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Probabilistic Analysis of Geometric Structures

· Lecture 1: Probabilistic analysis of Euclidean optimization problems

· Lecture 2: Central limit theorems for statistics of geometric structures

· Lecture 3: Limit theory for statistics of geometric structures via
stabilizing score functions

· Lecture 4: Statistics of random polytopes

· Lecture 5: Rates of multivariate normal approximation for statistics of
geometric structures

Joe Yukich Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functionsFebruary 26, 2019 2 / 51



Lecture 3: Limit theory for statistics of geometric
structures via stabilizing scores

· I Examples and Goals

· II Stabilization

· III Binomial and Poisson Input

WLLN

Gaussian fluctuations

Variance asymptotics

· IV More General Input
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I Examples and Goals

Questions pertaining to geometric structures on random input X ⊂ Rd
often involve analyzing sums of spatially correlated terms∑

x∈X
ξ(x,X ),

where the R-valued score function ξ, defined on pairs (x,X ), represents
the interaction of x with respect to X .

The sums describe some global feature of the random structure in terms of
local contributions ξ(x,X ), x ∈ X .
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I Examples and Goals: Statistics of random graphs

Clique counts. X ⊂ Rd finite, ρ ∈ (0,∞).

· Geometric graph: Join two points of X iff they are at distance at most ρ.

· Vietoris-Rips complex (with parameter ρ) is simplicial complex whose
k-simplices correspond to unordered (k + 1)-tuples of points in X all
pairwise within ρ of each other.

· For k ∈ N and x ∈ X , put σk(x,X ) := number of k-simplices containing x
k+1

· Total number of k-simplices in Vietoris-Rips complex:
∑

x∈X σk(x,X ).

· Chatterjee, Decreusefond et al., Eichelsbacher, Lachièze-Rey + Peccati,
Reitzner + Schulte, Thäle,...
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I Examples and Goals: Statistics of random graphs

Total edge length of graphs. X ⊂ Rd finite. Given x ∈ X , let xNN be
the nearest neighbor (NN) of x.

· Undirected nearest neighbor graph on X : include an edge {x, y} if
y = xNN and/or x = yNN .

· For x ∈ X , put

ξ(x,X ) :=

{
1
2 ||x− xNN || if x, xNN are mutual NN

||x− xNN || otherwise.

· Total edge length of NN graph on X :
∑

x∈X ξ(x,X ).

· Chatterjee; Last, Peccati, + Schulte; Steele; Penrose + Y
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I Examples and Goals: Germ-grain models

· X ⊂ Rd a collection of ‘germs’.

· Sx, x ∈ X , a collection of ‘grains’ (closed bounded sets).

· Germ-grain model:
⋃
x∈X (x⊕ Sx).

· Total surface area, volume, clump count,... may be expressed as∑
x∈X ξ(x,X ) for appropriate ξ. For example, for x ∈ X we put

ξclump(x,X ) := (size of clump of germ-grain model containing x)−1.

· Clump count in germ-grain model equals
∑

x∈X ξclump(x,X ).

· Baddeley; Hall; Hug, Last + Schulte; Molchanov; Penrose + Y;
Schneider + Weil; Stoyan; Thäle
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I Examples and Goals: Random packing (Random
sequential adsorption)

· X ⊂ Rd finite. Assign x ∈ X a time mark τx ∈ [0, 1].

· Let B1, B2, ... be a sequence of unit volume d-dimensional Euclidean balls
with centers arriving sequentially at points xi ∈ X and at arrival times τxi .

· The first ball B1 to arrive is packed. Recursively, for i = 2, 3, ..., the ith
ball is packed if it does not overlap any ball in B1, B2, ..., Bi−1 which has
already been packed.

· For x ∈ X define packing functional

ξpack(x,X ) :=

{
1 if ball arriving at x is packed

0 otherwise.

Then total number of packed balls equals
∑

x∈X ξpack(x,X ).

· Rényi, Coffman, Dvoretzky + Robbins; Flory, Itoh + Shepp; Torquato,...
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I Examples and Goals: Statistics of random convex hulls

· X ⊂ Rd finite. Let co(X ) denote the convex hull of X .
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· For x ∈ X , k ∈ {0, 1, ..., d− 1}, we put

fk(x,X ) := 1
k+1(number of k− dimensional faces containing x).

