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Probabilistic Analysis of Geometric Structures

- Lecture 1: Probabilistic analysis of Euclidean optimization problems
- Lecture 2: Central limit theorems for statistics of geometric structures

- Lecture 3: Limit theory for statistics of geometric structures via
stabilizing score functions

- Lecture 4: Statistics of random polytopes

- Lecture 5: Rates of multivariate normal approximation for statistics of
geometric structures
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| Introduction

- Most models of physical systems involve particles which interact ‘locally’,
inducing long-range interactions.

- We take our particles to be points, usually the realization of an i.i.d.
collection of r.v. X;,% > 1 or a homogeneous Poisson point process P;.
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| Introduction

- Most models of physical systems involve particles which interact ‘locally’,
inducing long-range interactions.

- We take our particles to be points, usually the realization of an i.i.d.
collection of r.v. X;,% > 1 or a homogeneous Poisson point process P;.

- For ease of exposition, we consider @, := [—%n, %n]d and let U;,i <n
be i.i.d. uniform on @,.

- We let H be a generic functional defined on finite point sets.

- We are interested in the behavior of the Poisson functional H(P; N Q)
and the binomial functional H(Uy, ..., Uy,).
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| Introduction

Natural questions:

1. (LLN) When do we have lim,,_, M = constant a.s.?
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| Introduction

Natural questions:
1. (LLN) When do we have lim,,_, M = constant a.s.?
2. (CLT) When do we have

H(U7,....,Uy) — EH(UY, ..., Uy)
V/VarH(Uy, ..., Uy)

2, N(0,1)?
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| Introduction

Natural questions:
1. (LLN) When do we have lim,,_, M = constant a.s.?
2. (CLT) When do we have

H(U7,....,Uy) — EH(UY, ..., Uy)
V/VarH(Uy, ..., Uy)

2, N(0,1)?

3. (Probability bounds) Seek good bounds for

P(H (Ui, ..., Uy) > t).

Joe Yukich

Lecture 2: Central limit theorems for statistic



[l Models and Results

a. Packing Model. Unit volume balls By, ..., By arrive sequentially and

uniformly at random in the cube @, := [—%n, %n]d. Packing rules:

- Pack ball B;j.
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[l Models and Results

a. Packing Model. Unit volume balls By, ..., By arrive sequentially and

uniformly at random in the cube @, := [—%n, %n]d. Packing rules:

- Pack ball B;j.

- Pack ball B;, ¢ > 1, if B; does not overlap any ball in By, Bo, ..., B;_1
which has already been packed.

- Picture for d = 1 looks like this:
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- a. Packing Model (contd). Fix k € {1,2,...,00}. If balls By, ..., By,
have centers at points Uy, ..., Uy € @, with respective arrival times

T, ..., Tk, then let
H, (Ui, ...,Uy)

denote the number of packed (accepted) balls on the substrate @,.

- The random variable H,,(Uy, ..., Uy) is the number of accepted particles
in the random sequential adsorption (RSA) model. H,(Uy,...,Ux) is
‘packing number’.
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- a. Packing Model (contd). Fix k € {1,2,...,00}. If balls By, ..., By,
have centers at points Uy, ..., Uy € @, with respective arrival times
Ti, ..., Tk, then let

H, (Ui, ...,Uy)

denote the number of packed (accepted) balls on the substrate @,.

- The random variable H,,(Uy, ..., Uy) is the number of accepted particles
in the random sequential adsorption (RSA) model. H,(Uy,...,Ux) is
‘packing number’.

Rényi’'s Thm: d=1=

EH, vy Uso o b1 —eu
lim (O, -, Uoo) :/ exp(—2/ ¢ du)dt ~ 0.748.
0 0

n—o00 n u

Dvoretsky + Robbins CLT: d=1=

H,(Uy,...,.Ux) —EH,(Uy,...,.U
n( 1y ey oo) n( 1y ey oo) 2}]\7(0’1)
\/Vaan(Ul, iy Uso)
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- a. Packing Model (contd) What about the case d > 27 Hurdles: lack
of subadditivity, lack of independence over subsets of cube @,,.

