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Material
B Intro random graphs:
Random Graphs and Complex Networks Volume 1
http://www.win.tue.nl/∼rhofstad/NotesRGCN.html

Volume 2: in preparation on same site

Random Graphs 
and Complex 
Networks
Volume One

Remco van der Hofstad

Cambridge Series in Statistical 
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“...a modern and deep, yet accessible, introduction to the models that make up that 
basis for the theoretical study of random graphs and complex networks. The book strikes a 
balance between providing broad perspective and analytic rigor that is a pleasure for
the reader.”   –  Adam Wierman, California Institute of Technology
 
“...focuses on a number of core models that have driven recent progress in the fi eld, 
including the Erdös-Rényi random graph, the confi guration model, and preferential 
attachment models. A detailed description is given of all their key properties. This is 
supplemented with insightful remarks about properties of related models so that a full 
panorama unfolds. As the presentation develops, the link to complex networks provides 
constant motivation for the routes that are being chosen.”
    – Frank den Hollander, Leiden University
 
“...the defi nitive introduction to the mathematical world of random networks. Written 
for students with only a modest background in probability theory, it provides plenty of 
motivation for the topic and introduces the essential tools of probability at a gentle pace. 
It covers the modern theory of Erdös-Rényi graphs, as well as the most important models 
of scale-free networks that have emerged in the last 15 years. This is a truly wonderful fi rst 
volume; the second volume, leading up to current research topics, is eagerly awaited.”
    – Peter Mörters, University of Bath
 
“...a wonderful addition to the fi eld. It takes the uninitiated reader from the basics of 
graduate probability to the classical Erdös-Rényi random graph before terminating at some 
of the fundamental new models in the discipline. The author does an exemplary job of 
both motivating the models of interest and building all the necessary mathematical tools 
required to give a rigorous treatment of these models. Each chapter is complemented by 
a comprehensive set of exercises allowing the reader ample scope to actively master the 
techniques covered in the chapter.”
    – Shankar Bhamidi, University of North Carolina
 
“...invaluable for anybody who wants to learn or teach the modern theory of random 
graphs and complex networks. I have used it as a textbook for long and short courses at 
different levels. Students always like the book because it has all they need: exciting 
high-level ideas, motivating examples, very clear proofs, and an excellent set of exercises. 
Easy to read, extremely well structured, and self-contained, the book builds profi ciency 
with random graph models essential for state-of-the-art research.”
    – Nelly Litvak, University of Twente
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Treat selected parts of Chapters I.1, I.6–I.8 and II.2–II.8.

Argument are probabilistic, using
B first and second moment method;
B branching process approximations.



Lecture 1:

Real-world networks
and random graphs



Complex networks

Figure 2 |Yeast protein interaction network.A map of protein–protein interactions
18

in

Yeast protein interaction networka Internet 2010b

Attention focussing on unexpected commonality.
aBarabási & Óltvai 2004
bOpte project http://www.opte.org/the-internet



Scale-free paradigm
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Loglog plot degree sequences WWW in-degree and Internet

B Straight line: proportion pk of vertices of degree k satisfies pk = ck−τ .

B Empirical evidence: Often τ ∈ (2, 3) reported.



Small-world paradigm
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Network science
B Complex networks modeled using

random graphs.

B Network functionality modeled by stochastic processes on them.

B A plethora of examples:

Disease spread
Information diffusion
Consensus reaching
Percolation

Synchronization
Robustness to failures
Information retrieval
Random walks...

B Also algorithms on networks important: PageRank, assortativity,
community detection,...

B Prominent part of applied math for decades to come.



Models complex networks
B Inhomogeneous Random Graphs:
Static random graph, independent edges with inhomogeneous
edge occupation probabilities, yielding scale-free graphs.
(Chapters I.6, II.2 and II.5)
[Extensions of Erdős-Rényi random graphs Chapters I.4 and I.5.]