· Total number of k-dimensional faces of co(X ):
∑

x∈X fk(x,X ).

· Rényi+Sulanke; Bárány;Buchta;Calka,Groeneboom,Reitzner,Thäle,Vu,...
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I Examples and Goals: Poisson - Voronoi tessellation
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I Examples and Goals: Poisson - Voronoi tessellation

Def. Aλ is the Poisson - Voronoi approximation of A.

Question: What is Vol(Aλ)?

Define volume score: ξV ol(x,X ) = Vol(C(x,X )) when x ∈ A, otherwise
put the score to be zero. Sum of volume scores gives Vol(Aλ).
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I Examples and Goals

General questions.

· When X ⊂ Rd is a random pt configuration, the sums
∑

x∈X ξ(x,X )
describe a global feature of some spatial random structure.

· What is the distribution of these sums for large pt configurations X ?
LLN? CLT?
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I Examples and Goals

P: a stationary pt process on Rd

Restrict to windows: P ∩Qλ := P ∩ [−λ1/d

2 , λ
1/d

2 ]d.

Goal. Given a score function ξ(·, ·) defined on pairs (x,X ), given a pt
process P, we seek the limit theory (LLN, CLT, variance asymptotics) for
the total score ∑

x∈P∩Qλ

ξ(x,P ∩Qλ)

and total measure

µξλ :=
∑

x∈P∩Qλ

ξ(x,P ∩Qλ)δλ−1/dx.

Tractable problems must be local in the sense that points far away from x
should not play a role in the evaluation of the score ξ(x,P ∩Qλ).
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II Stabilization

We assume translation invariant scores: ξ(x,X ) = ξ(0,X − x).

Recall P ∩Qλ := P ∩ [−λ1/d

2 , λ
1/d

2 ]d

Key Definition. ξ is stabilizing wrt pt process P on Rd if for all x ∈ P
there is R := Rξ(x,P) <∞ a.s. (a ‘radius of stabilization’) such that

ξ(x,P ∩BR(x)) = ξ(x, (P ∩BR(x)) ∪ (A ∩Bc
R(x))).

for any locally finite A ⊂ Rd. ξ is exponentially stabilizing wrt P if there is
a constant c ∈ (0,∞) such that

sup
λ≥1

sup
x∈Qλ

P(Rξ(x,P ∩Qλ) ≥ r) ≤ c exp(−r
c

), r ∈ [1,∞).
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II Stabilization

· P: a pt process on Rd

· P ∩Qλ := P ∩ [−λ1/d

2 , λ
1/d

2 ]d.

Definition (Moment condition). ξ satisfies the p moment condition wrt
P if

sup
λ≥1

sup
x,y∈Rd

E |ξ(x, (P ∩Qλ) ∪ {y})|p <∞.
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II Stabilization

· Let P1 be a rate 1 Poisson pt process on Rd

· P1 ∩Qλ := P1 ∩ [−λ
1/d

2 , λ
1/d

2 ]d. Put

µξλ :=
∑

x∈P1∩Qλ

ξ(x,P1 ∩Qλ)δλ−1/dx.

Thm (WLLN): If ξ is stabilizing wrt P1 and satisfies the p moment
condition for some p ∈ (1,∞), then for all f ∈ B([−1

2 ,
1
2 ]d) we have

|λ−1E 〈µξλ, f〉 − E ξ(0,P1 ∪ {0})
∫

[− 1
2
, 1
2

]d
f(x)dx| ≤ ελ.

Penrose and Y (2003): ελ = o(1).

Lachièze-Rey, Schulte, + Y (2017): ελ = O(λ−1/d) if ξ is exponentially
stabilizing wrt P1.
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II Stabilization

What about weak laws of large numbers on non-uniform input?

It is useful to consider ξλ defined as follows. For all λ > 0 define the λ
re-scaled version of ξ by

ξλ(x,X ) := ξ(λ1/dx, λ1/dX ).

Re-scaling is natural when considering point sets X in compact sets K
having cardinality roughly λ; dilation by λ1/d means that unit volume
subsets of λ1/dK host on the average one point.
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II Stabilization

Pλκ: PPP on Rd with intensity density λκ(x)dx.

