Probabilistic Analysis of Geometric Structures

Joe Yukich

Spring school at Darmstadt, 25 February-March 1, 2019

- \cdot Lecture 1: Probabilistic analysis of Euclidean optimization problems
- · Lecture 2: Central limit theorems for statistics of geometric structures
- \cdot Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functions
- · Lecture 4: Statistics of random polytopes
- Lecture 5: Rates of multivariate normal approximation for statistics of geometric structures

Lecture 1: Probabilistic analysis of Euclidean optimization problems

· I Results

· II Methods

Subadditivity Boundary graphs Concentration inequalities

· III Open Questions

I Results

TSP: $\mathcal{X} \subset \mathbb{R}^d$ finite point set

· $L_{TSP}(\mathcal{X})$:= length of shortest tour through \mathcal{X} .

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $X_i, 1 \leq i \leq n$, i.i.d. with uniform density $\kappa(x)$ on $[0,1]^d$.

A typical edge in the TSP tour through $\{X_i\}_{i=1}^n$ has length of order $n^{-1/d}$:

(人間) とうき くうとう う

 \cdot Beardwood, Halton, Hammersley (1959): $X_i, 1 \leq i \leq n$, i.i.d. with density $\kappa(x)$ on $[0,1]^d.$ Then

$$\lim_{n \to \infty} \frac{L_{TSP}(\{X_1, ..., X_n\})}{n^{(d-1)/d}} \stackrel{P}{=} \gamma_{TSP}(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx$$

 \cdot How to find the shortest tour?

- 本間 と えき と えき とうき

Karp ('76, '77): $U_i, i \ge 1$, i.i.d. uniform on $[0, 1]^d$.

For all $\epsilon>0,$ there is an algorithm producing a feasible tour through $U_1,...,U_n$ with length

$$L_{TSP}^{\epsilon}(U_1,...,U_n)$$

such that

(i) algorithm runs in polynomial time, and

$$(\mbox{ii}) \ \frac{L^{\epsilon}_{TSP}(U_1,...,U_n)}{L_{TSP}(U_1,...,U_n)} < 1 + \epsilon, \qquad \mbox{with} \quad \mbox{prob}. \ 1 - o(1)$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 \mathcal{P}_1 : rate 1 Poisson point process on \mathbb{R}^d

$$Q_n := [-\frac{1}{2}n^{1/d}, \frac{1}{2}n^{1/d}]^d$$

Laws of large numbers (BHH '59):

$$\lim_{n \to \infty} \frac{L_{TSP}(\mathcal{P}_1 \cap Q_n)}{n} \stackrel{P}{=} \gamma_{TSP}(d)$$

Rates of convergence:

$$\left|\frac{\mathbb{E} L_{TSP}(\mathcal{P}_1 \cap Q_n)}{n} - \gamma_{TSP}(d)\right| \le C n^{-1/d}.$$

Alexander '94, Redmond-Y '94.

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite.

$\cdot L_{MST}(\mathcal{X}) :=$ length of minimal spanning tree (MST) through \mathcal{X} .

イロト イ団ト イヨト イヨト 三原

Theorem. If $X_i, 1 \leq i \leq n$, i.i.d. with density $\kappa(x)$ on $[0,1]^d$, then

$$\lim_{n \to \infty} \frac{L_{MST}(\{X_1, \dots, X_n\})}{n^{(d-1)/d}} \stackrel{P}{=} \gamma_{MST}(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx$$

Aldous, Alexander, Steele, Redmond + Y.

イロト イ団ト イヨト イヨト 三原

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite; $\operatorname{card}(\mathcal{X})$ of even parity.

Match the points in pairs so as to minimize total edge length of matching.

 $\cdot L_{MM}(\mathcal{X}) :=$ length of minimal matching (MM) on \mathcal{X} .

イロト イ団ト イヨト イヨト 二原

Theorem. If $X_i, 1 \le i \le n$, i.i.d. with density $\kappa(x)$ on $[0, 1]^d$, then

$$\lim_{n \to \infty} \frac{L_{MM}(\{X_1, ..., X_n\})}{n^{(d-1)/d}} \\ \stackrel{P}{=} \gamma_{MM}(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx.$$

Steele; Redmond + Y.