B Configuration Model:
Static random graph with prescribed degree sequence.
(Chapters I.7, II.3 and II.6)

B Preferential Attachment Model:
Dynamic model, attachment proportional to degree plus constant.
(Chapters I.8, II.4 and II.7)

Universality??



Erdős-Rényi
Erdős-Rényi random graph is random subgraph of complete graph
on [n] := {1, 2, . . . , n} where each of

(
n
2

)
edges is occupied indepen-

dently with prob. p.

Simplest imaginable model of a random graph.

B Attracted tremendous attention since introduction 1959, mainly
in combinatorics community:

Probabilistic method (Spencer, Erdős et al.).

B Average degree equals (n− 1)p ≈ np, so choose p = λ/n to have
sparse graph.

B Egalitarian: Every vertex has equal connection probabilities.
Misses hub-like structure of real networks.



Inhomogeneous random
graphs

B Extensions of Erdős-Rényi random graph with different vertices.

B Chung-Lu: random graphs with prescribed expected degrees:
? Connected component structure (2002)
? Distance results (2002), PNAS
? Book (2006)

B Most general:
? Bollobas, Janson and Riordan (2007)
? Söderberg (2007): Phys. Rev. E

We focus on

generalized random graph.



Generalized random graph
B Attach edge with probability pij between vertices i and j, where

pij =
wiwj

`n + wiwj
, with `n =

∑
i∈[n]

wi,

different edges being independent [Britton-Deijfen-Martin-Löf 05]

B Resulting graph is denoted by GRGn(w).

Interpretation: wi is close to expected degree vertex i.

? Retrieve Erdős-Rényi RG with p = λ/n when wi = nλ/(n− λ).

B Related models:
? Chung-Lu model: pij = wiwj/`n ∧ 1;
? Norros-Reittu model: pij = 1− e−wiwj/`n.
? Janson (2010): General conditions for asymptotic equivalence.



Regularity vertex weights
Condition I.6.4. Denote empirical distribution function weight by

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x}, x ≥ 0.

(a) Weak convergence of vertex weight. There exists F s.t.

Wn
d−→ W,

where Wn and W have distribution functions Fn and F.
(b) Convergence of average vertex weight.

lim
n→∞

E[Wn] = E[W ] > 0.

(c) Convergence of second moment vertex weight.

lim
n→∞

E[W 2
n ] = E[W 2].



Canonical choice weights

Aim: Proportion of vertices i with di = k is close to

pk = P(D = k),

for some random variable D.

(A) Take w = (w1, . . . , wn) as i.i.d. random variables with distribu-
tion function F.

(B) Take w = (w1, . . . , wn) as

wi = [1− F ]−1(i/n).

Interpretation: Proportion of vertices i with wi ≤ x is close to F (x).

B Power-law example: F (x) = [1− (a/x)τ−1]1{x≥a}, for which

[1− F ]−1(u) = a(1/u)−1/(τ−1), so that wj = a(n/j)1/(τ−1).



Degree structure GRG
Denote proportion of vertices with degree k by

P (n)

k =
1

n

∑
i∈[n]

1{Di=k},

where Di is degree of i ∈ [n]. Then [Bollobás-Janson-Riordan (07)]

P (n)

k
P−→ pk = E

[
e−W

W k

k!

]
,

where W is a random variable having distribution function F. †

Recognize limit (pk)k≥0 as probability mass function of
Poisson random variable with random parameter W ∼ F.

In particular,∑
l≥k

pl ∼ ck−(τ−1) iff P(W ≥ k) ∼ ck−(τ−1).



Configuration model
B Invented by Bollobás (80) EJC

to study number of graphs with given degree sequence.
Inspired by Bender+Canfield (78) JCT(A)
Giant component: Molloy, Reed (95)
Popularized by Newman-Strogatz-Watts (01)

B In configuration model CMn(d) degree sequence is prescribed:

B n number of vertices;
B d = (d1, d2, . . . , dn) sequence of degrees is given.

