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CHAPTER 1

Scale-free random graphs

In this course we are concerned with sequences (GN ) of finite random graphs (also called a network)
such that the number of vertices goes to infinity as N → ∞ but the empirical degree distribution

1

|GN |
!

v∈GN

δdegree(v)

converges to a limiting probability distribution µ. Such a network is called scale-free if

µ(x,∞) = x1−τ+o(1) as x → ∞,

for some τ > 2, which we call the power-law exponent. The first lecture will look at abstract graphs,
but for most of the course the vertices are points in geometric space and the structure of the graph
depends on its embedding into space, whence the graphs are called geometric.

1. A simple preferential attachment model

There is an abundance of models for scale-free networks, but a particularly interesting concept which
is naturally leading to scale-free networks is preferential attachment. The idea, popularised 20 years
ago by Barabasi and Albert, is that a graph is built by adding new vertices, which connect themselves
at random but preferably to powerful vertices. In the classical models vertices arriving early are the
most powerful. I will now discuss the probably simplest incarnation of preferential attachment.∗

The model. Vertices arrive one-by-one and vertex n attaches to each vertex m ∈ {1, . . . , n − 1}
independently with a probability proportional to m−γ for some parameter 0 < γ < 1 parametrising
the strength of the preference of early vertices. The proportionality factor is chosen so that the
expected number of connections of a vertex is asymptotically constant. As

n−1!

m=1

m−γ ∼ cn1−γ

the proportionality factor has to be of order nγ−1. Altogether, the connection probabilities of two
distinct vertices with number (or rank) i and j is

pij = β(i ∨ j)γ−1(i ∧ j)−γ

and all connections are independent.

Degree distribution. To check that this network is indeed scale-free we let Xij be the indicator that
there is an edge between vertices ranked i and j. We look at a vertex with rank k = aN . Its expected
degree is then

N!

m=1

pm,aN =

aN!

m=1

β(aN)γ−1m−γ +

N!

m=aN

βmγ−1(aN)−γ ∼ d(a) := β
"

1
1−γ + 1

γ (a
−γ − 1)

#
.

∗This is a significant simplification of the model studied in [10], and as such not published.

3



4 1. SCALE-FREE RANDOM GRAPHS

By the Chernoff inequality

P
"$$$

N!

m=1

Xm,aN − d(a)
$$$ > δd(a)

#
≤ 2e−δ2d(a)/3.

As for different k these events are all independent the law of large numbers gives that the symmetric
difference of the set of vertices with degree ≥ d(x) and the set of vertices with rank ≤ xN contains

a proportion o(x) of vertices, as x gets small. As d−1(x) = x−1/γ+o(1) our preferential attachment
model is therefore scale-free with power-law exponent

τ = 1 +
1

γ
.

2. Weak local limits: Random trees

The main tool in analysing scale-free random graphs as above is local approximation by a (nice)
random tree. Picking a vertex uniformly at random from GN we look at a graph neighbourhood of
depth aN of this vertex, where aN is slowly increasing. The distributional limit of these rooted random
graphs, if it exists, is called the weak local limit. In our case it is the genealogical tree of a killed
branching random walk, as we now explain.

To keep a record of the rank of the vertices we see when exploring a neighbourhood of a vertex define

tn =

n−1!

k=1

1

k
∼ log n

and the mapping
φN : {1, . . . , N} → (−∞, 0], n *→ tn − tN .

A uniformly chosen vertex is then mapped into a position which for large N converges to the law of
logU for U uniform on (0, 1), which equals −X for X standard exponentially distributed.

We now fix a point uN ∈ GN and look at the point process consisting of all points φN (j) with j ∼ uN .
The claim is that this process converges to log u+ π restricted to (−∞, 0], where π is a Poisson point
process with intensity measure

ν(dz) = β(ez(1−γ)1z<0 + ezγ1z>0) dz.

Proof. Take a < b < u, then

P
"
uN does not connect to any j ∈ (aN, bN)

#
=

bN%

i=aN

"
1− β(uN)γ−1i−γ

#

∼ exp
"
− β(uN)γ−1

bN!

i=aN

i−γ
#
→ exp

"
− βuγ−1

& b

a
x−γ dx

#
= exp

"
− β

& log b−log u

log a−log u
ez(1−γ) dz

#
.

Hence the probability that there are no points φN (j) ∈ [log a, log b] with j ∼ un converges to the
probability that π([log a− log u, log b− log u]) = 0 and, by the same calculation, the expected number
of points φN (j) ∈ [log a, log b] with j ∼ un converges to the expectation of π([log a−log u, log b−log u])
as well. By Kallenberg’s theorem, see e.g. [23, Proposition 3.22], this implies convergence to the
Poisson process log u+ π on (−∞, log u] and a similar calculation gives convergence on (log u, 0]. □

Suppose we have explored the offspring of uN and move to the next generation. If vN is an offspring
vertex, then we can do the same calculation omitting the vertices that we have already seen in the
exploration so far. If these are o(N) many we also get offspring distributed like an independent point
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process with distribution log v + π restricted to (−∞, 0]. As a result we can couple the exploration
process up to some generation aN to a killed branching random walk on (−∞, 0] started with one
particle in position −X, where particles in position v have Poisson(ν(−∞,−v)) many offspring in
position shifted by a step distribution distributed according to ν|(−∞,−v)/ν(−∞,−v).

