Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functions

Joe Yukich

February 26, 2019

Joe Yukich

Lecture 3: Limit theory for statistics of geome

February 26, 2019 1 / 51

- \cdot Lecture 1: Probabilistic analysis of Euclidean optimization problems
- · Lecture 2: Central limit theorems for statistics of geometric structures
- \cdot Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functions
- · Lecture 4: Statistics of random polytopes
- Lecture 5: Rates of multivariate normal approximation for statistics of geometric structures

Lecture 3: Limit theory for statistics of geometric structures via stabilizing scores

- · I Examples and Goals
- · II Stabilization

· III Binomial and Poisson Input

WLLN

Gaussian fluctuations

Variance asymptotics

· IV More General Input

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random structure in terms of local contributions $\xi(x, \mathcal{X}), x \in \mathcal{X}$.

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random structure in terms of local contributions $\xi(x, \mathcal{X}), x \in \mathcal{X}$.

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $\rho \in (0, \infty)$.

 \cdot Geometric graph: Join two points of ${\mathcal X}$ iff they are at distance at most $\rho.$

· Vietoris-Rips complex (with parameter ρ) is simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in \mathcal{X} all pairwise within ρ of each other.

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $\rho \in (0, \infty)$.

 \cdot Geometric graph: Join two points of ${\mathcal X}$ iff they are at distance at most $\rho.$

· Vietoris-Rips complex (with parameter ρ) is simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in \mathcal{X} all pairwise within ρ of each other.

 \cdot For $k \in \mathbb{N}$ and $x \in \mathcal{X}$, put $\sigma_k(x, \mathcal{X}) := \frac{\text{number of }k\text{-simplices containing }x}{k+1}$

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $\rho \in (0, \infty)$.

· Geometric graph: Join two points of \mathcal{X} iff they are at distance at most ρ .

· Vietoris-Rips complex (with parameter ρ) is simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in \mathcal{X} all pairwise within ρ of each other.

· For $k \in \mathbb{N}$ and $x \in \mathcal{X}$, put $\sigma_k(x, \mathcal{X}) := \frac{\text{number of }k\text{-simplices containing }x}{k+1}$

· Total number of k-simplices in Vietoris-Rips complex: $\sum_{x \in \mathcal{X}} \sigma_k(x, \mathcal{X})$.

 \cdot Chatterjee, Decreusefond et al., Eichelsbacher, Lachièze-Rey + Peccati, Reitzner + Schulte, Th \ddot{a} le,...

Total edge length of graphs. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let x_{NN} be the nearest neighbor (NN) of x.

· Undirected nearest neighbor graph on \mathcal{X} : include an edge $\{x, y\}$ if $y = x_{NN}$ and/or $x = y_{NN}$.

 \cdot For $x \in \mathcal{X}$, put

$$\xi(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x_{NN}|| & \text{if } x, x_{NN} \text{ are mutual NN} \\ ||x - x_{NN}|| & \text{otherwise.} \end{cases}$$

Total edge length of graphs. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let x_{NN} be the nearest neighbor (NN) of x.

· Undirected nearest neighbor graph on \mathcal{X} : include an edge $\{x, y\}$ if $y = x_{NN}$ and/or $x = y_{NN}$.

 \cdot For $x \in \mathcal{X}$, put

$$\xi(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x_{NN}|| & \text{if } x, x_{NN} \text{ are mutual NN} \\ ||x - x_{NN}|| & \text{otherwise.} \end{cases}$$

· Total edge length of NN graph on \mathcal{X} : $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$.

 \cdot Chatterjee; Last, Peccati, + Schulte; Steele; Penrose + Y

I Examples and Goals: Germ-grain models

- $\cdot \ \mathcal{X} \subset \mathbb{R}^d$ a collection of 'germs'.
- $\cdot S_x, x \in \mathcal{X}$, a collection of 'grains' (closed bounded sets).
- · Germ-grain model: $\bigcup_{x \in \mathcal{X}} (x \oplus S_x)$.
- · Total surface area, volume, clump count,... may be expressed as $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ for appropriate ξ . For example, for $x \in \mathcal{X}$ we put

 $\xi_{\mathsf{clump}}(x, \mathcal{X}) := (\text{size of clump of germ-grain model containing } x)^{-1}.$

- $\cdot \ \mathcal{X} \subset \mathbb{R}^d$ a collection of 'germs'.
- $\cdot S_x, x \in \mathcal{X}$, a collection of 'grains' (closed bounded sets).
- · Germ-grain model: $\bigcup_{x \in \mathcal{X}} (x \oplus S_x)$.
- · Total surface area, volume, clump count,... may be expressed as $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ for appropriate ξ . For example, for $x \in \mathcal{X}$ we put

 $\xi_{\mathsf{clump}}(x, \mathcal{X}) := (\text{size of clump of germ-grain model containing } x)^{-1}.$

· Clump count in germ-grain model equals $\sum_{x \in \mathcal{X}} \xi_{\text{clump}}(x, \mathcal{X})$.

 \cdot Baddeley; Hall; Hug, Last + Schulte; Molchanov; Penrose + Y; Schneider + Weil; Stoyan; Thäle

I Examples and Goals: Random packing (Random sequential adsorption)

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Assign $x \in \mathcal{X}$ a time mark $\tau_x \in [0, 1]$.

· Let $B_1, B_2, ...$ be a sequence of unit volume *d*-dimensional Euclidean balls with centers arriving sequentially at points $x_i \in \mathcal{X}$ and at arrival times τ_{x_i} .

· The first ball B_1 to arrive is packed. Recursively, for i = 2, 3, ..., the *i*th ball is packed if it does not overlap any ball in $B_1, B_2, ..., B_{i-1}$ which has already been packed.

I Examples and Goals: Random packing (Random sequential adsorption)

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Assign $x \in \mathcal{X}$ a time mark $\tau_x \in [0, 1]$.

· Let $B_1, B_2, ...$ be a sequence of unit volume *d*-dimensional Euclidean balls with centers arriving sequentially at points $x_i \in \mathcal{X}$ and at arrival times τ_{x_i} .

· The first ball B_1 to arrive is packed. Recursively, for i = 2, 3, ..., the *i*th ball is packed if it does not overlap any ball in $B_1, B_2, ..., B_{i-1}$ which has already been packed.

· For $x \in \mathcal{X}$ define packing functional

 $\xi_{\text{pack}}(x, \mathcal{X}) := \begin{cases} 1 & \text{if ball arriving at } x \text{ is packed} \\ 0 & \text{otherwise.} \end{cases}$

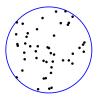
Then total number of packed balls equals $\sum_{x \in \mathcal{X}} \xi_{\text{pack}}(x, \mathcal{X})$.