Often (di)i∈[n] taken to be i.i.d.

B Special attention to power-law degrees, i.e., for τ > 1 and cτ

P(d1 ≥ k) = cτk
−τ+1(1 + o(1)).



Power laws CM
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Loglog plot of degree sequence CM with i.i.d. degrees
n = 1, 000, 000 and τ = 2.5 and τ = 3.5, respectively.



Graph construction CM
B Assign dj half-edges to vertex j. Assume total degree

`n =
∑
i∈[n]

di

is even.

B Pair half-edges to create edges as follows:
Number half-edges from 1 to `n in any order.
First connect first half-edge at random with one of other `n − 1 half-
edges.

B Continue with second half-edge (when not connected to first)
and so on, until all half-edges are connected.

B Resulting graph is denoted by CMn(d).



Regularity vertex degrees
Condition I.7.8. Denote empirical distribution function degrees by

Fn(x) =
1

n

∑
i∈[n]

1{di≤x}, x ≥ 0.

(a) Weak convergence of vertex degrees. There exists F s.t.

Dn
d−→ D,

where Dn and D have distribution functions Fn and F.
(b) Convergence of average vertex weight.

lim
n→∞

E[Dn] = E[D] > 0.

(c) Convergence of second moment vertex degrees.

lim
n→∞

E[D2
n] = E[D2] <∞.



Canonical choice degrees
Aim: Proportion of vertices i with di = k is close to

F (k)− F (k − 1) = pk = P(D = k),

where D has distribution function F.
? Power-law degrees: precise structure of large degrees crucial.

(A) Take d = (d1, . . . , dn) as i.i.d. rvs with distribution function F.

Double randomness!

(B) Take d = (d1, . . . , dn) such that di = [1− F ]−1(i/n), with F distri-
bution function on N.

Power-law degrees:

[1− F ](k) ≈ ck−(τ−1), so that dj ≈ a(n/j)1/(τ−1).



Simple CMs
Proposition I.7.7. Let G = (xij)i,j∈[n] be multigraph on [n] s.t.

di = xii +
∑
j∈[n]

xij.

Then, with `n =
∑

v∈[n] dv,

P(CMn(d) = G) =
1

(`n − 1)!!

∏
i∈[n] di!∏

i∈[n] 2
xii
∏

1≤i≤j≤n xij!
.

Consequently, number of simple graphs with degrees d equals

Nn(d) =
(`n − 1)!!∏

i∈[n] di!
P(CMn(d) simple),

and, conditionally on CMn(d) simple,

CMn(d) is uniform random graph with degrees d.



Relation GRG and CM
Theorem I.6.15. The GRGn(w) with edge probabilities
(pij)1≤i<j≤n given by

pij =
wiwj

`n + wiwj
,

conditioned on its degrees {di(X) = di∀i ∈ [n]} is uniform
over all graphs with degree sequence (di)i∈[n].

Consequently, conditionally on degrees, GRGn(w) has the same
distribution as CMn(d) conditioned on simplicity.

Allows properties of GRGn(w) to be proved through CMn(d) by
showing that degrees GRGn(w) satisfy right asymptotics.

Inspires Degree Regularity Condition.†



Self-loops + multi-edges
B CM can have cycles and multiple edges, but these are relatively
scarce compared to the number of edges. [Theorem I.7.10 and
Prop. I.7.11]

B Let Dn denote degree of uniformly chosen vertex. Condition
I.7.8(a): Dn converges in distribution to limiting random variable D.

B When E[D2
n]→ E[D2] <∞, then numbers of self-loops and multi-

ple edges converge in distribution to two independent Poisson vari-
ables with parameters ν/2 and ν2/4, respectively, where

ν =
E[D(D − 1)]

E[D]
.

