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Probabilistic Analysis of Geometric Structures

· Lecture 1: Probabilistic analysis of Euclidean optimization problems

· Lecture 2: Central limit theorems for statistics of geometric structures

· Lecture 3: Limit theory for statistics of geometric structures via
stabilizing score functions

· Lecture 4: Statistics of random polytopes

· Lecture 5: Rates of multivariate normal approximation for statistics of
geometric structures
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Lecture 1: Probabilistic analysis of Euclidean optimization
problems

· I Results

· II Methods

Subadditivity

Boundary graphs

Concentration inequalities

· III Open Questions
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I Results

TSP: X ⊂ Rd finite point set

· LTSP (X ):= length of shortest tour through X .

Joe Yukich Probabilistic Analysis of Geometric Structures
Spring school at Darmstadt, 25 February-March 1, 2019 4

/ 60



Xi, 1 ≤ i ≤ n, i.i.d. with uniform density κ(x) on [0, 1]d.

A typical edge in the TSP tour through {Xi}ni=1 has length of order n−1/d:
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· Beardwood, Halton, Hammersley (1959): Xi, 1 ≤ i ≤ n, i.i.d. with
density κ(x) on [0, 1]d. Then

lim
n→∞

LTSP ({X1, ..., Xn})
n(d−1)/d

P
= γTSP (d)

∫
[0,1]d

κ(x)(d−1)/ddx

· How to find the shortest tour?
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Karp (’76, ’77): Ui, i ≥ 1, i.i.d. uniform on [0, 1]d.

For all ε > 0, there is an algorithm producing a feasible tour through
U1, ..., Un with length

LεTSP (U1, ..., Un)

such that

(i) algorithm runs in polynomial time, and

(ii)
LεTSP (U1,...,Un)

LTSP (U1,...,Un)
< 1 + ε, with prob. 1− o(1)
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P1: rate 1 Poisson point process on Rd

Qn := [−1
2n

1/d, 12n
1/d]d

Laws of large numbers (BHH ’59):

lim
n→∞

LTSP (P1 ∩Qn)

n

P
= γTSP (d)

Rates of convergence:∣∣∣∣ELTSP (P1 ∩Qn)

n
− γTSP (d)

∣∣∣∣ ≤ Cn−1/d.
Alexander ’94, Redmond-Y ’94.
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Minimal Spanning Tree

· X ⊂ Rd finite.

· LMST (X ) := length of minimal spanning tree (MST) through X .
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Theorem. If Xi, 1 ≤ i ≤ n, i.i.d. with density κ(x) on [0, 1]d, then

lim
n→∞

LMST ({X1, ..., Xn})
n(d−1)/d

P
= γMST (d)

∫
[0,1]d

κ(x)(d−1)/ddx

Aldous, Alexander, Steele, Redmond + Y.
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Minimal Matching

· X ⊂ Rd finite; card(X ) of even parity.

Match the points in pairs so as to minimize total edge length of matching.

· LMM (X ) := length of minimal matching (MM) on X .
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Theorem. If Xi, 1 ≤ i ≤ n, i.i.d. with density κ(x) on [0, 1]d, then

lim
n→∞

LMM ({X1, ..., Xn})
n(d−1)/d

P
= γMM (d)

∫
[0,1]d

κ(x)(d−1)/ddx.

Steele; Redmond + Y.
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Steiner MST

· X ⊂ Rd finite.

· A Steiner tree on X is a connected graph which contains X .

The graph may include ‘Steiner points’, i.e., vertices other than those in X .

· Length of Steiner MST:

LSMST (X ) := min
S

∑
e∈S
|e|,

where the minimum ranges over all Steiner trees S on X .
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Theorem. If Xi, 1 ≤ i ≤ n, i.i.d. with density κ(x) on [0, 1]d, then

lim
n→∞

LSMST ({X1, ..., Xn})
n(d−1)/d

P
= γSMST (d)

∫
[0,1]d

κ(x)(d−1)/ddx

Redmond + Y.
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Undirected k-nearest neighbors graph

· X ⊂ Rd finite, k ∈ N.

· kNN(X ) is the graph on X putting an edge between each point in X
and each of its k-nearest neighbors.

