spondingly, there are a lot of mathematical models involving partial differential equations
(PDEs) with a diffusion term. This thesis provides a collection of articles concerning
qualitative properties of diffusion equations. Thereby, different types of diffusion, includ-
ing nonlinear and degenerate ones, are studied. In addition, some of these equations are
coupled via nonlinear terms modeling different kinds of taxis. The first step in the quali-
tative analysis of such equations is usually the proof of local well-posedness, i.e. the local
existence (in time) and uniqueness of a solution. Then a natural question is whether the
solution exists globally or ceases to exist after a finite time, e.g., due to a blowup phe-
nomenon. If possible we also determine the large time behavior of global solutions, for
instance the convergence to stationary solutions.

The simplest diffusion equation is the linear heat equation
up = Au,

where here and in the sequel u(z,t) depends on the spatial variable z €  C R™ and the
time t > 0, and A = A, denotes the Laplace operator with respect to z. Although this
equation was used to describe the temperature evolution in particular settings, it turned
out that many biological, chemical or physical phenomena involving diffusion cannot be
described adequately by purely linear equations. In addition, nonlinear diffusion equations
often offer a richer behavior than linear ones, also from the mathematical point of view.
Therefore, our studies will focus on nonlinear equations. The first part of this thesis is
concerned with scalar equations and motivated from the theoretical point of view, while
in the second part systems of equations which model biological phenomena are studied.

We start our considerations with a semilinear parabolic equation, where in presence of
linear diffusion the nonlinearity is provided by a source term of order zero, a model case
being the power type function uP. Namely, in Article 1 we study the Cauchy problem for

up = Au + uP, (x,t) € R" x (0, 00), (1.1)

with p > 1 and nonnegative initial data. After the pioneering work of Fujita ([45]) a rich
variety of large time behaviors for solutions to (1.1) was shown, among them finite and
infinite time blowup, as well as convergence to nonzero steady states and to zero. For
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a broad overview we refer to the monograph [89] and the references therein. In partic-
ular, it was shown in [44] that if p is larger than a critical (so-called Joseph-Lundgren)
exponent, there are solutions to (1.1) converging to zero as t — oo with arbitrary slow
polynomial rates of convergence. In Article 1, we prove that for the same range of p even
very slow rates of convergence to zero exist, which are slower than any polynomial rate
and are rarely observed in parabolic equations. In particular, arbitrary negative powers
of iterated logarithms occur as convergence rates for (1.1) for suitably chosen initial data.
More details about these results are provided in Chapter 2.

Next, we consider a quasilinear equation, where apart from a nonlinear source term also
nonlinear diffusion is included. Two common nonlinear generalizations of the linear dif-
fusion Au are the p-Laplacian Apu = div(|Vu[P~2Vu) = V - (|Vu[P~2Vu) and the porous
medium type diffusion V - (u™~'Vu) = LA(u™). Here the cases p > 2 and m > 1 are
called slow diffusion, as diffusion is slowed down for small values of Vu or u, respectively.
Correspondigly, the cases p € (1,2) and m € (0,1) are called fast diffusion, while p = 2
and m = 1 correspond to linear diffusion.

Now we start from the semilinear diffusion equation

ur = Au+ |Vul? (1.2)

with ¢ > 0, where the source term of order zero in (1.1) is replaced by a corresponding first
order term. (1.2) is on the one hand known as viscous Hamilton-Jacobi equation, which
appears as viscosity approximation of Hamilton-Jacobi equations in control theory, and
on the other hand it is called the generalized deterministic Kardar-Parisi-Zhang equation.
The latter was proposed to describe the evolution of the profile of a growing interface
for instance in the context of ballistic deposition (see e.g. [64, 69]). A short overview of
results concerning the behavior of solutions to (1.2) is given e.g. in [89, Section 40] and
the references provided therein.

We intend to study the interplay of diffusion and the nonlinear source term in a quasilinear
generalization of (1.2). As the source |Vu|? depends solely on Vu but not on u itself, it
seems reasonable to generalize the linear diffusion by the p-Laplacian operator which does
not depend on w either. Therefore, in Articles 2—4 we study nonnegative solutions to the
quasilinear equation

up = Apu + [Vul?, (z,t) € Q x (0,00), (1.3)

with p > 2 and ¢ > 0 in a bounded domain 2 C R", endowed with homogeneous Dirichlet
boundary conditions. Since the diffusion degenerates when Vu = 0, we cannot expect
the existence of classical solutions and hence consider either weak or viscosity solutions.
Concerning the large time behavior of nonnegative global solutions to (1.3), ¢ = p—1 turns
out to be a critical exponent. One important reason is that zero is the only stationary
solution in case of ¢ > p— 1, whereas the comparison principle for the stationary equation
is not valid in the case ¢ < p — 1 and non-zero steady states may exist. In Article 2, we
study the case ¢ < p — 1 in the one-dimensional setting n = 1. We show the existence of



a family of nonnegative steady states for (1.3) and prove that for any sufficiently regular
initial data there exists a global weak solution to (1.3) which converges to one of the steady
states as t — oo. These results are generalized in Article 3 to arbitrary dimensions n > 2
within the concept of radially symmetric viscosity solutions, when 2 is the unit ball in
R™. Both results strongly rely on the available classification of the stationary solutions
and such a classification as well as the large time behavior of solutions to (1.3) remain
open for general domains 2 C R™.

Finally, we show in Article 4 that in case of ¢ > p — 1 for any nonnegative continuous
initial data ug, which is assumed to be sufficiently small for ¢ > p, there exists a unique
global in time viscosity solution u to (1.3) which converges to zero as t — co. In contrast
to the very slow convergence rates obtained for (1.1), here u converges to zero with a fixed
polynomial convergence rate. More precisely, after a suitable rescaling of time, we prove
convergence to a unique spatial profile in the large time limit. In fact, there are only two
different profiles, one for ¢ > p — 1 and one for the borderline case ¢ = p — 1, which both
do not depend on the initial data. Altogether, our results show that, like for (1.2) in the
case p = 2, the large time behavior of global solutions to (1.3) is the same as for the pure
diffusion equation u; = Apu if ¢ > p — 1, while it strongly depends on the source term
|[Vul? in the case ¢ < p— 1. Moreover, we provide an indication that for ¢ > p a smallness
assumption on ug is indeed necessary, since we show that for large ug there is no Lipschitz
continuous weak solution to (1.3), which exists globally in time. This has been further
strengthened in [18], where the occurrence of finite time gradient blowup for weak solu-
tions to (1.3) is proved for large ug and ¢ > p, meaning that u remains bounded and Vu
becomes unbounded after a finite time. More details about the results from Articles 2—4
are presented in Chapter 3.

After the foregoing works, where we studied the influence of the interplay between diffusion
and further nonlinearities of zeroth or first order on the large time behavior of solutions
to scalar diffusion equations, we next study in Articles 5-8 systems of parabolic equations
including a strong coupling via cross diffusion terms which rely on different types of taxis.
The migration of various cell populations relies at least partially on taxis, which means
directed movement in response to the gradient of some stimulus. Here we consider only
cell motions up such gradients. Furthermore, we account for either chemotaxis, where
cells are attracted by a diffusible chemical (called chemoattractant), or a combination of
the latter mechanism with haptotaxis, where the (insoluble) attractant substance is not
moving (e.g. a component of the extracellular matrix). Denoting by u the cell density and
by v and w the concentrations of the chemo- and haptotactic attractant, respectively, the
system

ug =V - (¢(u,w)Vu) — V- (¢Y(u,v)Vo) = V- (§(u, w)Vw) + g1(u, v, w),
vy = Av + go(u, v, w), (1.4)
Wy = 93(u7v7w)7

provides a general framework for the models considered in Articles 5-8. Therein (1.4) is
always imposed in  x (0,7T) together with homogeneous Neumann boundary conditions
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and appropriate initial conditions, where 2 C R"™ is a bounded domain with smooth
boundary. Thereby, the first equation in (1.4) describes the evolution of the cell density
in presence of diffusion, chemo- and haptotaxis. Here, the diffusivity ¢ is of a generalized
porous medium type, which reflects e.g. when ¢ is decreasing with respect to u the reduced
cell movement at places where cells are densely packed, and iy and & are the respective
chemo- and haptotactic sensitivities. Moreover, the chemoattractant v satisfies a parabolic
equation, while the substance w involved in haptotaxis solves an ordinary differential
equation (ODE). Apart from their dependence on u and Vu, the taxis terms also depend
on spatial derivatives of the respective attractant. Therefore, they are considerably more
general than the nonlinearities present in (1.1) and (1.3) and moreover provide strong
couplings between the equations in (1.4).

In Articles 5 and 6 we study variants of the well-known Keller-Segel chemotaxis model,
which was introduced in [65] to model aggregation of the slime mold Dictyostelium dis-
coideum. Several variants thereof have been proposed to describe the behavior of various
types of cells and have been mathematically analyzed by numerous authors. The surveys
[56, 58] and the references therein present different variants of the Keller-Segel model
and mathematical results concerning the behavior of their solutions. In particular, it has
been shown that aggregation phenomena do occur in these models. In Article 5 we study
positive and radially symmetric classical solutions to the parabolic-parabolic Keller-Segel
system formed by the subsystem of (1.4) involving only u and v with g1 = 0 in a ball
Q) C R™. Moreover, we assume that the diffusivity ¢ and the chemotactic sensitivity ¥
depend only on u and that the cells produce the chemoattractant (see (4.1) for the precise
model). In this setting an important issue is the investigation of finite-time blowup, in the
sense that the cell density v becomes unbounded in finite time, which can be interpreted
as an indication for the formation of aggregation. Quite a few results concerning finite-
time blowup have been proved for parabolic-elliptic versions of the Keller-Segel model (see
e.g. the introduction of Article 5 for a short overview), however, when the equation for v
is genuinely parabolic there were only the three works [53, 30, 101] addressing this issue
(for details we refer to Chapter 4). The results therein are valid for a linear chemotac-
tic sensitivity 1 and only [30] includes nonlinear diffusion, i.e. non-constant ¢, in the
one-dimensional setting n = 1. Article 5 provides the first result of finite-time blowup
for a parabolic-parabolic Keller-Segel model with both nonlinear diffusion and nonlinear
chemotactic sensitivity. More precisely, for dimensions n > 3 we assume a certain relation
between ¢ and v, which in the sequel is called supercritical, along with an at least linear
growth of 1. By generalizing the method from [101], we then prove that for any prescribed
initial mass m > 0 of the cells there are initial data such that the corresponding solution
to the Keller-Segel model blows up in finite time. The supercritical relation of ¢ and v is
necessary for finite-time blowup (if the critical relation is suppressed), since in presence of
the corresponding subcritical relation all solutions are global and bounded (see e.g. [95]).
However, in view of the question whether the superlinear growth of the chemotactic sen-
sitivity v is necessary, we only provide a partial answer. We show that if ¢)(u) decreases
fast enough for large u then there exists a diffusivity ¢ such that the supercritical relation
is satisfied, but for any positive initial mass of u there are solutions which exist globally
in time and blow up in infinite time. The latter result is also unusual, since most results



about infinite-time blowup in variants of the Keller-Segel model are only valid for specific,
nonarbitrary initial cell masses like critical masses. The existence of a critical growth of
1 separating finite-time and infinite-time blowup remains open; partial answers are given
by the refined results in our subsequent papers [3, 4]. More details about Article 5 are
provided in Section 4.1.