イロト イ団ト イヨト イヨト 三原

Steiner MST

- $\cdot \ \mathcal{X} \subset \mathbb{R}^d$ finite.
- \cdot A Steiner tree on ${\mathcal X}$ is a connected graph which contains ${\mathcal X}.$

The graph may include 'Steiner points', i.e., vertices other than those in \mathcal{X} .

· Length of Steiner MST:

$$L_{SMST}(\mathcal{X}) := \min_{S} \sum_{e \in S} |e|,$$

where the minimum ranges over all Steiner trees S on \mathcal{X} .

□ ▶ ★ □ ▶ ★ □ ▶ ● □

Theorem. If $X_i, 1 \le i \le n$, i.i.d. with density $\kappa(x)$ on $[0,1]^d$, then

$$\lim_{n \to \infty} \frac{L_{SMST}(\{X_1, ..., X_n\})}{n^{(d-1)/d}} \stackrel{P}{=} \gamma_{SMST}(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx$$

 $\mathsf{Redmond} + \mathsf{Y}.$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite, $k \in \mathbb{N}$.

 $\cdot kNN(\mathcal{X})$ is the graph on \mathcal{X} putting an edge between each point in \mathcal{X} and each of its *k*-nearest neighbors.

Example (k = 1):

· Total edge length of $kNN(\mathcal{X})$ is $L_{kNN}(\mathcal{X})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. If $X_i, 1 \leq i \leq n$, i.i.d. with density $\kappa(x)$ on $[0,1]^d$, then

$$\lim_{n \to \infty} \frac{L_{kNN}(\{X_1, \dots, X_n\})}{n^{(d-1)/d}}$$
$$\stackrel{P}{=} \gamma_{kNN}(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx.$$

Redmond + Y.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Voronoi tessellations

- $\cdot \mathcal{X} := \{x_1, ..., x_n\} \subset \mathbb{R}^d.$
- · Consider the set of all points closer to x_i than to any other point $x_j, j \neq i$. This convex set is denoted by $C(x_i)$.
- \cdot Example:

- $\cdot C(x_i)$ is the intersection of half-spaces.
- $\cdot \{C(x_i)\}_{x_i \in \mathcal{X}}$ is the Voronoi tessellation of \mathbb{R}^d induced by \mathcal{X} .
- $\cdot L_{VOR}(\mathcal{X})$ is the sum of the lengths of edges of the finite edges of Voronoi tessellation induced by \mathcal{X} .

Theorem. $X_i, 1 \leq i \leq n$, i.i.d. with density $\kappa(x)$ on $[0, 1]^d$. Then

$$\lim_{n \to \infty} \frac{L_{VOR}(\{X_1, ..., X_n\})}{n^{(d-1)/d}} \stackrel{P}{=} \ell_{VOR}(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx.$$

McGivney + Y.

イロト イ団ト イヨト イヨト 三原

What about the surface area of the Voronoi tessellation?

 $\cdot A_{VOR}(\mathcal{X})$ is the sum of the areas of the finite faces of Voronoi tessellation induced by \mathcal{X} .

Theorem. $X_i, 1 \le i \le n$, i.i.d. with density $\kappa(x)$ on $[0,1]^3$. Then

$$\lim_{n \to \infty} \frac{A_{VOR}(\{X_1, ..., X_n\})}{n^{1/3}} \stackrel{P}{=} \alpha_{VOR} \int_{[0,1]^3} \kappa(x)^{1/3} dx.$$

イロト 不得下 イヨト イヨト 二日

Given a graph (eg. TSP, MST, MM, SMST, kNN, Vor) whose nodes are given by n i.i.d. random variables $X_1, ..., X_n$ establish the limit theory for the sum

$$L(\{X_1, ..., X_n\})$$

of the lengths of the edges of the given graph. We seek:

- \cdot SLLN
- \cdot rates of convergence
- \cdot CLT
- · LDP

More generally, we seek the limit theory for $H({X_1, ..., X_n})$, where $H(\cdot)$ is a general functional of input ${X_1, ..., X_n}$.

(本部) (本語) (本語) (二百

Question

Given a graph (eg. TSP, MST, MM, SMST, kNN, Vor) whose nodes are given by n i.i.d. random variables $X_1, ..., X_n$, what are the crucial structural elements which are essential to teasing out a common limit theory?