[Theorem I.7.12, Prop. I.7.13]

B Proof: moment method (Bollobás 80, Janson 09) or Chen-Stein
method (Angel-Holmgren-vdH 16).



Preferential attachment
model

B Albert-Barabási (1999):
Emergence of scaling in random networks (Science).
34013 cit. (12-08-2019).

B Bollobás, Riordan, Spencer, Tusnády (2001):
The degree sequence of a scale-free random graph process (RSA)
852 cit. (12-08-2019).

[Yule (1925) and Simon (1955) already introduced similar models.]

In preferential attachment models, network is growing in
time, in such a way that new vertices are more likely to
be connected to vertices that already have high degree.

Rich-get-richer model.



Preferential attachment
model

B Albert-Barabási (1999):
Emergence of scaling in random networks (Science).
34013 cit. (12-08-2019).

B Bollobás, Riordan, Spencer, Tusnády (2001):
The degree sequence of a scale-free random graph process (RSA)
852 cit. (12-08-2019).

[Yule (1925) and Simon (1955) already introduced similar models.]

In preferential attachment models, network is growing in
time, in such a way that new vertices are more likely to
be connected to vertices that already have high degree.

Old-get-richer model.



Preferential attachment
At time n, single vertex is added with m edges emanating from it.
Probability that edge connects to ith vertex is proportional to

Di(n− 1) + δ,

where Di(n) is degree vertex i at time n, δ > −m is parameter.

Yields power-law degree
sequence with exponent
τ = 3 + δ/m > 2.

Bol-Rio-Spe-Tus 01 δ = 0,

DvdEvdHH09,... 1 10 100 1000
1

10

100

1000

10000

 100000

m = 2, δ = 0, τ = 3, n = 106



Degrees in PAM
Bollobás-Riordan-Spencer-Tusnády 01: First to give proof for δ = 0.

Tons of subsequent proofs, many of which follow same key steps:

B A clever Doob martingale:

Mn = E[Nk(t) | PAn],

where Nk(t) is number of vertices of degree k at time t, combined
with Azuma-Hoeffding to prove concentration. See Section I.8.4 for
details.

B Analysis of means: Identify asymptotics E[Nk(t)] and prove that

E[Nk(t)]

t
→ pk.

Many different ways to do this. See Section I.8.5 for details.



Albert-László Barabási

“...the scale-free topology is evidence of organizing princi-
ples acting at each stage of the network formation. (...)
No matter how large and complex a network becomes, as
long as preferential attachment and growth are present it will
maintain its hub-dominated scale-free topology.”



Conclusion networks

Many real-world networks share important features:

scale-free and small-world paradigms.

Often, suggestion of infinite-variance degrees.

Models invented to describe properties:
Configuration model and generalized random graph.

Models are flexible in their degree structure.



Lecture 2:

Local weak convergence:
theory



Network models I
B Configuration model with clustering:
Input per vertex i is number of simple edges, number of triangles,
number of squares, etc. Then connect uniformly at random.

Result: Random graph with (roughly) specified degree, triangle,
square, etc distribution over graph.

Application: Social networks?

B Small-world model:
Start with d-dimensional torus (=circle d = 1, donut d = 2, etc).
Put in nearest-neighbor edges. Add few edges between uniform
vertices, either by rewiring or by simply adding.

Result: Spatial random graph with high clustering, but degree dis-
tribution with thin tails.
Application: None? Often used by neuroscientists.



Network models II
B Random intersection graph:
Specify collection of groups. Vertices choose group memberships.
Put edge between any pairs of vertices in same group.

Result: Flexible collection of random graphs, with high clustering,
communities by groups, tunable degree distribution.

Application: Collaboration graphs?

B Spatial preferential attachment model:
First give vertex uniform location. Let it connect to close by vertices
with probability proportionally to degree.

Result: Spatial random graph with scale-free degrees and high
clustering.
Application: Social networks, WWW?