In Article 6 we consider a chemotaxis system of Keller-Segel type within a slightly different
setting. Instead of a single species we now study the competition between two cell popu-
lations in the presence of a common chemoattractant. More precisely, we assume that the
movement of both species is governed by diffusion and chemotaxis and that both species
produce the chemoattractant. Moreover, suppose that they proliferate and compete for
resources like nutrients or space, such that their mutual competition takes place according
to the classical Lotka-Volterra dynamics. For examples of such species we refer to the
introduction of Article 6 and the references therein. We further assume for simplicity that
the chemoattractant diffuses much faster than each of the two species, so that its dynamics
can be approximated by an elliptic instead of a parabolic equation, and that both species
move according to linear diffusion and a linear chemotactic sensitivity. Altogether, we
study a parabolic-elliptic variant of the Keller-Segel model supplementary involving com-
petition terms (see (4.11) for the precise model). One basic question is whether in the
large time behavior for this system both species coexist, meaning that both population
densities converge to a positive steady state as ¢ — oo, or if competitive exclusion occurs
in the sense that one population outcompetes the other such that the latter converges to
zero while the former converges to a positive steady state as ¢ — oo. The coexistence case
was studied in [97] and we study competitive exclusion in Article 6. Namely, we show that
for the same competition parameters, which imply competitive exclusion for the classical
Lotka-Volterra ODE system, competitive exclusion occurs as well for all positive solu-
tions of the Keller-Segel system. This result, which is valid independent of the diffusivity
constants, requires the smallness of the chemotactic sensitivities when compared to the
proliferation rates from the competition terms. However, it remains open whether a simi-
lar behavior can also be observed for larger chemotactic sensitivities. More details about
these results can be found in Section 4.2.

Finally, in Articles 7 and 8 we study multiscale models for cancer cell migration. In
particular, they contain a Keller-Segel chemotaxis model as a subsystem. Cancer cells
migrate through the surrounding tissue in order to reach blood vessels and distal organs,
where they initiate further tumors, called metastases. Thereby, the cancer cell migra-
tion is influenced by various processes (including diffusion, chemotaxis, and haptotaxis)
taking place at different spatial and temporal scales. These scales range from the subcel-
lular level (microscopic scale) up to the level of cell and tissue populations (macroscopic
scale). In addition, the microscopic processes happen at much shorter time scales than
the macroscopic ones. In order to model the migration of a cancer cell population we
couple a system of PDEs for the macroscopic quantities with a system of ODEs for the
subcellular dynamics. In that way we obtain a continuous micro-macro model which is a
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rather new approach in the context of cancer cell migration. Such models allow a more
detailed modeling than purely macroscopic population models and provide a simplified
multiscale approach as compared to models including also the intermediate mesoscale of
cell-cell and/or cell-tissue interactions. More details on related multiscale approaches for
cancer cell migration are presented in Chapter 5 and in the references therein.

In Article 7, we propose a micro-macro model which focuses on the influence of cell con-
tractivity on cancer cell migration. Thereby, cell contractivity describes the ability of the
cancer cell to modify its shape according to its environment. On the macroscopic scale,
our model accounts for the densities of cancer cells and tissue fibers in the extracellular
matrix (ECM) as well as for the proteolytic rests, which are resulting from the ECM
fiber degradation by the cancer cells. Here, the tissue fibers and proteolytic rests are
the respective haptotactic and chemotactic attractants for the cancer cells, so that the
macroscopic part of our model has the structure (1.4). This system is further coupled
with an ODE system which models the binding of cell surface receptors (called integrins)
to tissue fibers and proteolytic residuals on the microscopic scale. The coupling between
these two scales is provided by the cell contractivity function, which on the one hand is
influenced by the integrin dynamics and on the other hand affects the macroscopic cancer
cell density. The latter is reflected by an explicit dependence of the diffusivity ¢ and of
the haptotactic sensitivity ¢ (from (1.4)) on the contractivity function, which is a new
feature for continuous micro-macro models. The precise model (5.1) and details about
the modeling are provided in Chapter 5. In particular, when considering only cancer cells
and proteolytic rests on the macroscale, our model reduces to a Keller-Segel chemotaxis
system. Moreover, the purely macroscopic subsystem of type (1.4) is related to the com-
petition model studied in Article 6. The main differences are the haptotaxis term, which
provides an additional coupling between the competing cancer cells and tissue fibers apart
from the Lotka-Volterra competition terms, and the lack of diffusion for the tissue fibers.
In Article 7, we further assume that 2 C R" is a bounded domain with smooth boundary
and n < 3. In view of biologically motivated requirements, we aim at assuming rather
modest regularity assumptions. Hence, we prove the local existence and uniqueness within
the framework of weak solutions, which is a nontrivial issue, since the system consists of
different types of equations which are coupled in a highly nonlinear way. Furthermore, we
illustrate the solution behavior by numerical simulations. Afterwards, the global existence
of a weak solution has been shown in [14] in a slightly more specific setting. In addition,
our model provides a paradigm for further multiscale models in which subcellular processes
and their effects on cancer cell migration can be described in a more detailed manner. In
particular, the proofs of local and global existence provide a framework for such models.
More details about Article 7 are given in Chapter 5.

In Article 8 we focus on a different aspect of cancer cell migration, namely acid-mediated
tumor invasion. Cancer cells are able to upregulate some biological mechanisms which
cause the acidification of their neighborhood. This in turn leads to apoptosis of normal
cells, which cannot survive in an acidic surrounding, and hence provides space for can-
cer invasion. An acidic tumor environment is generated when cancer cells regulate their
intracellular acidity for instance by increasing extrusion of intracellular protons through



membrane transporters. Hence, we propose a multiscale model for acid-mediated cancer
invasion by accounting for the densities of cancer cells and normal cells and for the con-
centration of extracellular protons on the macroscopic scale, as well as for the intracellular
proton concentration on the microscopic scale. Two features included in our model are pH
taxis and a time-varying carrying capacity for the cancer cells due to the effects of acidity.
Here the chemotaxis mechanism is called pH taxis, as cancer cells move up the gradient
of proton concentration. Altogether, in Article 8 we obtain a micro-macro model, where
a macroscopic system of type (1.4) is coupled with an ODE for the intracellular protons
(see Chapter 5 for the model (5.5) and the modeling). The micro-macro models proposed
in Articles 7 and 8 have a few structural differences. On the macrolevel, in Article 8 on
the one hand we do not account for haptotaxis, since now the interactions of cancer cells
with normal cells instead of tissue fibers are studied. On the other hand, we include time
varying carrying capacities. The subcellular dynamics in Article 8 now consist of only one
ODE, whereas the coupling between integrins and cell contractivity on the microscale is
included in Article 7. However, it turns out that only the consideration of haptotaxis has
a strong impact on the mathematical analysis as it implies weaker regularity properties
than chemotaxis.

In Article 8 we prove the global existence of a weak solution in a general framework.
Again, the setting of weak solutions is motivated by biological considerations. Moreover,
we provide conditions on data and parameters implying the uniqueness and the uniform
boundedness of the solution. Finally, we illustrate the solution behavior for different
choices of the carrying capacity of cancer cells by numerical simulations. Details about
Article 8 are presented in Chapter 5.

To summarize, the results contained in this thesis contribute to the knowledge on the
qualitative behavior of solutions to different types of diffusion equations. Thereby, models
ranging from nonlinear scalar equations up to multiscale models for cancer cell migration
are studied. In view of the increasing complexity of the models, the experience acquired
during the development and application of methods to prove the results of former articles
often contributed substantially to the understanding of solution behaviors for more com-
plex models and to the development of appropriate methods for the proofs of upcoming
outcomes. In the subsequent Chapters 2—5 the results obtained in Articles 1-8 and the
different methods used in the proofs are presented in a more detailed way. Part II of this
thesis contains the collection of Articles 1-8.
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2. Very slow convergence rates for
a semilinear heat equation

In this chapter we summarize the results and methods from [8] (Article 1) and start by
presenting our result in the context of related works.
We study the large time behavior of nonnegative classical solutions to the Cauchy problem

(2.1)

up = Au + uP, (z,t) € RN x (0, 00),
U(.’L‘,O) = uO(:U)a YOS RNa

with p > 1 and initial data uy € C°(R™). In spite of its simple structure, (2.1) offers a
variety of behaviors (see [89] and the references therein for an overview). Here we study
convergence rates of global solutions converging to zero and first notice that positive
global-in-time solutions to (2.1) exist if and only if p > pp, where pp := % is the Fujita
exponent (see [45] and, for the case p = pp, [52, 68]). Concerning rates of convergence to
zero of nonnegative solutions to (2.1), in case of p > pp conditions on the initial data were
found implying the same convergence rates as for the linear heat equation u; = Au (see
e.g. [40, 73]). The slowest of these rates is the self-similar rate #7757 in the sense that for
some initial data there are positive constants Ky, Ko such that

Ki(t+1) 777 < Ju(,6)]| oo ny < Ka(t+1)771  for all £ > 0.

Slower convergence rates were found in [49], where the existence of global solutions satis-
fying
1
trtlu(e,t)||poomyy > 00 ast— o0

was shown in case of p > p.. Here,

00 for N <10,
Pc = (N—2)2—4N+8V/N—-1
¢ (N=2)(N=10) for N > 11,

is the Joseph-Lundgren exponent (see [63]), which satisfies p. > % > 1 for N > 11.
By studying the exact convergence rates of the above solutions from [49], arbitrarily slow
polynomial (or algebraic) rates of convergence to zero for (2.1) were found in [44]. We
extend this result in Article 1 and prove the existence of very slow convergence rates, for
instance logarithmic rates, for p > p.. We now present the latter two results within a
more general framework which also includes rates of infinite-time blowup.