One may show that λ1/d(Pλκ − x0)
D−→ Pκ(x0) as λ→∞, where

convergence is in the sense of weak convergence of point processes.

If ξ(·, ·) is a functional defined on Rd ×N, where we recall N is the space
of locally finite point sets in Rd, one might hope that ξ is continuous on
the pairs (0, λ1/d(Pλκ − x0)) in the sense that ξ(0, λ1/d(Pλκ − x0))
converges in distribution to ξ(0,Pκ(x0)) as λ→∞.

This turns out to be the case whenever ξ is stabilizing wrt to Pκ(x0) and if
x0 is a Lebesgue point of κ.
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II Stabilization

Almost every x ∈ Rd is a Lebesgue point of κ, that is to say for almost all
x ∈ Rd we have

lim
ε→0

ε−d
∫
Bε(x)

|κ(y)− κ(x)| dy = 0.
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II Stabilization

Lemma (convergence of re-scaled binomial pt process) Let x ∈ Rd be
a Lebesgue point for κ. Then

n1/d(−x+ Xn)
D−→ Pκ(x), n→∞.

Key ‘Continuity’ Lemma. Let x ∈ Rd be a Lebesgue point for κ and
assume that Rξ(x,Pκ(x)) <∞ a.s. where Rξ(x,Pκ(x)) is the radius of
stabilization for ξ at x wrt Pκ(x). Then

(a) ξλ(x,Pλκ)
D−→ ξ(0,Pκ(x)), λ→∞,

(b) ξn(x,Xn)
D−→ ξ(0,Pκ(x)), n→∞.

So stabilization of a score function acts as a surrogate for continuity.

Joe Yukich Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functionsFebruary 26, 2019 23 / 51



II Stabilization

Lemma (convergence of re-scaled binomial pt process) Let x ∈ Rd be
a Lebesgue point for κ. Then

n1/d(−x+ Xn)
D−→ Pκ(x), n→∞.

Key ‘Continuity’ Lemma. Let x ∈ Rd be a Lebesgue point for κ and
assume that Rξ(x,Pκ(x)) <∞ a.s. where Rξ(x,Pκ(x)) is the radius of
stabilization for ξ at x wrt Pκ(x). Then

(a) ξλ(x,Pλκ)
D−→ ξ(0,Pκ(x)), λ→∞,

(b) ξn(x,Xn)
D−→ ξ(0,Pκ(x)), n→∞.

So stabilization of a score function acts as a surrogate for continuity.

Joe Yukich Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functionsFebruary 26, 2019 23 / 51



II Stabilization

Theorem (Campbell Formula). Let P be a point process on Rd with
intensity κ(x) and let f : Rd → R be a measurable function. Then the
random sum ∑

x∈P
f(x)

has expected value

E
∑
x∈P

f(x) =

∫
Rd
f(x)κ(x)dx.

Theorem (Mecke Formula). The random sum∑
x∈P

f(x,P)

has expected value

E
∑
x∈P

f(x,P) =

∫
Rd

E f(x,P ∪ {x})κ(x)dx.
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II Stabilization

Let B(K) denote the class of all bounded f : K → R and for all measures
µ on Rd let 〈f, µ〉 :=

∫
fdµ. Put µ̄ := µ− Eµ.

For all f ∈ B(Rd) we have by Mecke formula that

E [〈f, µλ〉] = λ

∫
Rd
f(x)E [ξλ(x,Pλκ)]κ(x) dx.

If the moment condition

sup
λ

sup
x,y∈Rd

E |ξλ(x, (Pλκ) ∪ {y})|p <∞

holds for some p > 1, then uniform integrability and the ‘continuity’
Lemma show that for all Lebesgue points x of κ one has
E ξλ(x,Pλκ)→ E ξ(0,Pκ(x)) as λ→∞.
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II Stabilization

· If the moment condition

sup
λ

sup
x,y∈Rd

E |ξλ(x, (Pλκ) ∪ {y})|p <∞

holds for some p > 1, then uniform integrability and our ‘continuity’
Lemma show that for all Lebesgue points x of κ one has
E ξλ(x,Pλκ)→ E ξ(0,Pκ(x)) as λ→∞.
· The set of points failing to be Lebesgue points has measure zero and so
when the moment condition holds for some p > 1, the bounded
convergence theorem gives

lim
λ→∞

λ−1E [〈f, µλ〉] =

∫
Rd
f(x)E [ξ(0,Pκ(x))]κ(x) dx.
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II Stabilization

Convergence of means E [〈f, µλ〉] is now upgraded to convergence in Lq,
q = 1 or 2.