Hierarchical CM
Vertex i is blown up to represent small community graph.
Connect inter-community half-edges uniformly at random.

Result: Random graph with (roughly) specified communities.

Application: Many real-world networks on mesoscopic scale.
Stegehuis+vdH+vL16 Scientific Reports, Phys. Rev. E.

a) c)b)

Network HCM HCM∗



Percolation on HCM
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Local weak convergence
B Key technique in analyzing sparse graphs is

local weak convergence.

Makes statement that local neighborhoods in CM are like BP exact.
See Chapter II.2 for intro LWC and Section II.4.2 for LWC CM.†

B Applies much more generally:
- General IRG: Section II.3.2.
- PAM: Berger-Borgs-Chayes-Saberi (14) and Section II.5.2.

B LWC holds when

1

n

∑
i∈[n]

1{Br(i)'H?}
P−→ P(Br(∅) ' H?),

for any rooted graph H?, where Br(i) is r-neighborhood of i ∈ [n]

and Br(∅) is r-neighborhood of ∅ in some limiting rooted random
graph.



Overview local weak
convergence

Local weak convergence implies that

B|Cmax|/n is at most P(Br(∅) > 0∀r) (=one-sided LLN);
B proportion neighborhoods of specific shape converges;
B various continuous functionals in local weak convergence topol-
ogy converge as well.

Examples include log partition function Ising model, PageRank dis-
tribution, spectral distribution and through somewhat more work
and under more restrictions, densest subgraph.

B Many global graph parameters, such as proportion vertices in
giant component or graph distances do not directly converge, but

LWC gives good starting point analysis.



Local weak convergence:
theory

? Literature:
Aldous+Steele (2004): Objective Method.
Benjamini-Schramm (2001): Recurrence of random walks.
Lovasz (2012): More combinatorial perspective.

B Metric on rooted graphs in Section II.2.1.

B Local weak convergence of deterministic graphs in Section II.2.2.

B Local weak convergence of random graphs in Section II.2.3.

B Consequences of local weak convergence in Section II.2.4?



Lecture 3:

Local weak convergence
of random graphs



Neighborhoods in CM

B Important ingredient in proof is description local neighborhood of
uniform vertex U1 ∈ [n]. Its degree has distribution DU1

d
= D.

B Take any of DU1 neighbors a of U1. Law of number of forward
neighbors of a, i.e., Ba = Da − 1, is approximately

P(Ba = k) ≈ (k + 1)∑
i∈[n] di

∑
i∈[n]

1{di=k+1}
P−→ (k + 1)

E[D]
P(D = k + 1).

Equals size-biased version of D minus 1. Denote this by D? − 1.



Local tree-structure CM

B Forward neighbors of neighbors of U1 are close to i.i.d. Also
forward neighbors of forward neighbors have asymptotically same
distribution...

B Conclusion: Neighborhood looks like branching process with off-
spring distribution D? − 1 (except for root, which has offspring D.)

B Tool to make this precise is

local weak convergence.

B Give proof in Section II.4.2.



Local weak conv. PAM
B Pólya urn: Start with r0, b0 red and blue balls. Draw

red ball w.p. proportional to number of red balls plus ar,
blue ball w.p. proportional to number of blue balls plus ab.

Replace by two balls of same color. Then number of red balls at
time n equals

Rn ∼ r0 + Bin(n, U),

where U is Beta random variable with parameters (r0 + ar, b0 + ab).

B Pólya urns: Can give a Pólya urn description of

ratio degree of vertex k compared to total degree vertices [k].

B Gives Pólya urn description of PAM at time n that gives precise
law in terms of n Beta variables and independent edges.

B Allows to give local weak limit of PAM in terms of multitype BP
with continuous types (Ber-Bor-Cha-Sab 14)



Lecture 4:

The giant component in
random graphs is almost local



Phase transition CM
Let Cmax denote largest connected component in CMn(d).

