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I Introduction

· Most models of physical systems involve particles which interact ‘locally’,
inducing long-range interactions.

· We take our particles to be points, usually the realization of an i.i.d.
collection of r.v. Xi, i ≥ 1 or a homogeneous Poisson point process P1.

· For ease of exposition, we consider Qn := [−1
2n,

1
2n]d and let Ui, i ≤ n

be i.i.d. uniform on Qn.

· We let H be a generic functional defined on finite point sets.

· We are interested in the behavior of the Poisson functional H(P1 ∩Qn)
and the binomial functional H(U1, ..., Un).
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I Introduction

Natural questions:

1. (LLN) When do we have limn→∞
H(U1,...,Un)

n = constant a.s.?

2. (CLT) When do we have

H(U1, ..., Un)− EH(U1, ..., Un)√
VarH(U1, ..., Un)

D−→ N(0, 1)?

3. (Probability bounds) Seek good bounds for

P(H(U1, ..., Un) ≥ t).
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II Models and Results

a. Packing Model. Unit volume balls B1, ..., Bk arrive sequentially and
uniformly at random in the cube Qn := [−1

2n,
1
2n]d. Packing rules:

· Pack ball B1.

· Pack ball Bi, i > 1, if Bi does not overlap any ball in B1, B2, ..., Bi−1
which has already been packed.

· Picture for d = 1 looks like this:
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· a. Packing Model (contd). Fix k ∈ {1, 2, ...,∞}. If balls B1, ..., Bk
have centers at points U1, ..., Uk ∈ Qn with respective arrival times
τ1, ..., τk, then let

Hn(U1, ..., Uk)

denote the number of packed (accepted) balls on the substrate Qn.

· The random variable Hn(U1, ..., Uk) is the number of accepted particles
in the random sequential adsorption (RSA) model. Hn(U1, ..., U∞) is
‘packing number’.

Rényi’s Thm: d = 1⇒

lim
n→∞

EHn(U1, ..., U∞)

n
=

∫ ∞
0

exp(−2

∫ t

0

1− e−u

u
du)dt ∼ 0.748.

Dvoretsky + Robbins CLT: d = 1⇒

Hn(U1, ..., U∞)− EHn(U1, ..., U∞)√
VarHn(U1, ..., U∞)

D−→ N(0, 1).
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· a. Packing Model (contd) What about the case d ≥ 2? Hurdles: lack
of subadditivity, lack of independence over subsets of cube Qn.

LLN: d ≥ 2, α ∈ (0,∞):

lim
n→∞

Hn(U1, ..., U[αn])

n
= C(α) a.s.

CLT: d ≥ 2, α ∈ (0,∞):

Hn(U1, ..., U[αn])− EHn(U1, ..., U[αn])√
VarHn(U1, ..., U[αn])

D−→ N(0, 1).
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II Models and Results

b. Geometric Graph (Gilbert Graph)

Def. Given a finite point set X , r ∈ (0,∞), put

CB(X , r) :=
⋃
x∈X

Br(x).

When X is PPP we get the Boolean model. It gives rise to the geometric
graph GGr(X ): join two points x and y with an edge iff
Br/2(x) ∩Br/2(y) 6= ∅.

Def. Let H(X ) be the number of edges in geometric graph GGr(X ).

CLT: d ≥ 2, r > 0:

H(P1 ∩Qn)− EH(P1 ∩Qn)√
VarH(P1 ∩Qn)

D−→ N(0, 1).
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II Models and Results

c. Spatial Birth Growth Models
· The model: cells form at random locations U1, ..., Uk ∈ Qn at times
τ1, ..., τk, respectively.

· Initially the new cell around Ui takes the form of a ball of radius Ri ≥ 0
centered at Ui; then the cell grows radially in all directions with constant
speed v.

· New cells form only in the uncovered space in Rd.

· This models crystal growth, cavitation.

· H(U1, ..., Un) is the volume of the region covered by the first n cells.
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II Models and Results

c. Spatial Birth Growth Models (contd)

· H(U1, ..., Un) is the volume of the region covered by the first n cells.