11
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In case of p > p., on the one hand a singular radially symmetric steady state to (2.1)
exists, namely

poo(|z]) == Llz|™™, « e RV\ {0},
where

m = 2 and L:={m(N —2 —m)}P%l.

p—1
On the other hand, (2.1) has a family of radially symmetric regular positive steady states,
which exist for p > % and N > 3, but are only strictly ordered and stable, e.g. with
respect to certain weighted L°°-norms ([49]), in the case p > p.. It turns out that the
decay of wy as |x| — oo is very important for the large time behavior of solutions to
(2.1) and that the corresponding behavior of the regular steady states separates solutions
converging to zero from those blowing up in infinite time. More precisely, we denote by
A1 the smaller and by Ao the larger positive root of

A — (N —2-2m)A+2(N —2—m) =0,

which has two distinct positive roots if and only if p > pe.

Then assuming that n € C?([0,00)) is positive and belongs to certain function classes
which will be specified soon, the following convergence rates were shown:
If ug € CO(RY) satisfies

0 <up(z) < pool|z|)  for z € RV \ {0} (2.2)

(which guarantees the global-in-time existence of the solution u to (2.1), see [87]) as well
as

poo(|l) = erlz| 7" M (lz]) < wo(2) < poo(lz]) — cola T M(|a]), |z > R, (2.3)

with some positive constants cq, ¢, and R, then for p > p. there exist positive constants
C4 and Cy such that the solution to (2.1) satisfies

0177_%((15 + 1)%) < (-, 1) || poo mvy < (1277_%((75 + 1)%) for all ¢ > 0. (2.4)

This behavior was first shown for algebraic functions 7(z) := 2%, z > 0. The case a €
(—(A2—A1+2),0) along with its optimality was established [38, 42, 79], which implies that
the corresponding solutions to (2.1) blow up in infinite time with arbitrarily slow algebraic
blowup rates. Correspondingly, arbitrary slow algebraic rates of convergence to zero were
detected in [44] for the case a € (0,A1). In the borderline case v = 0, the solutions
are bounded and bounded away from zero and according to (2.3) they can be bounded
from above and below by suitable regular positive steady states. This case requires a
more detailed study of the initial behavior as |x| — oo as compared to (2.3) and results
concerning the stability of these positive steady states and arbitrarily slow algebraic rates
of convergence toward them can be found e.g. in [43, 48, 61, 87, 88].

After these slow algebraic rates were established, it turned out that even slower rates like
logarithmic ones occur. Such rates are rarely observed for parabolic equations. More
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precisely, given any number of iterations of the logarithm and any « # 0, for 2o > 0 large
enough the function n(z) := (In(In(... (In(z + 2p))...)))%, z > 0, is positive and has the
property that (2.2) and (2.3) imply the solution behavior (2.4). First, the case of very slow
rates of infinite-time blowup corresponding to a < 0 were proved by Fila, King, Winkler,
and Yanagida in [41]. Inspired by this result, we prove the corresponding very slow rates
of convergence to zero for a > 0 in Article 1. In fact, both results are valid for a more
general class of functions n including the logarithmic functions given above. As the general
conditions on 7 are quite technical, we confine ourselves to present only our result from
Article 1 in full generality (see Section 2.1 below). The corresponding general result for
very slow blowup rates is given in [41].

Later on, by slightly adapting the methods used to prove these results, we further estab-
lished very slow rates of convergence to positive regular steady states for p > p. (see [10])
as well as slow algebraic rates of convergence to zero and to positive steady state in the
critical case p = p. (see [11, 12] and, for corresponding rates of infinite-time blowup, [39]).

2.1 Results

In order to present the full result from Article 1, we first define the class of functions n
for which the behavior (2.4) is shown. The aim is that 7 is slowly increasing as z — oo.
More precisely, we assume that 7 € C?([0, 00)) fulfills

n(z) >0, 7'(z)>0 and 7"(z)<0 forall z>0, (2.5)

7 increases slowly near infinity in the sense that

/
2 (2) —0 asz— oo, (2.6)
n(z)
and satisfies "
2n"(2) <C, foralz>0 (2.7)
' (2)

with some constant C;, > 0. Furthermore, we require that for any a > 0 and v > 0
n(v2%) < cayn(z) forall z>1 (2.8)

holds with some constant ¢, > 0. Indeed, (2.8) is not a consequence of (2.5)—(2.7) (see
the example given after (1.1.9) in Article 1).
In particular, due to (2.5) and (2.6), for any 5 > 0

n(z) < Cg2®  forall z > 1

is satisfied with some Cz > 0. Moreover, 7(z) := (In(In(...(In(z + 29))...)))* satisfies
(2.5)—(2.8) for fixed a > 0, if zp > 0 is chosen large enough. As (2.5)—(2.8) are also valid
for some bounded functions 7, we can prove (2.4) also for these functions . However, the
very slow rates of convergence to zero are obtained only for unbounded 7.

In Article 1, we prove the following result (see Theorem 1.1.1).
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Theorem 2.1 Let N > 11, p > p. and assume that ug € CO(RY) fulfills (2.2) and (2.3),
where n meets the conditions (2.5)~(2.8). Then there are positive constants C and Co
such that the solution u of (2.1) satisfies (2.4).

2.2 Methods

The proof of Theorem 2.1 basically relies on the strategy developed by Fila, Winkler, and
Yanagida in [44], where slow algebraic rates of convergence to zero were established. In
a first step, in the radially symmetric setting, we use the self-similar change of variables
to transform the solution w of (2.1) to a corresponding function v. If v is radially non-
increasing, then (2.4) is equivalent to the behavior

m
78

v(0,5) ~e n_%(eés) for s >0 (2.9)
of v. In particular, instead of studying convergence to zero for u, we study rates of
infinite-time blowup for v (see Section 1.2 in Article 1 and [44, Section 2] for more details
concerning the transformation). In order to prove the blowup behavior (2.9) of v, we
construct appropriate sub- and supersolutions to the transformed problem and use the
comparison principle. Thereby, the supersolution is obtained by constructing two super-
solutions, one in an inner region near £ = (0 and another in a corresponding outer region
bounded away from x = 0, and matching them. We build the sub- and supersolutions by
inserting parts containing 7 into the corresponding functions from [44]. One advantage
of the self-similar transformation is the structure of separated variables in the original
functions. However, in order to include 7 in such a way that the initial behavior (2.3)
is reflected, that the matching for the supersolution is possible, and that the sub- and
supersolutions allow to prove (2.9), this structure gets lost in the new parts containing
n and, in addition, we need to impose (2.8) on 7. Both can be seen for instance in the
definitions of v,y in Lemma 1.3.3 and of vg, in Lemma 1.4.1, where in particular dif-
ferent values of 8 are used. In contrast to this, in the proof of the corresponding very
slow rates of infinite-time blowup in [41] functions with separated variables could be used
for the comparison argument and no condition corresponding to (2.8) had to be imposed,
whereas conditions (2.5)—(2.7) are motivated by their analogs in [41].



3. Large time behavior for a quasi-
linear diffusive Hamilton-Jacobi
equation

This chapter contains the summary of the results and methods from [9, 1, 6] (Articles
2-4). First we describe the connection of our results to other works.
Here we study nonnegative solutions to the diffusive Hamilton-Jacobi equation

ur = Apu+ |Vul9, (x,t) € Q x (0,00),
u=0, (x,t) € 022 x (0,00), (3.1)
U(.’L’,O) = ’LL()(x), T e Q7

where p > 2, ¢ > 0, Q C R" is a bounded domain with smooth enough boundary and
ug is regular enough (at least continuous) and nonnegative with ug #Z 0. One issue is to
investigate in how far the competition between diffusion and the nonlinear gradient source
term is reflected in the large time behavior of solutions to (3.1) and to identify optimal
parameter regimes for each of the observed phenomena.

Equation (3.1) was first studied in the semilinear case p = 2, where classical solutions
exist, and two critical exponents concerning the large time behavior were determined,
namely ¢ = 1(=p—1) and ¢ = 2(=p). In case of ¢ € (0,1), the existence of a continuum
of stationary solutions to (3.1) was shown in [23]. In the one-dimensional case n = 1, the
nonnegative steady states for (3.1) were explicitly calculated and shown to be an ordered
one-parameter family. In addition, the convergence of each solution of (3.1) to one of these
steady states was proved and the zero state was excluded as a limit function in case of
nonnegative and nontrivial initial data, but also sign-changing solutions were studied (see
[72]). However, the large time behavior in higher dimensions remained open.

In case of ¢ > 1, the classical elliptic comparison principle implies that the zero state is
the only stationary solution to (3.1). However, in this parameter regime, the nonlinear
source term can cause finite-time gradient blowup for (3.1) in the sense that ||u(-, )| 1)
is uniformly bounded, but [|[Vu(-,?)| 1) becomes unbounded after a finite time. More
precisely, while the solutions exist globally in time and are bounded in C'(Q) in case of
q € (0,2] for any ug (see e.g. [71]), for ¢ > 2 this is only true if |[ugllc1(q) is below some
positive threshold and otherwise finite-time gradient blowup occurs (see [17, 92]). Further-
more, it was shown in [26] that all global solutions converge to zero with an exponential

15
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convergence rate for ¢ > 1, where in the case ¢ > 1 the decay rate and the limiting spatial
profile are the same as for the linear heat equation, while for ¢ = 1 the exponential decay
rate is slower than in the latter case. For non-global solutions the gradient blowup takes
place at the boundary 92 and blowup rates as well as the size of the blowup set were
studied (see e.g. [50, 74, 93]).

In the quasilinear case p > 2, the existence of classical solutions cannot be expected in view
of the degeneracy of the diffusion. Instead, the concepts of weak and viscosity solutions
turn out to be useful. In spite of some results for the Cauchy problem when 2 = R" (see
e.g. the introduction of Article 2), the large time behavior for (3.1) in a bounded domain
was fairly open in the quasilinear case p > 2 and we intended to provide further insights.
Although our final results often parallel those from the case of linear diffusion, the proofs
rely on different methods. Concerning the existence of multiple stationary solutions, we
show that now ¢ = p — 1 is critical, while ¢ = p turns out to be critical with respect
to the existence of gradient blowup. We study the case ¢ < p — 1 in Article 2 in the
one-dimensional case n = 1 within the concept of weak solutions and in Article 3 in the
context of radially symmetric viscosity solutions, when €2 is the unit ball in R and n > 2.
In both cases we prove the existence of an ordered one-parameter family of steady states.
For n = 1 this provides a classification of all weak steady states of arbitrary sign, while in
the radial setting only all nonnegative, radially symmetric, and non-increasing stationary
solutions in the viscosity sense are included. The available knowledge of the steady states
then provides a starting point for proving the convergence of solutions of (3.1) to one
of these stationary solutions and, like in the semilinear case, the zero state is excluded
as limit for nonnegative and nontrivial solutions. Moreover, the steady states are flat in
some subdomain of ) (see Figure 2.1 in Article 2) and the results of Article 2 contain
the behavior of solutions irrespective of their sign. Finally, while the proof of the large
time behavior in Article 2 relies on the availability of a Liapunov functional, the theory
of half-relaxed limits for viscosity solutions is used in Article 3.