One of the principal questions of interest in the theory of (sparse) random graphs (GN ) is whether
there exists a giant component, i.e. whether the proportion of vertices in the largest component of GN

converges to a strictly positive limit. We can use our coupling to show that this limit agrees with the
survival probability of our killed branching random walk. By general branching process theory [4] a
killed branching random walk dies out almost surely iff there exists α such that

Aα :=

& ∞

−∞
e−αtν(dt) < 1.

This can be calculated as

Aα = β
'& 0

−∞
e−αz+(1−γ)z dz +

& ∞

0
e−αz+γz dz

(
,

which is finite only if γ < α < 1− γ. Such a choice is only possible if γ < 1
2 and in this case

=
β

1− α− γ
+

β

α− γ
.

This expression is minimal if α = 1
2 and then equals 4β

1−2γ . Hence no giant component exists iff

γ <
1

2
and β ≤ 1

4
− γ

2
.

In particular if γ ≥ 1
2 then a giant component exists even if the edge density (i.e. the total number

of edges per vertex, which is proportional to β in our model) is arbitrarily small. A feature common
to most models that are locally tree-like is that there is a giant component irrespective of the particle
density if τ < 3 but not if τ > 3. This turns out different in the spatial models we consider below.

3. Inhomogeneous random graphs: Other kernels

There are other ways of defining scale-free networks, and our focus is on the class of inhomogeneous
random graphs. These graphs are defined by a symmetric kernel p : (0, 1] × (0, 1] → [0,∞) which is
non-decreasing in every coordinate. The vertex set of GN is again the set {1, . . . , N} and distinct
vertices i, j are connected by an edge independently with probability

pij =
1

N
p
' i

N
,
j

N

(
.

The following kernels all give scale-free networks with power-law exponent τ = 1 + 1
γ :

• Preferential attachment kernel: p(x, y) = β(x ∨ y)γ−1(x ∧ y)−γ ,
• Product kernel: p(x, y) = βx−γy−γ ,
• Strong kernel: p(x, y) = β(x ∧ y)−γ ,
• Weak kernel: p(x, y) = β(x ∨ y)−γ−1.

Most other models are variants of inhomogeneous random graphs with suitable kernels (and often with
minor dependencies that do not influence the qualitative behaviour of the model). For example, the
configuration model is intimately related to the product kernel. Note that our model (corresponding to
the preferential attachment kernel) is the only one which is dynamical in the sense that the connection
probabilities do not depend on N .



CHAPTER 2

Spatial preferential attachment

The fact that the scale-free networks we looked at so far are locally tree-like was very useful for the
analysis. But it is not desirable for modelling purpose, as most networks have clustering, i.e. the
probability that two vertices in the neighbourhood of a given vertex are connected is much larger
than the probability that two arbitrary vertices are connected. Spatial models address this problem:
Points are now embedded in space and the probability of edges connecting two points depends on
their geometric distance, in that far away points are much less likely to be connected. This creates
the desired clustering effect in a natural way, but makes the model harder to analyse.

Geometric random graphs like this have been analysed for many years, but the intensive study of
graphs that are both scale-free and geometric is relatively recent. We will start by having a closer look
at a simple version of a geometric preferential attachment model, the material is taken from [14].

1. The simple spatial preferential attachment model

As our vertices are placed in continuous space it is natural to also let time be continuous, so that we
are dealing with a growing sequence of graphs (Gt)t>0. The vertices of the graphs are embedded in
the d-dimensional torus T1 = (−1/2, 1/2]d of side-length one, endowed with the torus metric d.

At time t = 0 the graph G0 has no vertices or edges. Then

• Vertices arrive according to a standard Poisson process in time and are placed independently
uniformly on the d-dimensional torus T1.

• Given the graph Gt− a vertex x = (x, t) born at time t and placed in position x is connected
by an edge to each existing node y = (y, s) independently with probability

ρ
"
β−1sγt1−γ d(x, y)d

#
,

where ρ : [0,∞) → [0, 1] is a nonincreasing profile function standardised to satisfy
&

Rd

ρ(|x|d) dx = 1.

