Lecture 2: Central limit theorems for statistics of geometric structures

Joe Yukich

Spring school at Darmstadt, February 2019

- \cdot Lecture 1: Probabilistic analysis of Euclidean optimization problems
- · Lecture 2: Central limit theorems for statistics of geometric structures
- \cdot Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functions
- · Lecture 4: Statistics of random polytopes
- Lecture 5: Rates of multivariate normal approximation for statistics of geometric structures

Lecture 2: Central limit theorems for statistics of geometric structures

- · I Introduction
- · II Models and Results

Random packing models, Growth models, Gilbert Graph

伺下 イヨト イヨト

Lecture 2: Central limit theorems for statistics of geometric structures

· I Introduction

· II Models and Results

Random packing models, Growth models, Gilbert Graph

· III Key Idea

Stability of difference operator

· IV Central limit theorems

Statement

Proof

· V Large Deviation Principles

 \cdot Most models of physical systems involve particles which interact 'locally', inducing long-range interactions.

· We take our particles to be points, usually the realization of an i.i.d. collection of r.v. $X_i, i \ge 1$ or a homogeneous Poisson point process \mathcal{P}_1 .

▲圖▶ ▲ 圖▶ ▲ 圖▶

 \cdot Most models of physical systems involve particles which interact 'locally', inducing long-range interactions.

· We take our particles to be points, usually the realization of an i.i.d. collection of r.v. $X_i, i \ge 1$ or a homogeneous Poisson point process \mathcal{P}_1 .

 \cdot For ease of exposition, we consider $Q_n:=[-\frac{1}{2}n,\frac{1}{2}n]^d$ and let $U_i,i\leq n$ be i.i.d. uniform on $Q_n.$

 \cdot We let H be a generic functional defined on finite point sets.

· We are interested in the behavior of the **Poisson** functional $H(\mathcal{P}_1 \cap Q_n)$ and the **binomial** functional $H(U_1, ..., U_n)$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

Natural questions:

1. (LLN) When do we have $\lim_{n\to\infty} \frac{H(U_1,...,U_n)}{n} = \text{constant}$ a.s.?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Natural questions:

- 1. (LLN) When do we have $\lim_{n\to\infty} \frac{H(U_1,...,U_n)}{n} = \text{constant}$ a.s.?
- 2. (CLT) When do we have

$$\frac{H(U_1,...,U_n) - \mathbb{E} H(U_1,...,U_n)}{\sqrt{\operatorname{Var} H(U_1,...,U_n)}} \xrightarrow{\mathcal{D}} N(0,1)?$$

<ロ> <四> <四> <四> <三</td>

Natural questions:

- 1. (LLN) When do we have $\lim_{n\to\infty} \frac{H(U_1,...,U_n)}{n} = \text{constant}$ a.s.?
- 2. (CLT) When do we have

$$\frac{H(U_1,...,U_n) - \mathbb{E} H(U_1,...,U_n)}{\sqrt{\operatorname{Var} H(U_1,...,U_n)}} \xrightarrow{\mathcal{D}} N(0,1)?$$

3. (Probability bounds) Seek good bounds for

 $\mathbb{P}(H(U_1,...,U_n) \ge t).$

・ロン ・聞と ・ヨン ・ヨン … ヨ

II Models and Results

a. Packing Model. Unit volume balls $B_1, ..., B_k$ arrive sequentially and uniformly at random in the cube $Q_n := [-\frac{1}{2}n, \frac{1}{2}n]^d$. Packing rules:

· Pack ball B_1 .

・聞き ・ ヨキ・ ・ ヨキー

II Models and Results

a. **Packing Model**. Unit volume balls $B_1, ..., B_k$ arrive sequentially and uniformly at random in the cube $Q_n := [-\frac{1}{2}n, \frac{1}{2}n]^d$. Packing rules:

· Pack ball B_1 .

· Pack ball B_i , i > 1, if B_i does not overlap any ball in $B_1, B_2, ..., B_{i-1}$ which has already been packed.

 \cdot Picture for d=1 looks like this:

★掃▶ ★ 理▶ ★ 理▶ … 理

・ロト ・ 通 ト ・ 差 ト ・ 差 ・ の へ ()・

· a. Packing Model (contd). Fix $k \in \{1, 2, ..., \infty\}$. If balls $B_1, ..., B_k$ have centers at points $U_1, ..., U_k \in Q_n$ with respective arrival times $\tau_1, ..., \tau_k$, then let

$$H_n(U_1,...,U_k)$$

denote the number of packed (accepted) balls on the substrate Q_n .

· The random variable $H_n(U_1, ..., U_k)$ is the number of accepted particles in the random sequential adsorption (RSA) model. $H_n(U_1, ..., U_\infty)$ is 'packing number'.

《曰》 《聞》 《臣》 《臣》 三百

· a. Packing Model (contd). Fix $k \in \{1, 2, ..., \infty\}$. If balls $B_1, ..., B_k$ have centers at points $U_1, ..., U_k \in Q_n$ with respective arrival times $\tau_1, ..., \tau_k$, then let

$$H_n(U_1,...,U_k)$$

denote the number of packed (accepted) balls on the substrate Q_n .

· The random variable $H_n(U_1, ..., U_k)$ is the number of accepted particles in the random sequential adsorption (RSA) model. $H_n(U_1, ..., U_\infty)$ is 'packing number'.