- 4 同 6 4 日 6 4 日 6

- · Subadditive Euclidean functionals
- \cdot Boundary functionals
- \cdot Concentration

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{X} \subset \mathbb{R}^d$ a locally finite point set

Definition. A (real-valued) functional $L(\mathcal{X})$ is a **Euclidean functional** if these two conditions are satisfied:

$$L(\mathcal{X} + y) = L(\mathcal{X}) \quad \forall y \in \mathbb{R}^d$$
$$L(\alpha \mathcal{X}) = \alpha L(\mathcal{X}) \quad \forall \alpha \in \mathbb{R}^+.$$

Example: The total edge length of a graph on \mathcal{X} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\mathcal{X} \subset \mathbb{R}^d$ a locally finite point set

Definition. A (real-valued) functional $L(\mathcal{X})$ is a **Euclidean functional of** order $p \in (0, \infty)$ if these two conditions are satisfied:

$$L(\mathcal{X} + y) = L(\mathcal{X}) \quad \forall y \in \mathbb{R}^d$$

$$L(\alpha \mathcal{X}) = \alpha^p L(\mathcal{X}) \quad \forall \alpha \in \mathbb{R}^+.$$

Example (p = 2): The total area of faces in Voronoi tessellation of $\mathcal{X} \subset \mathbb{R}^3$.

Definition. A Euclidean functional L is **subadditive** if there is a constant $C \in (0, \infty)$ such that for all rectangles $R := R_1 \cup R_2$ and all point sets $\mathcal{X} \subset R$:

 $L(\mathcal{X}) \leq L(\mathcal{X} \cap R_1) + L(\mathcal{X} \cap R_2) + C \operatorname{diam}(R).$

Here R_1 and R_2 are rectangles.

Example: The TSP length $L_{TSP}(\mathcal{X})$ is subadditive:

伺下 くまた くまた しき

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ □夏 = 釣��

Fact: $L_{MST}, L_{SMST}, L_{MM}, L_{kNN}$ are also subadditive.

イロト イ団ト イヨト イヨト 三原

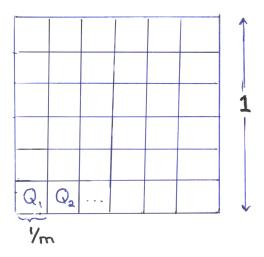
Geometric subadditivity

Let $\{Q_i\}_{i=1}^{m^d}$ be a partition of $[0,1]^d$ into subcubes of edge length m^{-1} . Subadditivity $L(\mathcal{X}) \leq L(\mathcal{X} \cap R_1) + L(\mathcal{X} \cap R_2) + C \operatorname{diam}(R)$ yields

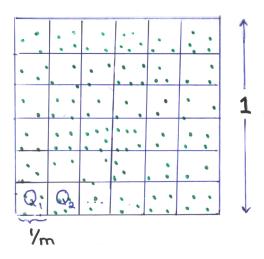
$$L(\mathcal{X} \cap [0,1]^d) \le \sum_{i=1}^{m^d} L(\mathcal{X} \cap Q_i) + Cm^{d-1}.$$

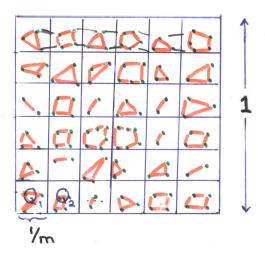
Remark: when L is the TSP tour length and when \mathcal{X} is a point set which is the realization of a homogenous Poisson point process, we are bounding the minimal tour length on points in the unit cube by a sum of identically distributed minimal tour lengths plus an error term.