Example (k = 1):

· Total edge length of kNN(X ) is LkNN (X ).
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Theorem. If Xi, 1 ≤ i ≤ n, i.i.d. with density κ(x) on [0, 1]d, then

lim
n→∞

LkNN ({X1, ..., Xn})
n(d−1)/d

P
= γkNN (d)

∫
[0,1]d

κ(x)(d−1)/ddx.

Redmond + Y.
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Voronoi tessellations

· X := {x1, ..., xn} ⊂ Rd.

· Consider the set of all points closer to xi than to any other point
xj , j 6= i. This convex set is denoted by C(xi).

· Example:

· C(xi) is the intersection of half-spaces.

· {C(xi)}xi∈X is the Voronoi tessellation of Rd induced by X .

· LV OR(X ) is the sum of the lengths of edges of the finite edges of
Voronoi tessellation induced by X .
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Theorem. Xi, 1 ≤ i ≤ n, i.i.d. with density κ(x) on [0, 1]d. Then

lim
n→∞

LV OR({X1, ..., Xn})
n(d−1)/d

P
= `V OR(d)

∫
[0,1]d

κ(x)(d−1)/ddx.

McGivney + Y.
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What about the surface area of the Voronoi tessellation?

· AV OR(X ) is the sum of the areas of the finite faces of Voronoi
tessellation induced by X .

Theorem. Xi, 1 ≤ i ≤ n, i.i.d. with density κ(x) on [0, 1]3. Then

lim
n→∞

AV OR({X1, ..., Xn})
n1/3

P
= αV OR

∫
[0,1]3

κ(x)1/3dx.
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Goals

Given a graph (eg. TSP, MST, MM, SMST, kNN , Vor) whose nodes are
given by n i.i.d. random variables X1, ..., Xn establish the limit theory for
the sum

L({X1, ..., Xn})

of the lengths of the edges of the given graph. We seek:

· SLLN

· rates of convergence

· CLT

· LDP

More generally, we seek the limit theory for H({X1, ..., Xn}), where H(·)
is a general functional of input {X1, ..., Xn}.
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Question

Given a graph (eg. TSP, MST, MM, SMST, kNN , Vor) whose nodes are
given by n i.i.d. random variables X1, ..., Xn, what are the crucial
structural elements which are essential to teasing out a common limit
theory?

Joe Yukich Probabilistic Analysis of Geometric Structures
Spring school at Darmstadt, 25 February-March 1, 2019 21

/ 60



II Methods

· Subadditive Euclidean functionals

· Boundary functionals

· Concentration
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Euclidean Functionals

X ⊂ Rd a locally finite point set

Definition. A (real-valued) functional L(X ) is a Euclidean functional if
these two conditions are satisfied:

L(X + y) = L(X ) ∀y ∈ Rd

L(αX ) = αL(X ) ∀α ∈ R+.

Example: The total edge length of a graph on X .
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Euclidean Functionals

X ⊂ Rd a locally finite point set

Definition. A (real-valued) functional L(X ) is a Euclidean functional of
order p ∈ (0,∞) if these two conditions are satisfied:

L(X + y) = L(X ) ∀y ∈ Rd

L(αX ) = αpL(X ) ∀α ∈ R+.

Example (p = 2): The total area of faces in Voronoi tessellation of
X ⊂ R3.
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Subadditive Euclidean Functionals

Definition. A Euclidean functional L is subadditive if there is a constant
C ∈ (0,∞) such that for all rectangles R := R1 ∪R2 and all point sets
X ⊂ R:

L(X ) ≤ L(X ∩R1) + L(X ∩R2) + Cdiam(R).

Here R1 and R2 are rectangles.

Example: The TSP length LTSP (X ) is subadditive:
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Subadditive Euclidean Functionals

Fact: LMST , LSMST , LMM , LkNN are also subadditive.
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Geometric subadditivity

Let {Qi}m
d

i=1 be a partition of [0, 1]d into subcubes of edge length m−1.

Subadditivity L(X ) ≤ L(X ∩R1) + L(X ∩R2) + Cdiam(R) yields

L(X ∩ [0, 1]d) ≤
md∑
i=1

L(X ∩Qi) + Cmd−1.