CLT: H(U1,...,Un)−EH(U1,...,Un)√
n

D−→ N(0, σ2).

Chiu, Quine,...
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III Key Ideas

Recall:

H: a function defined on point set of Rd.

Qn := [−1
2n,

1
2n]d

Ui, 1 ≤ i ≤ n, i.i.d. uniform on Qn.

Goal: Seek conditions on H yielding

H(U1, ..., Un)

n

P−→ constant (LLN)

and
H(U1, ..., Un)− EH(U1, ..., Un)√

VarH(U1, ..., Un)

D−→ N(0, 1) (CLT )

Joe Yukich Lecture 2: Central limit theorems for statistics of geometric structures
Spring school at Darmstadt, February 2019 13

/ 42



III Key Ideas

· Write Qn := ∪ni=1Qn,i, where Qn,i are disjoint sub-cubes of volume 1.

· Abbreviate {U1, ..., Un} by Un.

· In general

H(Un) 6=
n∑
i=1

H(Un ∩Qn,i),

i.e., H is NOT additive.

· If H were additive, then we could deduce LLN and CLT for H(Un) from
the classical limit theorems.
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III Key Ideas

· Restriction of H to disjoint sets does not give independence

· H(Un ∩A) and H(Un ∩B) are dependent in general!
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III Key Ideas

A key idea is to compare the functional H(Un) with H(Un ∪ {0}).

Let’s start by comparing H(P1 ∩Qn) with H((P1 ∩Qn) ∪ {0}).

In other words, what happens to H when we insert an extra point at the
origin into homogenous rate 1 Poisson input P1? How does H change?
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III Key Ideas

Consider this situation:

This picture says that for the fixed deterministic square Q we have

H((P1 ∩Qn) ∪ {0})−H(P1 ∩Qn)

= H((P1 ∩Q) ∪ {0})−H(P1 ∩Q).

Joe Yukich Lecture 2: Central limit theorems for statistics of geometric structures
Spring school at Darmstadt, February 2019 17

/ 42



III Key Ideas: Stability of Difference Operators

The above phenomena rarely happens. Fortunately, a slightly weaker one
does. Let P1 be unit intensity PPP on Rd.

Def. Say that H stabilizes on P1 if there is a cube Q, diam(Q) <∞
a.s., such that

lim
n→∞

H((P1 ∩Qn) ∪ {0})−H(P1 ∩Qn)

= H((P1 ∩Q) ∪ {0})−H(P1 ∩Q).

This condition says that the ‘add-one cost’ does not propagate far; it is
confined to Q.
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III Key Ideas: Stability of Difference Operators

Def. Say that H stabilizes on P1 if there is a cube Q, diam(Q) <∞
a.s., such that

lim
n→∞

H((P1 ∩Qn) ∪ {0})−H(P1 ∩Qn)

= H((P1 ∩Q) ∪ {0})−H(P1 ∩Q).

Def. D0H(P1) := H(P1 ∪ {0})−H(P1).

D0 is called the first order difference operator.

Stabilization says that the first order difference operator has a behavior
which is determined by local data.
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III Key Ideas: Stability of Difference Operators

Which functionals H stabilize in the above sense?

Consider the nearest neighbors graph (put an edge between every point
and its nearest neighbor). Let H(X ) be the total edge length of the
nearest neighbor graph on X .
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in Rd which satisfies:

(i) translation invariance, i.e., H(X + y) = H(X ), y ∈ Rd,

(ii) (2 + ε) bounded increments:

sup
Q⊂Rd, Q a cube

E |H((P1 ∩Q) ∪ {0})−H(P1 ∩Q)|2+ε <∞,

(iii) stability of ‘add-one cost” (ie. stabilizes)

Then
H(P1 ∩Qn)− EH(P1 ∩Qn)√

n

D−→ N(0, σ2)

VarH(P1 ∩Qn)

n
→ σ2.
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IV General CLT and Variance Asymptotics

Applications

We can show that the following functionals stabilize and satisfy the CLT
and variance asymptotics:
a. The number of balls accepted in the RSA packing model,

b. The volume of the occupied region in spatial birth-growth models,

c. The number of edges in the random geometric graph with parameter r,

d. Total edge length of nearest neighbors graph.
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in Rd which satisfies:

(i) translation invariance, i.e., H(X + y) = H(X ), y ∈ Rd,

(ii)(2 + ε) bounded increments:

sup
Q

E |H((P1 ∩Q) ∪ {0})−H(P1 ∩Q)|2+ε <∞,

(iii) stability of ‘add-one cost”.