 \cdot Rényi, Coffman, Dvoretzky + Robbins; Flory, Itoh + Shepp; Torquato,...,

Joe Yukich

I Examples and Goals: Statistics of random convex hulls

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Let $\operatorname{co}(\mathcal{X})$ denote the convex hull of \mathcal{X} .



I Examples and Goals: Statistics of random convex hulls

\cdot For $x \in \mathcal{X}$, $k \in \{0, 1, ..., d-1\}$, we put

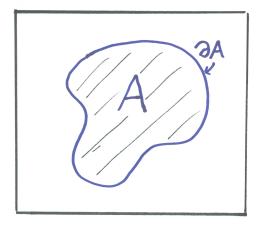
 $f_k(x, \mathcal{X}) := \frac{1}{k+1}$ (number of k – dimensional faces containing x).

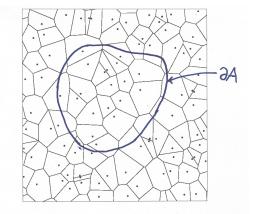
I Examples and Goals: Statistics of random convex hulls

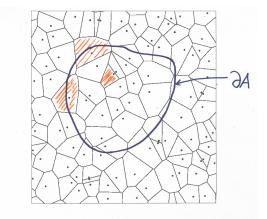
For
$$x \in \mathcal{X}$$
, $k \in \{0, 1, ..., d-1\}$, we put

 $f_k(x, \mathcal{X}) := \frac{1}{k+1}$ (number of k – dimensional faces containing x).

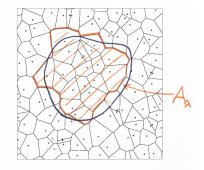
- · Total number of k-dimensional faces of $co(\mathcal{X})$: $\sum_{x \in \mathcal{X}} f_k(x, \mathcal{X})$.
- $\cdot \ {\sf R\acute{e}nyi+Sulanke;} \ {\sf B\acute{a}r\acute{a}ny;} {\sf Buchta;} {\sf Calka,Groeneboom,Reitzner,Th\"ale,Vu,\ldots,control of the state of the state$







13 / 51



Def. A_{λ} is the Poisson - Voronoi approximation of A. **Question**: What is $Vol(A_{\lambda})$?

Define volume score: $\xi_{Vol}(x, \mathcal{X}) = \operatorname{Vol}(C(x, \mathcal{X}))$ when $x \in A$, otherwise put the score to be zero. Sum of volume scores gives $\operatorname{Vol}(A_{\lambda})$.

General questions.

· When $\mathcal{X} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ describe a global feature of some spatial random structure.

General questions.

· When $\mathcal{X} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ describe a global feature of some spatial random structure.

 $\cdot\,$ What is the distribution of these sums for large pt configurations $\mathcal{X}?\,$ LLN? $\,$ CLT?

I Examples and Goals

 \mathcal{P} : a stationary pt process on \mathbb{R}^d

Restrict to windows: $\mathcal{P} \cap Q_{\lambda} := \mathcal{P} \cap [-\frac{\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$.

3

< (T) > <

I Examples and Goals

 \mathcal{P} : a stationary pt process on \mathbb{R}^d

Restrict to windows: $\mathcal{P} \cap Q_{\lambda} := \mathcal{P} \cap [-\frac{\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$.

x

Goal. Given a score function $\xi(\cdot, \cdot)$ defined on pairs (x, \mathcal{X}) , given a pt process \mathcal{P} , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$\sum_{\in \mathcal{P} \cap Q_{\lambda}} \xi(x, \mathcal{P} \cap Q_{\lambda})$$

and total measure

$$\mu^{\xi}_{\lambda} := \sum_{x \in \mathcal{P} \cap Q_{\lambda}} \xi(x, \mathcal{P} \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

I Examples and Goals

 \mathcal{P} : a stationary pt process on \mathbb{R}^d

Restrict to windows: $\mathcal{P} \cap Q_{\lambda} := \mathcal{P} \cap [-\frac{\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$.

x

Goal. Given a score function $\xi(\cdot, \cdot)$ defined on pairs (x, \mathcal{X}) , given a pt process \mathcal{P} , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$\sum_{\in \mathcal{P} \cap Q_{\lambda}} \xi(x, \mathcal{P} \cap Q_{\lambda})$$

and total measure

$$\mu^{\xi}_{\lambda} := \sum_{x \in \mathcal{P} \cap Q_{\lambda}} \xi(x, \mathcal{P} \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

Tractable problems must be *local* in the sense that points far away from x should not play a role in the evaluation of the score $\xi(x, \mathcal{P} \cap Q_{\lambda})$.

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x).$ Recall $\mathcal{P} \cap Q_{\lambda} := \mathcal{P} \cap [-\frac{\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$

3

A 1

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$. Recall $\mathcal{P} \cap Q_{\lambda} := \mathcal{P} \cap [-\frac{\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$

Key Definition. ξ is *stabilizing* wrt pt process \mathcal{P} on \mathbb{R}^d if for all $x \in \mathcal{P}$ there is $R := R^{\xi}(x, \mathcal{P}) < \infty$ a.s. (a 'radius of stabilization') such that

$$\xi(x, \mathcal{P} \cap B_R(x)) = \xi(x, (\mathcal{P} \cap B_R(x)) \cup (\mathcal{A} \cap B_R^c(x))).$$

for any locally finite $\mathcal{A} \subset \mathbb{R}^d$.

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$. Recall $\mathcal{P} \cap Q_{\lambda} := \mathcal{P} \cap [-\frac{\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$

Key Definition. ξ is *stabilizing* wrt pt process \mathcal{P} on \mathbb{R}^d if for all $x \in \mathcal{P}$ there is $R := R^{\xi}(x, \mathcal{P}) < \infty$ a.s. (a 'radius of stabilization') such that

$$\xi(x, \mathcal{P} \cap B_R(x)) = \xi(x, (\mathcal{P} \cap B_R(x)) \cup (\mathcal{A} \cap B_R^c(x))).$$

for any locally finite $\mathcal{A} \subset \mathbb{R}^d$. ξ is *exponentially stabilizing* wrt \mathcal{P} if there is a constant $c \in (0, \infty)$ such that

$$\sup_{\lambda \ge 1} \sup_{x \in Q_{\lambda}} \mathbb{P}(R^{\xi}(x, \mathcal{P} \cap Q_{\lambda}) \ge r) \le c \exp(-\frac{r}{c}), \quad r \in [1, \infty).$$

- $\cdot \mathcal{P}$: a pt process on \mathbb{R}^d
- $\cdot \mathcal{P} \cap Q_{\lambda} := \mathcal{P} \cap [-\frac{\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d.$