We also prove LLN for

µξn :=

n∑
i=1

ξn(Xi,Xn)δXi

where Xn := {Xi}ni=1, Xi, i ≥ 1, i.i.d. with density κ.
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III Binomial and Poisson Input: WLLN

Theorem (WLLN for sums of translation invariant stabilizing functionals)
Let q = 1 or q = 2. Assume that ξ is translation invariant and stabilizing,
so that ξ(0,Pτ ) := limr→∞ ξ(0,Pτ ∩Br(0)) exists for all τ > 0. If
supn E |ξn(X1,Xn)|p <∞ for some p ∈ (q,∞), then for all f ∈ B(Rd) we
have

lim
n→∞

n−1〈f, µn〉 = lim
n→∞

n−1
n∑
i=1

ξn(Xi,Xn)f(Xi)

=

∫
f(x)E [ξ(0,Pκ(x))]κ(x)dx in Lq.

If supλ E |ξλ(0,Pλκ)|p <∞ for some p ∈ (q,∞), then for all f ∈ B(Rd)
we have

lim
λ→∞

λ−1〈f, µλ〉 =

∫
f(x)E [ξ(0,Pκ(x))]κ(x)dx in Lq.
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III Binomial and Poisson Input: WLLN

Corollaries of WLLN. We can deduce a weak law of large numbers for
the following statistics:

· clique counts in the random geometric graph on Pλκ
· total edge length of nearest neighbors graph on Pλκ
· clump count in the germ grain model on Pλκ
· number of balls accepted in RSA model on Pλκ

Joe Yukich Lecture 3: Limit theory for statistics of geometric structures via stabilizing score functionsFebruary 26, 2019 29 / 51



III Binomial and Poisson Input: Gaussian fluctuations

Recall µξλ :=
∑

x∈P1∩Qλ ξ(x,P1 ∩Qλ)δλ−1/dx.

Thm (CLT): Assume ξ is exponentially stabilizing wrt P1 and satisfies the
p moment condition for some p ∈ (5,∞). If f ∈ B([−1

2 ,
1
2 ]d) satisfies

Var〈µξλ, f〉 = Ω(λ), then

sup
t∈R

∣∣∣∣∣∣P
〈µξλ, f〉 − E 〈µξλ, f〉√

Var〈µξλ, f〉
≤ t

− P[N(0, 1) ≤ t]

∣∣∣∣∣∣ ≤ ελ.

Penrose + Y (2005), Penrose (2007): ελ = O((log λ)3dλ−1/2).

Lachièze-Rey, Schulte, + Y (2017): ελ = O(λ−1/2) (Stein’s method)
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III Binomial and Poisson Input: Gaussian fluctuations

The gaussian fluctuation result may be extended to treat:

· binomial input
· stabilizing functionals on input on general metric spaces
· stabilizing functionals on input on manifolds
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III Poisson Input: Variance asymptotics

Lemma (continuity lemma for pairs) Let x be a Lebesgue point for κ. If ξ
is stabilizing w.r.t. Pκ(x), then for all z ∈ Rd, we have as λ→∞

(ξλ(x,Pλκ), ξλ(x+ λ−1/dz,Pλκ))
D−→ (ξ(0,Pκ(x)), ξ(z,Pκ(x))).

We use this lemma to prove variance asymptotics. (Remember it for the
next slide.)
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III Poisson Input: Variance asymptotics

By Mecke’s Formula for the Poisson process Pλκ we have

λ−1Var[〈f, µλ〉]

= λ

∫
K

∫
K
f(x)f(y){E [ξλ(x,Pλκ ∪ {y})ξλ(y,Pλκ ∪ {x})]

− E [ξλ(x,Pλκ)]E [ξλ(y,Pλκ)]}κ(x)κ(y) dx dy

+

∫
K
f(x)2E [ξ2

λ(x,Pλκ)]κ(x) dx.

