
ASYMPTOTIC GEOMETRY OF RANDOM POLYTOPES

JOSCHA PROCHNO

Abstract. This set of notes is based on the educational lecture given
at the spring school on ‘Selected topics in stochastic geometry’ at TU
Darmstadt. We give a very brief introduction to random polytopes and
their geometric aspects within the framework of asymptotic geometric
analysis. At the same time, we present some of the central tools in their
study. The model we are looking at is as follows: we sample random
points X1, . . . , XN independently and uniformly inside an isotropic con-
vex body K ⊆ Rn (N ≥ n) and consider their absolute convex hull
KN = conv{±X1, . . . ,±XN}. The latter is a random convex set in
Rn, called a random polytope, and the goal is to understand its typi-
cal asymptotic shape. Given the time constraints, we will focus on the
expected mean width of a random polytope only and present optimal
bounds up to absolute constants. In the regime N ≥ n1+δ (δ > 0) these
beautiful results are due to Dafnis, Giannopoulos, and Tsolomitis [14]
(actually they considered the whole sequence of Minkowski quermaßin-
tegrals and obtained results with high-probability as well). When the
number of points is linear in the dimension, that is, when N ≈ n, the
optimal bound was proved by Alonso-Gutiérrez and Prochno [5] (but we
will not discuss this case here).

1. Introduction

In asymptotic geometric analysis the hyperplane conjecture is one of the
outstanding open problems that first appeared explicitly in a work of Jean
Bourgain [10] on high-dimensional maximal functions from 1986. It asks
about the existence of an absolute constant c ∈ (0,∞) such that every con-
vex body of unit volume has a hyperplane section of volume bounded from
below by c, independently of the space dimension. An equivalent formu-
lation, following from a result of Doug Hensley [19], is that the isotropic
constant of every convex body is bounded above by an absolute constant (a
formal definition is provided below). Although the hyperplane conjecture
has an affirmative answer for several classes of convex bodies such as un-
conditional convex bodies [10, 32], zonoids and duals of zonoids [8], bodies
with a bounded outer volume ratio [32], or unit balls of Schatten p-classes
[27], the general case still remains one of the central open problems in this
area. The best general upper bound for the isotropic constant known up
to now is due to Bo’az Klartag [24] and gives an upper bound of order 4

√
n

with n being the space dimension. This improves by a logarithmic factor
the previous bound of Jean Bourgain [11].

2010 Mathematics Subject Classification. 52A20, 52B11, 60D05.
Key words and phrases. Asymptotic convex geometry, random polytopes, hyperplane

conjecture, isotropic constant, stochastic geometry.

1



2 JOSCHA PROCHNO

Let us now motivate why, from the point of view of asymptotic geometric
analysis, random polytopes are interesting1. In 1988, Vitali Milman and
Alain Pajor [32] discovered an interesting connection between the hyper-
plane conjecture and geometric properties associated with random poly-
topes. More precisely, they proved that the second moment of the volume of
a random simplex in an isotropic convex body is closely related to the value
of its isotropic constant (see also [12, Theorem 3.5.7]). Furthermore, since
the pioneering work of Efim Gluskin [17], random polytopes are a major
source for extremizers in high-dimensional geometric analysis. More pre-
cisely, Gluskin used random symmetric polytopes to show the existence of
two n-dimensional normed spaces with Banach-Mazur distance greater than
or equal to cn, c ∈ (0, 1) some absolute constant2 - we present a few more
details in the appendix. So far it had only been known that, as a conse-
quence of Fritz John’s theorem, the Banach-Mazur distance is less than n,
but no example of two spaces actually exhibiting this “maximal” behavior
was available3. But Gluskin’s probabilistic approach via symmetric random
polytopes showed that if we close our eyes, and pick two spaces at random,
then these spaces have, up to constant, maximal Banach-Mazur distance. As
a consequence, they are natural candidates for a potential counterexample
to the hyperplane or isotropic constant conjecture stated above. Following
this philosophy, the isotropic constant has been studied for several classes
of random polytopes in the last decade. More exactly, it has been shown in
[2, 13, 20, 21, 25, 37] that the isotropic constant of the random polytopes
is bounded by an absolute constant with probability tending to one, as the
space dimension tends to infinity. The models studied so far are Gaussian
random polytopes [25], random convex hulls of points from the Euclidean
unit sphere [2], random polytopes that arise from uniform random points
chosen in the interior of an isotropic convex body [13], random polyhedra
associated with a parametric class of Poisson hyperplane tessellations [20],
random polytopes spanned by points that are chosen from an `p-sphere with
respect to the cone probability measure [21], and a generalization of the lat-
ter to points chosen with respect to the cone measure from the boundary
of an unconditional isotropic convex body [37]. Following along the lines of
[25], it has recently been proved independently in [4] and [16] that if KN is
the symmetric convex hull of N ≥ n independent random vectors uniformly
distributed in the interior of an n-dimensional isotropic convex body K,
then the isotropic constant LKN of KN is bounded by a constant multiple

of
√

log(2N/n) with overwhelming probability (see also [3, 6, 22] for earlier
results).
Having briefly discussed the importance of random polytopes in asymptotic
geometric analysis, it is more than natural to ask the following question,
which will at the same time be our point of departure:

1There are various other ways to motivate the interest in random polytopes, for in-
stance, coming from theoretical computer science. However, we will stay within the as-
ymptotic geometric analysis framework.

