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Probabilistic Analysis of Geometric Structures

· Lecture 1: Probabilistic analysis of Euclidean optimization problems

· Lecture 2: Central limit theorems for statistics of geometric structures

· Lecture 3: Limit theory for statistics of geometric structures via
stabilizing score functions

· Lecture 4: Statistics of random polytopes

· Lecture 5: Rates of multivariate normal approximation for statistics of
geometric structures
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Lecture 4: Statistics of random polytopes

· I Historical Remarks

· II Results
Expectation asymptotics

Rates of normal approximation

Variance asymptotics

· III Methods

Scaling transform for points in unit ball

Scaling transform for Gaussian sample
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I Historical remarks

X1, ..., Xn iid uniform points in K ⊂ R2.
Kn: convex hull of X1, ..., Xn.
f0(Kn): number of vertices in Kn.
April 1864, Educational Times, J. J. Sylvester (1814 - 1897)

K = ∆2 E f0(K4) = 11/3 (Sylvester)

K = B2 E f0(K4) = 48π2−35
12π2 (Woolhouse)

K = 2 E f0(K4) = 133
36 (Woolhouse)

Alikoski, Blaschke, Crofton, Dalla, Efron, Groemer, Herglotz, Larman,
Schneider
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I Historical remarks

d ≥ 3:

K = 23 E f0(K5) = 212023
43200 −

π2

432 (Zinani)

K = ∆3 E f0(Kn) = ? (Buchta,Reitzner)
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I Historical remarks

Buchta and Reitzner (2001):
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I Historical remarks

Statistics of random polytopes

f0(Kn) = number of vertices of Kn

f1(Kn) = number of edges of Kn

f`(Kn) = number of `-faces of Kn, ` ∈ {0, ..., d− 1}.

Vol(Kn) = volume of Kn.
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I Historical remarks

Simple questions

1. Is the expected vertex count monotone in input size? Do we have

E f0(KK
n ) ≤ E f0(KK

n+1)?

Answer: Yes, if K is planar (Reitzner et al. 2013).

2. If K ⊆ L do we have EVolKn ≤ EVolLn?

Answer: No (L. Rademacher, 2012).
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I Historical remarks

Monotonicity

Bonnet, Grote, Temesvari, Thaele, Turchi, Vespi (2017) show:

Thm. E fd−1(Kn) ≤ E fd−1(Kn+1) when Kn is the convex hull of n i.i.d.
points where the underlying distribution is either the Gaussian distribution
on Rd, the uniform distribution on the sphere, or certain heavy-tailed
distributions.

Kabluchko and Thaele (2018): the f vector for Gaussian polytope is
monotone, i.e.,

E fk(Kn) ≤ E fk(Kn+1), k ∈ {0, 1, ..., d− 1}

when Kn is the convex hull of n i.i.d. random variables with Gaussian
distribution.
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I Historical remarks: Connections with other fields

1. average complexity of algorithms for computing convex hull
(computational geometry)
convex hull used to solve problems in pattern recognition, image processing

2. optimization

3. extreme points of random samples (outliers in statistics)

4. approximation of convex sets by random polytopes
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II Results: Expectation asymptotics

Difficult to derive explicit formula for statistics of convex hulls on finite
number of i.i.d. points.

Investigation has focussed on behavior as input size n→∞.

The shape of ∂K determines the order of magnitude of E f`(Kn).
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II Results: Expectation asymptotics (d = 2)

Rényi and Sulanke (1963-64), Xi i.i.d. in K, ∂K smooth (d = 2):

lim
n→∞

n−1/3E f0(Kn) = e0,d(VolK)−1/3
∫
∂K

κ(x)1/3dx

κ(x): Gaussian curvature at x ∈ ∂K (product of principal curvatures)
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II Results: Expectation asymptotics (d ≥ 2)

Dichotomy between smooth K and K which are polytopes. Reitzner
(2005):

· ∂K of class C2, ` ∈ {0, 1, ..., d− 1}, d ≥ 2:

lim
n→∞

n−(d−1)/(d+1)E f`(Kn) = e`,d

∫
∂K

κ(x)1/(d+1)dx.