LLN: d > 2,a € (0, 00):

Hy(Uy, o, U,
lim G an]) =C(a) a.s.
n—o00 n
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- a. Packing Model (contd) What about the case d > 27 Hurdles: lack

of subadditivity, lack of independence over subsets of cube @,,.
LLN: d > 2,a € (0, 00):

H (U, ..., U,
lim G an]) =C(a) a.s.
n—o00 n

CLT: d > 2,0 € (0,00):
Ho(U1, o Upg) — EHo(Us, o U))
\/Vaan(Ula"'aU[Oén])
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[l Models and Results

b. Geometric Graph (Gilbert Graph)
Def. Given a finite point set X', r € (0,00), put

Cp(X,r) = | Br(x).

TeEX

When X is PPP we get the Boolean model. It gives rise to the geometric
graph GG, (X): join two points x and y with an edge iff
Br/?(:v) n Br/2(y) # 0.
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[l Models and Results

b. Geometric Graph (Gilbert Graph)
Def. Given a finite point set X', r € (0,00), put

Cp(X,r) = | Br(x).

TeEX

When X is PPP we get the Boolean model. It gives rise to the geometric
graph GG, (X): join two points x and y with an edge iff

B, 2(z) 0 Byja(y) # 0.

Def. Let H(X) be the number of edges in geometric graph GG, (X).
CLT: d>2,7 > 0:

H(Pl an) B EH(PI N Qn)
\/VarH(Pl N Qn)

2, N(0,1).
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[l Models and Results

c. Spatial Birth Growth Models

- The model: cells form at random locations Uy, ..., U, € @, at times
TL, ..., Tk, respectively.

- Initially the new cell around U; takes the form of a ball of radius R; > 0

centered at Uj;; then the cell grows radially in all directions with constant
speed v.
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[l Models and Results

c. Spatial Birth Growth Models

- The model: cells form at random locations Uy, ..., U, € @, at times
TL, ..., Tk, respectively.

- Initially the new cell around U; takes the form of a ball of radius R; > 0

centered at Uj;; then the cell grows radially in all directions with constant
speed v.

- New cells form only in the uncovered space in R
- This models crystal growth, cavitation.

- H(Uy,...,Uy) is the volume of the region covered by the first n cells.
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[l Models and Results

c. Spatial Birth Growth Models (contd)

- H(Uy, ..., Uy) is the volume of the region covered by the first n cells.

CLT: H(Ul,...,Un):}%H(Ul7~~-»Un) L2, N(0,0?).

Chiu, Quine,...
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Il Key Ideas

Recall:
H: a function defined on point set of R%.
Qn = [~Ln, L]

U;,1 <i<n,iid. uniform on Q.
Goal: Seek conditions on H yielding

H(Uy,...,Up)

L, constant (LLN)
n

and
H(Uy,...,U,) —EH(Uy,..

V/VarH(Uy, ..., Uy)

Un) D, N(0,1) (CLT)

Joe Yukich
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Il Key Ideas

- Write Qy, := U, Qn i, where @y, ; are disjoint sub-cubes of volume 1.
- Abbreviate {Uy, ..., Uy, } by U,

- In general

i.e., H is NOT additive.
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Il Key Ideas

- Write Qy, := U, Qn i, where @y, ; are disjoint sub-cubes of volume 1.
- Abbreviate {Uy, ..., Uy, } by U,

- In general
n

HUy) # Y HUn N Quni),

i=1
i.e., H is NOT additive.

- If H were additive, then we could deduce LLN and CLT for H(U,,) from
the classical limit theorems.
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Il Key Ideas

- Restriction of H to disjoint sets does not give independence

- HU, N A) and H(U, N B) are dependent in general!
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Il Key Ideas

A key idea is to compare the functional H(U,,) with H (U, U {0}).
Let's start by comparing H(P1 N Q) with H((P1 N Qy,) U {0}).