米部 米油 米油 米油 とう



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで





・ロト ・四ト ・ヨト ・ヨト ・ ヨ

Summary: Subadditive Euclidean functionals L satisfy for all $\mathcal{X} \subset \mathbb{R}^d$

$$L(\mathcal{X} + y) = L(\mathcal{X}) \quad \forall y \in \mathbb{R}^{d},$$
$$L(\alpha \mathcal{X}) = \alpha L(\mathcal{X}) \quad \forall \alpha \in \mathbb{R}^{+},$$
$$L(\mathcal{X} \cap [0, 1]^{d}) \leq \sum_{i=1}^{m^{d}} L(\mathcal{X} \cap Q_{i}) + Cm^{d-1}$$

Fact (Growth Bounds) : Let L be a subadditive Euclidean functional. Then for all $\mathcal{X} \subset [0,1]^d$ we have

$$L(\mathcal{X}) \leq C(\operatorname{card}\mathcal{X})^{(d-1)/d}$$

イロト 不得下 イヨト イヨト 二日

Definition A Euclidean functional L is smooth if for all $\mathcal{X}_1, \mathcal{X}_2 \subset [0, 1]^d$

$$|L(\mathcal{X}_1 \cup \mathcal{X}_2) - L(\mathcal{X}_2)| \le C(\operatorname{card} \mathcal{X}_1)^{(d-1)/d}$$

Fact: L_{TSP} , L_{MST} , L_{SMST} , L_{MM} , L_{kNN} are smooth subadditive Euclidean functionals.

We show this for L_{TSP} .

- 3

Hille's 1948 Subadditive Limit Theorem. If

$$x_{m+n} \le x_m + x_n \quad \forall m, n \in \mathbb{N}$$

then

$$\lim_{n \to \infty} \frac{x_n}{n} = \alpha$$

where

$$\alpha := \inf\{\frac{x_m}{m}: m \ge 1\}.$$

Can we similarly deduce limit theorems under a geometric subadditivity condition?

3

(4月) (4日) (4日)

Basic weak law of large numbers for smooth subadditive Euclidean functionals

Let \mathcal{P}_n be a Poisson point process of intensity n on $[0,1]^d$.

Let L be a smooth subadditive Euclidean functional.

Basic Theorem for Poisson Input $\lim_{n\to\infty} \frac{\mathbb{E} L(\mathcal{P}_n)}{n^{(d-1)/d}} = \gamma_L(d).$

The proof uses subadditivity and smoothness and goes as follows...

Let $Q_i, i = 1, ..., m^d$ be a partition of $[0, 1]^d$ into subcubes of edge length m^{-1} .

・ロト・日本・日本・日本・日本・日本

 $\cdot \mathbb{E} L(\mathcal{P}_{nm^d} \cap [0,1]^d) \leq \sum_{i=1}^{m^d} \mathbb{E} L(\mathcal{P}_{nm^d} \cap Q_i) + Cm^{d-1}.$ $\cdot \phi(nm^d) \leq m^d \frac{1}{m} \phi(n) + Cm^{d-1}$

- * 聞 > * ほ > * ほ > … ほ

- $\cdot \mathbb{E} L(\mathcal{P}_{nm^d} \cap [0,1]^d) \le \sum_{i=1}^{m^d} \mathbb{E} L(\mathcal{P}_{nm^d} \cap Q_i) + Cm^{d-1}.$
- $\cdot \phi(nm^d) \le m^d \frac{1}{m} \phi(n) + Cm^{d-1}$
- Homogenize: $\frac{\phi(nm^d)}{(nm^d)^{(d-1)/d}} \le \frac{\phi(n)}{n^{(d-1)/d}} + \frac{C}{n^{(d-1)/d}}.$

· Set $\beta := \liminf_{n \to \infty} \frac{\phi(n)}{n^{(d-1)/d}}$. Given $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that

$$\frac{\phi(n_0)}{n_0^{(d-1)/d}} \le \beta + \epsilon; \quad \frac{C}{n_0^{(d-1)/d}} \le \epsilon.$$

個人 不良人 不良人 一度

- $\cdot \mathbb{E} L(\mathcal{P}_{nm^d} \cap [0,1]^d) \le \sum_{i=1}^{m^d} \mathbb{E} L(\mathcal{P}_{nm^d} \cap Q_i) + Cm^{d-1}.$
- $\cdot \phi(nm^d) \le m^d \frac{1}{m} \phi(n) + Cm^{d-1}$
- $\cdot \text{ Homogenize: } \quad \frac{\phi(nm^d)}{(nm^d)^{(d-1)/d}} \leq \frac{\phi(n)}{n^{(d-1)/d}} + \frac{C}{n^{(d-1)/d}}.$