Definition (Moment condition). ξ satisfies the p moment condition wrt \mathcal{P} if

$$\sup_{\lambda \ge 1} \sup_{x,y \in \mathbb{R}^d} \mathbb{E} |\xi(x, (\mathcal{P} \cap Q_\lambda) \cup \{y\})|^p < \infty.$$

· Let \mathcal{P}_1 be a rate 1 Poisson pt process on \mathbb{R}^d · $\mathcal{P}_1 \cap Q_\lambda := \mathcal{P}_1 \cap [\frac{-\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$. Put $\mu_\lambda^{\xi} := \sum \xi(x, \mathcal{P}_1 \cap Q_\lambda) \delta_{\gamma}$

$$\mu_{\lambda}^{\xi} := \sum_{x \in \mathcal{P}_1 \cap Q_{\lambda}} \xi(x, \mathcal{P}_1 \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$|\lambda^{-1}\mathbb{E}\langle \mu_{\lambda}^{\xi}, f\rangle - \mathbb{E}\,\xi(\mathbf{0}, \mathcal{P}_{1}\cup\{\mathbf{0}\})\int_{[-\frac{1}{2}, \frac{1}{2}]^{d}}f(x)dx| \leq \epsilon_{\lambda}.$$

· Let \mathcal{P}_1 be a rate 1 Poisson pt process on \mathbb{R}^d · $\mathcal{P}_1 \cap Q_\lambda := \mathcal{P}_1 \cap [\frac{-\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$. Put $\mu_\lambda^{\xi} := \sum \xi(x, \mathcal{P}_1 \cap Q_\lambda) \delta_\lambda$

$$\mu_{\lambda}^{\xi} := \sum_{x \in \mathcal{P}_1 \cap Q_{\lambda}} \xi(x, \mathcal{P}_1 \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$|\lambda^{-1}\mathbb{E}\langle \mu_{\lambda}^{\xi}, f\rangle - \mathbb{E}\xi(\mathbf{0}, \mathcal{P}_{1} \cup \{\mathbf{0}\}) \int_{[-\frac{1}{2}, \frac{1}{2}]^{d}} f(x)dx| \leq \epsilon_{\lambda}.$$

Penrose and Y (2003): $\epsilon_{\lambda} = o(1)$.

· Let \mathcal{P}_1 be a rate 1 Poisson pt process on \mathbb{R}^d · $\mathcal{P}_1 \cap Q_\lambda := \mathcal{P}_1 \cap [\frac{-\lambda^{1/d}}{2}, \frac{\lambda^{1/d}}{2}]^d$. Put $\mu_\lambda^{\xi} := \sum \xi(x, \mathcal{P}_1 \cap Q_\lambda)\delta_\lambda$

$$\mu_{\lambda}^{\xi} := \sum_{x \in \mathcal{P}_1 \cap Q_{\lambda}} \xi(x, \mathcal{P}_1 \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$|\lambda^{-1}\mathbb{E}\langle \mu_{\lambda}^{\xi}, f\rangle - \mathbb{E}\,\xi(\mathbf{0}, \mathcal{P}_{1}\cup\{\mathbf{0}\})\int_{[-\frac{1}{2}, \frac{1}{2}]^{d}}f(x)dx| \leq \epsilon_{\lambda}.$$

Penrose and Y (2003): $\epsilon_{\lambda} = o(1)$.

Lachièze-Rey, Schulte, + Y (2017): $\epsilon_{\lambda} = O(\lambda^{-1/d})$ if ξ is exponentially stabilizing wrt \mathcal{P}_1 .

What about weak laws of large numbers on non-uniform input?

It is useful to consider ξ_{λ} defined as follows. For all $\lambda > 0$ define the λ re-scaled version of ξ by

$$\xi_{\lambda}(x,\mathcal{X}) := \xi(\lambda^{1/d}x,\lambda^{1/d}\mathcal{X}).$$

Re-scaling is natural when considering point sets \mathcal{X} in compact sets K having cardinality roughly λ ; dilation by $\lambda^{1/d}$ means that unit volume subsets of $\lambda^{1/d}K$ host on the average one point.

 $\mathcal{P}_{\lambda\kappa}$: PPP on \mathbb{R}^d with intensity density $\lambda\kappa(x)dx$.

One may show that $\lambda^{1/d}(\mathcal{P}_{\lambda\kappa} - x_0) \xrightarrow{\mathcal{D}} \mathcal{P}_{\kappa(x_0)}$ as $\lambda \to \infty$, where convergence is in the sense of weak convergence of point processes.

 $\mathcal{P}_{\lambda\kappa}$: PPP on \mathbb{R}^d with intensity density $\lambda\kappa(x)dx$.

One may show that $\lambda^{1/d}(\mathcal{P}_{\lambda\kappa} - x_0) \xrightarrow{\mathcal{D}} \mathcal{P}_{\kappa(x_0)}$ as $\lambda \to \infty$, where convergence is in the sense of weak convergence of point processes.

If $\xi(\cdot, \cdot)$ is a functional defined on $\mathbb{R}^d \times \mathbf{N}$, where we recall \mathbf{N} is the space of locally finite point sets in \mathbb{R}^d , one might hope that ξ is *continuous* on the pairs $(\mathbf{0}, \lambda^{1/d}(\mathcal{P}_{\lambda\kappa} - x_0))$ in the sense that $\xi(\mathbf{0}, \lambda^{1/d}(\mathcal{P}_{\lambda\kappa} - x_0))$ converges in distribution to $\xi(\mathbf{0}, \mathcal{P}_{\kappa(x_0)})$ as $\lambda \to \infty$.

This turns out to be the case whenever ξ is stabilizing wrt to $\mathcal{P}_{\kappa(x_0)}$ and if x_0 is a Lebesgue point of κ .

Almost every $x \in \mathbb{R}^d$ is a *Lebesgue point* of κ , that is to say for almost all $x \in \mathbb{R}^d$ we have

$$\lim_{\epsilon \to 0} \epsilon^{-d} \int_{B_{\epsilon}(x)} |\kappa(y) - \kappa(x)| \, dy = 0.$$

Lemma (convergence of re-scaled binomial pt process) Let $x \in \mathbb{R}^d$ be a Lebesgue point for κ . Then

$$n^{1/d}(-x+\mathcal{X}_n) \xrightarrow{\mathcal{D}} \mathcal{P}_{\kappa(x)}, \quad n \to \infty.$$

Lemma (convergence of re-scaled binomial pt process) Let $x \in \mathbb{R}^d$ be a Lebesgue point for κ . Then

$$n^{1/d}(-x+\mathcal{X}_n) \xrightarrow{\mathcal{D}} \mathcal{P}_{\kappa(x)}, \quad n \to \infty.$$

Key 'Continuity' Lemma. Let $x \in \mathbb{R}^d$ be a Lebesgue point for κ and assume that $R^{\xi}(x, \mathcal{P}_{\kappa(x)}) < \infty$ a.s. where $R^{\xi}(x, \mathcal{P}_{\kappa(x)})$ is the radius of stabilization for ξ at x wrt $\mathcal{P}_{\kappa(x)}$. Then

(a)
$$\xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa}) \xrightarrow{\mathcal{D}} \xi(\mathbf{0}, \mathcal{P}_{\kappa(x)}), \quad \lambda \to \infty,$$

(b) $\xi_n(x, \mathcal{X}_n) \xrightarrow{\mathcal{D}} \xi(\mathbf{0}, \mathcal{P}_{\kappa(x)}), \quad n \to \infty.$

So stabilization of a score function acts as a surrogate for continuity.