Remark: when L is the TSP tour length and when X is a point set which
is the realization of a homogenous Poisson point process, we are bounding
the minimal tour length on points in the unit cube by a sum of identically
distributed minimal tour lengths plus an error term.
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Summary: Subadditive Euclidean functionals L satisfy for all X ⊂ Rd

L(X + y) = L(X ) ∀y ∈ Rd,

L(αX ) = αL(X ) ∀α ∈ R+,

L(X ∩ [0, 1]d) ≤
md∑
i=1

L(X ∩Qi) + Cmd−1.

Fact (Growth Bounds) : Let L be a subadditive Euclidean functional.
Then for all X ⊂ [0, 1]d we have

L(X ) ≤ C(cardX )(d−1)/d.
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Definition A Euclidean functional L is smooth if for all X1,X2 ⊂ [0, 1]d

|L(X1 ∪ X2)− L(X2)| ≤ C(cardX1)
(d−1)/d.

Fact: LTSP , LMST , LSMST , LMM , LkNN are smooth subadditive
Euclidean functionals.

We show this for LTSP .
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Hille’s 1948 Subadditive Limit Theorem. If

xm+n ≤ xm + xn ∀m,n ∈ N

then
lim
n→∞

xn
n

= α

where
α := inf{xm

m
: m ≥ 1}.

Can we similarly deduce limit theorems under a geometric subadditivity
condition?
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Basic weak law of large numbers for smooth subadditive
Euclidean functionals

Let Pn be a Poisson point process of intensity n on [0, 1]d.

Let L be a smooth subadditive Euclidean functional.

Basic Theorem for Poisson Input limn→∞
EL(Pn)
n(d−1)/d = γL(d).

The proof uses subadditivity and smoothness and goes as follows...

Let Qi, i = 1, ....,md be a partition of [0, 1]d into subcubes of edge length
m−1.
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· EL(Pnmd ∩ [0, 1]d) ≤
∑md

i=1 EL(Pnmd ∩Qi) + Cmd−1.

· φ(nmd) ≤ md 1
mφ(n) + Cmd−1

· Homogenize: φ(nmd)

(nmd)(d−1)/d ≤
φ(n)

n(d−1)/d + C
n(d−1)/d .

· Set β := lim infn→∞
φ(n)

n(d−1)/d . Given ε > 0, there is n0 ∈ N such that

φ(n0)

n
(d−1)/d
0

≤ β + ε;
C

n
(d−1)/d
0

≤ ε.

Thus φ(n0md)

(n0md)(d−1)/d ≤ β + 2ε, m = 1, 2, ...

Smoothness gives lim supn→∞
φ(n)

n(d−1)/d ≤ β + 2ε.

Let ε ↓ 0.
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To obtain:

· rates of convergence in WLLN

· WLLN over non-uniform random input

· LDP

it is useful to establish that many Euclidean functionals have an intrinsic
superadditive structure.

We illustrate this with the TSP problem.
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The key idea is to introduce an auxiliary TSP functional which allows
‘free’ travel on the boundary.
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Boundary TSP functional

Definition. For all X ⊂ [0, 1]d, let LB,TSP (X ) be the length of the
shortest tour through X where travel on the boundary of [0, 1]d is ‘free’.

Example.
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LB,TSP (X ) is superadditive with no error term. In other words for all
rectangles R := R1 ∪R2 and all point sets X ⊂ R we have

LB,TSP (X ) ≥ LB,TSP (X ∩R1) + LB,TSP (X ∩R2).

Example.
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Closeness

Definition. Let L be a Euclidean functional and let LB be its boundary
version. We say that L and LB are ‘close’ if

|LB(X )− L(X )| = o((cardX )(d−1)/d), X ⊂ [0, 1]d.

The error is negligible when compared to the growth rate.

Examples:

· LB,TSP and LTSP ;

· LB,MST and LMST ;

· LB,MM and LMM ;

· LB,SMST and LSMST .