· K is a convex polytope, ` ∈ {0, 1, ..., d− 1}, d ≥ 2:

lim
n→∞

(log n)−(d−1)E f`(Kn) = e′`,d · number of flags of K.

(flag is a maximal chain of faces, each a sub-face of the next in the chain)
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II Results: Expectation asymptotics (d ≥ 2)

· Kn is convex hull of n i.i.d. standard normal r.v. on Rd:

lim
n→∞

(log n)−(d−1)/2E f`(Kn) = E`,d.
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II Results: Normal approximation

Let K have C2 boundary or let K be convex polytope.

If the random variable Zn is either Vol(Kn) or f`(Kn), ` ∈ {0, ..., d− 1},
then

sup
x∈R

∣∣∣∣P [Zn − EZn√
VarZn

≤ x
]
− Φ(x)

∣∣∣∣ ≤ c(K)ε(n) = o(1).

Groeneboom (1988), Reitzner (2005) and Vu (2006), Bárány and Vu
(2007), Bárány and Reitzner (2008)....

Lachièze-Rey, Schulte, Y (2019): if K has C2 boundary, then
ε(n) = 1√

VarZn
.

Lecture 4: Statistics of Random Polytopes
Spring school at Darmstadt, 25 February-March 1, 2019 15

/ 37



II Results: Normal approximation

Let K have C2 boundary or let K be convex polytope.

If the random variable Zn is either Vol(Kn) or f`(Kn), ` ∈ {0, ..., d− 1},
then

sup
x∈R

∣∣∣∣P [Zn − EZn√
VarZn

≤ x
]
− Φ(x)

∣∣∣∣ ≤ c(K)ε(n) = o(1).

Groeneboom (1988), Reitzner (2005) and Vu (2006), Bárány and Vu
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II Results: Normal approximation

CLT uses Stein method and requires lower bounds on variances.

· What is the precise order of growth of VarVol(Kn)?

· What is the precise order of growth of Varf`(Kn), ` ∈ {0, ..., d− 1}?

These questions arose 25 years ago.

· Aldous et al. (1991), d = 2, ` = 0: solves this for planar r.v. whose radial
component has slowly varying tail.

· Reitzner (2003): Efron-Stein implies sharp upper bounds on Varf`(Kn).
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II Results: Variance asymptotics

Question: But what are the precise variance asymptotics?

As is the case with expectations, the correct scaling depends on the
geometry, as shown in the next slide.
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II Results: Variance asymptotics

· ∂K of class C3, VolK = 1, ` ∈ {0, 1, ..., d− 1}, d ≥ 2:

lim
n→∞

n−(d−1)/(d+1)Varf`(Kn) =

∫
∂K

κ(x)1/(d+1)dx · V`,d.

· K is a simple polytope with N vertices, VolK = 1, ` ∈ {0, 1, ..., d− 1},
d ≥ 2:

lim
n→∞

(log n)−(d−1)Varf`(Kn) = N · ν`,d.

· Kn is Gaussian polytope:

lim
n→∞

(2 log n)−(d−1)/2Varf`(Kn) = v`,d.

· Calka, Schreiber and Y (2013), Calka and Y (2014,2015,2017)
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II Results: Variance asymptotics

How to obtain these results from the general theory of stabilizing
functionals?

Can the f`(Kn), ` ∈ {0, 1, ..., d− 1}, functional be cast into the form of a
sum of stabilizing score functions?
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II Results: Scaling limit of convex hull boundaries

What is the scaling limit of the boundary of the convex hull?

Let’s start with the case of i.i.d. points in the unit ball.
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III Scaling limits of convex hulls in unit ball

· Xn: i.i.d. point set in unit ball of cardinality n.