Theorem (Campbell Formula). Let \mathcal{P} be a point process on \mathbb{R}^d with intensity $\kappa(x)$ and let $f : \mathbb{R}^d \to \mathbb{R}$ be a measurable function. Then the random sum

$$\sum_{x \in \mathcal{P}} f(x)$$

has expected value

$$\mathbb{E} \sum_{x \in \mathcal{P}} f(x) = \int_{\mathbb{R}^d} f(x) \kappa(x) dx.$$

Theorem (Campbell Formula). Let \mathcal{P} be a point process on \mathbb{R}^d with intensity $\kappa(x)$ and let $f : \mathbb{R}^d \to \mathbb{R}$ be a measurable function. Then the random sum

$$\sum_{x \in \mathcal{P}} f(x)$$

has expected value

$$\mathbb{E}\sum_{x\in\mathcal{P}}f(x)=\int_{\mathbb{R}^d}f(x)\kappa(x)dx.$$

Theorem (Mecke Formula). The random sum

$$\sum_{x \in \mathcal{P}} f(x, \mathcal{P})$$

has expected value

$$\mathbb{E} \sum_{x \in \mathcal{P}} f(x, \mathcal{P}) = \int_{\mathbb{R}^d} \mathbb{E} f(x, \mathcal{P} \cup \{x\}) \kappa(x) dx.$$

Let $\mathbb{B}(K)$ denote the class of all bounded $f: K \to \mathbb{R}$ and for all measures μ on \mathbb{R}^d let $\langle f, \mu \rangle := \int f d\mu$. Put $\bar{\mu} := \mu - \mathbb{E} \mu$.

For all $f\in \mathbb{B}(\mathbb{R}^d)$ we have by Mecke formula that

$$\mathbb{E}\left[\langle f, \mu_{\lambda} \rangle\right] = \lambda \int_{\mathbb{R}^d} f(x) \mathbb{E}\left[\xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa})\right] \kappa(x) \, dx.$$

If the moment condition

$$\sup_{\lambda} \sup_{x,y \in \mathbb{R}^d} \mathbb{E} |\xi_{\lambda}(x, (\mathcal{P}_{\lambda \kappa}) \cup \{y\})|^p < \infty$$

holds for some p > 1, then uniform integrability and the 'continuity' Lemma show that for all Lebesgue points x of κ one has $\mathbb{E} \xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa}) \to \mathbb{E} \xi(\mathbf{0}, \mathcal{P}_{\kappa(x)})$ as $\lambda \to \infty$. \cdot If the moment condition

$$\sup_{\lambda} \sup_{x,y \in \mathbb{R}^d} \mathbb{E} |\xi_{\lambda}(x, (\mathcal{P}_{\lambda \kappa}) \cup \{y\})|^p < \infty$$

holds for some p > 1, then uniform integrability and our 'continuity' Lemma show that for all Lebesgue points x of κ one has $\mathbb{E} \xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa}) \to \mathbb{E} \xi(\mathbf{0}, \mathcal{P}_{\kappa(x)})$ as $\lambda \to \infty$.

 \cdot The set of points failing to be Lebesgue points has measure zero and so when the moment condition holds for some p>1, the bounded convergence theorem gives

$$\lim_{\lambda \to \infty} \lambda^{-1} \mathbb{E}\left[\langle f, \mu_{\lambda} \rangle \right] = \int_{\mathbb{R}^d} f(x) \mathbb{E}\left[\xi(\mathbf{0}, \mathcal{P}_{\kappa(x)}) \right] \kappa(x) \, dx.$$

Convergence of means $\mathbb{E}\left[\langle f,\mu_\lambda\rangle\right]$ is now upgraded to convergence in $L^q,$ q=1 or 2.

We also prove LLN for

$$\mu_n^{\xi} := \sum_{i=1}^n \xi_n(X_i, \mathcal{X}_n) \delta_{X_i}$$

where $\mathcal{X}_n := \{X_i\}_{i=1}^n, X_i, i \ge 1$, i.i.d. with density κ .

III Binomial and Poisson Input: WLLN

Theorem (WLLN for sums of translation invariant stabilizing functionals) Let q = 1 or q = 2. Assume that ξ is translation invariant and stabilizing, so that $\xi(\mathbf{0}, \mathcal{P}_{\tau}) := \lim_{r \to \infty} \xi(\mathbf{0}, \mathcal{P}_{\tau} \cap B_r(\mathbf{0}))$ exists for all $\tau > 0$. If $\sup_n \mathbb{E} |\xi_n(X_1, \mathcal{X}_n)|^p < \infty$ for some $p \in (q, \infty)$, then for all $f \in \mathbb{B}(\mathbb{R}^d)$ we have

$$\lim_{n \to \infty} n^{-1} \langle f, \mu_n \rangle = \lim_{n \to \infty} n^{-1} \sum_{i=1}^n \xi_n(X_i, \mathcal{X}_n) f(X_i)$$
$$= \int f(x) \mathbb{E} \left[\xi(\mathbf{0}, \mathcal{P}_{\kappa(x)}) \right] \kappa(x) dx \text{ in } L^q.$$

III Binomial and Poisson Input: WLLN

Theorem (WLLN for sums of translation invariant stabilizing functionals) Let q = 1 or q = 2. Assume that ξ is translation invariant and stabilizing, so that $\xi(\mathbf{0}, \mathcal{P}_{\tau}) := \lim_{r \to \infty} \xi(\mathbf{0}, \mathcal{P}_{\tau} \cap B_r(\mathbf{0}))$ exists for all $\tau > 0$. If $\sup_n \mathbb{E} |\xi_n(X_1, \mathcal{X}_n)|^p < \infty$ for some $p \in (q, \infty)$, then for all $f \in \mathbb{B}(\mathbb{R}^d)$ we have

$$\lim_{n \to \infty} n^{-1} \langle f, \mu_n \rangle = \lim_{n \to \infty} n^{-1} \sum_{i=1}^n \xi_n(X_i, \mathcal{X}_n) f(X_i)$$
$$= \int f(x) \mathbb{E} \left[\xi(\mathbf{0}, \mathcal{P}_{\kappa(x)}) \right] \kappa(x) dx \text{ in } L^q.$$