In other words, what happens to H when we insert an extra point at the
origin into homogenous rate 1 Poisson input P;? How does H change?
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Il Key Ideas

Consider this situation:

O a o a
Q, ) Q.
- W(sg) (@]

This picture says that for the fixed deterministic square (Q we have
H((PI N Qn) U {O}) - H(Pl N Qn)
=H(PiNnQ)uU{0}) —H(P1NQ).
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Il Key Ideas: Stability of Difference Operators

The above phenomena rarely happens. Fortunately, a slightly weaker one
does. Let P; be unit intensity PPP on R

Def. Say that H stabilizes on P; if there is a cube @), diam(Q) < oo
a.s., such that

Jlim H((P10@Qn) U{0}) — H(P1NQn)

=H(P1NnQ)uU{0}) - H(P1NQ).

Joe Yukich
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Il Key Ideas: Stability of Difference Operators

The above phenomena rarely happens. Fortunately, a slightly weaker one
does. Let P; be unit intensity PPP on R

Def. Say that H stabilizes on P; if there is a cube @), diam(Q) < oo
a.s., such that

Jlim H((P10@Qn) U{0}) — H(P1NQn)
=H((PiNQ)U{0}) — H(PNQ).

This condition says that the ‘add-one cost’ does not propagate far; it is
confined to Q.
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Il Key Ideas: Stability of Difference Operators

Def. Say that H stabilizes on P; if there is a cube @, diam(Q) < oo
a.s., such that

Jim H((P1NQn) U{0}) — H(PLNQn)
=H((PiNnQ)uU{0}) — H(PNQ).

Def. DoH(Py) := H(PLU{0}) — H(Py).
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Il Key Ideas: Stability of Difference Operators

Def. Say that H stabilizes on P; if there is a cube @, diam(Q) < oo
a.s., such that

Jim H((P10Qn) U{0}) — H(P1N Q)
=H(P1NnQ)U{0}) - H(P1NQ).
Def. DoH(P1) := H(P1 U {0}) — H(Py).

Dy is called the first order difference operator.

Stabilization says that the first order difference operator has a behavior
which is determined by local data.
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Il Key Ideas: Stability of Difference Operators

Which functionals H stabilize in the above sense?
Consider the nearest neighbors graph (put an edge between every point

and its nearest neighbor). Let H(X') be the total edge length of the
nearest neighbor graph on X.

Joe Yukich
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in R? which satisfies:
(i) translation invariance, i.e., H(X +y) = H(X), y € R?,
(i) (2 4 €) bounded increments:

sup E|H(P.NQ)U{0}) — HPNQ)** < oo,
QCRY, Q a cube

(iii) stability of ‘add-one cost” (ie. stabilizes)

Joe Yukich
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in R? which satisfies:
(i) translation invariance, i.e., H(X +y) = H(X), y € R,
(i) (2 4 €) bounded increments:
sup E|H(P.NQ)U{0}) — HPNQ)** < oo,
QCRY, Q a cube
(iii) stability of ‘add-one cost” (ie. stabilizes)

Then
H(Pl an) - EH(Pl N Qn)

NG
VarH(Pl N Qn) s 0_2'

n

2, N(0,0?)
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IV General CLT and Variance Asymptotics

Applications

We can show that the following functionals stabilize and satisfy the CLT
and variance asymptotics:
a. The number of balls accepted in the RSA packing model,

b. The volume of the occupied region in spatial birth-growth models,
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IV General CLT and Variance Asymptotics

Applications

We can show that the following functionals stabilize and satisfy the CLT
and variance asymptotics:

a. The number of balls accepted in the RSA packing model,
b. The volume of the occupied region in spatial birth-growth models,
c. The number of edges in the random geometric graph with parameter r,

d. Total edge length of nearest neighbors graph.
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in R¢ which satisfies:
(i) translation invariance, i.e., H(X +y) = H(X), y € R?,
(ii)(2 + €) bounded increments:

Slép]E |H((P1NQ)U{0}) — H(P,NQ)*T < oo,

(iii) stability of ‘add-one cost”.
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in R¢ which satisfies:
(i) translation invariance, i.e., H(X +y) = H(X), y € R?,
(ii)(2 + €) bounded increments:

Sgp]E |H((P1NQ)U{0}) — H(P,NQ)*T < oo,

(iii) stability of ‘add-one cost”.