The latter theory is again an important part of the method used in Article 4, where the
large time behavior of global viscosity solutions satisfying the boundary condition in the
classical sense is established in case of ¢ > p — 1. Namely, we show that in this parameter
regime all solutions exist globally in time and converge to zero with the polynomial con-
vergence rate t_P%? as t — 00, where in the case ¢ > p we require in addition that wug is
small enough. Moreover, for ¢ > p — 1 the rescaled solution tﬁu(',t) converges to the
same unique profile, which does not depend on wy, as for the diffusion equation u; = Apu,
so that like in the case p = 2 the large time behavior of global solutions for large ¢ is the
diffusive one. However, in the critical case ¢ = p — 1, the temporal decay rate is the same
as for ¢ > p—1, but the limiting spatial profile changes, still being independent of ug (and
implying the existence of a so called friendly giant). This shows a difference to the linear
diffusion case, where the decay rate for ¢ = 1 was slower than for ¢ > 1, whereas now only
the spatial profile changes.

Finally, we indicate in Article 4 that some smallness condition on wg is necessary for the
global existence in case of ¢ > p, as no global Lipschitz continuous weak solution to (3.1)
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exists for large initial data. Later this was further studied in [18], where the occurrence
of finite-time gradient blowup on the boundary 02 was proved for ¢ > p and large initial
data in the setting of weak solutions. This result confirms that blowup is the influence of
the gradient source term in case of ¢ > p, whereas global solutions show a purely diffusive
behavior for these parameters. Moreover, the uniqueness of weak solutions, which remains
open in Article 2, was shown for ¢ > £ in [18]. Recent results on the exclusion of infinite-
time gradient blowup and the size of the blowup set can be found e.g. in [19, 20].

Short, but certainly not complete overviews on further results on (3.1) in the whole space
2 = R” or for the case of a negative gradient term —|Vu|? can be found e.g. in [89] and
the introduction of Article 2.

3.1 Results

Next, we summarize our results concerning the large time behavior for (3.1). The first
theorem contains the results for ¢ < p — 1 and n = 1 from Article 2 (see Lemma 2.2.1,
Theorem 2.4.3, Theorem 2.4.4, and Corollary 2.4.6).

Theorem 3.1 Assume thatp > 2,0 < ¢ < p—1, and Q := (—R,R) C R with some
R > 0.

(a) Let w € CY([-R, R]) be a weak solution to the stationary problem corresponding to
(3.1) in the sense that it satisfies w(£R) =0 and

R

[ (= (el 202)(@) ale) + s 1(2)6(0) ) e =0 for any € € C(~R, B).

—-R

Then w is nonnegative and there is ¥ € [0, R] such that w = wy, where

wy() = 2 [(R=9)" = (o] -9)3],  w€[-R.R)

for 9 € [0, R] with o := pf;fq > 1 and ¢y = (%) P > 0. In particular,

wr =0 in Q.

(b) For any ug € C1(Q) with ug = 0 on O there exists a global weak solution u to (3.1)
in the sense of Definition 2.4.1. Furthermore, sup;q [|u(-,t)|lw1.c(q) s finite and
there exists a unique Vo € [0, R] such that ||wy,||coq) = limi—eo [[u(-,?)[|coq) and

||U('»t) - wﬂOHCO(Q) —0 ast—

are fulfilled. In addition, in case of ug > 0 with ug Z 0 we have 99 < R (or
equivalently wy, # 0), whereas 99 = R (or equivalently wy, = 0) is satisfied in case
of ug < 0.

Let us add the following remark.
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Remark 3.2 Although the results in [9] (Article 2) are only stated for p > 2 and 1 < q <
p—1, they are indeed valid in the more general regime p > 2 and 0 < g < p—1, as claimed
above in Theorem 8.1. In fact, each proof contained in Article 2 remains true without any
change, since the combination of the positivity of q with ¢ < p — 1 is actually sufficient
in each step. In order to avoid changes in the introduction of the published paper [9], we
confine ourselves with this remark and the footnote to (2.1.3) in Article 2.

Next, we present the extension of the former one-dimensional results to the radial case.
These results from Article 3 (see Theorem 3.1.1, Theorem 3.1.3, and Proposition 3.3.1)
were even unknown in the semilinear case p = 2.

Theorem 3.3 Suppose that p > 2, 0 < qg<p—1, and Q := B1(0) C R" is the unit ball
with n > 2.

(a) Let w € WH(Q) be a radially symmetric and non-increasing viscosity solution to
—Apw — [Vwl|? =0 in Q satisfying w =0 on 0B. Then there is ¥ € [0,1] such that
w = wy, where
1 1
wy(x) := co / (p - ﬁﬁp’(ﬂ’”) Tdp,  weq,
max{|z|0}

1
for v € [0,1] with g :== 1+ (N_lz))(fpl_l_@ > 1 and ¢y = (?p__ll_)q>p717q > 0. In

particular, we have wo(z) = < (1 — |z|*) for x € Q, where o := pf;ﬁq > 1, and

wy =0 in Q.

(b) For any radially symmetric and nonnegative ug € WOI’OO(Q) with ug % 0, there exists
a unique global (radially symmetric) viscosity solution u € C°(Q x [0,00)) to (3.1).
Moreover, sup;s |[u(-,t)|lw1.0(q) is finite and there is a unique Vo € [0,1) such that

tlggo Ju(-,t) — wﬂoHCO(Q) =0.

In particular, 99 € [0, 1) implies wy, # 0.

Finally, the results in case of ¢ > p — 1 from Article 4 (see Theorem 4.1.2, Theorem 4.1.4,
Corollary 4.4.5, and Proposition 4.5.3) are collected in the following theorem.

Theorem 3.4 Assume thatp >2,q>p—1, (_2 C R™ is a bounded domain with a smooth
boundary (at least C?), n € N, and uy € C°(Q) is nonnegative such that ug = 0 on O
and ug Z 0.

(a) In case of ¢ = p — 1, there is a unique global viscosity solution u € C°(Q x [0,00))
to (3.1) in the sense of Definition 4.1.1 and

lim
t—o00

7 (1)~ |

_. = 07
(@)
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where f € C°(Q) is the unique positive viscosity solution to

_Apf—]Vf\p_l—p{2:0 in Q f>0 in Q, f=0 on 002. (3.2)

Furthermore, if ug € Wh(Q), then Vu(-,t) € L>(Q) for all t > 0 and
Clug] := sup {[|Vu(-, t)[| Lo () } < o0.
>0

(b) Let ¢ >p—1. If ¢ > p, assume further that there is a nonnegative Go € W1°(£2)
satisfying Go = 0 on 0S) such that

Go() A
< 1G]’ r e, (3.3)

uo(z)

where ([Gp] is defined in part (a). Then there is a unique global viscosity solution
u € C%Q x [0,00)) to (3.1) in the sense of Definition 4.1.1 and

lim
t—o0

177w 1) — fol

_. = 0 Pl
e(V))
where foy € C°(Q) is the unique positive viscosity solution to

fo

—Apfo—izo in Q fo>0 in Q, fo=0 on 090. (3.4)

In addition, if ug € WH(Q) then supys [[u(-, t)|lw1.0o(qy is finite.

(c) Assume in addition that ug € WH>°(Q), let ¢ > p, and define r := q/(q — p). There
is a constant k > 0 depending on 2, p, and q such that, if ||uo||r+1(q) > K, then
(3.1) has no global Lipschitz continuous weak solution.

We add the following explanation concerning the uniform Lipschitz estimate from part (b).

Remark 3.5 In case of ¢ > p — 1, the result that sup,>g [[u(:,t)|[w1.(q) s finite for
Lipschitz continuous initial data is stated in Article 4 only for ¢ < p (see Corollary 4.4.5).
Howewver, the proof of the latter Corollary also covers the case ¢ > p, provided that the
additional assumption (3.3) is fulfilled. Indeed, it relies on (4.4.18) which is also valid in
that case and proved in Section 4.5.2 of Article 4.

Finally, we remark that while the existence and uniqueness of the positive viscosity solution
fo to (3.4) was proved in [77], the corresponding result for the solution f to (3.2) is
one contribution of Article 4. In particular, Theorem 3.4 implies in case of ¢ = p — 1
the uniform convergence of the solution u of (3.1) to the separated variables solution

Uoo (T, 1) 1= t_P%f(m) of (3.1) with an initial condition being identically infinite in €,
while the limit function for ¢ > p — 1 is the corresponding solution Uy (x,t) := ¢z fo(x)
of the diffusion equation u; = Apu. The solutions us and U, are also called friendly
giants and we refer to the introduction of Article 4 for related results concerning other
equations.
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3.2 Methods

We first describe the methods used in Article 2 to prove Theorem 3.1 for ¢ < p —1. While
the classification of the stationary solutions given in part (a) is shown by straightforward
calculations, the proof of the convergence of a weak solution to (3.1) towards one of
these steady states strongly relies on the availability of a Liapunov functional, which is
constructed by applying an idea of Zelenyak (see [103]). Although the latter method
was already used in [72] for classical solutions in the semilinear case p = 2, our proof
in the quasilinear case p > 2 requires different arguments. In particular, we do not
prove the existence of a Liapunov functional for (3.1), but only for the regularized and
strictly parabolic problems (2.3.1), and further need additional compactness properties
in order to obtain the large time behavior of weak solutions to (3.1). To this end, by
constructing suitable sub- and supersolutions and using an idea from [47], we first prove
that the classical solutions u. to the approximate problems (2.3.1) satisfy a uniform spatial
Lipschitz estimate as well as a uniform Holder estimate with respect to time. Then,
uniform estimates of (u.); in L2(Q x (0,00)) and of the second spatial derivative are direct
consequences of the Liapunov functional (see Lemma 2.3.3). Based on these estimates, we
prove appropriate compactness properties which imply the existence of a weak solution
u to (3.1) as a limit of the approximations u. (as € N\, 0) as well as the convergence of
u(+,t) to one of the stationary solutions wy as t — o0o. Therein, in view of the nonlinear
diffusion, the pointwise convergence of the spatial derivatives (u.), to u, as well as of
Uz (+,t) to (wy), are important and are provided by the two estimates derived from the
Liapunov functional in conjunction with the Aubin-Lions lemma. Moreover, we are able
to identify ¥ since on the one hand [[wy||co(g) is strictly decreasing for ¥ € [0, R] and on
the other hand |[u(-,?)|/co(q) is non-increasing for ¢ > 0.