If $\sup_{\lambda} \mathbb{E} |\xi_{\lambda}(\mathbf{0}, \mathcal{P}_{\lambda\kappa})|^p < \infty$ for some $p \in (q, \infty)$, then for all $f \in \mathbb{B}(\mathbb{R}^d)$ we have

$$\lim_{\lambda \to \infty} \lambda^{-1} \langle f, \mu_{\lambda} \rangle = \int f(x) \mathbb{E} \left[\xi(\mathbf{0}, \mathcal{P}_{\kappa(x)}) \right] \kappa(x) dx \text{ in } L^{q}.$$

Corollaries of WLLN. We can deduce a weak law of large numbers for the following statistics:

- \cdot clique counts in the random geometric graph on $\mathcal{P}_{\lambda\kappa}$
- \cdot total edge length of nearest neighbors graph on $\mathcal{P}_{\lambda\kappa}$
- \cdot clump count in the germ grain model on $\mathcal{P}_{\lambda\kappa}$
- \cdot number of balls accepted in RSA model on $\mathcal{P}_{\lambda\kappa}$

Recall
$$\mu_{\lambda}^{\xi} := \sum_{x \in \mathcal{P}_1 \cap Q_{\lambda}} \xi(x, \mathcal{P}_1 \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (5, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_{\lambda}^{\xi}, f \rangle = \Omega(\lambda)$, then

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left[\frac{\langle \mu_{\lambda}^{\xi}, f \rangle - \mathbb{E} \langle \mu_{\lambda}^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_{\lambda}^{\xi}, f \rangle}} \le t \right] - \mathbb{P}[N(0, 1) \le t] \right| \le \epsilon_{\lambda}.$$

Recall
$$\mu_{\lambda}^{\xi} := \sum_{x \in \mathcal{P}_1 \cap Q_{\lambda}} \xi(x, \mathcal{P}_1 \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (5, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_{\lambda}^{\xi}, f \rangle = \Omega(\lambda)$, then

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left[\frac{\langle \mu_{\lambda}^{\xi}, f \rangle - \mathbb{E} \langle \mu_{\lambda}^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_{\lambda}^{\xi}, f \rangle}} \le t \right] - \mathbb{P}[N(0, 1) \le t] \right| \le \epsilon_{\lambda}.$$

Penrose + Y (2005), Penrose (2007): $\epsilon_{\lambda} = O((\log \lambda)^{3d} \lambda^{-1/2}).$

Recall
$$\mu_{\lambda}^{\xi} := \sum_{x \in \mathcal{P}_1 \cap Q_{\lambda}} \xi(x, \mathcal{P}_1 \cap Q_{\lambda}) \delta_{\lambda^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (5, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_{\lambda}^{\xi}, f \rangle = \Omega(\lambda)$, then

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left[\frac{\langle \mu_{\lambda}^{\xi}, f \rangle - \mathbb{E} \langle \mu_{\lambda}^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_{\lambda}^{\xi}, f \rangle}} \le t \right] - \mathbb{P}[N(0, 1) \le t] \right| \le \epsilon_{\lambda}.$$

Penrose + Y (2005), Penrose (2007): $\epsilon_{\lambda} = O((\log \lambda)^{3d} \lambda^{-1/2}).$

Lachièze-Rey, Schulte, + Y (2017): $\epsilon_{\lambda} = O(\lambda^{-1/2})$ (Stein's method)

The gaussian fluctuation result may be extended to treat:

- \cdot binomial input
- \cdot stabilizing functionals on input on general metric spaces
- \cdot stabilizing functionals on input on manifolds

Lemma (continuity lemma for pairs) Let x be a Lebesgue point for κ . If ξ is stabilizing w.r.t. $\mathcal{P}_{\kappa(x)}$, then for all $z \in \mathbb{R}^d$, we have as $\lambda \to \infty$

$$(\xi_{\lambda}(x,\mathcal{P}_{\lambda\kappa}),\xi_{\lambda}(x+\lambda^{-1/d}z,\mathcal{P}_{\lambda\kappa})) \xrightarrow{\mathcal{D}} (\xi(\mathbf{0},\mathcal{P}_{\kappa(x)}),\xi(z,\mathcal{P}_{\kappa(x)})).$$

We use this lemma to prove variance asymptotics. (Remember it for the next slide.)

III Poisson Input: Variance asymptotics

By Mecke's Formula for the Poisson process $\mathcal{P}_{\lambda\kappa}$ we have

$$\begin{split} \lambda^{-1} \mathrm{Var}[\langle f, \mu_{\lambda} \rangle] \\ &= \lambda \int_{K} \int_{K} f(x) f(y) \{ \mathbb{E} \left[\xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa} \cup \{y\}) \xi_{\lambda}(y, \mathcal{P}_{\lambda\kappa} \cup \{x\}) \right] \\ &- \mathbb{E} \left[\xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa}) \right] \mathbb{E} \left[\xi_{\lambda}(y, \mathcal{P}_{\lambda\kappa}) \right] \} \kappa(x) \kappa(y) \, dx \, dy \\ &+ \int_{K} f(x)^{2} \mathbb{E} \left[\xi_{\lambda}^{2}(x, \mathcal{P}_{\lambda\kappa}) \right] \kappa(x) \, dx. \end{split}$$

Put $y = x + \lambda^{-1/d}z$ in the right-hand side of the above (so $\lambda dy = dz$). Then the two point correlation function $\{...\}$ becomes

$$\{\ldots\} := \{ \mathbb{E} \left[\xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa} \cup \{x + \lambda^{-1/d}z\}) \xi_{\lambda}(x + \lambda^{-1/d}z, \mathcal{P}_{\lambda\kappa} \cup \{x\}) \right] \\ - \mathbb{E} \left[\xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa}) \right] \mathbb{E} \left[\xi_{\lambda}(x + \lambda^{-1/d}z, \mathcal{P}_{\lambda\kappa}) \right] \}.$$

Now use $\xi_{\lambda}(x, \mathcal{P}_{\lambda\kappa})\xi_{\lambda}(x + \lambda^{-1/d}z, \mathcal{P}_{\lambda\kappa}) \xrightarrow{\mathcal{D}} \xi(\mathbf{0}, \mathcal{P}_{\kappa}(x))\xi(z, \mathcal{P}_{\kappa}(x)).$

· Assuming exponential stabilization, the integrand in the above is dominated by an integrable function of z over \mathbb{R}^d .