Then H(PiNQy) —EH(PINQy)
— N
N (0,0%)
VarH(P1 N Q) o2
n
Limitations:
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in R¢ which satisfies:
(i) translation invariance, i.e., H(X +y) = H(X), y € R?,
(ii)(2 + €) bounded increments:

Sgp]E |H((P1NQ)U{0}) — H(P,NQ)*T < oo,

(iii) stability of ‘add-one cost”.

Then H(PiNQy) —EH(PINQy)
— N
N (0,0%)
VarH(P1 N Q) o2
n
Limitations:

- no formula for 2, no rate of normal convergence, does not address
non-uniform input.
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in R¢ which satisfies:
(i) translation invariance, i.e., H(X +y) = H(X), y € R?,
(ii)(2 + €) bounded increments:

Slép]E |H((P1NQ)U{0}) — H(P,NQ)*T < oo,

(iii) stability of ‘add-one cost”.

Then H(PiNQy) —EH(PINQy)
— N
N (0,0%)
VarH(P1 N Q) o2
n
Limitations:

- no formula for 2, no rate of normal convergence, does not address
non-uniform input.

- we are unable to show that Lpgp stabilizes. Same for, Lysar, Lsyst-
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IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in R? which satisfies:
(i) translation invariance, i.e., H(X +y) = H(X), y € R,
(ii) (2 + €) bounded increments:

Sup E [H((P1N Q) U{0}) — H(P1NQ)[*** < o0,

(iii) stability of ‘add-one cost”.

Then H(PLNQn) —EH(PL Q)
1 n) — 1 n D 2
N — N(0,0°)

H n
VarH (P1 N Q) L2
n
If the add-one cost DoH (P1) := H(P1U{0}) — H(P1) is
non-degenerate, then o2 > 0.
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IV General CLT and Variance Asymptotics

Proof of CLT. The proof involves these ingredients:
1. A stability lemma for stabilizing functionals,
2. Expressing H as a sum of martingale differences,

3. McLeish CLT (this result says that to prove a CLT it is enough to prove
an L' WLLN).
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IV General CLT and Variance Asymptotics

If H is stabilizing and trans. invariant, then there is a r.v. Ay such that

lim [H(P1NQp)U0)—H(PLNQy)] =Ao a.s.

n—o0
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IV General CLT and Variance Asymptotics

If H is stabilizing and trans. invariant, then there is a r.v. Ay such that

lim [H(P1NQp)U0)—H(PLNQy)] =Ao a.s.

n—o0

Thus, if H is stabilizing and trans. invariant, then Vz,y € R¢

H(PiNnQnUzx)—H(P1NQ,) = A, a.s.

H(PiNQn)Uy) —HP1NQn) = Ay a.s.

Consequently,
H((PiNQn)Uz)—H(P1NQn)Uy) = Ay — Ay a.s.

i.e, replacing = by y produces a change in H which converges a.s.
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IV General CLT and Variance Asymptotics

Stability lemma for stabilizing functionals.
Def. Va € Z¢ let C(x) be unit volume cube with center .

Def. 771 an independent copy of P;. Va € Z¢ let

Poty =P1\ (P1NC(x) U (PN C(x)).

Joe Yukich
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IV General CLT and Variance Asymptotics

Stability lemma for stabilizing functionals.
Def. Va € Z¢ let C(x) be unit volume cube with center .

Def. 771 an independent copy of P;. Va € Z¢ let
Poty =P1\ (P1NC(x) U (PN C(x)).