Theorem 1. [Mol-Ree 95, Jan-Luc 07, Theorem II.4.4]. When Con-
ditions I.7.8(a-b) hold,

1

n
|Cmax|

P−→ ζ,

where ζ > 0 precisely when ν > 1 with ν = E[D(D − 1)]/E[D].

B Note: ζ > 0 always true when ν =∞ : Robustness!

B dmin = mini∈[n] di ≥ 3 : CMn(d) with high probability connected.
Wormald (81), Luczak (92).

B dmin = mini∈[n] di ≥ 2 : n− |Cmax|
d−→ X for non-trivial X.

Luczak (92), Federico-vdH (17).



Phase transition for GRG
Let Cmax denote largest connected component in GRGn(w).

Theorem 2. [Chu-Lu 03, Bol-Jan-Rio 07]. When Conditions
I.6.4(a-b) hold, there exists ζ < 1 such that

1

n
|Cmax|

P−→ ζ,

where ζ > 0 precisely when ν > 1, where

ν =
E[W 2]

E[W ]
.

B Note: ζ > 0 always true when ν =∞ : Robustness!

B Bol-Jan-Rio 07 much more general.



Giant is almost local

B Giant is almost local in Section II.2.5, specifically
Corollary II.2.19, and Theorems II.2.20 and II.2.22.

Discussion of Erdős-Rényi random graph in Section II.2.5.1.

B Intuitive explanation how this can be extended to CM.



Lecture 5:

Small-world phenomenon
on random graphs

Joint work with:
B Henri van den Esker (TU Delft)
B Gerard Hooghiemstra (TU Delft)
B Piet Van Mieghem (TU Delft)
B Dmitri Znamenski (Eurandom, now Philips Research)
B Alessandro Garavaglia (TU/e)
B Francesco Caravenna (Biccoca Milano)



Giant is almost local

B Giant is almost local in Section II.2.5, specifically
Corollary II.2.19, and Theorems II.2.20 and II.2.22.

Discussion of Erdős-Rényi random graph in Section II.2.5.1.

B Intuitive explanation how this can be extended to CM.



Phase transition CM
Let Cmax denote largest connected component in CMn(d).

Theorem 1. [Mol-Ree 95, Jan-Luc 07, Theorem II.4.4]. When Con-
ditions I.7.8(a-b) hold,

1

n
|Cmax|

P−→ ζ,

where ζ > 0 precisely when ν > 1 with ν = E[D(D − 1)]/E[D].

B Note: ζ > 0 always true when ν =∞ : Robustness!

B dmin = mini∈[n] di ≥ 3 : CMn(d) with high probability connected.
Wormald (81), Luczak (92).

B dmin = mini∈[n] di ≥ 2 : n− |Cmax|
d−→ X for non-trivial X.

Luczak (92), Federico-vdH (17).



Connectivity PAM

Theorem 3. [Theorem II.4.16] Let m ≥ 2. Then, there exists a ran-
dom time T <∞, such that the preferential attachment model is
connected for all times after T.

B Not necessarily true when m = 1:

Depends on precise PA rule.

B Analogy: CMn(d) with high probability connected when dmin ≥ 3.



Graph distances CM
Hn is graph distance between uniform pair of vertices in graph.

Theorem 4. [vdHHVM05, Theorem II.7.1]. When Conditions
I.7.8(a-c) hold and ν = E[D(D − 1)]/E[D] > 1, conditionally on
Hn <∞,

Hn

logν n

P−→ 1.

B For i.i.d. degrees having at most power-law tails, fluctuations are
bounded.

Theorem 5. [vdHHZ07, Norros-Reittu 04, Theorem II.7.2]. Let
Conditions I.7.8(a-b) hold. When τ ∈ (2, 3), conditionally on
Hn <∞,

Hn

log log n

P−→ 2

| log (τ − 2)|
.

B vdH-Komjáthy16: For power-law tails, fluctuations are bounded
and do not converge in distribution.