Rényi's Thm: $d = 1 \Rightarrow$

$$\lim_{n \to \infty} \frac{\mathbb{E} H_n(U_1, \dots, U_\infty)}{n} = \int_0^\infty \exp(-2\int_0^t \frac{1 - e^{-u}}{u} du) dt \sim 0.748.$$

Dvoretsky + Robbins CLT: $d = 1 \Rightarrow$

$$\frac{H_n(U_1,...,U_{\infty}) - \mathbb{E} H_n(U_1,...,U_{\infty})}{\sqrt{\operatorname{Var} H_n(U_1,...,U_{\infty})}} \xrightarrow{\mathcal{D}} N(0,1).$$

イロト イ理ト イヨト イヨト 二日

· a. Packing Model (contd) What about the case $d \ge 2$? Hurdles: lack of subadditivity, lack of independence over subsets of cube Q_n .

LLN: $d \ge 2, \alpha \in (0, \infty)$:

$$\lim_{n \to \infty} \frac{H_n(U_1, \dots, U_{[\alpha n]})}{n} = C(\alpha) \quad a.s.$$

イロン イロン イヨン イヨン 三日

· a. Packing Model (contd) What about the case $d \ge 2$? Hurdles: lack of subadditivity, lack of independence over subsets of cube Q_n .

LLN: $d \ge 2, \alpha \in (0, \infty)$:

$$\lim_{n \to \infty} \frac{H_n(U_1, \dots, U_{[\alpha n]})}{n} = C(\alpha) \quad a.s.$$

CLT: $d \ge 2, \alpha \in (0, \infty)$:

$$\frac{H_n(U_1, ..., U_{[\alpha n]}) - \mathbb{E} H_n(U_1, ..., U_{[\alpha n]})}{\sqrt{\operatorname{Var} H_n(U_1, ..., U_{[\alpha n]})}} \xrightarrow{\mathcal{D}} N(0, 1).$$

(日) (周) (ヨ) (ヨ) (ヨ)

II Models and Results

b. Geometric Graph (Gilbert Graph)

Def. Given a finite point set \mathcal{X} , $r \in (0, \infty)$, put

$$C_B(\mathcal{X}, r) := \bigcup_{x \in \mathcal{X}} B_r(x).$$

When \mathcal{X} is PPP we get the Boolean model. It gives rise to the geometric graph $GG_r(\mathcal{X})$: join two points x and y with an edge iff $B_{r/2}(x) \cap B_{r/2}(y) \neq \emptyset$.

- 本部 と 本語 と 本語 と 二語

II Models and Results

b. Geometric Graph (Gilbert Graph)

Def. Given a finite point set \mathcal{X} , $r \in (0,\infty)$, put

$$C_B(\mathcal{X}, r) := \bigcup_{x \in \mathcal{X}} B_r(x).$$

When \mathcal{X} is PPP we get the Boolean model. It gives rise to the geometric graph $GG_r(\mathcal{X})$: join two points x and y with an edge iff $B_{r/2}(x) \cap B_{r/2}(y) \neq \emptyset$.

Def. Let $H(\mathcal{X})$ be the number of edges in geometric graph $GG_r(\mathcal{X})$. **CLT:** $d \ge 2, r > 0$:

$$\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{\operatorname{Var} H(\mathcal{P}_1 \cap Q_n)}} \xrightarrow{\mathcal{D}} N(0, 1).$$

《曰》 《聞》 《臣》 《臣》 三百

c. Spatial Birth Growth Models

 \cdot The model: cells form at random locations $U_1,...,U_k\in Q_n$ at times $\tau_1,...,\tau_k,$ respectively.

· Initially the new cell around U_i takes the form of a ball of radius $R_i \ge 0$ centered at U_i ; then the cell grows radially in all directions with constant speed v.

c. Spatial Birth Growth Models

 \cdot The model: cells form at random locations $U_1,...,U_k\in Q_n$ at times $\tau_1,...,\tau_k,$ respectively.

· Initially the new cell around U_i takes the form of a ball of radius $R_i \ge 0$ centered at U_i ; then the cell grows radially in all directions with constant speed v.

- · New cells form only in the *uncovered space* in \mathbb{R}^d .
- \cdot This models crystal growth, cavitation.
- \cdot $H(U_1,...,U_n)$ is the volume of the region covered by the first n cells.

(人間) (人) (人) (人) (日) (日) (日)

c. Spatial Birth Growth Models (contd)

 $\cdot H(U_1, ..., U_n)$ is the volume of the region covered by the first n cells. **CLT:** $\frac{H(U_1, ..., U_n) - \mathbb{E} H(U_1, ..., U_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2).$

Chiu, Quine,...

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ─ 吾

Recall:

H: a function defined on point set of \mathbb{R}^d .

 $Q_n := [-\frac{1}{2}n, \frac{1}{2}n]^d$ $U_i, 1 \le i \le n, \text{ i.i.d. uniform on } Q_n.$

Goal: Seek conditions on H yielding

$$\frac{H(U_1, ..., U_n)}{n} \xrightarrow{P} \text{constant} \quad (LLN)$$

and

$$\frac{H(U_1, ..., U_n) - \mathbb{E} H(U_1, ..., U_n)}{\sqrt{\operatorname{Var} H(U_1, ..., U_n)}} \xrightarrow{\mathcal{D}} N(0, 1) \quad (CLT)$$

- * 聞 > * ほ > * ほ > … ほ

- · Write $Q_n := \cup_{i=1}^n Q_{n,i}$, where $Q_{n,i}$ are disjoint sub-cubes of volume 1.
- · Abbreviate $\{U_1, ..., U_n\}$ by \mathcal{U}_n .
- \cdot In general

$$H(\mathcal{U}_n) \neq \sum_{i=1}^n H(\mathcal{U}_n \cap Q_{n,i}),$$

i.e., \boldsymbol{H} is NOT additive.