- \cdot For simplicity we assume that f is a.e. continuous.
- \cdot The double integral in the above thus converges to

$$\int_{K} \int_{\mathbb{R}^{d}} \left[\mathbb{E} \left[\xi(\mathbf{0}, \mathcal{P}_{\kappa(x)} \cup \{z\}) \xi(z, \mathcal{P}_{\kappa(x)} \cup \mathbf{0}) \right] - \left(\mathbb{E} \, \xi(\mathbf{0}, \mathcal{P}_{\kappa(x)}) \right)^{2} \right] f(x)^{2} \cdot \kappa(x)^{2} \, dz \, dx$$

by dominated convergence, the a.e. continuity of f, and the assumed moment bounds.

III Poisson Input: Variance asymptotics

Given homogenous rate 1 Poisson input \mathcal{P}_1 on \mathbb{R}^d , and a score $\xi,$ put

$$\sigma^{2}(\xi) := \mathbb{E} \xi^{2}(\mathbf{0}, \mathcal{P}_{1}) + \int_{\mathbb{R}^{d}} [\mathbb{E} \xi(\mathbf{0}, \mathcal{P}_{1} \cup \{x\}) \xi(x, \mathcal{P}_{1} \cup \{\mathbf{0}\}) \\ - \mathbb{E} \xi(\mathbf{0}, \mathcal{P}_{1}) \mathbb{E} \xi(x, \mathcal{P}_{1})] dx.$$

III Poisson Input: Variance asymptotics

Given homogenous rate 1 Poisson input \mathcal{P}_1 on \mathbb{R}^d , and a score $\xi,$ put

$$\sigma^{2}(\xi) := \mathbb{E}\xi^{2}(\mathbf{0}, \mathcal{P}_{1}) + \int_{\mathbb{R}^{d}} [\mathbb{E}\xi(\mathbf{0}, \mathcal{P}_{1} \cup \{x\})\xi(x, \mathcal{P}_{1} \cup \{\mathbf{0}\}) \\ - \mathbb{E}\xi(\mathbf{0}, \mathcal{P}_{1})\mathbb{E}\xi(x, \mathcal{P}_{1})]dx.$$

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (2, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{\lambda \to \infty} \lambda^{-1} \operatorname{Var} \langle \mu_{\lambda}^{\xi}, f \rangle = \sigma^{2}(\xi) \int_{[-\frac{1}{2}, \frac{1}{2}]^{d}} f^{2}(x) dx \in [0, \infty).$$

Baryshnikov + Y (2005); Penrose (2007)

Joe Yukich

IV General input

 \cdot **Question.** If the input pt process is neither Poisson nor binomial, when do we get results which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the count statistic

$$\sum_{x\in\mathcal{P}\cap Q_n}\delta_{n^{-1/d}x}$$

where \mathcal{P} is determinantal pt process, $\mathcal{P} \cap Q_n := \mathcal{P}_1 \cap [-\frac{1}{2}n^{1/d}, \frac{1}{2}n^{1/d}]^d$.

IV General input

 \cdot **Question.** If the input pt process is neither Poisson nor binomial, when do we get results which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the count statistic

$$\sum_{\in \mathcal{P} \cap Q_n} \delta_{n^{-1/d_2}}$$

where \mathcal{P} is determinantal pt process, $\mathcal{P} \cap Q_n := \mathcal{P}_1 \cap [-\frac{1}{2}n^{1/d}, \frac{1}{2}n^{1/d}]^d$.

 \cdot Nazarov and Sodin (2012): establish asymptotic normality of the count statistic

$$\sum_{x\in\mathcal{P}\cap Q_n}\delta_{n^{-1/d}x}$$

where \mathcal{P} is zero set of Gaussian analytic function.

L

 \cdot We want to extend these results to more general statistics

x

$$\iota_n^{\xi} := \sum_{x \in \mathcal{P} \cap O_n} \xi(x, \mathcal{P} \cap Q_n) \delta_{n^{-1/d}x}.$$

Def (correlation functions). Given a simple pt process \mathcal{P} on \mathbb{R}^d , the k pt correlation function $\rho^{(k)} : (\mathbb{R}^d)^k \to [0, \infty)$ is defined via

$$\mathbb{E}\left[\Pi_{i=1}^{k} \operatorname{card}(\mathcal{P} \cap B_{i})\right] = \int_{B_{1}} \dots \int_{B_{k}} \rho^{(k)}(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{k},$$

where $B_1, ..., B_k$ are disjoint subsets of \mathbb{R}^d .

Rks.

 $\rho^{(k)}(x_1,...,x_k) = \Pi_{i=1}^k \rho^{(1)}(x_i)$ characterizes the Poisson pt process

Def (correlation functions). Given a simple pt process \mathcal{P} on \mathbb{R}^d , the k pt correlation function $\rho^{(k)} : (\mathbb{R}^d)^k \to [0,\infty)$ is defined via

$$\mathbb{E}\left[\Pi_{i=1}^{k} \operatorname{card}(\mathcal{P} \cap B_{i})\right] = \int_{B_{1}} \dots \int_{B_{k}} \rho^{(k)}(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{k},$$

where $B_1, ..., B_k$ are disjoint subsets of \mathbb{R}^d .

Rks.

$$\begin{split} \rho^{(k)}(x_1,...,x_k) &= \Pi_{i=1}^k \rho^{(1)}(x_i) \text{ characterizes the Poisson pt process} \\ \rho^{(k)}(x_1,...,x_k) &\geq \Pi_{i=1}^k \rho^{(1)}(x_i) \text{ implies } \mathcal{P} \text{ is attractive} \\ \rho^{(k)}(x_1,...,x_k) &\leq \Pi_{i=1}^k \rho^{(1)}(x_i) \text{ implies } \mathcal{P} \text{ is repulsive} \end{split}$$

Joe Yukich

Key Definition (weak decay of correlations). A pt process \mathcal{P} has weak decay of correlations (w.d.c.) if there is a fast decreasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $p, q \in \mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ such that for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|\rho^{(p+q)}(x_1, ..., x_{p+q}) - \rho^{(p)}(x_1, ..., x_p)\rho^{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p,q}\phi(-c_{p,q}s),$$

where $s := \inf_{i \in \{1,...,p\}, \ j \in \{p+1,...,p+q\}} ||x_i - x_j||.$

(ϕ 'fast decreasing' means ϕ decaying faster than any power)

Key Definition (weak decay of correlations). A pt process \mathcal{P} has weak decay of correlations (w.d.c.) if there is a fast decreasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $p, q \in \mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ such that for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|\rho^{(p+q)}(x_1, ..., x_{p+q}) - \rho^{(p)}(x_1, ..., x_p)\rho^{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p,q}\phi(-c_{p,q}s),$$

where $s := \inf_{i \in \{1,...,p\}, j \in \{p+1,...,p+q\}} ||x_i - x_j||.$

(ϕ 'fast decreasing' means ϕ decaying faster than any power)

Note: 'weak decay of correlations' is called 'clustering' in physics literature.