2Note that each symmetric convex bodies K in Rn is the unit ball of a normed space
where the norm is given by ‖x‖K = inf{λ > 0 : x ∈ λK}. So each realization of a random
symmetric polytope corresponds to an n-dimensional normed space.

3Note that even `n1 and `n∞ are only at distance
√
n from one another.
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“What is the typical asymptotic shape of a random polytope in an
isotropic convex body?”

Given the time constraints and also not wanting to overload these notes
with notions and machinery from convex geometry such as mixed volumes
and Minkowski’s quermaßintegrals, we will restrict ourselves to the expected
value of the mean width only. This shall be enough to give an idea about
key concepts that appear in the study of random polytopes.

To keep the reader motivated, let us state here the main result that we
are going to present in a ‘qualitative’, not so precise version. The main
result that we are going to present in this note is the following (reduced)
version of [14, Theorem 1.1] obtained by Nikolaos Dafnis, Apostolos Gi-
annopoulos, and Antonis Tsolomitis in 2009. We will write w(·) for the
mean width and KN = conv{±X1, . . . ,±XN} for the random polytope with
points X1, . . . , XN chosen independently and uniformly at random in K. We
refer to Section 2 below for any undefined notion or notation and to Section
4 (more precisely Theorem 3.1) for the exact statement of the result.

Theorem 1.1. Let n . N ≤ exp(
√
n) and K ⊆ Rn be a convex body (in

isotropic position). Then the expected average width of a random polytope
that is given as the symmetric convex hull of N points that are chosen in-
dependently and uniformly at random from K is about

√
logNLK , where

LK ∈ (0,∞) is a constant that depends on the body K.

This shows that if we increase the number of points we take in the body
K, then the random polytope becomes wider on a logarithmic scale (on
average).

The following notions (as you can guess already in parts) will play a crucial
rôle:

• Isotropic convex body,
• Support function,
• Mean width,
• Lq-centroid body.

Having said that let us start with the background material from the theory
of asymptotic geometric analysis needed to answer the question above.

Let me already apologize here for any omissions with regard to references
and important mathematical contributions by various other people. Those
are of course not on purpose.

2. The fundamental concepts

We present here the background from asymptotic geometric analysis needed
to define our model of random polytopes and study their typical shape. For
more details and a beautiful exposition about the state-of-the-art as well as
the history of this area, we refer to the recent monographs [7] and [12].

2.1. Isotropic convex bodies. We will work in Rn equipped with the
standard Euclidean structure 〈 · , · 〉. A convex body K in Rn is a compact
and convex subset of Rn that has non-empty interior. We denote the n-
dimensional Lebesgue measure of a convex body K ⊆ Rn by voln(K). We



4 JOSCHA PROCHNO

will write Bn2 = {x ∈ Rn : ‖x‖2 ≤ 1} for the Euclidean ball and denote
the corresponding unit sphere by Sn−1. Later we use the fact (which follows

from Stirling’s formula) that voln(Bn2 )1/n ≈ 1√
n

. We will denote the Haar

probability measure on the sphere by σ = σn. Note that in this case, σ is
simply the cone probability measure, that is, for any Borel set B ⊆ Sn−1,

σ(B) =
voln

(
{αx : x ∈ B, α ∈ [0, 1]}

)
voln(Bn2 )

.

This measure is also sometimes referred to as the spherical Lebesgue mea-
sure.

Definition 2.1. One says that a convex body K ⊆ Rn is isotropic or in
isotropic position if voln(K) = 1, K has its barycenter at the origin, i.e., for
all θ ∈ Sn−1, ∫

K
〈x, θ〉 dx = 0,

and K satisfies the so-called isotropic condition, namely: for all θ ∈ Sn−1,∫
K
〈x, θ〉2 dx = L2

K .

The constant LK ∈ (0,∞) is independent of the direction θ ∈ Sn−1 and is
called the isotropic constant of K.

In probabilistic terms, the isotropic condition says that the variance of all
1-dimensional marginals is the same. So roughly speaking the isotropic
constant LK measures the spread of a convex body K. A typical example of
an isotropic convex body you may want to think of is a volume normalized
`p-ball (1 ≤ p ≤ ∞).

Let us now collect some important facts about the isotropic constant and
the isotropic position. The proofs of these facts can be found, for instance,
in the wonderful monograph [12].

Lemma 2.2. (a) Every convex body K ⊆ Rn can be brought into isotropic
position, which is unique up to orthogonal transformations, via an affine
transformation.
(b) The Euclidean ball in Rn minimizes the isotropic constant, i.e., LK ≥
LBn2 ≥ c, where c ∈ (0,∞) is an absolute constant.
(c) For each isotropic convex body K ⊆ Rn, we have the following bounds
on its circumradius,

√
nLK ≤ R(K) := max

x∈K
‖x‖2 ≤ cnLK ,

where c ∈ (0,∞) is an absolute constant.

Proof. (a) We can assume that K is centered. We need to show that there
exists A ∈ GL(Rn) such that A(K) is isotropic. We consider the linear
operator

T : Rn → Rn, y 7→
∫
K
〈x, y〉x dx.