- 米田 ト 米 臣 ト - 4 臣 ト - 三臣

- · Write $Q_n := \cup_{i=1}^n Q_{n,i}$, where $Q_{n,i}$ are disjoint sub-cubes of volume 1.
- · Abbreviate $\{U_1, ..., U_n\}$ by \mathcal{U}_n .
- \cdot In general

$$H(\mathcal{U}_n) \neq \sum_{i=1}^n H(\mathcal{U}_n \cap Q_{n,i}),$$

i.e., \boldsymbol{H} is NOT additive.

 \cdot If H were additive, then we could deduce LLN and CLT for $H(\mathcal{U}_n)$ from the classical limit theorems.

イロト イ団ト イヨト イヨト 二日

- \cdot Restriction of H to disjoint sets does not give independence
- \cdot $H(\mathcal{U}_n \cap A)$ and $H(\mathcal{U}_n \cap B)$ are dependent in general!

イロト イポト イヨト イヨト

A key idea is to compare the functional $H(\mathcal{U}_n)$ with $H(\mathcal{U}_n \cup \{\mathbf{0}\})$.

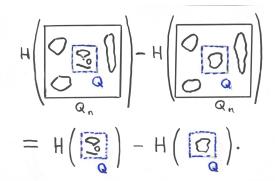
Let's start by comparing $H(\mathcal{P}_1 \cap Q_n)$ with $H((\mathcal{P}_1 \cap Q_n) \cup \{\mathbf{0}\})$.

In other words, what happens to H when we insert an extra point at the origin into homogenous rate 1 Poisson input \mathcal{P}_1 ? How does H change?

- 本部 と 本語 と 本語 と 二語

III Key Ideas

Consider this situation:



This picture says that for the fixed deterministic square Q we have

$$H((\mathcal{P}_1 \cap Q_n) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q_n)$$
$$= H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q).$$

The above phenomena rarely happens. Fortunately, a slightly weaker one does. Let \mathcal{P}_1 be unit intensity PPP on \mathbb{R}^d .

Def. Say that H stabilizes on \mathcal{P}_1 if there is a cube Q, diam $(Q) < \infty$ a.s., such that

$$\lim_{n \to \infty} H((\mathcal{P}_1 \cap Q_n) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q_n)$$
$$= H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q).$$

The above phenomena rarely happens. Fortunately, a slightly weaker one does. Let \mathcal{P}_1 be unit intensity PPP on \mathbb{R}^d .

Def. Say that H stabilizes on \mathcal{P}_1 if there is a cube Q, diam $(Q) < \infty$ a.s., such that

$$\lim_{n \to \infty} H((\mathcal{P}_1 \cap Q_n) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q_n)$$
$$= H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q).$$

This condition says that the 'add-one cost' does not propagate far; it is confined to Q.

|山田 | 山田 | 山田 |

Def. Say that H stabilizes on \mathcal{P}_1 if there is a cube Q, $\operatorname{diam}(Q) < \infty$ a.s., such that

$$\lim_{n \to \infty} H((\mathcal{P}_1 \cap Q_n) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q_n)$$
$$= H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q).$$

Def. $D_0H(\mathcal{P}_1) := H(\mathcal{P}_1 \cup \{0\}) - H(\mathcal{P}_1).$

- < A > < B > < B >

Def. Say that H stabilizes on \mathcal{P}_1 if there is a cube Q, diam $(Q) < \infty$ a.s., such that

$$\lim_{n \to \infty} H((\mathcal{P}_1 \cap Q_n) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q_n)$$
$$= H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q).$$

Def. $D_0H(\mathcal{P}_1) := H(\mathcal{P}_1 \cup \{0\}) - H(\mathcal{P}_1).$

 D_0 is called the first order difference operator.

Stabilization says that the first order difference operator has a behavior which is determined by local data.

《曰》 《國》 《臣》 《臣》 三臣

III Key Ideas: Stability of Difference Operators

Which functionals H stabilize in the above sense?

Consider the nearest neighbors graph (put an edge between every point and its nearest neighbor). Let $H(\mathcal{X})$ be the total edge length of the nearest neighbor graph on \mathcal{X} .

IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in \mathbb{R}^d which satisfies: (i) translation invariance, i.e., $H(\mathcal{X} + y) = H(\mathcal{X}), y \in \mathbb{R}^d$, (ii) $(2 + \epsilon)$ bounded increments:

 $\sup_{Q \subset \mathbb{R}^d, \ Q \text{ a cube}} \mathbb{E} |H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty,$

(iii) stability of 'add-one cost" (ie. stabilizes)

★掃▶ ★ 理▶ ★ 理▶ … 理

IV General CLT and Variance Asymptotics

Theorem. Let H be a functional on points in \mathbb{R}^d which satisfies: (i) translation invariance, i.e., $H(\mathcal{X} + y) = H(\mathcal{X}), y \in \mathbb{R}^d$, (ii) $(2 + \epsilon)$ bounded increments:

 $\sup_{Q \subset \mathbb{R}^d, \ Q \text{ a cube}} \mathbb{E} |H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty,$

(iii) stability of 'add-one cost" (ie. stabilizes)

Then

$$\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2)$$
$$\frac{\operatorname{Var} H(\mathcal{P}_1 \cap Q_n)}{n} \to \sigma^2.$$

《曰》 《國》 《臣》 《臣》 三臣

Applications

We can show that the following functionals stabilize and satisfy the CLT and variance asymptotics:

- a. The number of balls accepted in the RSA packing model,
- b. The volume of the occupied region in spatial birth-growth models,

Applications

We can show that the following functionals stabilize and satisfy the CLT and variance asymptotics:

- a. The number of balls accepted in the RSA packing model,
- b. The volume of the occupied region in spatial birth-growth models,
- c. The number of edges in the random geometric graph with parameter r,
- d. Total edge length of nearest neighbors graph.