IV General input

Ex. 1: Determinantal pt process. A pt process is determinantal (DPP) if its correlation functions satisfy

$$\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},$$

where $K(\cdot,\cdot)$ is Hermitian non-negative definite kernel of locally trace class integral operator from $L^2(\mathbb{R}^d)$ to itself.

DPP is repulsive

Fact If $|K(x,y)| \le \phi(||x-y||)$, with ϕ fast decreasing, then the DPP has weak decay of correlations.

IV General input

Ex. 1: Determinantal pt process. A pt process is determinantal (DPP) if its correlation functions satisfy

$$\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},$$

where $K(\cdot,\cdot)$ is Hermitian non-negative definite kernel of locally trace class integral operator from $L^2(\mathbb{R}^d)$ to itself.

DPP is repulsive

Fact If $|K(x,y)| \le \phi(||x-y||)$, with ϕ fast decreasing, then the DPP has weak decay of correlations.

Ex. Infinite Ginibre ensemble on complex plane clusters with kernel

$$K(z_1, z_2) = \exp(i \operatorname{Im}(z_1 \bar{z}_2) - \frac{1}{2} ||z_1 - z_2||^2).$$

Ex. 2: Zero set of Gaussian entire function

· Let $X_j, j \ge 1$, be i.i.d. standard complex Gaussians. Consider the Gaussian entire function

$$F(z) := \sum_{j=1}^{\infty} \frac{X_j}{\sqrt{j!}} z^j.$$

· Zero set $Z_F := F^{-1}(\{0\})$ is trans. invariant (in the class of Gaussian power series, it is the only one which is trans. inv.).

- \cdot Z_F exhibits local repulsivity.
- · Z_F has weak decay of correlations (Nazarov and Sodin (2012)).

Other examples of pt processes with weak decay of correlations.

- \cdot Permanental pt processes with fast decreasing kernel,
- · Certain Gibbs pt processes.

Let \mathcal{P} be a pt process on \mathbb{R}^d with weak decay of correlations (wdc). Recall $\mathcal{P} \cap Q_n := \mathcal{P} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$ and

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P} \cap Q_n} \xi(x, \mathcal{P} \cap Q_n) \delta_{n^{-1/d}x}.$$

Thm (BYY '19): If ξ is stabilizing wrt \mathcal{P} and satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{n \to \infty} n^{-1} \mathbb{E} \langle \mu_n^{\xi}, f \rangle = \mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\}) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f(x) dx \cdot \rho^{(1)}(\mathbf{0}).$$

IV General input: Gaussian fluctuations

Thm (BYY '19) $\mu_n^{\xi} := \sum_{x \in \mathcal{P} \cap Q_n} \xi(x, \mathcal{P} \cap Q_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \mathcal{P}$ has wdc
- $\cdot \ \xi$ has deterministic radius of stabilization wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- $\cdot \operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha}) \text{ for some } \alpha \in (0,1), \ f \in B([-\tfrac{1}{2}, \tfrac{1}{2}]^d).$

IV General input: Gaussian fluctuations

Thm (BYY '19) $\mu_n^\xi := \sum_{x \in \mathcal{P} \cap Q_n} \xi(x, \mathcal{P} \cap Q_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \; \mathcal{P}$ has wdc
- $\cdot \ \xi$ has deterministic radius of stabilization wrt $\mathcal P$,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- $\cdot \operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha \in (0, 1)$, $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).$$

IV General input: Gaussian fluctuations

Thm (BYY '19) $\mu_n^\xi := \sum_{x \in \mathcal{P} \cap Q_n} \xi(x, \mathcal{P} \cap Q_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \mathcal{P}$ has wdc
- $\cdot \ \xi$ has deterministic radius of stabilization wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- $\cdot \operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha \in (0, 1)$, $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).$$

Remarks. When \mathcal{P} is determinantal with fast decreasing kernel, this extends Soshnikov (2002) and Shirai + Takahashi (2003) who restrict to the count statistics $\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$, i.e., they put $\xi \equiv 1$.

· If \mathcal{P} is zero set of Gaussian entire function, this extends Nazarov and Sodin (2012), who also restrict to $\sum_{x\in \mathcal{P}\cap Q_n} \delta_{n^{-1/d}x}$.

Thm (BYY '19) $\mu_n^\xi := \sum_{x \in \mathcal{P} \cap Q_n} \xi(x, \mathcal{P} \cap Q_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \mathcal{P}$ wdc and decay coeff. satisfy mild growth condition
- · ξ exponentially stabilizing wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- · $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha \in (0, 1)$, $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var}\langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).$$

Thm (BYY '19) $\mu_n^\xi := \sum_{x \in \mathcal{P} \cap Q_n} \xi(x, \mathcal{P} \cap Q_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \mathcal{P}$ wdc and decay coeff. satisfy mild growth condition
- · ξ exponentially stabilizing wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- · $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha \in (0, 1)$, $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).$$

Remark. If \mathcal{P} is determinantal with fast decreasing kernel (e.g. Ginibre) then \mathcal{P} satisfies stated condition

IV General input: Variance asymptotics

 $\cdot\;$ Given wdc input ${\cal P}$ and a score $\xi,$ put

$$\begin{split} \sigma^{2}(\xi) &:= \mathbb{E}\,\xi^{2}(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0}) \\ &+ \int_{\mathbb{R}^{d}} [\mathbb{E}\,\xi(\mathbf{0},\mathcal{P}\cup x)\xi(x,\mathcal{P}\cup\mathbf{0})\rho^{(2)}(\mathbf{0},x) \\ &- \mathbb{E}\,\xi(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})\mathbb{E}\,\xi(x,\mathcal{P})\rho^{(1)}(x)]dx. \end{split}$$

IV General input: Variance asymptotics

 $\cdot\;$ Given wdc input ${\mathcal P}$ and a score $\xi,$ put

$$\begin{aligned} \sigma^{2}(\xi) &:= \mathbb{E}\,\xi^{2}(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0}) \\ &+ \int_{\mathbb{R}^{d}} [\mathbb{E}\,\xi(\mathbf{0},\mathcal{P}\cup x)\xi(x,\mathcal{P}\cup\mathbf{0})\rho^{(2)}(\mathbf{0},x) \\ &- \mathbb{E}\,\xi(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})\mathbb{E}\,\xi(x,\mathcal{P})\rho^{(1)}(x)]dx \end{aligned}$$

• Thm (BYY '19): If ξ is exponentially stabilizing wrt \mathcal{P} , if ξ satisfies the p moment condition for some $p \in (2, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{n \to \infty} n^{-1} \operatorname{Var} \langle \mu_n^{\xi}, f \rangle = \sigma^2(\xi) \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^d} f^2(x) dx \in [0, \infty).$$

• **Rk.** When \mathcal{P} is determinantal with fast decreasing kernel this extends Soshnikov (2002), who assumes $\xi \equiv 1$.