Then
H(P1 ∩Qn)− EH(P1 ∩Qn)√

n

D−→ N(0, σ2)

VarH(P1 ∩Qn)

n
→ σ2.

Limitations:

· no formula for σ2, no rate of normal convergence, does not address
non-uniform input.

· we are unable to show that LTSP stabilizes. Same for LMM , LSMST .
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in Rd which satisfies:

(i) translation invariance, i.e., H(X + y) = H(X ), y ∈ Rd,
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If the add-one cost D0H(P1) := H(P1 ∪ {0})−H(P1) is
non-degenerate, then σ2 > 0.
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IV General CLT and Variance Asymptotics

Proof of CLT. The proof involves these ingredients:

1. A stability lemma for stabilizing functionals,

2. Expressing H as a sum of martingale differences,

3. McLeish CLT (this result says that to prove a CLT it is enough to prove
an L1 WLLN).
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IV General CLT and Variance Asymptotics

If H is stabilizing and trans. invariant, then there is a r.v. ∆0 such that

lim
n→∞

[H((P1 ∩Qn) ∪ 0)−H(P1 ∩Qn)] = ∆0 a.s.

Thus, if H is stabilizing and trans. invariant, then ∀x, y ∈ Rd

H((P1 ∩Qn) ∪ x)−H(P1 ∩Qn)→ ∆x a.s.

H((P1 ∩Qn) ∪ y)−H(P1 ∩Qn)→ ∆y a.s.

Consequently,

H((P1 ∩Qn) ∪ x)−H((P1 ∩Qn) ∪ y)→ ∆x −∆y a.s.

i.e, replacing x by y produces a change in H which converges a.s.
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IV General CLT and Variance Asymptotics

Stability lemma for stabilizing functionals.

Def. ∀x ∈ Zd let C(x) be unit volume cube with center x.

Def. P ′1 an independent copy of P1. ∀x ∈ Zd let

PC(x) := P1 \ (P1 ∩ C(x)) ∪ (P ′1 ∩ C(x)).

Stability Lemma. Let H be stabilizing and trans. invariant. Then
∀x ∈ Zd there is a r.v. ∆C(x) such that as n→∞

H(P1 ∩Qn)−H(PC(x) ∩Qn)→ ∆C(x).
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IV General CLT and Variance Asymptotics
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IV General CLT and Variance Asymptotics

Martingale Differences
· Xi, 1 ≤ i ≤ n, independent r.v.

· Fi := σ(X1, ..., Xi).

· Let f : Rn → R.

· Then

f(X1, ..., Xn)− E f(X1, ..., Xn) =

n∑
i=1

Di,

where

Di := E (f(X1, ..., Xn)|Fi)− E (f(X1, ..., Xn)|Fi−1)

= E (f(X1, ..., Xn)|Fi)− E (f(X1, ..., X
′
i , ..., Xn)|Fi).

Here X
′
i is a copy of Xi.

Seek an analogous decomposition for H(P1 ∩Qn)− EH(P1 ∩Qn) in
terms of martingale differences. But first:
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IV General CLT and Variance Asymptotics

Thm (McLeish): Let Di, i ≥ 1, be martingale differences such that:

· supn E maxi≤n(
D2

i
n ) <∞,

· 1√
n

maxi≤n |Di|
P−→ 0,

· 1
n

∑n
i=1D

2
i

L1

−→ σ2.

Then as n→∞ we have∑n
i=1Di√
n

D−→ N(0, σ2).
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IV General CLT and Variance Asymptotics

Martingale differences for H(P1 ∩Qn)− EH(P1 ∩Qn)

· Zd ordered with dictionary ordering ≺.