· Set $\beta := \liminf_{n \to \infty} \frac{\phi(n)}{n^{(d-1)/d}}$. Given $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that

$$\frac{\phi(n_0)}{n_0^{(d-1)/d}} \le \beta + \epsilon; \quad \frac{C}{n_0^{(d-1)/d}} \le \epsilon.$$

Thus $\frac{\phi(n_0m^d)}{(n_0m^d)^{(d-1)/d}} \leq \beta+2\epsilon, \ m=1,2,\ldots$

Smoothness gives $\limsup_{n\to\infty} \frac{\phi(n)}{n^{(d-1)/d}} \leq \beta + 2\epsilon$. Let $\epsilon \downarrow 0$.

・圖 ト ・ 臣 ト ・ 臣 ト … 臣

To obtain:

- \cdot rates of convergence in WLLN
- \cdot WLLN over non-uniform random input

 $\cdot LDP$

it is useful to establish that many Euclidean functionals have an intrinsic superadditive structure.

We illustrate this with the TSP problem.

• • = • • = •

The key idea is to introduce an auxiliary TSP functional which allows 'free' travel on the boundary.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition. For all $\mathcal{X} \subset [0,1]^d$, let $L_{B,TSP}(\mathcal{X})$ be the length of the shortest tour through \mathcal{X} where travel on the boundary of $[0,1]^d$ is 'free'.

Example.

(日本) (日本) (日本)

 $L_{B,TSP}(\mathcal{X})$ is superadditive with no error term. In other words for all rectangles $R := R_1 \cup R_2$ and all point sets $\mathcal{X} \subset R$ we have

 $L_{B,TSP}(\mathcal{X}) \ge L_{B,TSP}(\mathcal{X} \cap R_1) + L_{B,TSP}(\mathcal{X} \cap R_2).$

Example.

米部 とくほど 不良という 厚

Definition. Let L be a Euclidean functional and let L_B be its boundary version. We say that L and L_B are 'close' if

$$|L_B(\mathcal{X}) - L(\mathcal{X})| = o((\operatorname{card} \mathcal{X})^{(d-1)/d}), \quad \mathcal{X} \subset [0, 1]^d.$$

The error is negligible when compared to the growth rate.

Examples:

- $\cdot L_{B,TSP}$ and L_{TSP} ;
- $\cdot L_{B,MST}$ and L_{MST} ;
- $\cdot L_{B,MM}$ and L_{MM} ;
- $\cdot L_{B,SMST}$ and L_{SMST} .

伺 ト イヨト イヨト

Umbrella Theorem. Assume:

- $\cdot \ L$ smooth subadditive Euclidean functional
- \cdot L_B smooth superadditive Euclidean functional
- $\cdot \ L$ and L_B are close, ie.,

$$|L_B(\mathcal{X}) - L(\mathcal{X})| = o((\operatorname{card}\mathcal{X})^{(d-1)/d}), \quad \mathcal{X} \subset [0,1]^d.$$

Then there is a constant $\gamma_L(d) \in (0,\infty)$ such that

$$\lim_{n \to \infty} \frac{L(X_1, \dots, X_n)}{n^{(d-1)/d}} = \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx \quad a.s.,$$

where $X_i, i \ge 1$, are i.i.d. with density κ .

< 回 > < 三 > < 三 > .

What about subadditive Euclidean functionals of order $p \in (0, d]$?

イロト イ団ト イヨト イヨト 三原

What about subadditive Euclidean functionals of order $p \in (0, d]$?

Recall that these functionals are subadditive and satisfy the scaling relation:

$$L(\alpha \mathcal{X}) = \alpha^p L(\mathcal{X}) \quad \forall \alpha \in \mathbb{R}^+.$$

3

イロト イヨト イヨト イヨト

Umbrella Theorem. Assume:

- $\cdot \ L$ smooth subadditive Euclidean functional of order p
- \cdot L_B smooth superadditive Euclidean functional of order p
- $\cdot L$ and L_B are close, ie.,

$$|L_B(\mathcal{X}) - L(\mathcal{X})| = o((\operatorname{card}\mathcal{X})^{(d-p)/d}), \quad \mathcal{X} \subset [0,1]^d.$$

Then there is a constant $\gamma_L(d) \in (0,\infty)$ such that

$$\lim_{n \to \infty} \frac{L(X_1, ..., X_n)}{n^{(d-p)/d}} = \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-p)/d} dx \quad a.s.,$$

where $X_i, i \ge 1$, are i.i.d. with density κ .