It is not hard to see that this operator is symmetric and positive definite,
which means that T has a symmetric and positive definite square root S
(i.e., S is a linear operator such that S2 = T ). We now prove that the
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body S−1(K) satisfies the isotropic condition (which means, up to volume
normalization, we found the isotropic position). For any θ ∈ Sn−1, we
observe that∫

S−1(K)
〈x, θ〉2 dx = | det(S−1)|

∫
K
〈S−1x, θ〉2 dx

=
1

|det(S)|

∫
K
〈x, S−1θ〉2 dx

=
1

|det(S)|

〈∫
K
〈x, S−1θ〉x dx, S−1θ

〉
=

1

|det(S)|
〈TS−1θ, S−1θ〉

=
1

|det(S)|
‖θ‖2 =

1

| det(S)|
,

where we used that T = S2 with a symmetric operator S. Normalizing the
volume of S−1(K), we obtain the result.

(b) Let n ∈ N and rn ∈ (0,∞) such that voln(rnBn2 ) = 1. Note that rnBn2 is
then isotropic. Let K be an isotropic convex body in Rn. Then,

nL2
K =

∫
K
‖x‖22 dx =

∫
K∩rnBn2

‖x‖22 dx+

∫
K\rnBn2

‖x‖22 dx,

and, similarly,

nL2
Bn2 =

∫
Bn2
‖x‖22 dx =

∫
rnBn2∩K

‖x‖22 dx+

∫
rnBn2 \K

‖x‖22 dx.

Obviously, ∫
K∩rnBn2

‖x‖22 dx =

∫
rnBn2∩K

‖x‖22 dx

and, since voln(K \ rnBn2 ) = voln(rnBn2 \ K)4 and because ‖ · ‖2 > rn on
K \ rnBn2 and ‖ · ‖2 ≤ rn on rnBn2 \K, we obtain∫

K\rnBn2
‖x‖22 dx ≥

∫
rnBn2 \K

‖x‖22 dx.

Therefore,
nL2

K ≥ nL2
Bn2 .

It is left to compute and estimate LBn2 . Integrating in polar coordinates, we
obtain

L2
Bn2 =

1

n

∫
rnBn2
‖x‖22 dx =

voln(Bn2 )

n+ 2
rn+2
n =

voln(Bn2 )−2/n

n+ 2
≈ 1.

This completes the proof of part (b).

(c) In this part we present an argument due to Kannan, Lovász and Si-
monovits [23], which gives the more precise bound R(K) ≤ (n + 1)LK .
Consider x ∈ K and define a function g := gx : Sn−1 → R by

g(ξ) = max{t ≥ 0 : x+ tξ ∈ K}.
4Of course, [K ∩ rnBn2 ] ∪ [K \ rnBn2 ] = 1 = [rnBn2 ∩ K] ∪ [rnBn2 \ K], which, taking

volumes and using that the sets are disjoint, immediately implies the equality.
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This function measures the distance from x ∈ K to the boundary of K
looking in direction ξ ∈ Sn−1. Note that, since voln(K) = voln(K − x), by
integrating in polar coordinates, we obtain

1 = voln(K − x) = nvoln(Bn2 )

∫
Sn−1

∫ ∞
0

1K−x(rξ)rn−1 dr dσ(ξ)

= nvoln(Bn2 )

∫
Sn−1

∫ ∞
0

1K(x+ rξ)rn−1 dr dσ(ξ)

= nvoln(Bn2 )

∫
Sn−1

∫ g(ξ)

0
rn−1 dr dσ(ξ) = voln(Bn2 )

∫
Sn−1

g(ξ)n dσ(ξ),

that is, ∫
Sn−1

g(ξ)n dσ(ξ) =
1

voln(Bn
2 )
. (2.1)

We will use this equality in a moment. Since K is isotropic, using a linear
shift of K by x, we have that for any θ ∈ Sn−1, (we use again integration in
polar coordinates)

L2
K =

∫
K
〈y, θ〉2 dy

= nvoln(Bn2 )

∫
Sn−1

∫ g(ξ)

0
〈rξ + x, θ〉2rn−1 dr dσ(ξ)

= nvoln(Bn2 )

∫
Sn−1

∫ g(ξ)

0
rn+1〈ξ, θ〉2 + 2rn〈ξ, θ〉〈x, θ〉+ rn−1〈x, θ〉2 dr dσ(ξ)

= nvoln(Bn2 )

∫
Sn−1

g(ξ)n+2

n+ 2
〈ξ, θ〉2 +

2g(ξ)n+1

n+ 1
〈ξ, θ〉〈x, θ〉+

g(ξ)n

n
〈x, θ〉2 dσ(ξ)

= nvoln(Bn2 )

∫
Sn−1

(
g(ξ)n

n(n+ 1)2
〈x, θ〉2 + g(ξ)n

[
g(ξ)〈ξ, θ〉√
n+ 2

+

√
n+ 2〈x, θ〉
n+ 1

]2)
dσ(ξ)

≥ 〈x, θ〉2

(n+ 1)2
voln(Bn2 )

∫
Sn−1

g(ξ)n dσ(ξ) =
〈x, θ〉2

(n+ 1)2
,

where the last equality follows from (2.1). But this shows that, for any
x ∈ K and every θ ∈ Sn−1,

〈x, θ〉 ≤ (n+ 1)LK ,

which means that, for any x ∈ K,

‖x‖2 = sup
θ∈Sn−1

|〈x, θ〉| ≤ (n+ 1)LK .