Joe Yukich Probabilistic Analysis of Geometric Structures
Spring school at Darmstadt, 25 February-March 1, 2019 41

/ 60



Umbrella LLN

Umbrella Theorem. Assume:
· L smooth subadditive Euclidean functional
· LB smooth superadditive Euclidean functional
· L and LB are close, ie.,

|LB(X )− L(X )| = o((cardX )(d−1)/d), X ⊂ [0, 1]d.

Then there is a constant γL(d) ∈ (0,∞) such that

lim
n→∞

L(X1, ..., Xn)

n(d−1)/d
= γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx a.s.,

where Xi, i ≥ 1, are i.i.d. with density κ.
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Umbrella LLN

What about subadditive Euclidean functionals of order p ∈ (0, d]?

Recall that these functionals are subadditive and satisfy the scaling
relation:

L(αX ) = αpL(X ) ∀α ∈ R+.
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Umbrella LLN

Umbrella Theorem. Assume:
· L smooth subadditive Euclidean functional of order p
· LB smooth superadditive Euclidean functional of order p
· L and LB are close, ie.,

|LB(X )− L(X )| = o((cardX )(d−p)/d), X ⊂ [0, 1]d.

Then there is a constant γL(d) ∈ (0,∞) such that

lim
n→∞

L(X1, ..., Xn)

n(d−p)/d
= γL(d)

∫
[0,1]d

κ(x)(d−p)/ddx a.s.,

where Xi, i ≥ 1, are i.i.d. with density κ.
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The umbrella theorem covers these functionals:
· total edge length of TSP

· total edge length of MST

· total edge length of MM

· total edge length of Steiner MST

· total edge length of k-nearest neighbors graph

· total edge length and surface area of Voronoi tessellation

Umbrella thm extends BHH theorem.

We sketch the proof of the umbrella theorem (p = 1):
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Put Xn := {Xi}ni=1. To prove

lim
n→∞

L(Xn)

n(d−1)/d
= γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx a.s.,

we will show

lim sup
n→∞

EL(Xn)

n(d−1)/d
≤ γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx,

lim inf
n→∞

EL(Xn)

n(d−1)/d
≥ γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx,

and then we apply a concentration inequality to deduce a.s. convergence.

We will actually only prove the above inequalities for blocked distributions

κ(x) =
md∑
i=1

αi1Qi(x).
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Proof

. κ(x) =
∑md

i=1 αi1Qi(x), Xn := {Xi}ni=1. Subadditivity gives:

EL(Xn) ≤ E
md∑
i=1

L(Xn ∩Qi) + Cmd−1

=

md∑
i=1

EL({Uij}Bi(n,αim
d)

j=1 ) + Cmd−1

≤
md∑
i=1

EL({Uij}nαim
d

j=1 ) + Cmd−1

+
md∑
i=1

CE |Bi(n, αim
d)− nαimd|(d−1)/d.

Thus

lim sup
n→∞

EL(Xn)

n(d−1)/d
≤ lim sup

n→∞

∑md

i=1 EL({Uij}nαim
d

j=1 )

n(d−1)/d
.
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Thus

lim sup
n→∞

EL(Xn)

n(d−1)/d

≤ lim sup
n→∞

∑md

i=1 EL({Uij}nαim
d

j=1 )

n(d−1)/d

= lim sup
n→∞

∑md

i=1m
−1EL(m{Uij}nαim

d

j=1 )

(nm−dαi)(d−1)/d
(nm−dαi)

(d−1)/d

n(d−1)/d

= γL(d)
md∑
i=1

m−1(m−dαi)
(d−1)/d (by Basic Thm for Poisson input)

= γL(d)

md∑
i=1

α
(d−1)/d
i m−d

= γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx,

which was to be proved.
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We have thus proved for blocked densities κ that

lim
n→∞

EL(Xn)

n(d−1)/d
= γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx.

Using smoothness, we can extend this limit to arbitrary κ.

To deduce an a.s. result we need to show that L(Xn) concentrates around
its mean.
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Concentration

Theorem. If L is a smooth, subadditive Euclidean functional then for all
ε > 0 we have

∞∑
n=1

P(|L(Xn)− EL(Xn)

n(d−1)/d
| > ε) <∞.