く伺き くまき くまき

The umbrella theorem covers these functionals:

- \cdot total edge length of TSP
- \cdot total edge length of MST
- \cdot total edge length of MM
- \cdot total edge length of Steiner MST
- \cdot total edge length of k-nearest neighbors graph
- \cdot total edge length and surface area of Voronoi tessellation

Umbrella thm extends BHH theorem.

We sketch the proof of the umbrella theorem (p = 1):

Put
$$\mathcal{X}_n := \{X_i\}_{i=1}^n$$
. To prove
$$\lim_{n \to \infty} \frac{L(\mathcal{X}_n)}{n^{(d-1)/d}} = \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx \quad a.s.,$$

we will show

$$\limsup_{n \to \infty} \frac{\mathbb{E} L(\mathcal{X}_n)}{n^{(d-1)/d}} \le \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx,$$
$$\liminf_{n \to \infty} \frac{\mathbb{E} L(\mathcal{X}_n)}{n^{(d-1)/d}} \ge \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx,$$

and then we apply a concentration inequality to deduce a.s. convergence.

We will actually only prove the above inequalities for *blocked* distributions

$$\kappa(x) = \sum_{i=1}^{m^d} \alpha_i \mathbf{1}_{Q_i}(x).$$

Proof

•

$$\begin{split} \kappa(x) &= \sum_{i=1}^{m^d} \alpha_i \mathbf{1}_{Q_i}(x), \quad \mathcal{X}_n := \{X_i\}_{i=1}^n. \text{ Subadditivity gives:} \\ &\mathbb{E} L(\mathcal{X}_n) \leq \mathbb{E} \sum_{i=1}^{m^d} L(\mathcal{X}_n \cap Q_i) + Cm^{d-1} \\ &= \sum_{i=1}^{m^d} \mathbb{E} L(\{U_{ij}\}_{j=1}^{\operatorname{Bi}(n,\alpha_im^d)}) + Cm^{d-1} \\ &\leq \sum_{i=1}^{m^d} \mathbb{E} L(\{U_{ij}\}_{j=1}^{n\alpha_im^d}) + Cm^{d-1} \\ &+ \sum_{i=1}^{m^d} C\mathbb{E} \left|\operatorname{Bi}(n,\alpha_im^d) - n\alpha_im^d\right|^{(d-1)/d}. \end{split}$$

Thus

$$\limsup_{n \to \infty} \frac{\mathbb{E} L(\mathcal{X}_n)}{n^{(d-1)/d}} \le \limsup_{n \to \infty} \frac{\sum_{i=1}^{m^d} \mathbb{E} L(\{U_{ij}\}_{j=1}^{n\alpha_i m^d})}{n^{(d-1)/d}}.$$

문 문 문

Thus

$$\begin{split} &\limsup_{n \to \infty} \frac{\mathbb{E} L(\mathcal{X}_n)}{n^{(d-1)/d}} \\ &\leq \limsup_{n \to \infty} \frac{\sum_{i=1}^{m^d} \mathbb{E} L(\{U_{ij}\}_{j=1}^{n\alpha_i m^d})}{n^{(d-1)/d}} \\ &= \limsup_{n \to \infty} \frac{\sum_{i=1}^{m^d} m^{-1} \mathbb{E} L(m\{U_{ij}\}_{j=1}^{n\alpha_i m^d})}{(nm^{-d}\alpha_i)^{(d-1)/d}} \frac{(nm^{-d}\alpha_i)^{(d-1)/d}}{n^{(d-1)/d}} \\ &= \gamma_L(d) \sum_{i=1}^{m^d} m^{-1} (m^{-d}\alpha_i)^{(d-1)/d} \quad \text{(by Basic Thm for Poisson input)} \\ &= \gamma_L(d) \sum_{i=1}^{m^d} \alpha_i^{(d-1)/d} m^{-d} \\ &= \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx, \end{split}$$

which was to be proved.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We have thus proved for blocked densities κ that

$$\lim_{n \to \infty} \frac{\mathbb{E} L(\mathcal{X}_n)}{n^{(d-1)/d}} = \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx.$$

Using smoothness, we can extend this limit to arbitrary κ .