Theorem. Let H be a functional on points in \mathbb{R}^d which satisfies: (i) translation invariance, i.e., $H(\mathcal{X} + y) = H(\mathcal{X}), y \in \mathbb{R}^d$, (ii) $(2 + \epsilon)$ bounded increments:

$$\sup_{Q} \mathbb{E} |H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty,$$

(iii) stability of 'add-one cost".

(周) (三) (三)

Theorem. Let H be a functional on points in \mathbb{R}^d which satisfies: (i) translation invariance, i.e., $H(\mathcal{X} + y) = H(\mathcal{X}), y \in \mathbb{R}^d$, (ii) $(2 + \epsilon)$ bounded increments:

$$\sup_{Q} \mathbb{E} |H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty,$$

(iii) stability of 'add-one cost".

Then

$$\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2)$$
$$\frac{\operatorname{Var} H(\mathcal{P}_1 \cap Q_n)}{n} \to \sigma^2.$$

Limitations:

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem. Let H be a functional on points in \mathbb{R}^d which satisfies: (i) translation invariance, i.e., $H(\mathcal{X} + y) = H(\mathcal{X}), y \in \mathbb{R}^d$, (ii) $(2 + \epsilon)$ bounded increments:

$$\sup_{Q} \mathbb{E} |H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty,$$

(iii) stability of 'add-one cost".

Then

$$\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2)$$
$$\frac{\operatorname{Var} H(\mathcal{P}_1 \cap Q_n)}{n} \to \sigma^2.$$

Limitations:

 \cdot no formula for $\sigma^2,$ no rate of normal convergence, does not address non-uniform input.

米部 とくほど 不良という

Theorem. Let H be a functional on points in \mathbb{R}^d which satisfies: (i) translation invariance, i.e., $H(\mathcal{X} + y) = H(\mathcal{X}), y \in \mathbb{R}^d$, (ii) $(2 + \epsilon)$ bounded increments:

$$\sup_{Q} \mathbb{E} |H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty,$$

(iii) stability of 'add-one cost".

Then

$$\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2)$$
$$\frac{\operatorname{Var} H(\mathcal{P}_1 \cap Q_n)}{n} \to \sigma^2.$$

Limitations:

 \cdot no formula for $\sigma^2,$ no rate of normal convergence, does not address non-uniform input.

 \cdot we are unable to show that L_{TSP} stabilizes. Same for L_{MM}, L_{SMST} .

Theorem. Let H be a functional on points in \mathbb{R}^d which satisfies: (i) translation invariance, i.e., $H(\mathcal{X} + y) = H(\mathcal{X}), y \in \mathbb{R}^d$, (ii) $(2 + \epsilon)$ bounded increments:

$$\sup_{Q} \mathbb{E} |H((\mathcal{P}_1 \cap Q) \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty,$$

(iii) stability of 'add-one cost".

Then

$$\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2)$$
$$\frac{\operatorname{Var} H(\mathcal{P}_1 \cap Q_n)}{n} \to \sigma^2.$$

If the add-one cost $D_0H(\mathcal{P}_1) := H(\mathcal{P}_1 \cup \{0\}) - H(\mathcal{P}_1)$ is non-degenerate, then $\sigma^2 > 0$.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

Proof of CLT. The proof involves these ingredients:

- 1. A stability lemma for stabilizing functionals,
- 2. Expressing H as a sum of martingale differences,
- 3. McLeish CLT (this result says that to prove a CLT it is enough to prove an L^1 WLLN).

If H is stabilizing and trans. invariant, then there is a r.v. Δ_0 such that

$$\lim_{n\to\infty} [H((\mathcal{P}_1\cap Q_n)\cup\mathbf{0}) - H(P_1\cap Q_n)] = \Delta_\mathbf{0} \quad a.s.$$

If H is stabilizing and trans. invariant, then there is a r.v. Δ_0 such that

$$\lim_{n\to\infty} [H((\mathcal{P}_1\cap Q_n)\cup\mathbf{0}) - H(P_1\cap Q_n)] = \Delta_\mathbf{0} \quad a.s.$$

Thus, if H is stabilizing and trans. invariant, then $\forall x, y \in \mathbb{R}^d$

$$H((\mathcal{P}_1 \cap Q_n) \cup x) - H(\mathcal{P}_1 \cap Q_n) \to \Delta_x \ a.s.$$

$$H((\mathcal{P}_1 \cap Q_n) \cup y) - H(\mathcal{P}_1 \cap Q_n) \to \Delta_y \ a.s.$$

Consequently,

$$H((\mathcal{P}_1 \cap Q_n) \cup x) - H((\mathcal{P}_1 \cap Q_n) \cup y) \to \Delta_x - \Delta_y \quad a.s.$$

i.e, replacing x by y produces a change in H which converges a.s.

Stability lemma for stabilizing functionals.

Def. $\forall x \in \mathbb{Z}^d$ let C(x) be unit volume cube with center x. **Def.** \mathcal{P}'_1 an independent copy of \mathcal{P}_1 . $\forall x \in \mathbb{Z}^d$ let

$$\mathcal{P}_{C(x)} := \mathcal{P}_1 \setminus (\mathcal{P}_1 \cap C(x)) \cup (\mathcal{P}'_1 \cap C(x)).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Stability lemma for stabilizing functionals.

