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Probabilistic Analysis of Geometric Structures

- Lecture 1: Probabilistic analysis of Euclidean optimization problems
- Lecture 2: Central limit theorems for statistics of geometric structures

- Lecture 3: Limit theory for statistics of geometric structures via
stabilizing score functions

- Lecture 4: Statistics of random polytopes

- Lecture 5: Rates of multivariate normal approximation for statistics of
geometric structures
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Lecture 1: Probabilistic analysis of Euclidean optimization

problems

- | Results

- Il Methods
Subadditivity
Boundary graphs
Concentration inequalities

- Il Open Questions
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| Results

TSP: X C R finite point set

- Lrgp(&X):= length of shortest tour through X
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X;,1<i < n,iid. with uniform density x(z) on [0, 1]¢.

A typical edge in the TSP tour through {X;}" , has length of order n=1/¢;
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- Beardwood, Halton, Hammersley (1959): X;,1 < i <mn, i.i.d. with
density () on [0,1]%. Then

. LTSP({Xla 7Xn}) P (d—1)/d
i n(d-1)/d = rrsp(d) /[Ow () de

- How to find the shortest tour?
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Karp ('76, '77): U;,i > 1, i.i.d. uniform on [0, 1]¢.
For all € > 0, there is an algorithm producing a feasible tour through

Uy, ..., U, with length
L5sp (Ui, ..., Uy)

such that
(i) algorithm runs in polynomial time, and

(i) ZESEEE=0 < 14¢,  with prob. 1 —o(1)
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Pi: rate 1 Poisson point process on R
Qu = [/ b/
Laws of large numbers (BHH '59):

. L P N n
lim Tsp(nl Qn) L vrsp(d)

n—o0

Rates of convergence:

E L7sp(P1 N Qy)
n

— yrsp(d)| < Cn~Y4,

Alexander '94, Redmond-Y '94.
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Minimal Spanning Tree

- X C RY finite.

- LarsT(X) := length of minimal spanning tree (MST) through X.
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Theorem. If X;,1 < i <n, i.id. with density x(z) on [0, 1]d, then

im 57X, - Xa}) P (d—1)/d
nh—>oo nld=1)/d —’VMST(d)/[Ol]d K(z) dx

Aldous, Alexander, Steele, Redmond + Y.
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Minimal Matching

- X C R finite; card(X) of even parity.

Match the points in pairs so as to minimize total edge length of matching.

- Ly (X) = length of minimal matching (MM) on X
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Theorem. If X;, 1 <i < n, iid. with density x(z) on [0, 1]¢, then

. Lym({ Xy, Xnl})
Al p(d—1)/d

£ fyMM(d)/ ko(a) D/ gy
[0,1]

Steele; Redmond + .
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Steiner MST

- X C R finite.
- A Steiner tree on X is a connected graph which contains X

The graph may include ‘Steiner points’, i.e., vertices other than those in X.

- Length of Steiner MST:

L = mi
smsT(X) mslnz lel,
ecS

where the minimum ranges over all Steiner trees S on X.
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Theorem. If X;, 1 <i <n, iid. with density x(z) on [0,1]¢, then

. Lsyst({X1,...,Xn}) P (d-1)/d
nli)ngo n(d—l)/d - ’YSMST(d) [0’1}d K/(x) dw
Redmond + Y.
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Undirected k-nearest neighbors graph

- X C R finite, k € N.

- kNN (X) is the graph on X’ putting an edge between each point in X
and each of its k-nearest neighbors.

Example (k = 1):

- Total edge length of kNN (X) is Lynn(&X).
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Theorem. If X;, 1 <i < n, iid. with density x(z) on [0, 1]¢, then

. Linv({ X1, ., X0}
RN n(d=1)/d

£ ’ykNN(d)/ /i(a:)(dfl)/ddx.
[0,1]d

Redmond + .
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Voronoi tessellations

- X = {xy1, ...,z } CRY

- Consider the set of all points closer to x; than to any other point
xj,j # 1. This convex set is denoted by C/(z;).

- Example:

- C(z;) is the intersection of half-spaces.
- {C(x;)}s,ex is the Voronoi tessellation of RY induced by X'

- Lyor(X) is the sum of the lengths of edges of the finite edges of
Voronoi tessellation induced by X.
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Theorem. X;,1 <i <n, i.id. with density x(x) on [0,1]¢. Then

. Lyvor({X1,...Xn}) P (d—1)/d

McGivney + Y.
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What about the surface area of the Voronoi tessellation?