Put y = x+ λ−1/dz in the right-hand side of the above (so λdy = dz).
Then the two point correlation function {...} becomes

{...} := {E [ξλ(x,Pλκ ∪ {x+ λ−1/dz})ξλ(x+ λ−1/dz,Pλκ ∪ {x})]

−E [ξλ(x,Pλκ)]E [ξλ(x+ λ−1/dz,Pλκ)]}.

Now use ξλ(x,Pλκ)ξλ(x+ λ−1/dz,Pλκ)
D−→ ξ(0,Pκ(x))ξ(z,Pκ(x)).
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III Poisson Input: Variance asymptotics

· Assuming exponential stabilization, the integrand in the above is
dominated by an integrable function of z over Rd.
· For simplicity we assume that f is a.e. continuous.

· The double integral in the above thus converges to∫
K

∫
Rd

[E [ξ(0,Pκ(x) ∪ {z})ξ(z,Pκ(x) ∪ 0)]

− (E ξ(0,Pκ(x)))
2]f(x)2 · κ(x)2 dz dx

by dominated convergence, the a.e. continuity of f , and the assumed
moment bounds.
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III Poisson Input: Variance asymptotics

Given homogenous rate 1 Poisson input P1 on Rd, and a score ξ, put

σ2(ξ) :=E ξ2(0,P1) +

∫
Rd

[E ξ(0,P1 ∪ {x})ξ(x,P1 ∪ {0})

− E ξ(0,P1)E ξ(x,P1)]dx.

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt P1 and
satisfies the p moment condition for some p ∈ (2,∞), then for all
f ∈ B([−1

2 ,
1
2 ]d) we have

lim
λ→∞

λ−1Var〈µξλ, f〉 = σ2(ξ)

∫
[− 1

2
, 1
2

]d
f2(x)dx ∈ [0,∞).

Baryshnikov + Y (2005); Penrose (2007)
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IV General input

· Question. If the input pt process is neither Poisson nor binomial, when
do we get results which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the count statistic∑
x∈P∩Qn

δn−1/dx

where P is determinantal pt process, P ∩Qn := P1 ∩ [−1
2n

1/d, 1
2n

1/d]d.

· Nazarov and Sodin (2012): establish asymptotic normality of the count
statistic ∑

x∈P∩Qn

δn−1/dx

where P is zero set of Gaussian analytic function.

· We want to extend these results to more general statistics

µξn :=
∑

x∈P∩Qn

ξ(x,P ∩Qn)δn−1/dx.
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IV General input

Def (correlation functions). Given a simple pt process P on Rd, the k
pt correlation function ρ(k) : (Rd)k → [0,∞) is defined via

E [Πk
i=1card(P ∩Bi)] =

∫
B1

...

∫
Bk

ρ(k)(x1, ..., xk)dx1...dxk,

where B1, ..., Bk are disjoint subsets of Rd.

Rks.

ρ(k)(x1, ..., xk) = Πk
i=1ρ

(1)(xi) characterizes the Poisson pt process

ρ(k)(x1, ..., xk) ≥ Πk
i=1ρ

(1)(xi) implies P is attractive

ρ(k)(x1, ..., xk) ≤ Πk
i=1ρ

(1)(xi) implies P is repulsive
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IV General input

Key Definition (weak decay of correlations). A pt process P has weak
decay of correlations (w.d.c.) if there is a fast decreasing function
φ : R+ → R+ such that for all p, q ∈ N there are constants cp,q and Cp,q
such that for all x1, ..., xp+q ∈ Rd,

|ρ(p+q)(x1, ..., xp+q)− ρ(p)(x1, ..., xp)ρ
(q)(xp+1, ..., xp+q)| ≤ Cp,qφ(−cp,qs),

where s := infi∈{1,...,p}, j∈{p+1,...,p+q} ||xi − xj ||.