Def. $\forall x \in \mathbb{Z}^d$ let C(x) be unit volume cube with center x. **Def.** \mathcal{P}'_1 an independent copy of \mathcal{P}_1 . $\forall x \in \mathbb{Z}^d$ let

$$\mathcal{P}_{C(x)} := \mathcal{P}_1 \setminus (\mathcal{P}_1 \cap C(x)) \cup (\mathcal{P}'_1 \cap C(x)).$$

Stability Lemma. Let H be stabilizing and trans. invariant. Then $\forall x \in \mathbb{Z}^d$ there is a r.v. $\Delta_{C(x)}$ such that as $n \to \infty$

$$H(\mathcal{P}_1 \cap Q_n) - H(\mathcal{P}_{C(x)} \cap Q_n) \to \Delta_{C(x)}.$$

イロン イ理 とくほ とくほ とうほ

Martingale Differences

- $\cdot X_i, 1 \leq i \leq n$, independent r.v.
- $\cdot \mathcal{F}_i := \sigma(X_1, ..., X_i).$
- $\cdot \text{ Let } f : \mathbb{R}^n \to \mathbb{R}.$
- \cdot Then

$$f(X_1, ..., X_n) - \mathbb{E} f(X_1, ..., X_n) = \sum_{i=1}^n D_i,$$

where

イロト イ理ト イヨト イヨト 二日

Martingale Differences

- $\cdot X_i, 1 \leq i \leq n$, independent r.v.
- $\cdot \mathcal{F}_i := \sigma(X_1, ..., X_i).$
- · Let $f : \mathbb{R}^n \to \mathbb{R}$.
- \cdot Then

$$f(X_1, ..., X_n) - \mathbb{E} f(X_1, ..., X_n) = \sum_{i=1}^n D_i,$$

where

$$D_i := \mathbb{E} \left(f(X_1, ..., X_n) | \mathcal{F}_i \right) - \mathbb{E} \left(f(X_1, ..., X_n) | \mathcal{F}_{i-1} \right)$$
$$= \mathbb{E} \left(f(X_1, ..., X_n) | \mathcal{F}_i \right) - \mathbb{E} \left(f(X_1, ..., X_i', ..., X_n) | \mathcal{F}_i \right).$$

Here X'_i is a copy of X_i .

イロト イ理ト イヨト イヨト 二日

Martingale Differences

- $\cdot X_i, 1 \leq i \leq n$, independent r.v.
- $\cdot \mathcal{F}_i := \sigma(X_1, ..., X_i).$
- · Let $f : \mathbb{R}^n \to \mathbb{R}$.
- \cdot Then

$$f(X_1, ..., X_n) - \mathbb{E} f(X_1, ..., X_n) = \sum_{i=1}^n D_i,$$

where

$$D_i := \mathbb{E} \left(f(X_1, ..., X_n) | \mathcal{F}_i \right) - \mathbb{E} \left(f(X_1, ..., X_n) | \mathcal{F}_{i-1} \right)$$

= $\mathbb{E} \left(f(X_1, ..., X_n) | \mathcal{F}_i \right) - \mathbb{E} \left(f(X_1, ..., X_i', ..., X_n) | \mathcal{F}_i \right).$

Here X'_i is a copy of X_i .

Seek an analogous decomposition for $H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)$ in terms of martingale differences. But first:

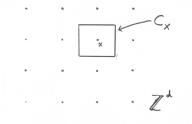
Thm (McLeish): Let $D_i, i \ge 1$, be martingale differences such that:

- $\cdot \sup_{n} \mathbb{E} \max_{i \le n} \left(\frac{D_i^2}{n} \right) < \infty$,
- $\cdot \frac{1}{\sqrt{n}} \max_{i \leq n} |D_i| \xrightarrow{P} 0,$
- $\cdot \frac{1}{n} \sum_{i=1}^{n} D_i^2 \xrightarrow{L^1} \sigma^2.$
- Then as $n \to \infty$ we have

$$\frac{\sum_{i=1}^{n} D_i}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2).$$

イロト イ団ト イヨト イヨト 二日

Martingale differences for $H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)$



- $\cdot \mathbb{Z}^d$ ordered with dictionary ordering \prec .
- $\cdot \forall x \in \mathbb{Z}^d \text{ let } \mathcal{F}_x := \sigma(\mathcal{P}_1 \cap \cup_{y \preceq x} C_y).$

Martingale differences for $H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n) :$ $\cdot Q_n := [-\frac{1}{2}n, \frac{1}{2}n]^d$

• Write $\mathbb{Z}^d \cap Q_n = \{x_1, x_2, ..., x_n\}, \quad x_{i-1} \prec x_i.$

・ロト ・聞ト ・ヨト ・ヨトー

Martingale differences for $H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n) :$ $\cdot Q_n := [-\frac{1}{2}n, \frac{1}{2}n]^d$