· Convex geometry: x0 is extreme in Xn iff B|x0|/2(
x0
2 ) is not covered by⋃

x∈Xn:x 6=x0

B|x|/2(
x

2
).

· Scaling limit should preserve this property. Boundary of B|x|/2(
x
2 ) is

locally parabolic for |x| close to 1: thus any reasonable scaling of the unit
ball (into rectangular coordinates) should have the property that its scaling
in radial direction should be square of scaling in angular direction.
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III Scaling limits of convex hulls in unit ball

We claim that for an i.i.d. point set of size n, that there is a transform
T (n) which does the job.
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III Scaling limits of convex hulls in unit ball

Def. w0 ∈ T (n)(Xn) is extreme iff the up-paraboloid in Rd−1 × R+ with
apex at w0 is not covered by the union of the up-paraboloids with apices
at T (n)(Xn) \ w0.
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III Scaling limits of convex hulls in unit ball

(ii) As n→∞ : T (n) sends uniform samples of size n in Bd to a rate one
PPP on Rd−1 × R+

(iii) T (n) sends extreme pts to extreme pts (blue); T (n) sends the boundary
of convex hull into the inverted (green) festoon of paraboloids (n→∞).
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III Scaling limits of convex hulls in unit ball

· Questions related to convex hull of point set Xn in unit ball are
re-interpreted as questions about covering properties of paraboloids with
apices at points in T (n)(Xn).

· For example, the number of extreme points in convex hull of point set
Xn may be written as a sum of score function on points in T (n)(Xn):∑

x∈T (n)(Xn)

ξ(x, T (n)(Xn)).

· Here ξ(x, T (n)(Xn)) is zero or one according to whether the paraboloid
with apex at x is covered by the union of remaining paraboloids.
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III Scaling limits of convex hulls in unit ball

Advantages to studying re-scaled picture
(i) spatial dependencies are easier to localize in re-scaled picture...

i.e., the parabolic geometry is easier to work with. Whether a paraboloid
with apex at (v, h) ∈ Rd−1 × R+ is covered by other paraboloids depends
only on the paraboloid geometry inside a space-time cylinder (with axis
through v) having a random radius R, but where R has exponentially
decaying tails.
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III Scaling limits of convex hulls in unit ball

Advantages to studying re-scaled picture

(ii) the space correlations decay exponentially fast wrt spatial distance.
This leads to asymptotic independence and CLTs for e.g. the number of
extreme points.
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III Variance asymptotics in unit ball Bd

H: rate one PPP in upper half-space.

ξ(x,H) :=

{
1 if x is extreme

0 otherwise.

For all w1, w2 ∈ Rd put
cξ(w1, w2) :=

E ξ(w1,H ∪ {w2})ξ(w2,H ∪ {w1})− E ξ(w1,H)E ξ(w2,H)

and

V0,d :=

∫ ∞
−∞

E ξ((0, h),H)dh

+

∫ ∞
−∞

∫
Rd−1

∫ ∞
−∞

cξ((0, h), (v, h′))dh′dvdh.

Thm If Kn is the convex hull of n i.i.d. uniform points in unit ball, then

lim
n→∞

n−(d−1)/(d+1)Varf0(Kn) = c(d)V0,d,

where c(d) is explicit constant depending on surface area of unit ball.
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III Scaling limits of convex hulls: scaling transform T (n)

· What is the transformation T (n) : Bd 7→ Rd−1 × R+ which does the job?
In d = 2 we require this transformation:

(r, θ) 7→ (n1/3θ, n2/3(1− r)).

· For d > 2: Tu0 : tangent space to Sd−1 at u0 = (0, 0, ..., 1).

· Exponential map exp : Tu0 → Sd−1 maps a vector v ∈ Tu0 to the point
u ∈ Sd−1 lying at the end of the geodesic of length |v| starting at u0 and
having direction v.