- Ayor(&X) is the sum of the areas of the finite faces of Voronoi
tessellation induced by &X'

Theorem. X;,1 <i < n, i.i.d. with density x(x) on [0,1]3. Then

lim AVOR({XD"'?XTL}) P / I€($)1/3dI.
[0,1]3

=«
n—00 n1/3 VOR
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Goals

Given a graph (eg. TSP, MST, MM, SMST, kNN, Vor) whose nodes are
given by n i.i.d. random variables X1, ..., X, establish the limit theory for
the sum

L{Xy,.... Xn})
of the lengths of the edges of the given graph. We seek:
- SLLN
- rates of convergence
- CLT
- LDP

More generally, we seek the limit theory for H({ X1, ..., X,,}), where H(-)
is a general functional of input {X1,..., X;,}.
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Given a graph (eg. TSP, MST, MM, SMST, kNN, Vor) whose nodes are
given by n i.i.d. random variables X7, ..., X,,, what are the crucial
structural elements which are essential to teasing out a common limit
theory?
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[l Methods

- Subadditive Euclidean functionals
- Boundary functionals

- Concentration
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Euclidean Functionals

X c R? a locally finite point set

Definition. A (real-valued) functional L(X) is a Euclidean functional if
these two conditions are satisfied:

L(X +y)=L(X) VyeR?

L(aX) = aL(X) VacR".
Example: The total edge length of a graph on X.
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Euclidean Functionals

X c R? a locally finite point set

Definition. A (real-valued) functional L(X') is a Euclidean functional of
order p € (0, 00) if these two conditions are satisfied:

L(X +y)=L(X) VyeR?

L(aX) = o?L(X) Ya € RT.

Example (p = 2): The total area of faces in Voronoi tessellation of
X CR®.
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Subadditive Euclidean Functionals

Definition. A Euclidean functional L is subadditive if there is a constant
C € (0,00) such that for all rectangles R := R; U R» and all point sets
X CR:

L(X) < L(XNRy)+ L(XNRy) + Cdiam(R).

Here Ry and Ry are rectangles.

Example: The TSP length Lygp(X) is subadditive:
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Subadditive Euclidean Functionals

Fact: Lyst, Lsyrst, Larv, Linn are also subadditive.
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Geometric subadditivity

Let {Qi}ﬁdl be a partition of [0,1]% into subcubes of edge length m =

Subadditivity L(X) < L(X N Ry) + L(X N Ry) + Cdiam(R) yields

ma

L(XN[0,1]%) <) L(XNQ;)+ Cm* .
=1

Remark: when L is the TSP tour length and when X is a point set which
is the realization of a homogenous Poisson point process, we are bounding
the minimal tour length on points in the unit cube by a sum of identically
distributed minimal tour lengths plus an error term.
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Summary: Subadditive Euclidean functionals L satisfy for all X C R¢

L(X 4y) = L(X) VyeR?,
L(aX) = aL(X) Va €RT,
d

Lxn0,1h <) L(xnQ;) +CmiL.
1

3

-
Il

Fact (Growth Bounds) : Let L be a subadditive Euclidean functional.
Then for all X C [0,1]¢ we have

L(X) < C(cardX)d=D/d,
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Definition A Euclidean functional L is smooth if for all X1, x> C [0, 1]¢
|L(X, U X)) — L(X)| < C(cardy ) @1/d,

Fact: Lrsp, Lyst, Lsyst, Lavar, Linyy are smooth subadditive
Euclidean functionals.

We show this for Lrgp.
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Hille’s 1948 Subadditive Limit Theorem. If
Tman < Ty + 2, Ym,n €N

then
. Tn
lim — =«
n—oo N

{m — }

Can we similarly deduce limit theorems under a geometric subadditivity
condition?
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Basic weak law of large numbers for smooth subadditive

Euclidean functionals

Let P,, be a Poisson point process of intensity n on [0, 1]¢.

Let L be a smooth subadditive Euclidean functional.

. . . EL(Pn
Basic Theorem for Poisson Input lim,, . ﬁ =~5(d).
The proof uses subadditivity and smoothness and goes as follows...

Let Q;,i =1, ....,m? be a partition of [0,1]¢ into subcubes of edge length

m~1L.

Joe Yukich Probabilistic Analysis of Geometric Structures



CEL(P,a N[0,1]%) < S EL(P,,0 N Q;) + CmdL.

- ¢(nm?) < m?Lp(n) + Cmd~!
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CEL(P,a N[0,1]%) < S EL(P,,0 N Q;) + CmdL.

- G(nm) < m?L(n) + Cmt=!

e p(nm?) o(n) c
- Homogenize: (md)y (@17 < @ T yana-

- Set 8 := liminf,,_, %. Given € > 0, there is ng € N such that

¢(no)

<pB+e
n((]d—l) 7d

—; S €
n((]d—l)/d
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CEL(P,a N[0,1]%) < S EL(P,,0 N Q;) + CmdL.