· ∀x ∈ Zd let Fx := σ(P1 ∩ ∪y�xCy).
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IV General CLT and Variance Asymptotics

Martingale differences for H(P1 ∩Qn)− EH(P1 ∩Qn) :
· Qn := [−1

2n,
1
2n]d

· Write Zd ∩Qn = {x1, x2, ..., xn}, xi−1 ≺ xi.

· Write H(P1 ∩Qn)− EH(P1 ∩Qn) =
∑n

i=1Di, with

Di := E (H(P1 ∩Qn)|Fxi)− E (H(P1 ∩Qn)|Fxi−1)

= E (H(P1 ∩Qn)|Fxi)− E (H(PC(xi) ∩Qn)|Fxi)
= E ([H(P1 ∩Qn)−H(PC(xi) ∩Qn)] | Fxi)

To apply the McLeish CLT we need to show WLLN in L1 sense:

1

n

n∑
i=1

D2
i

L1

−→ σ2.
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IV General CLT and Variance Asymptotics

Proof that 1
n

∑n
i=1D

2
i

L1

−→ σ2. (**)
(i) ∀x ∈ Zd ∩Qn, stability lemma implies for all 1 ≤ i ≤ n:

[H(P1 ∩Qn)−H(PC(xi) ∩Qn)]→ ∆C(xi) a.s.

(2 + ε)-bounded increments condition implies uniformly in xi ∈ Zd ∩Qn

D2
xi := (E ([.......]|Fxi))2

L1

−→ E (∆C(xi) |Fxi)
2.

(ii) Ergodic thm implies

1

n

∑
xi∈Qn

(E (∆C(xi) |Fxi))
2 L1

−→ σ2 := E (E (∆C(0)|F0))
2.

(iii) Combining (i) and (ii) we deduce the desired convergence (**).
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Martingale differences for H(P1 ∩Qn)− EH(P1 ∩Qn :)

Thm (McLeish): Let Di, i ≥ 1, be martingale differences such that:

· supn E maxi≤n(
D2

i
n ) <∞, 1√

n
maxi≤n |Di|

P−→ 0, 1n
∑n

i=1D
2
i

L1

−→ σ2.

Then as n→∞ we have
∑n

i=1Di√
n

D−→ N(0, σ2).

We showed the third condition. Thus we have

Thm (CLT). Let H be a functional on points in Rd which satisfies:

(i) translation invariance, i.e., H(X + y) = H(X ), y ∈ Rd,

(ii) bounded increments: supQ E |H(P1 ∩Q∪{0})−H(P1 ∩Q)|2+ε <∞,

(iii) stability of ‘add-one cost”.

Then
H(P1 ∩Qn)− EH(P1 ∩Qn)√

n

D−→ N(0, σ2).
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IV General CLT and Variance Asymptotics

General CLT for H(P1 ∩Qn).

Under certain moment conditions on H we have

sup
x∈R

∣∣∣∣∣P
(
H(P1 ∩Qn)− EH(P1 ∩Qn)√

VarH(P1 ∩Qn)
≤ x

)
− P(N(0, 1) ≤ x)

∣∣∣∣∣ ≤
5∑
i=1

τi.

The τi are integrals of sums and products of first order difference
operators for H:

DxH(P1) := H(P1 ∪ x)−H(P1)

as well as second order difference operators

D(2)
x1,x2H(P1) := Dx1Dx2(H(P1))

= H(P1 ∪ {x1, x2})−H(P1 ∪ {x2})−H(P1 ∪ x1) +H(P1).
The results are an improvement because they provide rates of
convergence. The unwieldy terms τi can only be simplified when the
functional H is a stabilizing functional. We discuss this in the next lecture.
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V Large Deviation Principles

Example. Xi, i ≥ 1, i.i.d. N(0, 1). S(n) =
∑n

i=1Xi;
S(n)√
n

D
= N(0, 1).