· Scaling transform T (n) : Bd 7→ Rd−1 × R+:

T (n)(x) :=

(
n1/(d+1) exp−1(

x

|x|
), n2/(d+1)(1− |x|)

)
, x ∈ Bd \ {0}.

· exp−1(·) : inverse exponential map.
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Convex hulls for Gaussian input (Gaussian polytopes)

· Xi, i ≥ 1 are i.i.d. with standard mean zero Gaussian distribution on Rd,
i.e., the common density is

φ(x) = (2π)−d/2 exp(−|x|
2

2
), x ∈ Rd.
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III Convex hulls for Gaussian input (Gaussian polytopes)

· Rn :=
√

2 log n− log(2 · (2π)d · log n).
· Define scaling transform T (n) : Rd → Rd−1 × R

T (n)(x) :=

(
Rn exp−1

x

|x|
, R2

n(1− |x|
Rn

)

)
, x ∈ Rd.

· Kn : convex hull of n i.i.d. Gaussian points in Rd

· Calka, Y. (2015): T (n), n→∞, sends the Gaussian points to Poisson
point process P on Rd−1 × R with intensity dP((v, h)) = ehdhdv.

· Here is a picture.
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III Convex hulls for Gaussian input (Gaussian polytopes)

Figure: The blue point process is the image of the extreme points of the convex
hull of Gaussian polytope; the green festoon is the scaling limit of the boundary
of the convex hull.

· Calka, Y. (2015): The scaling limit of T (n)(∂Kn), n→∞, is the green
festoon of parabolic surfaces touching points in Poisson point process P
on Rd−1 × R with intensity dP((v, h)) = ehdhdv.
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III Convex hulls for Gaussian input (Gaussian polytopes)

Figure: The blue point process is the image of the extreme points of the convex
hull of Gaussian polytope; the red curve is the scaling limit of the germ grain
model; the green festoon is the scaling limit of the boundary of the convex hull.

· Calka, Y. (2015): Whether a point in the transformed point set is
extreme depends on the ‘local’ data. In fact the scores stabilize and in this
way we prove variance asymptotics, as well as central limit theorems for the
k face functional. fk(Kn) = number of k-faces of Kn, k ∈ {0, ..., d− 1}.
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III Scaling limits of convex hulls: scaling transform T (n)

Julian Grote + Christoph Thaele (2017): use the scaling transform T (n) to
establish sharp bounds on cumulants of certain statistics of convex hulls of
i.i.d. gaussian samples. This leads to exponential estimates for large
deviation probabilities of e.g. the number of k-dimensional faces of
gaussian samples.
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III Convex hulls for uniform input in a polytope

· Let K be a simple polytope (i.e., each vertex is adjacent to d facets).

· Let Xn denote n i.i.d. uniform random variables on K.

· For each vertex x of K we introduce a scaling transform T (n) and use it
to transform the points Xn ∩Br(x), i.e., the points in a neighborhood of
x. T (n) dilates in the (d− 1) spatial directions by a factor of log n.

· The picture looks like this:
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III Convex hulls for uniform input in a polytope

· Let K be a simple polytope (i.e., each vertex is adjacent to d facets).
WLOG let origin be a vertex.

· T (n) sends Kn ∩Br(0) to a festoon of inverted cone-like hyper-surfaces
pinned to the extreme points of a point process in Rd−1 × R. In the limit
as n→∞ the point process converges in distribution to a Poisson point
process with intensity density

dP((x, h)) =
√
dedhdhdx, (x, h) ∈ Rd−1 × R.

· The extreme points of Kn ∩Br(0) converge in distribution to the
extreme points of P.

· re-scaled boundary T (n)((∂Kn ∩Br(0) converges in probability to
∂Φ(P).

· Finally:

lim
λ→∞

Varfk(Kλ)

(log λ)d−1
= Fk,d · f0(K).
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THANK YOU
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