Now the lower bound. Since K is isotropic, the isotropic condition holds
for any θ ∈ Sn−1. In particular, we may pick the standard unit vectors
e1, . . . , en. This means that for each 1 ≤ i ≤ n,

L2
K =

∫
K
x2i dx.

Taking the sum, we obtain

nL2
K =

∫
K

n∑
i=1

x2i dx =

∫
K
‖x‖22 dx ≤ max

x∈K
‖x‖22 = R(K)2,
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which shows the lower bound. �

We have just seen that the isotropic constant is bounded from below by
some absolute constant. As already mentioned in the introduction, there
is a famous conjecture regarding a universal upper bound on the isotropic
constant, which first appeared in the work [10] of Bourgain.

Conjecture 2.3 (Isotropic constant conjecture). There exists an absolute
constant C ∈ (0,∞) such that for every n ∈ N and every convex body K ⊆
Rn,

LK ≤ C.

Using a result of Hensley [19], which shows that for any n ∈ N, every convex
body K ⊆ Rn and any direction θ ∈ Sn−1,

c1
1

LK
≤ voln(K ∩ θ⊥) ≤ c2

1

LK
,

with c1, c2 ∈ (0,∞) being absolute constants, one can show that this con-
jecture is in fact equivalent to the famous hyperplane conjecture (see, e.g.,
[12, pp. 107-108])5.

Conjecture 2.4 (Hyperplane conjecture). There exists an absolute constant
c ∈ (0,∞) such that for any n ∈ N and every centered convex body K ⊆ Rn
of volume 1, we can find a direction θ ∈ Sn−1 such that

voln(K ∩ θ⊥) ≥ c.

Remark 2.5. The hyperplane conjecture has an affirmative answer for sev-
eral classes of convex bodies such as unconditional convex bodies [10, 32],
zonoids and duals of zonoids [8], bodies with a bounded outer volume ra-
tio [32], or unit balls of Schatten p-classes [27]. The best general upper
bound for the isotropic constant known up to now is due to Klartag [24] and
gives an upper bound of order 4

√
n with n being the space dimension. This

improves by a logarithmic factor the previous bound of Bourgain [11].

2.2. Random polytopes & the model of interest. After no further im-
provement or solution to the hyperplane conjecture appeared people started
looking for counterexamples. As already mentioned in the introduction, ran-
dom polytopes often exhibit a certain maximal behavior (see, for instance
[17] and [15]). It is therefore natural to in investigate the following:

“Do random polytopes provide us with a counterexample
to the hyperplane conjecture?”

For the following models of randomness, it was proved that with high prob-
ability the isotropic constant is bounded by an absolute constant (note that
all proofs follow the idea of [25]):

• Klartag, Kozma [25]: Random polytopes spanned by independent
Gaussian random vectors, i.e., KN = conv{±G1, . . . ,±GN} (N ≥
n), where Gi = (gi1, . . . , g

i
n) with independent standard Gaussians

gi1, . . . , g
i
n.

5By θ⊥ we denote the hyperplane orthogonal to θ.
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• Alonso-Gutiérrez [2]: Random polytopesKN = conv{±X1, . . . ,±XN}
(N ≥ n) where X1, . . . , XN are chosen independently at random
from the sphere Sn−1 with respect to the normalized spherical Lebesgue
measure (= cone probability measure).

• Dafnis, Giannopoulos, and Guédon [13]: Random polytopes KN =
conv{±X1, . . . ,±XN} (N ≥ n) where X1, . . . , XN are chosen inde-
pendently and uniformly at random in a 1-unconditional isotropic
convex body.

• Hörrmann, Prochno, and Thäle [21]: Random polytopes KN =
conv{±X1, . . . ,±XN} (N ≥ n) where X1, . . . , XN are chosen inde-
pendently at random from an `p-sphere, Sn−1p = {x ∈ Rn : ‖x‖p =
1}, with respect to the cone probability measure on Bnp (1 ≤ p <∞).

• Prochno, Thäle, and Turchi [37]: Random polytopes KN =
conv{±X1, . . . ,±XN} (N ≥ n) where X1, . . . , XN are chosen inde-
pendently at random from the boundary of an unconditional convex
body K with respect to the cone probability measure.

A notable exception (and so far the only one), using a different approach
to show that the isotropic constant is bounded with high probability is the
following paper:

• Hörrmann, Hug, Reitzner and Thäle [20]: Random polyhedra asso-
ciated with a parametric class of Poisson hyperplane tessellations.

Having thus ‘seen’ several results on random polytopes and their isotropic
constant, we want to come back to the original question about the typical
shape of a random polytope. Before specifying this question to the present
text, let us describe the model of random polytopes we are going to inves-
tigate.
Given an isotropic convex body K ⊆ Rn and N ≥ n, we let X1, . . . , XN

be independent random vectors that are uniformly distributed in K. This
means that for any Borel set A ⊂ Rn,

P(X1 ∈ A) = voln(A ∩K).

The random polytopes in the focus of our attention are defined as

KN := conv{±X1, . . . ,±XN},

where conv denotes the convex hull of these points. We now ask the following
specific question that we will answer in these notes:

“What is the expected ‘mean width’ of a random polytope KN

inside an isotropic convex body K?”

The mean width will be defined in the next subsection.