(φ ‘fast decreasing’ means φ decaying faster than any power)

Note: ‘weak decay of correlations’ is called ‘clustering’ in physics
literature.
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IV General input

Ex. 1: Determinantal pt process. A pt process is determinantal (DPP) if
its correlation functions satisfy

ρ(k)(x1, ..., xk) = det(K(xi, xj))1≤i≤j≤k,

where K(·, ·) is Hermitian non-negative definite kernel of locally trace
class integral operator from L2(Rd) to itself.

DPP is repulsive

Fact If |K(x, y)| ≤ φ(||x− y||), with φ fast decreasing, then the DPP has
weak decay of correlations.

Ex. Infinite Ginibre ensemble on complex plane clusters with kernel

K(z1, z2) = exp(iIm(z1z̄2)− 1

2
||z1 − z2||2).
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IV General input

Ex. 2: Zero set of Gaussian entire function

· Let Xj , j ≥ 1, be i.i.d. standard complex Gaussians. Consider the
Gaussian entire function

F (z) :=

∞∑
j=1

Xj√
j!
zj .

· Zero set ZF := F−1({0}) is trans. invariant (in the class of Gaussian
power series, it is the only one which is trans. inv.).

· ZF exhibits local repulsivity.

· ZF has weak decay of correlations (Nazarov and Sodin (2012)).
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IV General input

Other examples of pt processes with weak decay of correlations.

· Permanental pt processes with fast decreasing kernel,

· Certain Gibbs pt processes.
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IV General input: WLLN

Let P be a pt process on Rd with weak decay of correlations (wdc). Recall

P ∩Qn := P ∩ [−n
1/d

2 , n
1/d

2 ]d and

µξn :=
∑

x∈P∩Qn

ξ(x,P ∩Qn)δn−1/dx.

Thm (BYY ’19): If ξ is stabilizing wrt P and satisfies the p moment
condition for some p ∈ (1,∞), then for all f ∈ B([−1

2 ,
1
2 ]d) we have

lim
n→∞

n−1E 〈µξn, f〉 = E ξ(0,P ∪ {0})
∫

[− 1
2
, 1
2

]d
f(x)dx · ρ(1)(0).
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IV General input: Gaussian fluctuations

Thm (BYY ’19) µξn :=
∑

x∈P∩Qn ξ(x,P ∩Qn)δn−1/dx. Assume

· P has wdc

· ξ has deterministic radius of stabilization wrt P,

· ξ satisfies the p moment condition for some p ∈ (2,∞), and

· Var〈µξn, f〉 = Ω(nα) for some α ∈ (0, 1), f ∈ B([−1
2 ,

1
2 ]d).

Then

〈µξn, f〉 − E 〈µξn, f〉√
Var〈µξn, f〉

D−→ N(0, 1).

Remarks. When P is determinantal with fast decreasing kernel, this
extends Soshnikov (2002) and Shirai + Takahashi (2003) who restrict to
the count statistics

∑
x∈Pn δn−1/dx, i.e., they put ξ ≡ 1.

· If P is zero set of Gaussian entire function, this extends Nazarov and
Sodin (2012), who also restrict to

∑
x∈P∩Qn δn−1/dx.
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IV General input: Gaussian fluctuations

Thm (BYY ’19) µξn :=
∑

x∈P∩Qn ξ(x,P ∩Qn)δn−1/dx. Assume

· P wdc and decay coeff. satisfy mild growth condition

· ξ exponentially stabilizing wrt P,

· ξ satisfies the p moment condition for some p ∈ (2,∞), and

· Var〈µξn, f〉 = Ω(nα) for some α ∈ (0, 1), f ∈ B([−1
2 ,

1
2 ]d). Then

〈µξn, f〉 − E 〈µξn, f〉√
Var〈µξn, f〉

D−→ N(0, 1).

Remark. If P is determinantal with fast decreasing kernel (e.g. Ginibre)
then P satisfies stated condition
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IV General input: Variance asymptotics

· Given wdc input P and a score ξ, put

σ2(ξ) := E ξ2(0,P)ρ(1)(0)

+

∫
Rd

[E ξ(0,P ∪ x)ξ(x,P ∪ 0)ρ(2)(0, x)

− E ξ(0,P)ρ(1)(0)E ξ(x,P)ρ(1)(x)]dx.