- Write $\mathbb{Z}^d \cap Q_n = \{x_1, x_2, ..., x_n\}, \quad x_{i-1} \prec x_i.$
- · Write $H(\mathcal{P}_1 \cap Q_n) \mathbb{E} H(\mathcal{P}_1 \cap Q_n) = \sum_{i=1}^n D_i$, with

$$D_{i} := \mathbb{E} \left(H(\mathcal{P}_{1} \cap Q_{n}) | \mathcal{F}_{x_{i}} \right) - \mathbb{E} \left(H(\mathcal{P}_{1} \cap Q_{n}) | \mathcal{F}_{x_{i-1}} \right)$$
$$= \mathbb{E} \left(H(\mathcal{P}_{1} \cap Q_{n}) | \mathcal{F}_{x_{i}} \right) - \mathbb{E} \left(H(\mathcal{P}_{C(x_{i})} \cap Q_{n}) | \mathcal{F}_{x_{i}} \right)$$
$$= \mathbb{E} \left(\left[H(\mathcal{P}_{1} \cap Q_{n}) - H(\mathcal{P}_{C(x_{i})} \cap Q_{n}) \right] | \mathcal{F}_{x_{i}} \right)$$

《曰》 《聞》 《臣》 《臣》 三百

Martingale differences for $H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n) :$ $\cdot Q_n := [-\frac{1}{2}n, \frac{1}{2}n]^d$

- Write $\mathbb{Z}^d \cap Q_n = \{x_1, x_2, ..., x_n\}, \quad x_{i-1} \prec x_i.$
- · Write $H(\mathcal{P}_1 \cap Q_n) \mathbb{E} H(\mathcal{P}_1 \cap Q_n) = \sum_{i=1}^n D_i$, with

$$D_{i} := \mathbb{E} \left(H(\mathcal{P}_{1} \cap Q_{n}) | \mathcal{F}_{x_{i}} \right) - \mathbb{E} \left(H(\mathcal{P}_{1} \cap Q_{n}) | \mathcal{F}_{x_{i-1}} \right)$$
$$= \mathbb{E} \left(H(\mathcal{P}_{1} \cap Q_{n}) | \mathcal{F}_{x_{i}} \right) - \mathbb{E} \left(H(\mathcal{P}_{C(x_{i})} \cap Q_{n}) | \mathcal{F}_{x_{i}} \right)$$
$$= \mathbb{E} \left(\left[H(\mathcal{P}_{1} \cap Q_{n}) - H(\mathcal{P}_{C(x_{i})} \cap Q_{n}) \right] | \mathcal{F}_{x_{i}} \right)$$

To apply the McLeish CLT we need to show WLLN in L^1 sense:

$$\frac{1}{n}\sum_{i=1}^{n}D_{i}^{2} \xrightarrow{L^{1}} \sigma^{2}.$$

- 米田 ト 米 ヨ ト - メ ヨ ト - 三 ヨ

Proof that $\frac{1}{n} \sum_{i=1}^{n} D_i^2 \xrightarrow{L^1} \sigma^2$. **(**)** (i) $\forall x \in \mathbb{Z}^d \cap Q_n$, stability lemma implies for all $1 \le i \le n$:

$$[H(\mathcal{P}_1 \cap Q_n) - H(\mathcal{P}_{C(x_i)} \cap Q_n)] \to \Delta_{C(x_i)} \quad a.s.$$

 $(2+\epsilon)$ -bounded increments condition implies uniformly in $x_i \in \mathbb{Z}^d \cap Q_n$

$$D_{x_i}^2 := (\mathbb{E}\left([\dots,\dots]|\mathcal{F}_{x_i}\right))^2 \xrightarrow{L^1} \mathbb{E}\left(\Delta_{C(x_i)} |\mathcal{F}_{x_i}\right)^2.$$

《曰》 《聞》 《臣》 《臣》 三百

Proof that $\frac{1}{n} \sum_{i=1}^{n} D_i^2 \xrightarrow{L^1} \sigma^2$. **(**)** (i) $\forall x \in \mathbb{Z}^d \cap Q_n$, stability lemma implies for all $1 \le i \le n$:

$$[H(\mathcal{P}_1 \cap Q_n) - H(\mathcal{P}_{C(x_i)} \cap Q_n)] \to \Delta_{C(x_i)} \quad a.s.$$

 $(2+\epsilon)$ -bounded increments condition implies uniformly in $x_i \in \mathbb{Z}^d \cap Q_n$

$$D_{x_i}^2 := (\mathbb{E}\left([\dots,\dots]|\mathcal{F}_{x_i})\right)^2 \xrightarrow{L^1} \mathbb{E}\left(\Delta_{C(x_i)} |\mathcal{F}_{x_i}\right)^2.$$

(ii) Ergodic thm implies

$$\frac{1}{n}\sum_{x_i\in Q_n} (\mathbb{E}\left(\Delta_{C(x_i)} | \mathcal{F}_{x_i}\right))^2 \xrightarrow{L^1} \sigma^2 := \mathbb{E}\left(\mathbb{E}\left(\Delta_{C(0)} | \mathcal{F}_0\right)\right)^2.$$

(iii) Combining (i) and (ii) we deduce the desired convergence (**).

米部 とくほど 不良という

Thm (McLeish): Let $D_i, i \ge 1$, be martingale differences such that:

 $\cdot \sup_{n} \mathbb{E} \max_{i \leq n} \left(\frac{D_{i}^{2}}{n} \right) < \infty, \frac{1}{\sqrt{n}} \max_{i \leq n} |D_{i}| \xrightarrow{P} 0, \frac{1}{n} \sum_{i=1}^{n} D_{i}^{2} \xrightarrow{L^{1}} \sigma^{2}.$

《曰》 《國》 《臣》 《臣》 三臣

Thm (McLeish): Let $D_i, i \ge 1$, be martingale differences such that:

 $\cdot \sup_{n} \mathbb{E} \max_{i \leq n} \left(\frac{D_{i}^{2}}{n} \right) < \infty, \frac{1}{\sqrt{n}} \max_{i \leq n} |D_{i}| \xrightarrow{P} 0, \frac{1}{n} \sum_{i=1}^{n} D_{i}^{2} \xrightarrow{L^{1}} \sigma^{2}.$