2.3. The mean width of a convex body. In this subsection we will
present the notions of support function and mean width of a convex body.
We also collect, without proof, some elementary facts and an inequality due
to Urysohn, that we will need later to prove the lower bound on the mean
width of a random polytope.
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Definition 2.6 (Support function). Let K ⊆ Rn be a convex body. We
define its support function to be the function

hK : Sn−1 → R, θ 7→ max
x∈K
〈x, θ〉.

Of course, we might as well define the support function on Rn, but for the
sphere Sn−1 we have a nice geometric interpretation, namely, hK(θ) is the
(signed) distance of the supporting hyperplane of K in direction θ from the
origin. It is indeed the case that each convex body is uniquely determined by
its support function and can be written as the intersection of its supporting
half spaces.6

Let us collect some facts on support functions in the following lemma. For
proofs (at least in parts) and further information, we refer the reader to [7,
Appendix A, pp. 380-381].

Lemma 2.7. Let C,K ⊆ Rn be convex bodies. Then,

(a) hK is positively homogeneous (of degree 1) and subadditive, i.e.,

hK(αx) = αhK(x) for all α ≥ 0 and x ∈ Rn

and

hK(x+ y) ≤ hK(x) + hK(y) for all x, y ∈ Rn.

(b) hK is order preserving. This means that if C ⊆ K, then

hC ≤ hK ,

and that if hC ≤ hK , then C ⊆ K.
(c) Any positively homogeneous and subadditive function H : Rn → R is the
support function of some unique convex body K.
(d) A convex body is symmetric with respect to the origin (K = −K) if and
only if hK(θ) = hK(−θ) for all θ ∈ Sn−1.
(e) 0 ∈ K if and only if hK ≥ 0.

Having now the notion of a support function at hand and keeping its nice
geometric interpretation in mind, we will now define the mean width of a
convex body K ⊆ Rn. Before we do so, let us define the width of K in
direction θ ∈ Sn−1 as

Width(K, θ) := hK(θ) + hK(−θ).

This is simply the distance of the two supporting hyperplanes of K, the one
in direction θ and the other in direction of −θ. Therefore, it is geometrically
just the width of the body K in direction of θ (or equivalently −θ). The
mean width will now be defined as the average width over the sphere. Please
note that we actually define 1

2 times the mean width.

6For a unit vector θ ∈ Sn−1 the hyperplane orthogonal to θ and at distance γ from the
origin is given by Hγ

θ := {x ∈ Rn : 〈x, θ〉 = γ}. It divides the space in two halves, the

half spaces. In our case, H
hK(θ)
θ is such that K is contained in the half space {x ∈ Rn :

〈x, θ〉 ≤ hK(θ)} and there is at least one point on the boundary of K which lies in H
hK(θ)
θ .

This explains the name supporting hyperplane for H
hK(θ)
θ .



10 JOSCHA PROCHNO

Definition 2.8 (Mean width). Let K ⊆ Rn be a convex body. We define
the mean width of K, denoted by w(K), to be

w(K) =
1

2

∫
Sn−1

Width(K, θ) dσ(θ) =

∫
Sn−1

hK(θ) dσ(θ).

The mean width thus tells us how wide the body is on average. An impor-
tant inequality, that can be proved via the so-called Steiner symmetrization
method (see, e.g., [7, Theorem 1.5.11]), is Urysohn’s inequality. We will
make use of it to prove the lower bound on the mean width of our random
polytopes.

Lemma 2.9 (Urysohn’s inequality). Let K ⊆ Rn be a convex body. Then

w(K) ≥
(

voln(K)

voln(Bn2 )

)1/n

.

We will now come to an important notion in convex geometry, the so-called
Lq-centroid bodies.

2.4. Lq-centroid bodies. The notion of an Lq-centroid body (although un-
der a different normalization) was introduced by Erwin Lutwak and Gaoyong
Zhang in [30]. Their study from an asymptotic point of view was initiated
by Grigoris Paouris in his Ph.D. thesis resulting in the works [34, 33]. The
asymptotic point of view on this class of bodies turned out to be an inte-
gral part in several other deep and wonderful discoveries of the last decade
(see, e.g., [35]). Let us also refer to the important contributions by Emanuel
Milman [31] and Klartag and Milman [26].

We now start rather bluntly with their definition and then try to build some
intuition.

Definition 2.10 (Lq-centroid body). Let K ⊆ Rn be a convex body with
voln(K) = 1 and q ≥ 1. Then the Lq-centroid body of K, Zq(K), is defined
via its support function

hZq(K)(θ) :=

(∫
K
|〈x, θ〉|q dx

)1/q

, θ ∈ Sn−1.

In the case that q = +∞, we define the L∞-centroid body to be Z∞(K) =
conv{K,−K}.

To allow a better understanding we provide a remark that highlights certain
aspects of Lq-centroid bodies.