Stability Lemma. Let H be stabilizing and trans. invariant. Then
Vo € Z% there is a r.v. Ac¢(g) such that as n — oo

H(P1NQn) — H(Pco) NQn) = Aca)-
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IV General CLT and Variance Asymptotics

Martingale Differences
- X;,1 <4 <n, independent r.v.

: .FL = O’(Xl, 7Xz)

- Let f:R" = R.
- Then
n
F(X1, o Xn) —Ef(X1, ., Xn) = > _ Dy,
=1
where
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IV General CLT and Variance Asymptotics

Martingale Differences
- X;,1 <4 <n, independent r.v.

: .FZ = O’(Xl, 7Xz)

- Let f:R" = R.
- Then
n
F(X1, o Xn) —Ef(X1, ., Xn) = > _ Dy,
=1
where

D = E (f(X1, .., Xo)|Fs) = E(F(X1, ..., X0) | Fi1)
= E(f(X1, .o, Xn)|Fi) = E(f(X1, 00, Xy ooy X)) | ).

Here X; is a copy of Xj.
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IV General CLT and Variance Asymptotics

Martingale Differences
- X;,1 <4 <n, independent r.v.

: .FZ = O’(Xl, 7Xz)

- Let f:R" = R.
- Then
n
F(X1, o Xn) —Ef(X1, ., Xn) = > _ Dy,
=1
where

-Di =K (f(Xla aXn)“/—:Z) - ]E(f(le '--7Xn)|E—1)
= E(f(X1, o X)) = B (F(X1, 000, Xy oy X )| F).
Here X; is a copy of Xj.

Seek an analogous decomposition for H(P1 N Qy) —EH(P1 N Qy) in
terms of martingale differences. But first:
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IV General CLT and Variance Asymptotics

Thm (McLeish): Let D;,i > 1, be martingale differences such that:

D?
- sup,, E max;<,(=%) < oo,

P
. ﬁmaxign |Dz‘ — 0,

1
1 2 L 2
'ﬁZi:lDi > o
Then as n — oo we have

Z?:l D;

NG 25 N(0,0?).

Joe Yukich Lecture 2: Central limit theorems for statistic



IV General CLT and Variance Asymptotics

Martingale differences for H(P1 N Q,) —EH(P1NQy)

—Cx

Z.l

- 7% ordered with dictionary ordering <.
Vo € Z let Fp:= o (PN Uy=2Cy)-
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IV General CLT and Variance Asymptotics

Martingale differences for H(P1 N Q,) —EH(P1NQ,) :
: Qn = [—%Tl, %n]d

-Write Z4N Qp = {x1, 29, ..., Tn}, i1 < ;.
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IV General CLT and Variance Asymptotics

Martingale differences for H(P1 N Q,) —EH(P1NQ,) :
: Qn = [—%Tl, %n]d
-Write Z4N Qp = {x1, 29, ..., Tn}, i1 < ;.

- Write H(P1NQn) —EH(P1NQy) =1 D;, with
D;:=E(H(PiN Qn)u:mz) —E(H(P1N Qn)|]:xi71)
=E(H(P1NQn)|Fz,) — E(H(Po(z,) NQn)|Fa;)
=E ([H(Pl N Qn) - H(PC(xi) n Qn)] ’ ]:zi)
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IV General CLT and Variance Asymptotics

Martingale differences for H(P1 N Q,) —EH(P1NQ,) :
- Qp = [_%na %n]d
-Write Z4N Qp = {x1, 29, ..., Tn}, i1 < ;.
- Write H(P1NQn) —EH(P1NQy) =1 D;, with
Di :=E (H(P1NQn)|Fz,) — E(HPLN Q)| Fz,_,)
=E(H(P1NQn)|Fe;) = E(H(Po(z,) NQn)lFz,)
=E ([H(Pl N Qn) - H(,PC(xl) N Qn)] ’ fzz)

To apply the McLeish CLT we need to show WLLN in L' sense:
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IV General CLT and Variance Asymptotics

Ll
Proof that 1 3" | D? = o2, (**)
(i) Vz € 740 Qy, stability lemma implies for all 1 <i < n:

[H('Pl N Qn) — H(PC(:ci) N Qn)] — AC(z‘i) a.s.
(2 4 €)-bounded increments condition implies uniformly in z; € Z¢9 N Q,,

D2, = (E ([ ]| Fe))2 25 E (Ag(ay) 1)
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IV General CLT and Variance Asymptotics

Ll
Proof that 1 3" | D? = o2, (**)
(i) Vz € 740 Qy, stability lemma implies for all 1 <i < n:

[H('Pl N Qn) — H(PC(:ci) N Qn)] — AC(xi) a.s.
(2 4 €)-bounded increments condition implies uniformly in z; € Z¢9 N Q,,

D2, = (E ([ ]| Fe))2 25 E (Ag(ay) 1)

(i) Ergodic thm implies

Ll
- Z (Ac() Fz))? = 0% = E(E (Ac()|Fo))*.

IzeQn

(iii) Combining (i) and (ii) we deduce the desired convergence (**).
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Martingale differences for H(Pi1N Q,) —EH(P1 N Q, :)

Thm (McLeish): Let D;,i > 1, be martingale differences such that:

E D'L2 1 D I 1 n D2 Lt 2
- sup,, E max;<,(5+) < oo, %maxign\ il — 0, - Yo D — o
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Martingale differences for H(Pi1N Q,) —EH(P1 N Q, :)

Thm (McLeish): Let D;,i > 1, be martingale differences such that:

E D'L2 1 D I 1 n D2 Lt 2
- sup,, E max;<,(5+) < oo, %maxign\ il — 0, - Yo D — o

Then as n — oo we have % 25 N(0,02).
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Martingale differences for H(Pi1N Q,) —EH(P1 N Q, :)

Thm (McLeish): Let D;,i > 1, be martingale differences such that:

2

D*
- sup,, E max;<,(=-) < o0, -

Poai1xwm p2 LY o
%maxlgn‘D,’ —>07ﬁZi:1 D’L — 0",

Then as n — oo we have % 25 N(0,02).

We showed the third condition. Thus we have
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Martingale differences for H(Pi1 N Q,) —EH(P1NQ, :)

Thm (McLeish): Let D;,i > 1, be martingale differences such that:

- sup,, E maxign(%?) < 00, % max;<n | D;l £, 0, % Sy Di2 L—1> o2.
Then as n — oo we have % 25 N(0,02).

We showed the third condition. Thus we have

Thm (CLT). Let H be a functional on points in R? which satisfies:

(i) translation invariance, i.e., H(X +y) = H(X), y € R,

(ii) bounded increments: supy E|H(P1NQU{0}) — H(P1NQ)*™ < o0,
(iii) stability of ‘add-one cost”.

Then
H(Pl N Qn) _EH(PI N Qn)

vn

2, N(0,02).
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IV General CLT and Variance Asymptotics

General CLT for H(P1 N Q,,)-

Under certain moment conditions on H we have

. (H(Pl NQn) —EH(PINQn) _

sup
zeR

V/VarH(P1 N Qn)

The 7; are integrals of sums and products of first order difference
operators for H:

> P(N(0,1) < z)

DIH(Pl) = H(P1 @) $) — H(P1)
as well as second order difference operators

DR, H(P1) i= Dy, Doy (H(Py))

1,2
= H(P1 U {xl,a:Q}) — H(Pl U {562}) — H(Pl U 331) + H(Pl).
The results are an improvement because they provide rates of

convergence. The unwieldy terms 7; can only be simplified when the
functional H is a stabilizing functional. We discuss this.in the next lecture.,

Joe Yukich Lecture 2: Central limit theorems for statistic



V Large Deviation Principles

Example. X;,i > 1,iid. N(0,1). S(n) =", X;; 50 2 N0, 1).