As the existence of the Liapunov functional relies on the one-dimensional setting, we
use a different method to prove the corresponding results of Theorem 3.3 in the higher-
dimensional radially symmetric case in Article 3. Namely, we use the theory of viscosity
solutions satisfying initial and boundary data in the classical sense (see e.g. the user’s
guide [31]). In a first step, we classify the nonnegative, Lipschitz continuous, radially
symmetric and non-increasing viscosity solutions to the stationary problem corresponding
to (3.1). As compared to the straightforward formal proof given in the beginning of
Section 3.2 in Article 3 for more regular solutions, a number of comparison arguments for
the radial stationary problem are used in the rigorous proof for viscosity solutions in order
to prove the validity of (3.2.11) as well as the property that every Lipschitz continuous
steady state in fact belongs to C'(€2). The existence and uniqueness of a uniformly
Lipschitz continuous, radially symmetric viscosity solution to the parabolic problem (3.1)
is then shown with the help of an approximation by solutions to regularized problems in
conjunction with the stability theorem and the comparison principle for viscosity solutions.
The proof of the large time behavior of the solution u to (3.1) relies on the method of half-
relaxed limits introduced in [24]. As w is uniformly Lipschitz continuous, the half-relaxed
limits, defined by

uy(z) ;= liminf w(z,e”'s) and w*(z):= limsup u(z,e 's), z€Q,
(5,6)—=(t,0) (5,6)—(t,0)
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are well-defined, do not depend on ¢ > 0, and u, and u* are Lipschitz continuous viscosity
super- and subsolutions, respectively, of the stationary problem corresponding to (3.1). In
view of u, < u* by definition, we aim to prove u, > u* in order to show the equality of the
two half-relaxed limits. As there is no comparison principle for the stationary problem,
we use the additional properties that u, and u* are radially symmetric and non-increasing
and have the same maximal value (see Lemma 3.4.1) in order to be able to apply certain
comparison arguments which finally allow us to conclude that u, > u*. Therefore, the two
half-relaxed limits are equal and coincide with one steady state wy,, so that the theory
from [21, 22] implies the claimed convergence of u to wy,. Thereby, the proofs of both
the classification of the steady states and the equality of the half-relaxed limits strongly
rely on the radial setting and it is an open question whether corresponding results can be
obtained for general solutions.

The proof of the large time behavior for the case ¢ > p — 1 from Theorem 3.4 in Article 4

again relies on the theory of viscosity solutions and the method of half-relaxed limits. One

main difference as compared to Article 3 is that in order to identify the spatial profiles
1

f and fp, the convergence is now proved for the rescaled function v(z,t) := tr—2u(z,t)
and not for wu itself. In particular, this requires more precise estimates for u reflecting the

decay according to the rate ¢t »=2. As a first step, we prove a comparison principle for the
stationary problems (3.2) and (3.4) which generalizes a result from [28] and is crucial for
the identification of the half-relaxed limits. In case of ¢ € [p— 1, p|, the global existence of
a unique viscosity solution u to (3.1) directly follows from [32]. We then prove Lipschitz

estimates on the boundary and upper bounds for u (which both behave like tip%2 for
large t) by constructing appropriate barrier functions and supersolutions, respectively.
These estimates imply that the rescaled function v is uniformly Lipschitz continuous on
the boundary and uniformly bounded, so that the half-relaxed limits corresponding to v
are well-defined and Lipschitz continuous on the boundary. In addition, the large time
behavior for the diffusion equation z; = A,z proved in [77] along with the comparison
principle for (3.1) imply that the solution fy to (3.4) is a positive lower bound for both
half-relaxed limits. This enables us to apply the above mentioned comparison principle
for (3.2) or (3.4) to show that both half-relaxed limits coincide either with the solution
f to (3.2) or fy. Finally, we can apply the theory of half-relaxed limits as described for
Article 3 to conclude that v converges to f in case of ¢ = p — 1 and to fjy in case of
g€ (p—1,p.

In the case ¢ > p, the main issue is the well-posedness, because the result from [32]
cannot be applied any more. However, we are able to construct a Lipschitz continuous
supersolution to (3.1) by using a corresponding solution for (3.1) with ¢ = p — 1. If
the initial data are below this supersolution, the classical Perron method along with the
comparison principle implies the existence and uniqueness of a global viscosity solution to
(3.1). Then, the large time behavior can be proved just like in the case ¢ € (p— 1, p|. The
method from Article 4 also can be used for other equations, see e.g. [5] for the infinite
heat equation u; = Agou.

Finally, in the proof of the non-existence of a global Lipschitz continuous weak solution to
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(3.1) in case of ¢ > p for large initial data (see Theorem 3.4(c)) we adapt the method from
[54] to show that [lu(-,?)|[1r+1(q) becomes unbounded after a finite time provided that it
is large enough for ¢ = 0.

Article 3 was mainly developed jointly by Philippe Laurencot and myself during my visit
to the Université Paul Sabatier de Toulouse in June 2009. Guy Barles introduced us to the
method of half-relaxed limits and explained common approaches for proofs of comparison
arguments for viscosity solutions, which enabled Philippe Laurencot and me to develop
part of the proofs from Article 3.

Article 4 was developed jointly by Philippe Laurencot and myself during his visit to the
Universitat Duisburg-Essen in January 2010 and my visit to the Université Paul Sabatier
de Toulouse in March 2010.



4. Contributions to Keller-Segel
chemotaxis models

In this chapter we present our contributions to Keller-Segel chemotaxis models contained in
[2, 15] (Articles 5 and 6). Since both articles are related to different aspects of chemotaxis
systems, we describe their results and methods in two sections. The first one contains
finite-time blowup results for fully parabolic Keller-Segel systems, while the second is
concerned with competition of two species in presence of chemotaxis.

As there is a huge literature on Keller-Segel models, we only present results which are
very closely related to Articles 5 and 6. For a more general overview we refer e.g. to the
surveys [56, 58].

4.1 Finite-time blowup in a quasilinear parabolic-parabolic
Keller-Segel system

One feature of Keller-Segel models is the ability to describe aggregation phenomena for
populations of cells. As finite-time blowup of the population density is an indication that
aggregation can take place before the blowup time, this phenomenon has been studied
by many authors. Here we present finite-time blowup results for the parabolic-parabolic
Keller-Segel system

ur =V - (p(u)Vu) — V- (¢(u) Vo), (x,t) € Q2 x (0,T),

v = Av — v+ u, (z,t) € Q x (0,7T), i1
gu = 9v =, (x,t) € 90 x (0,T), (4.1)
u(z,0) = up(z), v(z,0)=1vo(x), x €,

where 2 C R" is a bounded domain with smooth boundary, v is the outward unit normal
on 012, and ug, vy are positive and sufficiently regular. Therein, u denotes the cell density
and v the concentration of the chemical signal, which attracts the cells. We assume that the
cell motion is governed by diffusion and chemotaxis and that the cells produce the chemical
signal. Motivated by the volume-filling model derived in [55], we further require that the
diffusivity ¢ and the chemotactic sensitivity ¢ depend solely on u. Here we only study
classical solutions to some variants of (4.1) and in the sequel blowup at time T € (0, 00|
means that limsup; »p |lu(-,t)[|L=(q) = co. For parabolic-elliptic simplifications of (4.1)

23
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(when the second equation in (4.1) is replaced by an elliptic one) many results of finite-
time blowup are known, which mostly rely on the reduction of this system to a scalar
parabolic equation or on the use of second moments, the first one being [62]. We refer e.g.
to the introduction of Article 5 for a short, but certainly not complete overview about
these results. However, for parabolic-parabolic Keller-Segel models, where these methods
apparently do not work, before Article 5 there were only three results of finite-time blowup,
namely those of Herrero and Veldzquez from 1997 ([53]), of Cieslak and Laurencot from
2010 ([30]), and of Winkler proved in 2011 ([101]). In order to describe these results, which
all rely on different methods, we look at two variants of (4.1).

We first consider the case ¢(u) = 1 and ¥(u) = u in (4.1), where both diffusion and
chemotactic sensitivity are linear. This system is often called the classical or minimal
Keller-Segel model. Concerning the existence of blowup for classical nonnegative solutions,
it was proved in [86] that in dimension n = 1 all solutions to (4.1) are global and bounded.
In dimension n = 2, the existence of a critical mass, which is 47 in the general setting and
87 when restricted to radially symmetric solutions, was shown. Namely, it was established
in [46, 83] with two different proofs both using a Liapunov functional that all solutions
with initial mass m := fQ uo(z) dz smaller than the critical mass are global and bounded,
while it was shown in [60] that for any initial mass (which is required to be no multiple of
47 in the general setting) larger than the critical mass there exist unbounded solutions.
The latter result was again proved by using the Liapunov functional, but it remained open
whether these solutions blow up in finite or infinite time. In addition, in the radial case,
for some masses larger than 87 some solutions blowing up in finite time were constructed
in [53] by using the method of matched asymptotic expansions. It was further shown that
the latter solutions develop a singularity of Dirac-§ type and the asymptotic behavior near
the blowup time was described in a very detailed way. However, it remained open whether
finite-time blowup is a generic phenomenon for large masses and n = 2 or depends on the
particular choice of the solutions from [53]. It was revealed very recently in [81] by using
the method from [101] described below that indeed for any initial mass larger than 8 there
exists a large set of radially symmetric initial data such that the corresponding solution
to (4.1) exhibits finite-time blowup, which therefore can be seen as a generic phenomenon
in this context. In dimensions n > 3 it was proved in [101] that for any positive initial
mass there exist radially symmetric initial data such that the corresponding solutions to
(4.1) blow up in finite time and that the set of these initial data is dense with respect to
a certain topology. In [101] the Liapunov functional was used in a new way by showing
that for a supposedly global solution the corresponding Liapunov functional itself becomes
unbounded after a finite time. Indeed [101] marked a breakthrough, because the method
used there provides a framework which could be used (e.g. in our works and [81]) and
possibly can be further adapted to prove results on finite-time blowup for fully parabolic
Keller-Segel models.