Thus for all Borel A ⊂ R we have

P(
S(n)√
n
∈ A) =

1√
2π

∫
A

exp(−x
2

2
)dx.

So

P(|S(n)

n
| ≥ t) =

2√
2π

∫
t
√
n

exp(−x
2

2
)dx ∼

√
2

π

1

t
√
n

exp(− t
2n

2
),

which gives as n→∞

logP(|S(n)n | ≥ t)
n

→ −t
2

2
.

· With small probability, |S(n)n | takes on relatively large values.

· −t22 is the rate function.
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V Large Deviation Principles

Cramer’s LDP
· Xi, i ≥ 1, i.i.d. S(n) =

∑n
i=1Xi; EX1 = µ.

· log m.g.f.
Λ(λ) := logE exp(λX1) ≥ λµ.

· Λ(λ) is convex. Fenchel-Legendre transform (convex dual) of Λ(λ) is

Λ∗(x) = sup
λ∈R

(λx− Λ(λ)) ≥ 0.

· The convex dual is quadratic if X1 is N(µ, σ2).
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V Large Deviation Principles

Cramer’s LDP
· Assume Λ(λ) <∞. Then

(a) For all closed F ⊆ R we have

lim sup
n→∞

1

n
logP(

S(n)

n
∈ F ) ≤ − inf

x∈F
Λ∗(x).

(b) For all open O ⊆ R we have

lim inf
n→∞

1

n
logP(

S(n)

n
∈ O) ≥ − inf

x∈O
Λ∗(x).

The sequence S(n)
n satisfies the LDP with rate function Λ∗.

· Can one show that statistics of geometric structures also satisfy a LDP?
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V Large Deviation Principles

LDP for the TSP
· Notation: X(n) := LTSP (P1 ∩Qn).
· The limit of the log m.g.f. for the sequence X(n), n ≥ 1, is

Λ(t) := lim
n→∞

1

n
logE exp(tX(n)).

· It is a fact that the limit exists.

· Convex dual of Λ(t) is

Λ∗(x) := sup
t∈R

(tx− Λ(t)).

· Now we can state an LDP for X(n) := LTSP (P1 ∩Qn).
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V Large Deviation Principles

Donsker-Varadhan LDP for the TSP
· X(n) := LTSP (P1 ∩Qn) and X(n)

n → γTSP a.s. (Lecture 1)
· Λ(t) := limn→∞

1
n logE exp(tX(n)) <∞ and

(a) For all closed F ⊆ R we have

lim sup
n→∞

1

n
logP(

X(n)

n
∈ F ) ≤ − inf

x∈F
Λ∗(x).

(b) For all open O ⊆ R we have

lim inf
n→∞

1

n
logP(

X(n)

n
∈ O) ≥ − inf

x∈O
Λ∗(x).

The sequence X(n)
n satisfies the LDP with rate function Λ∗ and

Λ∗(x) = 0⇔ x = γTSP and Λ∗(x) ≤ C(x− γTSP )2.

See Seppalainen + Y.
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V Large Deviation Principles

LDP for the TSP
Remark.

X(n)
n converges exponentially to γTSP , i.e., ∀ε > 0 there is

M := M(ε) > 0 such that ∀n

P(|X(n)

n
− γTSP | > ε) ≤ exp(−Mn).
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V Large Deviation Principles

Final thoughts: LDP for the TSP
How does one prove an LDP for TSP and other statistics of large
geometric structures?

Key. The sequence X(n), n ≥ 1, satisfies near additivity in the sense that
∀ε > 0, ∀C > 0, there is n0 such that for n ≥ n0 and for all integers m we
have

P

|X(nmd)−
md∑
i=1

Xi(n)| ≥ εnmd

 ≤ exp(−Cnmd)

where Xi(n) are i.i.d. copies of X(n).

Near additivity says that except on a set with exponentially small
probability, X(nmd) can be expressed as a sum of i.i.d. random variables
with a suitably small error.
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THANK YOU

Joe Yukich Lecture 2: Central limit theorems for statistics of geometric structures
Spring school at Darmstadt, February 2019 42

/ 42