Remark 2.11. (a) Note that the function hZq(K) is positively 1-homogeneous
and, by Minkowski’s inequality, subadditive. Therefore, by Lemma 2.7, there
exists indeed a unique convex body having hZq(K) as support function.
(b) Note that, again by Lemma 2.7, an Lq-centroid body is always symmet-
ric with respect to the origin.
(c) A convex body K ⊆ Rn is isotropic if and only if it is centered and
Z2(K) = LKBn2 .
(d) When q = 1, then there is a neat interpretation of the centroid body of
K which ‘explains’ the name and goes as follows: assume that K is sym-
metric and consider a direction θ ∈ Sn−1 and the hyperplane orthogonal to
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it. This hyperplane divides K into two pieces. Take one of the two halves
and compute the centroid of it. This is what gives us the support function
in the direction of θ. Now we do this for every direction θ ∈ Sn−1 and we
obtain the centroid body.
(e) The Lq-centroid bodies can be compared with the floating bodies of a
convex body, which have a really nice interpretation (we omit the details
here). More precisely, we have the following relation (as shown by Paouris
and Werner in [36]): there exist absolute constants c1, c2 ∈ (0,∞) such that
for any δ ∈ (0, 1),

c1Zlog 1
δ
(K) ⊆ Kδ ⊆ c1Zlog 1

δ
(K).

Let us collect some (comparably) simple properties of Lq-centroid bodies.

Lemma 2.12. Let K ⊆ Rn be a convex body with voln(K) = 1. Then the
following hold:
(a) If K is isotropic, then w(Z2(K)) = LK .
(b) For all 1 ≤ p < q ≤ ∞,

Zp(K) ⊆ Zq(K) ⊆ C q

p
Zp(K),

where C ∈ (0,∞) is an absolute constant.

Proof. (a) We have

w(Z2(K)) =

∫
Sn−1

hZ2(K)(θ) dσ(θ)

=

∫
Sn−1

(∫
K
|〈x, θ〉|2 dx

)1/2

dσ(θ) = LK ,

where the latter equality follows from the isotropic condition. In fact, we
could have also just used Remark 2.11 (c).
(b) The left inclusion follows directly from Hölder’s inequality, meaning that
for p ≤ q,

‖〈·, θ〉‖Lp(K) ≤ ‖〈·, θ〉‖Lq(K) . (2.2)

The other inclusion follows from Borell’s lemma ([12, Lemma 2.4.5]) and
holds actually more generally for seminorms f : Rn → R and not only the
marginals 〈·, θ〉. A proof can be found, for instance, in [12, Theorem 2.4.6].
One obtains the estimate

‖〈·, θ〉‖Lq(K) ≤ C
q

p
‖〈·, θ〉‖Lp(K), (2.3)

which immediately yields the right inclusion. �

Remark 2.13. (a) Assume that K ⊆ Rn is symmetric. Then part (d) of
Remark 2.11 shows that when q = 1, the centroid body Z1(K) sits well
inside K. However, part (b) in Lemma 2.12 shows that as q → +∞ the
Lq-centroid body increases and ultimately, when q = +∞, coincides with K
itself (since in the symmetric case Z∞(K) = K).
(b) If K is isotropic, then looking at the proof of Lemma 2.12 (b) (and more
precisely at (2.2) and (2.3)), we see that by choosing p = 2,

LK ≤
(∫

K
|〈x, θ〉|q dx

)1/q

≤ CqLK .
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There are two very important and frequently used facts about Lq-centroid
bodies and their volume radius and mean width, respectively. They follow
from the works of Paouris [35] and Klartag and Milman [26] and are actually
quite deep results. We inappropriately just state them in one lemma, but a
proof or detailed discussion is simply beyond the scope of this introductory
note.

Lemma 2.14. Let K ⊆ Rn be an isotropic convex body. Then we have the
following:
(a) If 1 ≤ q ≤

√
n, then

voln(Zq(K))1/n ≈
√
q

n
LK .

(b) If 1 ≤ q ≤
√
n, then

w(Zq(K)) ≈ √qLK .

Remark 2.15. The lower bound on the volume of an Lq-centroid body,
without the isotropic constant, was obtained by Erwin Lutwak, Deane Yang
and Gaoyong Zhang [29]. The work [26] allowed to include the isotropic
constant LK in that lower bound. Paouris obtained the upper bound in [35]
(see also [12, Theorem 5.1.17]). The estimates for the mean width follow
from Paouris’ works [34, 33, 35].

3. The shape of a random polytope - main result

We are now prepared to state properly the main result that we are going to
present and ‘prove’ in this note. It is actually a (reduced) version of the result
[14, Theorem 1.1] obtained by Nikolaos Dafnis, Apostolos Giannopoulos and
Antonis Tsolomitis in 2009.

Theorem 3.1 (Dafnis, Giannopoulos, Tsolomitis). Let n,N ∈ N and K ⊆
Rn be an isotropic convex body. If cn ≤ N ≤ exp(

√
n), then

c1

√
log

N

n
LK ≤ Ew(KN ) ≤ c2

√
logNLK ,

where c, c1, c2 ∈ (0,∞) are absolute constants.

Remark 3.2. (a) The result is obviously sharp if N ≥ n2. Actually for
N ≥ n1+δ (δ > 0) if we allow constants to depend on δ.
(b) In [14], Dafnis, Giannopoulos, and Tsolomitis actually considered the
whole sequence of quermaßintegrals and also obtained nice high probability
results.
(c) In the linear regime N ≈ n, the result

Ew(KN ) ≈
√

logNLK

was proved by Alonso-Gutiérrez and Prochno in [5] by totally different means
involving extremal order statistics and Orlicz norms, but only for the mean
width (not the sequence of quermaßintegrals).