Then as $n \to \infty$ we have $\frac{\sum_{i=1}^{n} D_i}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2).$

《曰》 《國》 《臣》 《臣》 三臣

Thm (McLeish): Let $D_i, i \ge 1$, be martingale differences such that:

 $\cdot \sup_{n} \mathbb{E} \max_{i \leq n} \left(\frac{D_{i}^{2}}{n} \right) < \infty, \frac{1}{\sqrt{n}} \max_{i \leq n} |D_{i}| \xrightarrow{P} 0, \frac{1}{n} \sum_{i=1}^{n} D_{i}^{2} \xrightarrow{L^{1}} \sigma^{2}.$

Then as $n \to \infty$ we have $\frac{\sum_{i=1}^{n} D_i}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2).$

We showed the third condition. Thus we have

《曰》 《國》 《臣》 《臣》 三臣

Thm (McLeish): Let $D_i, i \ge 1$, be martingale differences such that:

 $\cdot \sup_{n} \mathbb{E} \max_{i \leq n} \left(\frac{D_{i}^{2}}{n} \right) < \infty, \frac{1}{\sqrt{n}} \max_{i \leq n} |D_{i}| \xrightarrow{P} 0, \frac{1}{n} \sum_{i=1}^{n} D_{i}^{2} \xrightarrow{L^{1}} \sigma^{2}.$

Then as $n \to \infty$ we have $\frac{\sum_{i=1}^{n} D_i}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2).$

We showed the third condition. Thus we have

Thm (CLT). Let *H* be a functional on points in \mathbb{R}^d which satisfies:

(i) translation invariance, i.e., $H(\mathcal{X}+y)=H(\mathcal{X}), \ y\in \mathbb{R}^d$,

(ii) bounded increments: $\sup_Q \mathbb{E} |H(\mathcal{P}_1 \cap Q \cup \{\mathbf{0}\}) - H(\mathcal{P}_1 \cap Q)|^{2+\epsilon} < \infty$, (iii) stability of 'add-one cost".

Then

$$\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2).$$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ─ 吾

General CLT for $H(\mathcal{P}_1 \cap Q_n)$.

Under certain moment conditions on ${\cal H}$ we have

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}\left(\frac{H(\mathcal{P}_1 \cap Q_n) - \mathbb{E} H(\mathcal{P}_1 \cap Q_n)}{\sqrt{\operatorname{Var} H(\mathcal{P}_1 \cap Q_n)}} \le x \right) - \mathbb{P}(N(0, 1) \le x) \right| \le \sum_{i=1}^5 \tau_i.$$

The τ_i are integrals of sums and products of first order difference operators for H:

$$D_x H(\mathcal{P}_1) := H(\mathcal{P}_1 \cup x) - H(\mathcal{P}_1)$$

as well as second order difference operators

$$D_{x_1,x_2}^{(2)}H(\mathcal{P}_1) := D_{x_1}D_{x_2}(H(\mathcal{P}_1))$$
$$= H(\mathcal{P}_1 \cup \{x_1,x_2\}) - H(\mathcal{P}_1 \cup \{x_2\}) - H(\mathcal{P}_1 \cup x_1) + H(\mathcal{P}_1).$$

The results are an improvement because they provide rates of convergence. The unwieldy terms τ_i can only be simplified when the functional H is a stabilizing functional. We discuss this in the next lecture,

Example. $X_i, i \ge 1$, i.i.d. N(0, 1). $S(n) = \sum_{i=1}^n X_i$; $\frac{S(n)}{\sqrt{n}} \stackrel{\mathcal{D}}{=} N(0, 1)$.

Thus for all Borel $A \subset \mathbb{R}$ we have

$$\mathbb{P}(\frac{S(n)}{\sqrt{n}} \in A) = \frac{1}{\sqrt{2\pi}} \int_A \exp(-\frac{x^2}{2}) dx.$$

So

$$\mathbb{P}(|\frac{S(n)}{n}| \geq t) = \frac{2}{\sqrt{2\pi}} \int_{t\sqrt{n}} \exp(-\frac{x^2}{2}) dx \sim \sqrt{\frac{2}{\pi}} \frac{1}{t\sqrt{n}} \exp(-\frac{t^2n}{2}),$$

which gives as $n \to \infty$

イロト イ理ト イヨト イヨト 二日

Example. $X_i, i \ge 1$, i.i.d. N(0,1). $S(n) = \sum_{i=1}^n X_i$; $\frac{S(n)}{\sqrt{n}} \stackrel{\mathcal{D}}{=} N(0,1)$.

Thus for all Borel $A \subset \mathbb{R}$ we have

$$\mathbb{P}(\frac{S(n)}{\sqrt{n}} \in A) = \frac{1}{\sqrt{2\pi}} \int_A \exp(-\frac{x^2}{2}) dx.$$

So

$$\mathbb{P}(|\frac{S(n)}{n}| \ge t) = \frac{2}{\sqrt{2\pi}} \int_{t\sqrt{n}} \exp(-\frac{x^2}{2}) dx \sim \sqrt{\frac{2}{\pi}} \frac{1}{t\sqrt{n}} \exp(-\frac{t^2n}{2}),$$

which gives as $n \to \infty$

$$\frac{\log \mathbb{P}(|\frac{S(n)}{n}| \ge t)}{n} \to \frac{-t^2}{2}$$

- · With small probability, $|\frac{S(n)}{n}|$ takes on relatively large values.
- $\cdot \frac{-t^2}{2}$ is the rate function.