· Thm (BYY ’19): If ξ is exponentially stabilizing wrt P, if ξ satisfies
the p moment condition for some p ∈ (2,∞), then for all f ∈ B([−1

2 ,
1
2 ]d)

we have

lim
n→∞

n−1Var〈µξn, f〉 = σ2(ξ)

∫
[− 1

2
, 1
2

]d
f2(x)dx ∈ [0,∞).

· Rk. When P is determinantal with fast decreasing kernel this extends
Soshnikov (2002), who assumes ξ ≡ 1.
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IV General input: Proof of CLT

Cumulants. For a random variable Y with all finite moments, expanding
the logarithm of the Laplace transform in a formal power series gives

logE (etY ) = log(1 +

∞∑
k=1

Mkt
k

k!
) =

∞∑
k=1

Skt
k

k!
,

where Mk = E (Y k) is the k th moment of Y and Sk = Sk(Y ) denotes
the k th cumulant of Y .

Both of the above series can be considered as formal ones and no
additional condition (on exponential moments of Y ) are required for the
cumulants to exist.
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IV General input: Proof of CLT

Cumulants.

logE (etY ) = log(1 +

∞∑
k=1

Mktk

k!
) =

∞∑
k=1

Skt
k

k!
,

We have

Sk =
∑
γ∈Π[k]

(−1)|γ|−1(|γ| − 1)!

|γ|∏
i=1

M |γ(i)| ,

where Π[k] is the set of all unordered partitions of the set {1, ..., k}, and
for a partition γ = {γ(1), . . . , γ(l)} ∈ Π[k], |γ| denotes the number of its
elements (in this case |γ| = l), while |γ(i)| the number of elements of
subset γ(i). In view of the above, the existence of the kth cumulant Sk
follows from the finiteness of the moment Mk.

First cumulant is the mean, second cumulant is the variance.
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IV General input: Proof of CLT

Proof idea for CLT.
· Let Xn, n ≥ 1, be mean zero random variables, VarXn = 1.

· Put ckn := ck(Xn), k ∈ N, to be kth order cumulants for Xn.

· Recall c1
n = EXn = 0, c2

n = VarXn.

· Classic Theorem. If limn→∞ c
k
n = 0 for all k large, then

Xn
D−→ N(0, 1) as n→∞.

The next corollary gives a CLT when the cumulants have linear growth.

· Corollary. If Yn, n ≥ 1, are mean zero random variables with ckn = O(n)
for all k large, VarYn ≥ nα for some α ∈ (0,∞), then

Yn/
√

VarYn
D−→ N(0, 1) as n→∞.
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IV General input: Proof of CLT

Proof idea for CLT

· To show 〈µξn, f〉/
√

Var〈µξn, f〉
D−→ N(0, 1), by the previous Corollary it

suffices to show that kth order cumulant for 〈µξn, f〉 is O(n).

· Given ξ, consider k mixed moment functions m(k) : (Rd)k → R given by

m(k)(x1, ..., xk;Pn) := EΠk
i=1ξ(xi,Pn)ρ(k)(x1, ..., xk).

· Need to show that the mixed moments ‘cluster’, that is for all k ∈ N
there are constants ck and Ck s.t. for all x1, ..., xp+q ∈ Rd,

|m(p+q)(x1, ..., xp+q)−m(p)(x1, ..., xp)m(q)(xp+1, ..., xp+q)| ≤ Cp+qϕ(−cp+qs),

where ϕ is fast decreasing and

s := inf
i∈{1,...,p}, j∈{p+1,...,p+q}

||xi − xj ||.

· P has wdc and ξ exp. stabilizing ⇒ mixed moments cluster.
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IV General input: Applications

These general results immediately yield limit theory (WLLN, Gaussian
fluctuations, variance asymptotics) for statistics of geometric structures on
pt processes with wdc. This includes:

· Vietoris-Rips clique count on any pt process with wdc, including DPP
with fast decreasing kernel, zero set of Gaussian entire funct.

· total volume and surface area of germ-grain model with germs given by
points in pt process with wdc, i.i.d. grains with bounded diameter.

· WLLN and variance asymptotics for total edge length in knn graph on
DPP with fast decreasing kernel. Total edge length has Gaussian
fluctuations (subject to lower bounds on variance).
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THANK YOU
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