(d) Note that the assumption N ≤ e
√
n guarantees that for the choice q =

logN , we have q ≤
√
n, which is needed in Lemma 2.14.
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3.1. The key idea and observation. The central idea that allows one to
determine the asymptotic shape of a random polytope inside an isotropic
convex body K is to compare the random convex set with the Lq-centroid
body of K. It originates in the work of Giannopoulos and Hartzoulaki [15]
who studied random subspaces generated by vertices of the cube, that is,
in other words, they studied the class of random symmetric ±1-polytopes.
More precisely, if we consider the discrete cube {−1, 1}n and let N > n,
then such a random polytope is of the form

Kn
±1,N = conv{±X1, . . . ,±XN},

where the independent points X1, . . . , XN are chosen uniformly at random
from {−1, 1}n. The authors proved the following fact: for all n ≥ n0 if
N ≥ n(log n)2, then

Kn
±1,N ⊇ c

(√
log

N

n
Bn2 ∩ Bn∞

)
⊇ c

√
log N

n

n
Bn∞ (3.1)

with probability ≥ 1 − e−n, c ∈ (0,∞) being an absolute constant. The
latter simply says that, with high probability, Kn

±1,N contains a centered

cube whose edges have length
√

log(N/n)/
√
n.

The estimates from [15] where later generalized, improved, and the assump-
tions relaxed. This was done by Alexander Litvak, Alain Pajor, Mark Rudel-
son and Nicole Tomczak-Jaegermann [28] who considered a more general
class of random polytopes including the important Bernoulli model discussed
above and the Gaussian one7.

Let us now explain the key observation that was made by Dafnis, Giannopou-
los, and Tsolomitis in [14]. They showed that (3.1) can be rewritten in terms
of the Lq-centroid bodies of the unit volume cube [−1

2 ,
1
2 ]n. More precisely,

consider the interpolation norm

K1,2(x, t) = inf
y∈Rn

‖y‖1 + t‖x− y‖2.

The so-called Holmstedt approximation shows that

K1,2(x, t) ≈
bt2c∑
j=1

x∗j + t

 n∑
j=bt2c+1

(x∗j )
2

1/2

,

where (x∗j )
n
j=1 is the non-increasing rearrangement of {|x1|, . . . , |xn|}. One

can now show that for each α ≥ 1 and all θ ∈ Sn−1,

hαBn2∩Bn∞(θ) = K1,2(θ, α),

7The random polytopes in their model arise as the absolute convex hull of the rows
of a random matrix Γn,N := (ξij)

N,n
i,j=1 with independent, symmetric entries satisfying

‖ξij‖L2 ≥ 1 and ‖ξij‖ψ2 ≤ γ for some γ ≥ 1. The proof is based on a lower bound (of the

order
√
N) for the smallest singular value of Γn,N
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which makes also clear the geometric interpretation of the interpolation
norm. On the other hand, we know that for θ ∈ Sn−1 and all q ≥ 1,

hZq([− 1
2
, 1
2
]n)(θ) = ‖〈·, θ〉‖Lq([− 1

2
, 1
2
]n) ≈

bqc∑
j=1

x∗j +
√
q

 n∑
j=bqc+1

(x∗j )
2

1/2

.

The latter can be found in [9] and is based on moment inequalities on `np -
balls that follow from work of Gluskin and Kwapień [18]. We therefore
obtain that

h√q Bn2∩Bn∞(θ) = K1,2(θ,
√
q) ≈ hZq([− 1

2
, 1
2
]n)(θ),

which means that
√
q Bn2 ∩ Bn∞ ≈ Zq

([
− 1

2 ,
1
2

]n)
.

Hence, looking again at (3.1), we do now have

Kn
±1,N ⊇ cZlog(N/n)

([
− 1

2 ,
1
2

]n)
,

with high probability. This is the very place where one can come up with the
idea to compare a random polytope, now a general one inside an isotropic
convex body K, to the Llog(N/n)-centroid body of K.

The comparison result they obtained is the following theorem which, for
simplicity and since it is enough for our purpose, we do not state in its most
general form. The original proof from [14] is a modification of the arguments
from [28]. Please note that the nice probabilistic estimate presented arises
from the remarkable work of Rados law Adamczak, Alexander Litvak, Alain
Pajor, and Nicole Tomczak Jaegermann [1]. The results they obtained are
beautiful and at the same time the proofs are quite technical and involved
and cannot be presented here.

Theorem 3.3 (Comparison theorem). Let n ∈ N and assume that N ≥ c0n.
Then, for all q ≤ c1 log N

n , we have

KN ⊇ c2Zq(K)

with probability greater than 1 − e−c3
√
N . Here c0, c1, c2, c3 ∈ (0,∞) are

absolute constants.

Remark 3.4. What had to be bounded in the result of Dafnis, Giannopou-
los, and Tsolomitis to obtain the inclusion of the centroid body with high
probability was a certain tail probability of the operator norm of a random
operator,

P
[
‖T : `n2 → `N2 ‖ ≥ t

√
N
]
,

where T (y) = (〈X1, y〉, . . . , 〈XN , y〉). Here one needs a deep result of Adam-
czak, Litvak, Pajor, and Tomczak-Jaegermann.

Remark 3.5. It is easy to see that one cannot expect a reverse inclusion of
the form

KN ⊆ CZq(K)



GEOMETRY OF RANDOM POLYTOPES 15

with probability close to 1 unless we choose q ≈ n. In fact, using indepen-
dence and the fact that X1 is distributed uniformly in K,

P[KN ⊆ CZq(K)] =
(
P[X1 ∈ CZq(K)]

)N
≤ voln(CZq(K))N ≤

(
C̃

√
q

n
LK

)nN
,

where we used Lemma 2.14 (a) in the last estimate. If LK is bounded, then
we would need q ≈ n to have a chance to get a probability close to 1.