As a second case, we describe the results known for the quasilinear variant of (4.1) when
the diffusivity ¢(u) = (u+1)~P and the chemotactic sensitivity ¥ (u) = u(u-+1)?~! are both
power type nonlinearities with p, ¢ € R. This variant of (4.1) is related to the model with
volume-filling effect proposed in [55] and serves as a prototype of a fully parabolic Keller-
Segel model with both nonlinear diffusion and nonlinear chemotactic sensitivity. Although
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all results which we will present for this variant of (4.1) are indeed valid for more general
choices of ¢ and v, for the ease of presentation we will only give the results of Article 5
in full generality (see the next subsection). For (4.1) with the power type nonlinearities ¢
and 1, it was shown in [95] that in the subcritical case p+ ¢ < % with n € N all solutions
are global and bounded. In addition, it was proved in [100] that in the supercritical case
p+q> % with n > 2 for any initial mass there exist unbounded solutions, but it remained
open whether finite-time or infinite-time blowup occurs. Only in the one-dimensional case
n = 1, it was shown in [30] by using an identity of virial type and the boundedness of the
Liapunov functional that finite-time blowup occurs in the supercritical case when ¢ = 1
and the initial mass is large enough. By generalizing the method from [101] described
above, we prove in Article 5 that in the supercritical case p + g > % with n > 3 and
q > 1 for any positive initial mass there exist radially symmetric solutions blowing up in
finite time. This result induced the question whether the superlinear growth of ¢ (i.e.
q > 1) is really necessary for the existence of finite-time blowup. As a partial answer, we
further show in Article 5 that for any ¢ < 1 — n and p € R such that % <p+q<1
with n > 3 for any positive initial mass there exist radially symmetric solutions blowing
up in infinite time. This reveals that for chemotactic sensitivities ¥ (u) decreasing fast
enough as u — oo, infinite-time blowup is a generic phenomenon in the supercritical case
and happens for any positive initial mass, while this usually occurs only for particular
masses like critical ones in the context of Keller-Segel systems. The results from Article 5
are generalized to the two-dimensional case and further refined in our subsequent papers
[3, 4] by slightly adapting the proofs from Article 5 in order to reduce the gap between
those values of ¢ enabling finite-time blowup and those implying blowup in infinite time.
The current result is summarized in Corollary 4.4 below, but it is still open whether there
exists a critical exponent ¢ separating these two types of behavior. Recently, the local
non-degeneracy of blowup points in case of p = 0 was established in [80].

4.1.1 Results

In order to present the general results of Article 5, we need to introduce some notation.
The results in the particular case, when the diffusivity ¢ and the chemotactic sensitivity
1) are power type nonlinearities, are given in Corollaries 4.3 and 4.4 below.

In general, let

b,1, 8 € C*([0,00)) with ¢(s) >0, (s)=sB(s), B(s)>0 forsec[0,00) (4.2)

be fulfilled. We further assume that there exist positive constants sg, a, b such that

= 8 U¢(7-) T Ao S an S) = SU¢(U)
G(s)._//w(T)dd, >0, d  H(s)

= do, s2>0, 4.3
/ 900) =0 49

S0 S0
satisfy

2
G(s) < as*, s> sg, with some o > —, (4.4)
n
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as well as

-2
H(s) <~v-G(s)+b(s+1), s>0, with some ~ € (O, n - > . (4.5)

Here, ¢ and v satisfy the supercritical relation if (4.4) and (4.5) are fulfilled (which in the
case of power type nonlinearities as defined above is equivalent to p+¢q > %) Furthermore,
it is well-known that

F(u,v) ::;/ |Vv\2+;/02—/uv+/QG(u) (4.6)

is a Liapunov functional for (4.1) with dissipation rate

D(u,v) / vy —i—/@b —VU‘Z. (4.7)

More precisely, any classical solution to (4.1) satisfies

dt]:( u(+,t),v(-,t)) = =D(u(-t),v(:,t)) for all t € (0, Trnaz (o, vo)), (4.8)

where T4z (10, v0) € (0,00] denotes the maximal existence time of (u,v) (see e.g. [100,
Lemma 2.1]). Finally, for our finite-time blowup result we further need to impose a
superlinear growth condition for the chemotactic sensitivity v, namely

P(s) >cos, s>0, (4.9)

with some ¢g > 0.
With these conditions and notation, our main results from Article 5 are summarized in
the following theorem (see Theorems 5.1.1, 5.1.2, and 5.1.6).

Theorem 4.1 Suppose that Q@ = Br(0) C R™ with some n > 3 and R > 0, and that (4.2)
holds.

(a) Assume further that (4.4), (4.5), and (4.9) are satisfied, and let m > 0 and A > 0
be given. Then there exist positive constants T (m,A) and K(m) such that for any

(ug,v9) € B(m, A) = {(uo,vg) e CUQ) x Whe(Q) | ug and vy are radially
symmetric and positive in Q, fQ ug = m,

lvollw2() < A, and F(ug,vo) < —K(m) - (1+ AQ)},

the corresponding solution (u,v) of (4.1) blows up at the finite time Tpaq(ug, vo) €
(0,00), d.e. Hmsup, sz, (uo.wo) 1005 Bl oo () = 00, where Tinaz(uo, vo) < T'(m, A).

(b) If (4.4) is satisfied, then for any m > 0 there exists A > 0 such that B(m, A) # 0.

If (4.4) is fulfilled with some o > %_,_2 and, moreover, p € (1,%) is such that

p > 2 — a, then for any m > 0 and A > 0, the set B(m, A) is dense with respect
to the topology in LP(S2) x W2(Q) in the space of all radially symmetric positive
functions (ug,vo) € CV() x Wh>(Q) satisfying [, uo =m and |Jvo|lw1.2¢q) < A.
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(c) Assume that (4.4) and (4.5) are fulfilled, that lims_ o ¢(s) = 0, and that there exist
constants D > 0, D1 > 0, and v1 > n such that

Bls) <D and p[(s)<Dys™ for any s > 0.

(s)
Then all solutions to (4.1) exist globally in time and for any m > 0 there are radially
symmetric global solutions (u,v) to (4.1) satisfying [ouo = m which blow up in
infinite time, i.e. imsup,_, . [|u(:, 1) Lo () = 0o.

Let us add the following short remark.

Remark 4.2 Although not explicitly stated in Theorem 5.1.6 of Article 5, its proof already
shows that there is mot only one solution blowing up in infinite time, but in fact such
solutions exist for any positive initial mass as claimed in part (c) of Theorem 4.1 above.
In the proof of Theorem 5.1.6, the latter claim is a consequence of [100, Theorem 5.1] used
there, which indeed provides appropriate initial data for any positive mass.

In the particular case of power type nonlinearities ¢ and 1, Theorem 4.1 immediately
implies the following results (see also Corollary 5.1.5).

Corollary 4.3 Assume that Q = Bgr(0) C R™ with some n > 3 and R > 0, and that
#(s) = (s +1)7P and ¥(s) = s(s + 1)1, s > 0, with p,q € R such that p+q > %

(a) In case of ¢ > 1, for any m > 0 there exist radially symmetric solutions (u,v) to
(4.1) satisfying [ uo = m which blow up in finite time.

(b) In case of ¢ < 1—n and % < p+q <1, all solutions to (4.1) exist globally in time
and for any m > 0 there are radially symmetric solutions (u,v) to (4.1) fulfilling
fQ ug = m which blow up in infinite time.

The results from Article 5 were extended to the case n = 2 in [3] and further refined in
[4]. Combining these results with Corollary 4.3, we have the following results for power
type nonlinearities ¢ and .

Corollary 4.4 Assume that Q = Bgr(0) C R™ with some n > 2 and R > 0, and that
#(s) = (s +1)7P and ¥(s) = s(s + 1)1, s > 0, with p,q € R such that p+ q > %

(a) If either q > % and p < 0 or q > 1 is satisfied, then for any m > 0 there exist
radially symmetric solutions (u,v) to (4.1) satisfying fQ ug = m which blow up in
finite time.

(b) If ¢ < 0 and % —qg<p< % — 2q, then all solutions to (4.1) exist globally in time
and for any m > 0 there are radially symmetric solutions (u,v) to (4.1) fulfilling
fﬂ ug = m which blow up in infinite time.

These results imply that in terms of ¢, which describes the growth of the chemotactic
sensitivity 1, for any ¢ > % there are p such that finite-time blowup occurs, while for
q < 0 there are some p such that infinite-time blowup occurs, but finite-time blowup is
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excluded. However, it remains open whether there is a critical value ¢ € [0, %] separating
these two blowup types. The general results obtained in [3, 4] can be found in [3, Theorems
1.1 and 1.4] and [4, Theorems 1.1 and 1.3]. The main refinements in the proofs as compared
to Article 5 are described in the next subsection.

4.1.2 Methods

For proving the finite-time blowup result given in Theorem 4.1(a), we adapt the method
from [101], where the case ¢(u) = 1 and ¥ (u) = u was studied, to the quasilinear case.
The main idea is to show that the Liapunov functional F(u(t), v(t)) defined in (4.6) tends
to —oo after a finite time provided that it is small enough at ¢ = 0. The main step towards
this behavior consists of proving that each solution (u,v) to (4.1) starting from initial data
(uo,v0), which satisfy all conditions raised in B(m, A) (defined in Theorem 4.1(a)) except
the last one involving F(ug, vo), fulfills

- 26 o(u) o
/qu < Cl(HAU v+u‘L2(Q)+ WVU Vi (u)Vo L2(Q)+1>

1 2
+2/Q|w +/Qc;(u). (4.10)

for all t € (0, Tmaz(uo,v0)) with some constants ¢; > 0 (depending on m and A) and
0 € (1,1) (see Lemma 5.3.1). In view of (4.1), (4.7), and Young’s inequality, this implies

1
/ uv < ¢y (De(u,v) + 1) + 2/ ‘VU’Q +/ G(u), t € (0, Tz (uo, v0)),
Q Q Q

with some ¢ > 0, which means that we have estimated the only negative ingredient of
the Liapunov functional F(u,v) by a sublinear power of the dissipation rate D(u,v) and
positive ingredients of F(u,v). Inserting the latter inequality into (4.6), we have

Flu,v) > —cy (Da(u,v) + 1) , t € (0, Thnaz(uo, v0)),

(see Theorem 5.3.6), which in turn, when combined with (4.8) and the condition F(ug,vg) <
—2c9, implies

4
dt

_‘F(u('v t), U('? t))
202

1
0

(0,0, = ) e 0 Tl )
(see Lemma 5.4.1). Due to 6 € (0,1), we conclude that F(u,v) and hence also its only
negative ingredient — [, uv tend to —oo after a finite time. As € is bounded, the latter
means that u blows up in finite time, since otherwise parabolic regularity theory applied to
the second equation of (4.1) would imply the boundedness of both w and v. This completes
the proof of part (a), as we can choose K (m) such that 2co = K(m) - (1 + A?) is satisfied
corresponding to the last condition in B(m, A).
As compared to the original method from [101], apart from some more involved estimates
our proof contains two important structural differences. First, in estimate (4.10) we include
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positive ingredients of the Liapunov functional (namely the terms in the second line of
(4.10)), which were not present in the corresponding estimate [101, (4.7)]. This is a
consequence of the more general choices of ¢ and 1, and is particularly reflected in the
proof of Lemma 5.3.4. In the proof of (4.10), which altogether consists of Lemmas 5.3.1-
5.3.5, [, uv is first estimated in terms of [, |Vv|?, which in turn is estimated appropriately
by splitting the domain €2 into a small ball B,,(0) and the remaining annulus, where the
smallness of 7 is needed to ensure the sublinear power of the dissipation rate D(u,v) in
(4.10). Mainly in Lemma 5.3.4, which contains the estimate on || Buy (0) |Vv|?, the additional

terms stemming from the Liapunov functional as well as the assumptions (4.4), (4.5), and
the superlinear condition (4.9) play an important role.