Six degrees of separation
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Diameter CM

Theorem 6. [Fernholz-Ramachandran 07, Theorem II.7.16]. Un-
der Conditions I.7.8(a-b), there exists b s.t.

diam(CMn(d))

log n

P−→ 1

log(ν)
+ 2b.

Here b > 0 precisely when P(D ≤ 2) > 0.

Theorem 7. [Caravenna-Garavaglia-vdH 17, Theorem II.7.17]. Un-
der Conditions I.7.8(a-b), when τ ∈ (2, 3) and P(D ≥ 3) = 1 and with
dmin = min{dv : v ∈ [n]},

diam(CMn(d))

log log n

P−→ 2

| log(τ − 2)|
+

2

log(dmin − 1)
.



Graph distances GRG
Theorem 8. [Chung-Lu 03, Bol-Jan-Rio 07, vdEvdHH08, Thm.
II.6.2] When Conditions I.6.3(a-c) hold and ν = E[W 2]/E[W ] > 1,

conditionally on Hn <∞,

Hn

logν n

P−→ 1.

Under somewhat stronger conditions, fluctuations are bounded.

Theorem 9. [Chung-Lu 03, Norros-Reittu 06, Theorem II.6.3].
When τ ∈ (2, 3), and Conditions I.6.3(a-b) hold, under certain fur-
ther conditions on Fn, and conditionally on Hn <∞,

Hn

log log n

P−→ 2

| log (τ − 2)|
.

B Similar extensions for diameter as for CM (always logarithmic.)
Again Bol-Jan-Rio 07 prove Theorem 7 in highly general setting.



Distances PA models
B Results CM and GRG are very alike, with CM having more gen-
eral behavior (e.g., connectivity). Sign of wished for universality.

Non-rigorous physics literature predicts that scaling
distances in preferential attachment models similar
to the one in configuration model with equal

power-law exponent degrees.

B General question still wide open, but signs point in this direction.

B PAM tends to be much harder to analyze, due to

time dependence.



Distances PA models
Theorem 10 [Bol-Rio 04]. For all m ≥ 2 and τ = 3,

diam(PAm,0(n)) =
log n

log log n
(1 + oP(1)), Hn =

log n

log log n
(1 + oP(1)).

Theorem 11 [Dommers-vdH-Hoo 10]. For all m ≥ 2 and τ ∈ (3,∞),

diam(PAm,δ(n)) = Θ(log n), Hn = Θ(log n).

Theorem 12 [Dommers-vdH-Hoo 10, Der-Mon-Mor 12, Car-Gar-
vdH17]. For all m ≥ 2 and τ ∈ (2, 3),

Hn

log log n

P−→ 4

| log (τ − 2)|
,

diam(PAm,δ(n))

log log n

P−→ 4

| log (τ − 2)|
+

2

logm
.

Universality!



Structure local limit CM
B E[D2] <∞ : Finite-mean BP, which has exponential growth of
generation sizes:

ν−kZk
a.s.−→M ∈ (0,∞),

on event of survival.

? Explains why distances random graph grow logarithmically.

B τ ∈ (2, 3) : Infinite-mean BP, which has double exponential
growth of generation sizes:

(τ − 2)k log(Zk ∨ 1)
a.s.−→ Y ∈ (0,∞),

on event of survival.

? Explains why distances grow doubly logarithmically.

B Indication of proof...†



Structure local limit CM

B Logarithmic upper bound on graph distances CM in Theorem
II.7.5.

B Branching processes with infinite mean in Theorem II.7.14.

B Diameter of core in CM in Theorem II.7.9.



Conclusion small-worlds

Many real-world networks share important features:

scale-free and small-world paradigms.

Often, suggestion of infinite-variance degrees.

Models invented to model/explain properties:
Configuration model, generalized random graph and

preferential attachment.

Distances are remarkably similar across models.
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