- G(nm) < m?L(n) + Cmt=!

e p(nm?) o(n) c
- Homogenize: (md)y (@17 < @ T yana-

- Set 8 := liminf,,_, %. Given € > 0, there is ng € N such that

P(no)
——- <fB+e ——- <e
O (D7

Thus —200mY) 5 19 m=1,2, ..

(nom) (@174
Smoothness gives lim sup,,_, ., % < B+ 2e

Let e | 0.
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To obtain:

- rates of convergence in WLLN

- WLLN over non-uniform random input
- LDP

it is useful to establish that many Euclidean functionals have an intrinsic
superadditive structure.

We illustrate this with the TSP problem.
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The key idea is to introduce an auxiliary TSP functional which allows
‘free’ travel on the boundary.

Joe Yukich Probabilistic Analysis of Geometric Structures - / 60



Boundary TSP functional

Definition. For all X C [0,1]%, let Lp 75p(X) be the length of the
shortest tour through X’ where travel on the boundary of [0,1]¢ is ‘free’.

Example.

Joe Yukich
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LB,TSP(X) is superadditive with no error term. In other words for all
rectangles R := R; U Ry and all point sets X C R we have

Lprsp(X) > Lprsp(X NRi) + Lersp(X N Ry).

Example.
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Closeness

Definition. Let L be a Euclidean functional and let Lg be its boundary
version. We say that L and Lp are ‘close’ if

ILp(X) — L(X)] = o((cardX)@=1/d)  x c [0,1]%
The error is negligible when compared to the growth rate.

Examples:

- Lprsp and Lygp;

- Lpvst and Lyst;
- Lpyvvr and Ly,

- Lpsmst and Lgpst.
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Umbrella LLN

Umbrella Theorem. Assume:

- L smooth subadditive Euclidean functional

- Lp smooth superadditive Euclidean functional
- L and Lpg are close, ie.,

|Lp(X) — L(X)] = o((cardX)4=1/d)  x c [0,1]%
Then there is a constant 7 (d) € (0,00) such that

L(Xq,.... X,
lim ( 15--4 )

Jim PG =@ [ s@ O e s,

[0,1)¢

where X;,7 > 1, are i.i.d. with density .
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Umbrella LLN

What about subadditive Euclidean functionals of order p € (0, d]?
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Umbrella LLN

What about subadditive Euclidean functionals of order p € (0, d]?

Recall that these functionals are subadditive and satisfy the scaling
relation:

L(aX) = o’L(X) Va € R™.
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Umbrella LLN

Umbrella Theorem. Assume:

- L smooth subadditive Euclidean functional of order p

- Lp smooth superadditive Euclidean functional of order p
- L and Lpg are close, ie.,

|Lp(X) — L(X)] = o((cardX)4=P)/d)  x c [0,1]
Then there is a constant 7 (d) € (0,00) such that

L(Xq,....X,
lim ( 1549 )

g = ayga = eld) K@) P e as.,

(0,1}

where X;,7 > 1, are i.i.d. with density .
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The umbrella theorem covers these functionals:
- total edge length of TSP

- total edge length of MST

- total edge length of MM

- total edge length of Steiner MST

- total edge length of k-nearest neighbors graph

- total edge length and surface area of Voronoi tessellation
Umbrella thm extends BHH theorem.

We sketch the proof of the umbrella theorem (p = 1):
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Put X, := {X;} ;. To prove

LX)

i - (d—1)/d
nh_Ig)lo and vL(d) o k() dzr a.s.,
we will show
_ E L(X,) d-1)/d
timsup e < 1) /W wla) ™,

.. EL(X,) (d—1)/d
hnfggfm > yL(d) /[071]d k() dz,

and then we apply a concentration inequality to deduce a.s. convergence.

We will actually only prove the above inequalities for blocked distributions
md
mle) = 3 ail, (@).
i=1
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. k(z) = Z?;dl alg,(x), A, :={X;} . Subadditivity gives:

md
EL(X,) <E Y L(X,NQs) + Cm™!
i=1
md
_ ({Uz]}Bl(n ,06M ) + Cmd 1
=1

naimd —
E L{U; 2™ ) + Cm®™!