The second difference is the explicit dependence on A in the condition F(ug,vg) < —K(m)-
(1 + A?) raised in the set B(m, A) for the initial data. This is used in Theorem 4.1(b)
to prove that for any initial mass m > 0 there are suitable initial data in the sense that
B(m, A) # () for some A > 0. If @ in (4.4) is large enough, we can directly adapt the proof
from [101] to show even the density of B(m, A) in the sense claimed in the second part of
Theorem 4.1(b), where we do not need the precise dependence on A of the upper bound
for F(ug, vo). However, when o in (4.4) is close to 2, which is the border between super-
and subcritical case, we could only find appropriate initial data which imply that for any
m > 0 there is some A > 0 such that B(m, A) # () (see the first part of Theorem 4.1(b)),
if the upper bound on F(ug,vy) depends at most quadratically on A (see the proof of
Theorem 5.1.2 starting from (5.4.7)). Moreover, in view of the definition of F in (4.6)
the quadratic dependence on A seems to be optimal. In order to show that this quadratic
dependence on A can be achieved in the sense that the above choice 2co = K(m) - (1+ A?)
is possible, in the proof of part (a) we need to determine the precise dependence of the
involved constants on A. In the slightly more general setting in Section 5.3 of Article 5
this corresponds to the dependence on M and B which both depend linearly on A (see
the proof of Lemma 5.4.1). Thereby, we further refine some estimates from [101].

The proof of the infinite-time blowup result from Theorem 4.1(c) mainly relies on showing
that there is p > n such that sup,c z ) [[u(,t)|[r() < C(T) holds for any finite T <
2

Tnaz(up, vg). Parabolic regularity theory then implies uniform bounds in L*(2) on Vv
and on u in (%, T) for any such T (see e.g. [29]), which implies the global existence of all
solutions to (4.1). As unbounded solutions for any positive mass were already found in
[100], the global existence result shows that they indeed blow up in infinite time.

This result of infinite-time blowup has been generalized in [3, 4] by showing bounds on
|u(+,t)[|Lr(q) for any p € [1,00). The latter enables us to conclude the global existence
claimed in Corollary 4.4 from a more general result given in [95], which relies on an itera-
tive method of Moser-Alikakos type (see [3, Section 4] and [4, Section 3] for details). Each
of the finite-time blowup results in [3, 4] summarized in Corollary 4.4 mainly relies on the
refinement of one estimate from the proof of Lemma 5.3.4 (which was described above).
More precisely, in the two-dimensional setting we use a logarithmic Young inequality in
order to handle the term 7!~ in the inequality below (5.3.30), which is not integrable at
zero for n = 2 (see [3, Lemma 2.4] for details). In order to get a finite-time blowup result

also for some 1 with sublinear growth in dimensions n > 3, we use ﬁi) < L(G(s)+s+1)
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for s > 0 with some constant L > 0 instead of (4.9) in estimate (5.3.27) (see [4, Lemma 2.1
and (2.15)] for details).

Article 5 was jointly developed by Tomasz Cieslak and myself in December 2011 at the
Universitat Ziurich, where both of us had a postdoc position.

4.2 Competitive exclusion in a two-species chemotaxis model

In this section we study the influence of chemotaxis on the competition of two biological
species (e.g. cells or bacteria). Thereby we assume that these species are attracted by the
same chemical signal, which they produce themselves, and that their movement is governed
by diffusion and chemotaxis. Furthermore, we assume that the species proliferate and
compete for resources like space or nutrients such that their competition can be modeled
by the classical Lotka-Volterra dynamics. Finally, we assume that the chemical signal
diffuses much faster than the species so that we may describe its dynamics by an elliptic
instead of a parabolic equation. Denoting by v and v the population densities of the
two species and by w the concentration of the chemical signal, in Article 6 we therefore
consider the two-species Keller-Segel system

up = d1Au — x1V - (uVw) + pru(l —u — ayv), (x,t) € Q x (0,00),

vy = daAv — x2V - (VVw) + pav(l — v — agu), (x,t) € Q x (0,00),

—Aw + \w = ku + v, (x,t) € Q x (0,00), (4.11)
Ju = gv = u — () (x,t) € 002 x (0,00),

u(z,0) = up(z), v(z,0)=1vo(z), x €,

where 2 C R" is a bounded domain with smooth boundary, ug and vy are continuous and
nonnegative, d;, p;, A are positive and x;, a;, k are nonnegative parameters. As compared
o (4.1), the second species and the competition terms are included, while (4.11) is not
fully parabolic and contains only linear diffusion and chemotactic sensitivities. Some
examples of species which compete in presence of chemotaxis as well as mathematical
models combining competition and chemotaxis are provided in the introduction of Article 6
and the references given therein. In order to present the influence of chemotaxis on the
competition of u and v, we first recall that in the absence of diffusion and chemotaxis the
classical Lotka-Volterra ODE-system

w = pu(l —u — aqv), t € (0,00), (4.12)

= pv(l — v — agu), t € (0,00),
with positive initial data has the following large time behavior depending on the com-
petition parameters a; and ag. In case of weak competition, namely a,a2 € [0,1),
both species coexist in the sense that (u(t),v(t)) converges to the positive steady state
(u*,v*) 1= (=2 1202 ) a5 ¢ 5 00, In case of a; > 1 > ag > 0, v has a stronger influ-

l—ajas’ 1—aiaz
ence on u than u on v so that v outcompetes v in the sense that (u(t),v(t)) — (0,1) as
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t — 00, a phenomenon called competitive exclusion as u converges to zero, but v converges
to a positive steady state. By symmetry, u outcompetes v in case of 0 < a1 < 1 < as.
Finally, in case of a1,as > 1 in (4.12) the steady state (0,0) is unstable, (1,0) and (0, 1)
are locally asymptotically stable, and (u*,v*) is a saddle. These results for (4.12) can be
found e.g. in [16, 82, 102].

One basic question is in how far chemotaxis influences the competition behavior as com-
pared to (4.12). For mathematical models containing both chemotaxis and competition,
results on the qualitative behavior of solutions including global existence were obtained
e.g. in [70, 105]. Furthermore, the existence and stability of steady states for coexistence
or competitive exclusion were studied e.g. in [33, 34, 59, 98, 105]. However, before 2012
there was no result concerning the qualitative behavior of solutions in the case of compet-
itive exclusion, when chemotaxis and competition involving both species are present. For
systems like (4.11) fulfilling the latter conditions, a few recent results are known. Namely,
(4.11) was studied in [97] in the coexistence case aj,as € [0,1) and it was shown that
if £ = 1 and the proliferation rates u; are large enough as compared to the competition
parameters a; and the chemotactic sensitivity rates x;, then for all positive and continuous
initial data the solution to (4.11) satisfies (u(-,t),v(-,t)) — (u*,v*) as t — oo so that coex-
istence is observed. A further coexistence result was proved in [84] for a system related to
(4.11), which includes non-local competition terms, if the chemotactic sensitivity parame-
ters are small as compared to the competition terms. In addition, the large time behavior
for a system, where the right-hand side of the third equation in (4.11) is replaced by a
given regular function f(z,t) satisfying || f(-,t) — ﬁfﬁ f(z,t)dx| L) — 0 as t — oo,
was recently studied in [85]. In particular, competitive exclusion for a; > 1 > ay > 0 as
well as coexistence for aj,as € [0,1) were proved without a smallness assumption on the
chemotactic sensitivity parameters for positive initial data, but in this case the third equa-
tion for w is discoupled from the first two equations for v and v. The proofs of [84, 85, 97|
rely on comparison arguments with solutions to ODEs and such arguments are also part
of our method used in Article 6. For a general framework we refer to [85].

We study the coexistence case for (4.11) in Article 6. Assuming that a; > 1 > ag > 0
and that the chemotactic sensitivity parameters are small as compared to the proliferation
rates in the sense that % and % are small enough, we prove that for any nonnegative and
continuous initial data (ug,vg) with vg # 0 there exists a unique global classical solution
to (4.11) and competitive exclusion occurs such that (u(-,t),v(-,t),w(-,t)) converges to
(0,1, %) as t — 0o. Again we need the smallness of the chemotactic sensitivity rates and
it remains open whether a similar behavior can also be observed for larger chemotactic
sensitivities. Possibly even blowup can occur for large enough chemotactic sensitivities,
which has been observed in two-species chemotaxis systems without competition terms
(see e.g. [36, 37]), but seems to be unknown for systems like (4.11) including competition.

4.2.1 Results

The results of Article 6 are given in the following theorem (see Theorem 6.1.1 and Re-
mark 6.1.3).



32 4. KELLER-SEGEL CHEMOTAXIS MODELS

Theorem 4.5 Let ) C R"™ be a bounded domain with smooth boundary, n € N, d;, p;, A >
0, xi >0 forie{1,2} as well as

a1 >1>a0>0

be fulfilled. Assume further that k, q1 := ﬁ, and qo 1= % are nonnegative such that

1 az —a2q2 kg2 — axq
<a, @<=, and k : : <1 413
a<a, @<z an q1+maX{cJ2 2 2 (4.13)
are satisfied. Then for any nonnegative ug,vy € C°(Q) such that vy # 0 there erists
a unique global-in-time classical solution (u,v,w) to (4.11) satisfying v > 0, w > 0 in
2 x (0,00), and either u=0 in Q x [0,00) oru >0 in Q x (0,00) as well as

1
u(-,t) =0, wv(,t)—=1, and w(,t)— X as t — 0o,
uniformly with respect to x € ).
Furthermore, for the existence of a unique global-in-time solution (u,v,w) to (4.11) such
that u, v, and w are bounded in Q x [0,00) it is sufficient to require kq1 + g2 < 1 instead
of (4.13).

Remark 6.1.2 provides particular examples for which (4.13) becomes easier to handle.
Although it remains open whether (4.13) is optimal in general, in the special case k =
ag = 0, where (4.11) reduces to the single-species parabolic-elliptic Keller-Segel system
with logistic source (for v and w), (4.13) becomes g < %, which coincides with the
condition from [96] for the latter single-species chemotaxis system.