To deduce an a.s. result we need to show that $L(\mathcal{X}_n)$ concentrates around its mean.

(人間) とうき くうとう う

Theorem. If L is a smooth, subadditive Euclidean functional then for all $\epsilon>0$ we have

$$\sum_{n=1}^{\infty} \mathbb{P}(|\frac{L(\mathcal{X}_n) - \mathbb{E}L(\mathcal{X}_n)}{n^{(d-1)/d}}| > \epsilon) < \infty.$$

Combining this with the Borel-Cantelli lemma we obtain:

Corollary. If

$$\lim_{n \to \infty} \frac{\mathbb{E} L(\mathcal{X}_n)}{n^{(d-1)/d}} = \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx$$

then

$$\lim_{n \to \infty} \frac{L(\mathcal{X}_n)}{n^{(d-1)/d}} = \gamma_L(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx \ a.s.$$

This concludes the proof of the umbrella thm.

Joe Yukich

米国 とくほとくほとう 原

Question: Can we obtain more precise concentration bounds?

Yes.

The answer turns on understanding what happens to a Euclidean functional when one point in the sample is changed.

くほと くほと くほと

Azuma-Hoeffding Inequality

Fact 1. If $X \in L^1(\Omega, \mathcal{A}, P)$, then X may be represented as a sum of martingale differences.

Proof. Given a filtration

$$(\emptyset, \Omega) := \mathcal{A}_0 \subset \mathcal{A}_1 \subset \ldots \subset \mathcal{A}_n := \mathcal{A}$$

we define the martingale differences

$$d_i := \mathbb{E} \left(X | \mathcal{A}_i \right) - \mathbb{E} \left(X | \mathcal{A}_{i-1} \right).$$

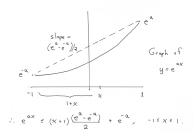
Then

$$X - \mathbb{E} X = \mathbb{E} (X|\mathcal{A}_n) - \mathbb{E} (X|\mathcal{A}_0) = \sum_{i=1}^n d_i.$$

Fact 2. If $||X||_{\infty} \leq 1$, $\mathbb{E} X = 0$ then

$$\mathbb{E} \exp(aX) \le \exp\frac{a^2}{2}, \ a \in \mathbb{R}.$$

Proof. It is always the case that $\exp ax \le \exp a^2/2 + x \sinh a$. We prove this with a picture...



Fact 2. If $||X||_{\infty} \leq 1$, $\mathbb{E} X = 0$ then

$$\mathbb{E} \exp(aX) \le \exp\frac{a^2}{2}, \ a \in \mathbb{R}.$$

Fact 3. If $\mathbb{E} X = 0$ then

$$\mathbb{E} \exp(aX) \le \exp(\frac{a^2 ||X||_{\infty}^2}{2}), \quad a \in \mathbb{R}.$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Azuma-Hoeffding Inequality. $d_i := \mathbb{E}(X|\mathcal{A}_i) - \mathbb{E}(X|\mathcal{A}_{i-1})$. For all $\lambda > 0$ we have

$$\mathbb{P}(|\sum_{i=1}^n d_i| > \lambda) \le 2 \exp\left(-\frac{\lambda^2}{2\sum_{i=1}^n ||d_i||_{\infty}^2}\right).$$

Proof. Fact 3 implies for all i = 1, 2, ..., n that

$$\mathbb{E}\left(\exp(ad_i)|\mathcal{A}_{i-1}\right) \le \exp(\frac{a^2}{2}||d_i||_{\infty}^2). \quad (*)$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト 一 国

Azuma-Hoeffding Inequality. $d_i := \mathbb{E}(X|\mathcal{A}_i) - \mathbb{E}(X|\mathcal{A}_{i-1})$. For all $\lambda > 0$ we have

$$\mathbb{P}(|\sum_{i=1}^n d_i| > \lambda) \le 2 \exp\left(-\frac{\lambda^2}{2\sum_{i=1}^n ||d_i||_{\infty}^2}\right).$$