We now have all the tools we need to present a ‘proof’ of the main result

4. The proof

In this section we will present the proof of Theorem 3.1. The previous
sections have provided us with the necessary tools. As we will see, the
lower bound on the mean width is essentially Urysohn’s inequality together
with the comparison result of Theorem 3.3 and the volume estimate for the
centroid bodies given in Lemma 2.14 (a). The upper bound follows from a
combination of standard arguments, combined with the monotonicity of the
centroid bodies and the bound on the mean width of an Lq-centroid body
given in Lemma 2.14 (b).

Proof of Theorem 3.1. The lower bound: it follows from Urysohn’s lemma
that

Ew(KN ) ≥ E
(

voln(KN )

voln(Bn2 )

)1/n

.

The comparison with centroid bodies (Theorem 3.3) applied with q ≈ log N
n ,

says that, with probability greater than 1− exp(−c
√
N),

KN ⊇ CZlog N
n

(K),

where C ∈ (0,∞) is an absolute constant. Let us now denote by I :=
{ω ∈ Ω : KN (ω) ⊇ CZlog(N/n)(K)} the event of inclusion. Recall that

voln(Bn2 ) ≈ n−1/2. Then, using Urysohn’s estimate above and Lemma 2.14
(a), we obtain

Ew(KN ) ≥ E
(

voln(KN )

voln(Bn2 )

)1/n

≥ c0
√
nE voln(KN )1/n

≥ c0
√
nP(I) voln

(
CZlog(N/n)(K)

)1/n
≥ c1
√
n

√
log(N/n)

n
LK = c1

√
log

N

n
LK .

Alternatively, one can avoid Urysohn’s inequality (we chose to present it here
because it is needed as a tool when other quermaßintegrals are considered).
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We quickly outline the argument:

Ew(KN ) ≥
∫
I

w
(
KN (ω)

)
dP(ω)

≥
∫
I

w
(
CZlog(N/n)(K)

)
dP(ω)

≥ C1 P(I) w(Zlog(N/n)(K))

≥ C2

√
log

N

n
LK ,

where we used Lemma 2.14 (b) instead of (a). This proves the lower bound
in the main theorem.

The upper bound: We define the following set

AN :=
{
θ ∈ Sn−1 : hKN (θ) ≤ ehZq(K)(θ)

}
.

Then, for any realization in ω ∈ Ω (we omit this ω as usual),

w(KN ) =

∫
Sn−1

hKN (θ) dσ(θ)

≤ e
∫
AN

hZq(K)(θ) dσ(θ) +

∫
AcN

hKN (θ) dσ(θ)

≤ e
∫
AN

hZq(K)(θ) dσ(θ) + cnLKσ(AcN ),

where the last estimate used that, since KN ⊆ K, we must have hKN ≤
R(K), while the circumradius satisfies R(K) ≤ cnLK by Lemma 2.2 (c).
Taking expectation (and integrating over the full sphere above instead of
AN only), we get

Ew(KN ) ≤ ew(Zq(K)) + cnLK Eσ(AcN ).

Observe that by Markov’s inequality,

Eσ(AcN ) =

∫
Sn−1

P
[
hKN (θ) > ehZq(K)(θ)

]
dσ(θ)

=

∫
Sn−1

P
[

max
1≤i≤N

|〈Xi, θ〉| > ehZq(K)(θ)
]

dσ(θ)

≤ NP
[
|〈X1, θ〉| > ehZq(K)(θ)

]
≤ N

eq
.

Therefore, using the latter estimate, the fact that LK = w(Z2(K)) for our
isotropic K (see Lemma 2.12 (a)), and that Lq-centroid bodies are lexico-
graphically nested (see Lemma 2.12 (b)),

Ew(KN ) ≤ ew(Zq(K)) + c
nN

eq
w(Z2(K)) ≤

(
e+ c

nN

eq

)
w(Zq(K)).

Choosing q ≈ logN with large enough constants and using the mean width
bound from Lemma 2.14 (b), we get

Ew(KN ) ≤ C
√

logNLK .
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This completes the proof of the theorem. �

5. Appendix on the Gluskin spaces

Let us provide some more information on Gluskin’s probabilistic construc-
tion of n-dimensional spaces with a pathologically ‘bad’ behavior, see [17].
One chooses random vectors X1, . . . , XN independently and uniformly from
the unit sphere Sn−1 in Rn. For m ∈ N, one the defines random symmetric
polytopes Kn

N as follows:

Kn
N := conv{±e1, . . . ,±en,±X1, . . . ,±XN},

where e1, . . . , en ∈ Rn are the standard unit vectors. Let the random spaces
corresponding to this class of random polytopes be denoted by FKn

N
. Of

course, the N -fold product measure σ⊗N is a probability measure on the
set of all those spaces. What Gluskin proved in [17] is that when N = 2n

and K̃n
N is an independent copy of Kn

N , then the Banach-Mazur distance of
the corresponding spaces FKn

N
and F

K̃n
N

is greater than or equal to cn with

probability at least 1− 2−n
2
, where c ∈ (0,∞) is an absolute constant.
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