Combining this with the Borel-Cantelli lemma we obtain:

Corollary. If

lim
n→∞

EL(Xn)

n(d−1)/d
= γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx

then

lim
n→∞

L(Xn)

n(d−1)/d
= γL(d)

∫
[0,1]d

κ(x)(d−1)/ddx a.s.

This concludes the proof of the umbrella thm.
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Question: Can we obtain more precise concentration bounds?

Yes.

The answer turns on understanding what happens to a Euclidean
functional when one point in the sample is changed.
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Azuma-Hoeffding Inequality

Fact 1. If X ∈ L1(Ω,A, P ), then X may be represented as a sum of
martingale differences.

Proof. Given a filtration

(∅,Ω) := A0 ⊂ A1 ⊂ ... ⊂ An := A

we define the martingale differences

di := E (X|Ai)− E (X|Ai−1).

Then

X − EX = E (X|An)− E (X|A0) =

n∑
i=1

di.
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Fact 2. If ||X||∞ ≤ 1, EX = 0 then

E exp(aX) ≤ exp
a2

2
, a ∈ R.

Proof. It is always the case that exp ax ≤ exp a2/2 + x sinh a.
We prove this with a picture...
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Fact 2. If ||X||∞ ≤ 1, EX = 0 then

E exp(aX) ≤ exp
a2

2
, a ∈ R.

Fact 3. If EX = 0 then

E exp(aX) ≤ exp(
a2||X||2∞

2
), a ∈ R.
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Azuma-Hoeffding Inequality. di := E (X|Ai)− E (X|Ai−1). For all
λ > 0 we have

P(|
n∑
i=1

di| > λ) ≤ 2 exp

(
− λ2

2
∑n

i=1 ||di||2∞

)
.

Proof. Fact 3 implies for all i = 1, 2, ..., n that

E (exp(adi)|Ai−1) ≤ exp(
a2

2
||di||2∞). (∗)

We have for all t > 0

E et
∑n
i=1 di = EE (et

∑n
i=1 di |An−1)

= E [et
∑n−1
i=1 diE (etdn |An−1)]

≤ E [et
∑n−1
i=1 di ]e

t2

2
||dn||2∞

Iterate (*) to get

E et
∑n
i=1 di ≤ e

t2

2

∑n
i=1 ||di||2∞ .
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Thus

E (exp(t

n∑
i=1

di)) ≤ exp

(
t2

2

n∑
i=1

||di||2∞

)
.

Markov’s inequality for the map x 7→ exp(tx) implies for all t > 0 we have

P(|
n∑
i=1

di| > λ) ≤ exp(−λt) exp

(
t2

2

n∑
i=1

||di||2∞

)
.

Let t = λ(
∑n

i=1 ||di||2∞)−1 to conclude the proof of Azuma-Hoeffding.
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Application to TSP tour length. Put L(n) := LTSP (U1, ...Un), with Ui
i.i.d. on [0, 1]d. Put Ai := σ(U1, ..., Ui) and

di := E (L(n)|Ai)− E (L(n)|Ai−1).

Rhee + Talagrand:

||di||∞ ≤ C(d)(n− i+ 1)−1/d, d ≥ 2.

Azuma-Hoeffding implies (d = 2):

P(|L(n)− EL(n)| > t) ≤ 2 exp(− ct2

log n
)

So for d = 2
L(n)− EL(n) = O(log n) a.s.

Rk. The log n factor can be removed (Talagrand, ’95).
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III Open Questions

L(n) := LTSP (U1, ...Un), with Ui i.i.d. on [0, 1]d.

1. (Sub-Gaussian tail bounds for minimal matching) Do we have (d = 2):

P(|LMM (U1, ...Un)− ELMM (U1, ...Un)| > t) ≤ C exp(−ct2)?

2. (Central limit theorem for TSP) As n→∞, do we have

L(n)− EL(n)√
VarL(n)

D−→ N(0, 1)?
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3. (Central limit theorem for minimal matching) As n→∞, do we have

LMM (U1, ...Un)− ELMM (U1, ...Un)√
VarLMM (U1, ...Un)

D−→ N(0, 1)?

4. γTSP (d) =?
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THANK YOU
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