4.2.2 Methods

In order to prove the result of global existence and uniqueness from Theorem 4.5, in
Article 6 we first show the local existence of a solution by using a usual fixed point
argument. For the global existence it then remains to show the boundedness of v and v.
This is done by proving that (u,v) is a subsolution to a cooperative parabolic system, for
which on the one hand the comparison principle is valid and on the other hand appropriate
constant supersolutions in case of kg + g2 < 1 can be constructed (see Lemma 6.2.2). In
order to prove the competitive exclusion behavior, we use comparison arguments with
solutions to ODEs in a different framework as compared to [84, 85, 97|, where appropriate
ODE systems were constructed from the original PDE model. In Article 6, we show for
instance that u is a subsolution to a suitable scalar parabolic equation, for which a spatially
homogeneous supersolution solving a corresponding ODE exists. By comparing w with this
supersolution and using similar arguments for v, we obtain inequalities containing upper
or lower bounds for
Ly := limsup (ma_xu(x,t)), Lo := limsup (ma;cv(x,t)), lo := lim inf (min v(w,t))
t—00 z€Q t—00 z€Q t—=oo \ 2€Q

in terms of some of these quantities and the constants k, ¢;, a;, ¢ = 1,2, defined in The-
orem 4.5. These inequalities are developed in Lemmas 6.3.3-6.3.5. By just using these
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inequalities irrespective of their origin in conjunction with (4.13), we finally show that
Ly =0 and Ly =l = 1 are fulfilled (see Lemma 6.3.6 and Section 6.4 in Article 6). In
view of Lemma 6.3.1, this proves the claimed asymptotic behavior of (u,v,w).

The main part of Article 6 was jointly developed by José Ignacio Tello, Michael Win-
kler, and myself in May 2012 during a visit of J.I. Tello to the Universitdt Paderborn.
Article 6 was then completed by exchange of emails, where again each of us contributed
comparably.
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5. Contributions to multiscale
models for tumor invasion

This chapter is devoted to the description of results and methods from [7, 13] (Articles 7
and 8). Both works are concerned with multiscale models for cancer cell migration and,
unlike in the previous articles, one of the issues is the derivation of appropriate models.
Tumor cell migration is influenced by a plethora of processes taking place at different
spatial scales which range from the subcellular level (microscopic scale) via the mesoscopic
scale of cell interactions and up to the macroscopic scale of cell and tissue populations.
Related mathematical descriptions usually focus on specific aspects of cancer cell migration
which are either modeled on one of these scales or in multiscale settings involving two
or all three scales. We refer to the introduction of Articles 7 and 8 for a review of
monoscale models related to the settings therein. For couplings of subcellular processes
with macroscopic population behaviors, several types of multiscale models are used in the
context of tumor cell migration. Individual- and force-based models can be found e.g. in
[90, 91]. Moreover, hybrid models relying on cellular automata or agent-based approaches
provide a framework for coupling individual events with macroscopic features (see e.g.
[27, 51, 66, 104]). On the one hand these models allow for a very detailed modeling, but
on the other hand they become computationally very expensive for biologically realistic
numbers of cells. In contrast to this, continuum models allow to describe the evolution
of averaged phenomena by means of differential equations and are more efficient from the
numerical point of view. Thereby, mesoscopic interactions are usually described with the
help of kinetic transport equations of Boltzmann type from which macroscopic parabolic
or hyperbolic PDEs can be derived by appropriate scalings and limits. In this context
a general framework which allows to include subcellular processes was provided in [25].
Two particular examples of this model class can be found in [75], where a general global
well-posedness result for weak solutions was established, and [35], where the inclusion
of subcellular processes in a micro-meso-macro model for glioma invasion was crucial
for the observation of fingering patterns in numerical simulations. Since these micro-
meso-macro models are very challenging for the numerics and the rigorous derivation of
macroscopic PDEs from mesoscopic kinetic equations is only available in particular cases,
micro-macro models provide a simplified multiscale approach which avoids these difficulties
and concentrates on the evolution of macroscopic populations, but still allows to take into
account subcellular dynamics.

The latter approach is rather new in the context of cancer cell migration and consists of

35
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coupling a system of PDEs on the macroscale with ODEs modeling particular aspects of the
subcellular dynamics. In such a way for instance the influence of intra- and extracellular
acidity (see [99] for a model only relying on ODEs), heat shock proteins (see [78, 94]),
and glycolysis (see [67]) on tumor invasion as well as the influence of integrin dynamics
on haptotactic invasion (see [76]) were modeled. In these works, apart from the modeling
the solution behavior is illustrated by numerical simulations, whereas only [78] provides a
proof of the mathematical (local) well-posedness. The latter is a nontrivial issue since these
multiscale models contain quite different types of equations which are highly nonlinearly
coupled and the biologically motivated regularity assumptions are rather modest. We
use such micro-macro models as well in Article 7, where we focus on the influence of
cell contractivity on tumor invasion, and in Article 8, where the influence of intra- and
extracellular acidity on cancer cell invasion is studied. For the contractivity model we
prove the local well-posedness in the context of weak solutions in Article 7, while the
global existence was later proved in [14] in a slightly more specific framework. In Article 8,
we prove the global well-posedness of the acidity model in an appropriate setting of weak
solutions. In both articles we also perform numerical simulations in order to illustrate the
behavior of the solutions.

5.1 Results

In this section we present the analytical results of Articles 7 and 8, along with a short
description of the modeling. We refer to Articles 7 and 8 for more details about the models
as well as for the numerical simulations.

In Article 7 we focus on the influence of cell contractivity on tumor invasion. Thereby, the
cell contractivity describes the ability of the cancer cell to modify its shape according to
its environment. As cancer cells use adhesion to tissue fibers of the extracellular matrix
(ECM) for migration, they preferably move toward increasing fiber concentrations by
means of haptotaxis. Thereby, the contractivity influences the cell motility by enabling
them to drastically change their shape and hence to squeeze through the network of tissue
fibers. In addition, when the tissue is too dense, cancer cells are prone to degrade the
tissue fibers by proteolysis. The resulting small proteolytic rests are soluble, and thus can
diffuse and serve as a chemoattractant for the cancer cells. Altogether, we propose the
multiscale model

(¢t =V - (p(k,c,v)Ve) =V - (Y(k,v)eVv) — V- (f(c,1)cVI)

e (1= 3 —mt )

VUt = —0pCU + Uy (1 - 7721%C - KLU) ) (5.1)
Iy = oAl + djcv — I,
Yy = G(v,l,y),

ke = —qr + H(y(t —7)).

\

in (0,7) x ©, where Q C R” is a bounded domain with a smooth enough boundary and
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n € {1,2,3}. We further assume the boundary conditions
dc  ov Ol

v v v

where v denotes the outward unit normal vector on 0f2, and the initial conditions

0 on (0,7) x 09, (5.2)

c(0,z) = co(z), v(0,2) =vo(x), 1(0,2)=Ip(x),

5(0,7) = Ko(x), y(t,z) = yo(x), t € (—00,0], € Q. (5.3)

Here, accounting for the cancer cell density ¢, the density v of tissue fibers in the ECM,
and the concentration [ of proteolytic rests on the macroscopic scale, the PDE for ¢ in
(5.1) includes diffusion, cross diffusion terms modeling hapto- and chemotaxis as well
as a Lotka-Volterra competition term describing the proliferation of cancer cells limited
by the presence of the ECM. As the ECM is not moving, v satisfies an ODE including
the degradation by the cancer cells as well as the remodeling of the tissue in presence of
competition for space with the cancer cells. The PDE for the concentration [ of proteolytic
residuals includes diffusion, production due to the degradation of tissue by the cancer cells
as well as decay. A new feature in these macroscopic equations is the dependence of the
diffusivity ¢ and the haptotactic sensitivity 1 of cancer cells on the cell contractivity
carrying the information about microscopic dynamics to the macroscopic level. On the
microscale, we see the binding of cell surface receptors (called integrins) to tissue fibers and
proteolytic residuals as the onset of a number of processes which finally lead to changes in
the contractivity. Denoting by ;1 and y» the respective concentrations of integrins bound
to ECM and proteolytic rests, the integrin dynamics is described by an ODE system for
Yy = (y1,y2). Finally, as changes in the contractivity are the outcome of several processes
which are initiated by the integrin dynamics, we propose an ODE for x including a time
delay 7. More details about the derivation of the resulting model (5.1), as well as examples
for the coefficient functions are provided in Article 7 (Section 7.2).

As the diffusivity and the haptotactic sensitivity of cancer cells depend on the contractiv-
ity , which in turn is influenced by the subcellular integrin dynamics, where the latter
depends on the maroscopic quantities v and [, (5.1) contains several strong couplings
between the micro- and macroscales, which affect the analysis. In order to present the
general well-posedness result, we define

Y = {(y1,52) € (0,Ro)* | y1 +y2 < Ro}

and the mapping G : Y x [0, 00) x [0,00) — R? by

k1(Ro —y1 — y2)v — k_111 >
G(y,v,l) = , 5.4
(y,0.0) < ka(Ro —y1 — y2)l — k_2y2 (54)

where R( is the total integrin concentration of each cancer cell, ki, ko are respective
binding rates for the binding of integrins to ECM and proteolytic residuals, and k_1, k_o
the corresponding detaching rates. Then Y is a positive invariant set for the ODE system
forming the fourth equation of (5.1). We have the following result of local well-posedness
in Article 7 (see Theorems 7.3.1 and 7.3.2) which particularly applies to the coefficient
functions given in (7.2.8):
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Theorem 5.1 Let Q@ C R"™ be a bounded domain with smooth boundary, n € {1,2,3},

pE ("TH, o0), and define the spaces

X = {ue LP(0,T; W*P(Q)) : w € LP(0,T; LP())},
Z = L*"(0, T; Wh2P(Q)), V= CY0,T;C%0)).

Furthermore, we fiz a time lag 7 > 0 and assume that

co, vo, lo € WP(Q), kg € WHP(Q), yy € (WH(Q))?,
860 81)0 8l0

—_— = — = Q Kc’

£y 5 iy 0 on 0, 0<cy<
0<vy< Ky, lg>0, kg >0 andyOEonralleQ.

Moreover, suppose that (5.4) is fulfilled, all constants in (5.1) are positive with n1,n2 €
(0,1), and let

HeCYY),fell([0,00)?),¢ € C([0,00)%),¢ € C'([0,00)?) be
nonnegative such that for any 0 < a < b < oo there exists dqp > 0 with
(K, c,v) > 8ayp for all (k,c,v) € [a,b] x [0,b]".

Then there is T' > 0 such that there ezists a unique weak solution to (5.1)—(5.3) satisfying

cleX,veXnNV,keZnNV,ye Z>NV? such t