Thus for all Borel A C R we have

1 x?
PR = g f et
So

n ? “n
}P’(|S§1)! >t) = é—ﬂ/tfexp(—Q)dwN 2 }GXP( 752 )

which gives as n — oo
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V Large Deviation Principles

Example. X;,i > 1,iid. N(0,1). S(n) =", X;; 50 2 N0, 1).
Thus for all Borel A C R we have

S(n) 1 _5[272 .
FC = g e
So

n 2 2n
P20 = o [ e e 2 e

which gives as n — oo

log P(| Sn )\ >t —t?
n 2

- With small probability, ]@\ takes on relatively large values.

2 . .
. % is the rate function.
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V Large Deviation Principles

Cramer’'s LDP

- log m.g.f.
A(N) :==10gE exp(AX1) > Ap.
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V Large Deviation Principles

Cramer’'s LDP

- log m.g.f.
A(N) :==10gE exp(AX1) > Ap.

- A(X) is convex. Fenchel-Legendre transform (convex dual) of A(A) is

AN (z) = ilelﬁ()\az —A(N\)) > 0.

- The convex dual is quadratic if X7 is N(u,c?).
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V Large Deviation Principles

Cramer’'s LDP
- Assume A(A) < co. Then

(a) For all closed F' C R we have

1imsupllogIP’(in) € F) < — inf A*(x).
n—oo T n zEF

(b) For all open O C R we have

liminfl logIP’(M € 0) > — inf A*(z).

n—oo n n €0
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V Large Deviation Principles

Cramer’'s LDP
- Assume A(A) < co. Then

(a) For all closed F' C R we have

limsupl logIP’(S(n) € F) < — inf A*(x).
n

n—oo n zEF

(b) For all open O C R we have

liminfl logIP’(M € 0) > — inf A*(z).

n—oo n n €0

5(n)

The sequence == satisfies the LDP with rate function A*.

- Can one show that statistics of geometric structures also satisfy a LDP?
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V Large Deviation Principles

LDP for the TSP
- Notation: X(n) = LTSP(pl N Qn)
- The limit of the log m.g.f. for the sequence X (n),n > 1, is

A(t) := lim lloglE exp(tX(n)).

n—oo n

- It is a fact that the limit exists.
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V Large Deviation Principles

LDP for the TSP
- Notation: X(n) = LTSP(pl N Qn)
- The limit of the log m.g.f. for the sequence X (n),n > 1, is

.1
A(t) := n11_>rr010 - log E exp(tX(n)).

- It is a fact that the limit exists.

- Convex dual of A(t) is

A (z) = ilelﬂg(m —A(1)).

- Now we can state an LDP for X (n) := Lysp(P1 N Q).
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V Large Deviation Principles

Donsker-Varadhan LDP for the TSP
- X(n):= LTSP(PI N Q) and ( ) yrsp a.s. (Lecture 1)
- A(t) :=limp o0 2 log E exp(tX(n)) < 00 and

(a) For all closed F' C R we have

1 X
lim sup — log P( (n) € F) < — inf A*(x).

(b) For all open O C R we have

lim inf llogIP’(M € 0) > — inf A*(x).

n—oo N n €0
The sequence X( ) satisfies the LDP with rate function A* and
A (z) =0 z=yrsp and A*(z) < C(xz —yrsp)>.

See Seppalainen + Y.
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V Large Deviation Principles

LDP for the TSP
Remark.

—Xfl") converges exponentially to yrgp, i.e., Ve > 0 there is

M := M(e) > 0 such that Vn
X(n)

P(] —yrsp| > €) < exp(—Mn).
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V Large Deviation Principles

Final thoughts: LDP for the TSP
How does one prove an LDP for TSP and other statistics of large
geometric structures?

Key. The sequence X (n),n > 1, satisfies near additivity in the sense that
Ve > 0, YC > 0, there is ng such that for n > ng and for all integers m we

have

md

P | | X (nm?) — ZXl(n)| > enm? | < exp(—Cnm?)
i=1

where X;(n) are i.i.d. copies of X (n).

Near additivity says that except on a set with exponentially small
probability, X (nm?) can be expressed as a sum of i.i.d. random variables
with a suitably small error.
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THANK YOU
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