IA
=1

1

md
+ Z CE [Bi(n, c;m®) — noym?|(4=1/4,
i=1

-
Il

Thus

md no;ma
. EL(X,) Zi:l EL({Uy};2™)
limsup ————+ < lim .
n—soo mld=1)/d n—>oo n(d-1)/d
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Thus

L(X»)
fim sup 7= e

S E L{U ™)

< lim sup

n—)oo nld=1)/d
m - nogm? _ .
= limsu Liz™m 1IEL(m{Uij}jzl ) (nm~%a;)td-1/d
n—>oop (nm—da')(d—l)/d @—1)/d

Z m ™ (m %)@ /4 (by Basic Thm for Poisson input)

mri

=1(d) Y ol Ay

=1
—uld) [ w0 Dz,
0,1)¢

which was to be proved.
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We have thus proved for blocked densities x that

. EL(X,) (d—1)/d
Jim e = () /W )

Using smoothness, we can extend this limit to arbitrary x.

To deduce an a.s. result we need to show that L(X,,) concentrates around
its mean.
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Concentration

Theorem. If L is a smooth, subadditive Euclidean functional then for all
€ > 0 we have

E LA,
Z]P’ dl)/d( )|>6)<oo.

Combining this with the Borel-Cantelli lemma we obtain:

Corollary. If

e =@ [ k@) g
[0,1)¢

then

AAAn) (d—1)/d
ey y i ~vr(d) /[0,1}(1 k() dz a.s.

This concludes the proof of the umbrella thm.

Joe Yukich
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Question: Can we obtain more precise concentration bounds?

Yes.

The answer turns on understanding what happens to a Euclidean
functional when one point in the sample is changed.
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Azuma-Hoeffding Inequality

Fact 1. If X € L}(Q, A, P), then X may be represented as a sum of
martingale differences.

Proof. Given a filtration
0,0):=Ayc A C..CA,=A
we define the martingale differences
di :=E (X]A;) — E (X|Ai-1).

Then
X-EX =E(X|4,) - E(X|A) =) d;.
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Fact 2. If || X||c <1, EX =0 then

2

E exp(aX) < exp %, a € R.

Proof. It is always the case that exp az < expa?/2 + xsinha.

We prove this with a picture...
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Fact 2. If || X||c <1, EX =0 then

2
E exp(aX) < exp %, a € R.
Fact 3. If EX =0 then
2 X 2
E exp(aX) < exp(aH2||O°), acR.
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Azuma-Hoeffding Inequality. d; := E (X|A;) — E (X|A;_1). For all
A > 0 we have

P(l D dil > A) <2exp <_n> .
2 25 [l

Proof. Fact 3 implies for all i = 1,2, ..., n that

CL2
E (exp(ad;)[Ai-1) < exp(5 [|dill5)- (%)
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Azuma-Hoeffding Inequality. d; := E (X|A;) — E (X|A;_1). For all
A > 0 we have

P(] di| > \) < 2exp <_n> :
2 E) SRS
Proof. Fact 3 implies for all i = 1,2, ..., n that

E (exp(ad;)|Ai-1) < exp([ldills)- (%)
We have for all t > 0

EetXizid = BE (ef X1 9| A, )

= E [et Z?;ll dz]E (etdn ’An—l)]

-1

n 2
< E [etzi:1 dZ]e%Hdano

Iterate (*) to get
2
EetTic1di < o7 i lldill3 |
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Thus

E(exp(tZd < exp( ZHd 1% )

i=1

Markov's inequality for the map = +— exp(tx) implies for all ¢ > 0 we have

|Zd\>A ) < exp(—At) exp( led|!2>

=1

Let t =AY [|dil|2%) ! to conclude the proof of Azuma-Hoeffding. [
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Application to TSP tour length. Put L(n) := Lysp(Uy,...Uy,), with U;
i.i.d. on [0,1]% Put A; := o(Uy,...,U;) and

di =K (L(n)|AZ) —E (L(n)|.,4171)
Rhee + Talagrand:
[dillee < Cld)(n —i+1)"Y", d>2.

Azuma-Hoeffding implies (d = 2):

c 2
P(L(n) —EL(n)| > t) < 2exp<—b;n

)

So for d =2
L(n) —EL(n) =0O(logn) a.s.

Rk. The logn factor can be removed (Talagrand, '95).

Joe Yukich Probabilistic Analysis of Geometric Structures - / 60



lIl Open Questions

L(n) := Lrsp(Uy,...Uy), with U; i.i.d. on [0,1]%

1. (Sub-Gaussian tail bounds for minimal matching) Do we have (d = 2):
P(|Lasar(Us, ...Up) — E Lypag (Uy, .. Up)| > t) < Cexp(—ct?)?

2. (Central limit theorem for TSP) As n — oo, do we have

L(n) —EL(n) 2)]\[(0 )7
VarL(n) T

Joe Yukich
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3. (Central limit theorem for minimal matching) As n — oo, do we have

Ly (U, ..Un) — E Lysag (U, ...

Un) 2, No,1y?
v/ VarLy (U, ...Uy)

4. 'YTSP(d) =?
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Joe Yukich

THANK YOU
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