Proof. Fact 3 implies for all i = 1, 2, ..., n that

$$\mathbb{E}\left(\exp(ad_i)|\mathcal{A}_{i-1}\right) \le \exp(\frac{a^2}{2}||d_i||_{\infty}^2). \quad (*)$$

We have for all t > 0

$$\mathbb{E} e^{t \sum_{i=1}^{n} d_i} = \mathbb{E} \mathbb{E} \left(e^{t \sum_{i=1}^{n} d_i} | \mathcal{A}_{n-1} \right)$$
$$= \mathbb{E} \left[e^{t \sum_{i=1}^{n-1} d_i} \mathbb{E} \left(e^{t d_n} | \mathcal{A}_{n-1} \right) \right]$$
$$\leq \mathbb{E} \left[e^{t \sum_{i=1}^{n-1} d_i} \right] e^{\frac{t^2}{2} ||d_n||_{\infty}^2}$$

Iterate (*) to get

$$\mathbb{E} e^{t \sum_{i=1}^{n} d_i} \leq e^{\frac{t^2}{2} \sum_{i=1}^{n} ||d_i||_{\infty}^2}.$$

Joe Yukich

Thus

$$\mathbb{E}\left(\exp(t\sum_{i=1}^n d_i)\right) \le \exp\left(\frac{t^2}{2}\sum_{i=1}^n ||d_i||_{\infty}^2\right).$$

Markov's inequality for the map $x \mapsto \exp(tx)$ implies for all t > 0 we have

$$\mathbb{P}\left(|\sum_{i=1}^{n} d_i| > \lambda\right) \le \exp(-\lambda t) \exp\left(\frac{t^2}{2} \sum_{i=1}^{n} ||d_i||_{\infty}^2\right).$$

Let $t = \lambda (\sum_{i=1}^{n} ||d_i||_{\infty}^2)^{-1}$ to conclude the proof of Azuma-Hoeffding.

Application to TSP tour length. Put $L(n) := L_{TSP}(U_1, ..., U_n)$, with U_i i.i.d. on $[0, 1]^d$. Put $\mathcal{A}_i := \sigma(U_1, ..., U_i)$ and

$$d_i := \mathbb{E} \left(L(n) | \mathcal{A}_i \right) - \mathbb{E} \left(L(n) | \mathcal{A}_{i-1} \right).$$

Rhee + Talagrand:

$$||d_i||_{\infty} \le C(d)(n-i+1)^{-1/d}, \ d \ge 2.$$

Azuma-Hoeffding implies (d = 2):

$$\mathbb{P}(|L(n) - \mathbb{E}L(n)| > t) \le 2\exp(-\frac{ct^2}{\log n})$$

So for d = 2

$$L(n) - \mathbb{E}L(n) = O(\log n)$$
 a.s.

Rk. The $\log n$ factor can be removed (Talagrand, '95).

▲圖▶ ▲ 圖▶ ▲ 圖▶

 $L(n) := L_{TSP}(U_1, ..., U_n)$, with U_i i.i.d. on $[0, 1]^d$.

- 1. (Sub-Gaussian tail bounds for minimal matching) Do we have (d = 2): $\mathbb{P}(|L_{MM}(U_1, ...U_n) - \mathbb{E}L_{MM}(U_1, ...U_n)| > t) \le C \exp(-ct^2)?$
- 2. (Central limit theorem for TSP) As $n \to \infty$, do we have

$$\frac{L(n) - \mathbb{E} L(n)}{\sqrt{\operatorname{Var} L(n)}} \xrightarrow{\mathcal{D}} N(0, 1)?$$

(本部) (本語) (本語) (二語

3. (Central limit theorem for minimal matching) As $n \to \infty$, do we have

$$\frac{L_{MM}(U_1, \dots, U_n) - \mathbb{E} L_{MM}(U_1, \dots, U_n)}{\sqrt{\operatorname{Var} L_{MM}(U_1, \dots, U_n)}} \xrightarrow{\mathcal{D}} N(0, 1)?$$

4. $\gamma_{TSP}(d) = ?$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

THANK YOU

◆□> ◆圖> ◆ヨ> ◆ヨ> 三語