Joe Yukich

Cumulants. For a random variable Y with all finite moments, expanding the logarithm of the Laplace transform in a formal power series gives

$$\log \mathbb{E}\left(e^{tY}\right) = \log(1 + \sum_{k=1}^{\infty} \frac{M_k t^k}{k!}) = \sum_{k=1}^{\infty} \frac{S_k t^k}{k!},$$

where $M^k = \mathbb{E}\left(Y^k\right)$ is the k th moment of Y and $S_k = S_k(Y)$ denotes the k th cumulant of Y.

Both of the above series can be considered as formal ones and no additional condition (on exponential moments of Y) are required for the cumulants to exist.

IV General input: Proof of CLT

Cumulants.

$$\log \mathbb{E}\left(e^{tY}\right) = \log(1 + \sum_{k=1}^{\infty} \frac{M^k t^k}{k!}) = \sum_{k=1}^{\infty} \frac{S_k t^k}{k!},$$

We have

$$S_k = \sum_{\gamma \in \Pi[k]} (-1)^{|\gamma|-1} (|\gamma|-1)! \prod_{i=1}^{|\gamma|} M^{|\gamma(i)|},$$

where $\Pi[k]$ is the set of all unordered partitions of the set $\{1, ..., k\}$, and for a partition $\gamma = \{\gamma(1), \ldots, \gamma(l)\} \in \Pi[k]$, $|\gamma|$ denotes the number of its elements (in this case $|\gamma| = l$), while $|\gamma(i)|$ the number of elements of subset $\gamma(i)$. In view of the above, the existence of the kth cumulant S_k follows from the finiteness of the moment M^k .

First cumulant is the mean, second cumulant is the variance.

Proof idea for CLT.

· Let $X_n, n \ge 1$, be mean zero random variables, $Var X_n = 1$.

- \cdot Put $c_n^k := c^k(X_n)$, $k \in \mathbb{N}$, to be kth order cumulants for X_n .
- · Recall $c_n^1 = \mathbb{E} X_n = 0$, $c_n^2 = \operatorname{Var} X_n$.
- · Classic Theorem. If $\lim_{n\to\infty} c_n^k = 0$ for all k large, then $X_n \xrightarrow{\mathcal{D}} N(0,1)$ as $n \to \infty$.

Proof idea for CLT.

· Let $X_n, n \ge 1$, be mean zero random variables, $\operatorname{Var} X_n = 1$.

- · Put $c_n^k := c^k(X_n)$, $k \in \mathbb{N}$, to be kth order cumulants for X_n .
- · Recall $c_n^1 = \mathbb{E} X_n = 0$, $c_n^2 = \operatorname{Var} X_n$.
- · Classic Theorem. If $\lim_{n\to\infty} c_n^k = 0$ for all k large, then $X_n \xrightarrow{\mathcal{D}} N(0,1)$ as $n \to \infty$.

The next corollary gives a CLT when the cumulants have linear growth.

· **Corollary**. If $Y_n, n \ge 1$, are mean zero random variables with $c_n^k = O(n)$ for all k large, $\operatorname{Var} Y_n \ge n^{\alpha}$ for some $\alpha \in (0, \infty)$, then $Y_n / \sqrt{\operatorname{Var} Y_n} \xrightarrow{\mathcal{D}} N(0, 1)$ as $n \to \infty$.

IV General input: Proof of CLT

Proof idea for CLT

· To show $\langle \mu_n^{\xi}, f \rangle / \sqrt{\operatorname{Var}\langle \mu_n^{\xi}, f \rangle} \xrightarrow{\mathcal{D}} N(0,1)$, by the previous Corollary it suffices to show that kth order cumulant for $\langle \mu_n^{\xi}, f \rangle$ is O(n).

· Given ξ , consider k mixed moment functions $m_{(k)}: (\mathbb{R}^d)^k \to \mathbb{R}$ given by

 $m_{(k)}(x_1,...,x_k;\mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i,\mathcal{P}_n) \rho^{(k)}(x_1,...,x_k).$

IV General input: Proof of CLT

Proof idea for CLT

· To show $\langle \mu_n^{\xi}, f \rangle / \sqrt{\operatorname{Var}\langle \mu_n^{\xi}, f \rangle} \xrightarrow{\mathcal{D}} N(0,1)$, by the previous Corollary it suffices to show that kth order cumulant for $\langle \mu_n^{\xi}, f \rangle$ is O(n).

 \cdot Given $\xi,$ consider k mixed moment functions $m_{(k)}:(\mathbb{R}^d)^k\to\mathbb{R}$ given by

$$m_{(k)}(x_1, ..., x_k; \mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i, \mathcal{P}_n) \rho^{(k)}(x_1, ..., x_k)$$

· Need to show that the mixed moments 'cluster', that is for all $k \in \mathbb{N}$ there are constants c_k and C_k s.t. for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

 $|m_{(p+q)}(x_1,...,x_{p+q}) - m_{(p)}(x_1,...,x_p)m_{(q)}(x_{p+1},...,x_{p+q})| \le C_{p+q}\varphi(-c_{p+q}s)$ where φ is fast decreasing and

$$s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} ||x_i - x_j||.$$

 $\cdot \mathcal{P}$ has wdc and ξ exp. stabilizing \Rightarrow mixed moments cluster.

 \cdot Vietoris-Rips clique count on any pt process with wdc, including DPP with fast decreasing kernel, zero set of Gaussian entire funct.

 \cdot Vietoris-Rips clique count on any pt process with wdc, including DPP with fast decreasing kernel, zero set of Gaussian entire funct.

 \cdot total volume and surface area of germ-grain model with germs given by points in pt process with wdc, i.i.d. grains with bounded diameter.

 \cdot Vietoris-Rips clique count on any pt process with wdc, including DPP with fast decreasing kernel, zero set of Gaussian entire funct.

 \cdot total volume and surface area of germ-grain model with germs given by points in pt process with wdc, i.i.d. grains with bounded diameter.

• WLLN and variance asymptotics for total edge length in knn graph on DPP with fast decreasing kernel. Total edge length has Gaussian fluctuations (subject to lower bounds on variance).

 \cdot Vietoris-Rips clique count on any pt process with wdc, including DPP with fast decreasing kernel, zero set of Gaussian entire funct.

 \cdot total volume and surface area of germ-grain model with germs given by points in pt process with wdc, i.i.d. grains with bounded diameter.

• WLLN and variance asymptotics for total edge length in knn graph on DPP with fast decreasing kernel. Total edge length has Gaussian fluctuations (subject to lower bounds on variance).

THANK YOU

2

<ロ> (日) (日) (日) (日) (日)