(口) 《圖》 《图》 《图》 三頭

Cramer's LDP

$$\cdot X_i, i \ge 1$$
, i.i.d. $S(n) = \sum_{i=1}^n X_i$; $\mathbb{E} X_1 = \mu$.

· log m.g.f.

$$\Lambda(\lambda) := \log \mathbb{E} \exp(\lambda X_1) \ge \lambda \mu.$$

æ

イロト イ理ト イヨト イヨト

Cramer's LDP

$$\cdot X_i, i \ge 1$$
, i.i.d. $S(n) = \sum_{i=1}^n X_i$; $\mathbb{E} X_1 = \mu$.

· log m.g.f.

$$\Lambda(\lambda) := \log \mathbb{E} \exp(\lambda X_1) \ge \lambda \mu.$$

 $\cdot \ \Lambda(\lambda)$ is convex. Fenchel-Legendre transform (convex dual) of $\Lambda(\lambda)$ is

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}} (\lambda x - \Lambda(\lambda)) \ge 0.$$

· The convex dual is quadratic if X_1 is $N(\mu, \sigma^2)$.

(本部)と 本語 と 本語を

Cramer's LDP

- \cdot Assume $\Lambda(\lambda) < \infty$. Then
- (a) For all closed $F \subseteq \mathbb{R}$ we have

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S(n)}{n} \in F) \le -\inf_{x \in F} \Lambda^*(x).$$

(b) For all open $O \subseteq \mathbb{R}$ we have

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S(n)}{n} \in O) \ge -\inf_{x \in O} \Lambda^*(x).$$

イロト イ理ト イヨト イヨト

Cramer's LDP

- \cdot Assume $\Lambda(\lambda) < \infty$. Then
- (a) For all closed $F \subseteq \mathbb{R}$ we have

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S(n)}{n} \in F) \le -\inf_{x \in F} \Lambda^*(x).$$

(b) For all open $O \subseteq \mathbb{R}$ we have

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{S(n)}{n} \in O) \ge -\inf_{x \in O} \Lambda^*(x).$$

The sequence $\frac{S(n)}{n}$ satisfies the LDP with rate function Λ^* .

 \cdot Can one show that statistics of geometric structures also satisfy a LDP?

★掃▶ ★ 国▶ ★ 国▶ 二 国

LDP for the TSP

- · Notation: $X(n) := L_{TSP}(\mathcal{P}_1 \cap Q_n).$
- \cdot The limit of the log m.g.f. for the sequence $X(n), n \ge 1$, is

$$\Lambda(t) := \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \exp(tX(n)).$$

 \cdot It is a fact that the limit exists.

LDP for the TSP

- · Notation: $X(n) := L_{TSP}(\mathcal{P}_1 \cap Q_n).$
- \cdot The limit of the log m.g.f. for the sequence $X(n), n \geq 1,$ is

$$\Lambda(t) := \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \exp(tX(n)).$$

- \cdot It is a fact that the limit exists.
- \cdot Convex dual of $\Lambda(t)$ is

$$\Lambda^*(x) := \sup_{t \in \mathbb{R}} (tx - \Lambda(t)).$$

· Now we can state an LDP for $X(n) := L_{TSP}(\mathcal{P}_1 \cap Q_n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Donsker-Varadhan LDP for the TSP

 $\cdot X(n) := L_{TSP}(\mathcal{P}_1 \cap Q_n) \text{ and } \frac{X(n)}{n} \to \gamma_{TSP} a.s.$ (Lecture 1) $\cdot \Lambda(t) := \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \exp(tX(n)) < \infty \text{ and}$

(a) For all closed $F \subseteq \mathbb{R}$ we have

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{X(n)}{n} \in F) \le -\inf_{x \in F} \Lambda^*(x).$$

(b) For all open $O \subseteq \mathbb{R}$ we have

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\frac{X(n)}{n} \in O) \ge -\inf_{x \in O} \Lambda^*(x).$$

The sequence $\frac{X(n)}{n}$ satisfies the LDP with rate function Λ^* and

$$\Lambda^*(x) = 0 \Leftrightarrow x = \gamma_{TSP} \text{ and } \Lambda^*(x) \le C(x - \gamma_{TSP})^2.$$

See Seppalainen + Y.

- 本語 と 本語 と 一語

LDP for the TSP Remark.

 $\frac{X(n)}{n}$ converges exponentially to γ_{TSP} , i.e., $\forall\epsilon>0$ there is $M:=M(\epsilon)>0$ such that $\forall n$

$$\mathbb{P}(|\frac{X(n)}{n} - \gamma_{TSP}| > \epsilon) \le \exp(-Mn).$$

Final thoughts: LDP for the TSP

How does one prove an LDP for TSP and other statistics of large geometric structures?

Key. The sequence $X(n), n \ge 1$, satisfies near additivity in the sense that $\forall \epsilon > 0, \forall C > 0$, there is n_0 such that for $n \ge n_0$ and for all integers m we have

$$\mathbb{P}\left(|X(nm^d) - \sum_{i=1}^{m^d} X_i(n)| \ge \epsilon nm^d\right) \le \exp(-Cnm^d)$$

where $X_i(n)$ are i.i.d. copies of X(n).

Near additivity says that except on a set with exponentially small probability, $X(nm^d)$ can be expressed as a sum of i.i.d. random variables with a suitably small error.

(本部) (本語) (本語) (二語)

THANK YOU

◆□> ◆圖> ◆理> ◆理> 二理