With these choice of parametrisation the degree distribution of (Gt) does not depend on the choice of
ρ and is scale-free with power-law exponent τ = 1 + 1

γ as before. Indeed, the expected degree of a

vertex x = (x, s) at time t is
& s

0
dr

&

T
dy ρ

"
β−1rγs1−γ d(x, y)d

#
+

& t

s
dr

&

T
dy ρ

"
β−1sγr1−γ d(x, y)d

#
,

and when t → ∞ and s
t → a we obtain

= s

& 1

0
dr

&

T
dy ρ

"
β−1rγs d(0, y)d

#
+ s

& t/s

1
dr

&

T
dy ρ

"
β−1sr1−γ d(0, y)d

#

−→
& 1

0
drβr−γ

&

Rd

ρ(|y|d) dy +
& 1/a

1
drβrγ−1

&

Rd

ρ(|y|d) dy =
β

1− γ
+

β

γ
(a−γ − 1).
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2. WEAK LOCAL LIMIT: THE AGE-DEPENDENT RANDOM-CONNECTION MODEL 7

We can therefore use the profile function ρ to tune the influence of the geometry independently from
the degree distribution, the lighter its tails the stronger the geometric restrictions. Most variants of
spatial preferential attachment in the literature are using ρ(x) = 1

2a [0,a](x) for a ≥ 1/2. In this case,
a vertex born at time s is linked to a new vertex at time t with probability 1/(2a) if their positions
are within distance (1tβa (t/s)

γ)1/d. However, for our ultimate purpose this choice is too restrictive.
We normally assume that ρ is regularly varying at infinity with index −δ, for some parameter δ > 1
as in this case we will see interesting phase transitions.

2. Weak local limit: The age-dependent random-connection model

We will find the weak local limit of our spatial preferential attachment network using a very elegant
trick. Despite the fact that this limit is no longer a tree, it is still a useful and fascinating object, the
age-dependent random connection model.

Let X denote a Poisson point process of unit intensity on Rd × (0,∞) and Ta ⊂ Rd the centred torus
of volume a endowed with the torus metric. We say a point x = (x, s) ∈ X is born at time s and
placed at position x. For t > 0 write Xt for X ∩ (T1 × (0, t]), and note that this coincides with the
set of vertices on the torus born by time t. Given X we introduce a family V = (Vx,y) of independent
random variables, uniformly distributed on (0, 1), indexed by the set of potential edges and we denote
by Vt its restriction to indices in Xt ×Xt. We can define G (Xt,Vt) with vertex set Xt placing an edge
between x = (x, u) and y = (y, s) with s < u, if and only if

Vx,y ≤ ρ
"
β−1sγu1−γ d(x, y)d

#
. (2.1)

Observe that the graph sequence (G (Xt,Vt))t>0 has the law of our spatial preferential attachment
model and is therefore constructed on the probability space carrying the Poisson process X and the
sequence V. Moreover, it extends to a deterministic mapping associating a graph structure to any
locally finite set of points in Y ⊆ Ta × (0,∞) and sequence V in (0, 1), where x, y are connected if
and only if (2.1) holds. We permit the case a = ∞, with T∞ = Rd.

For finite t > 0, we define the rescaling mapping

ht : T1 × (0, t] −→ Tt × (0, 1],

(x, s) *−→
"
t1/dx, s/t

#
,

which expands space by a factor of t1/d and time by a factor of 1/t. The mapping ht operates
canonically on the set Xt as well as on Vt by ht(Vt)(ht(x), ht(y)) := Vt(x,y), and also on graphs with
vertex set in Xt by mapping points x to ht(x) and introducing an edge between ht(x) and ht(y) if and
only if there is one between x and y. As

ρ
"
β−1(s/t)γ(u/t)1−γ d(t1/dx, t1/dy)d

#
= ρ

"
β−1sγu1−γ d(x, y)d

#

the operation ht preserves the rule (2.1) and therefore

G (ht(Xt), ht(Vt)) = ht(G (Xt,Vt)).

In plain words, it is the same to construct the graph and then rescale the picture, or to first rescale
the picture and then construct the graph on the rescaled picture.

We now denote X t = X ∩ (Tt × (0, 1]) and by Vt the restriction of V to indices in X t ×X t. This gives
rise to a graph G t := G (X t,Vt). As ht(Xt) is a Poisson point process of unit intensity on Tt×(0, 1] and
ht(Vt) are independent uniform marks attached to the potential edges, the graph G t has the same law
as ht(Gt). However, the process (G t)t>0 behaves differently from the original process (Gt)t>0. Indeed,
while the degree of any fixed vertex in (Gt)t>0 goes to infinity, the degree of any fixed vertex in (G t)t>0

stabilizes and the graph sequence converges to the graph G∞ := G (X∞,V∞).
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The graph G∞ is the age-dependent random connection model. Like in the classical geometric random
graph models points are placed according to a Poisson point process Y ⊆ Rd, but now every point
additionally carries a mark drawn independently from the uniform distribution on (0, 1). Given points
and marks, we independently connect two points in position x with mark u, resp. position y with
mark s, with probability

ρ
"
β−1(s ∨ u)1−γ(s ∧ u)γ · |x− y|d

#
.

We define the rooted graph G∞
0 as the Palm version of the age-dependent random connection model

G∞; which differs from G∞ by an additional point with uniform mark placed at the origin. By a law
of large numbers as in Penrose and Yukich [22], for any bounded, ”local” nonnegative function H
acting on locally finite rooted graphs,

lim
t→∞

1

t

!

x∈Gt

H(θxGt) = E[H(G∞
0 )] in probability, (2.2)

where θx acts on points y = (y, s) as θx(y) = (y − x, s) and on graphs accordingly. This means
precisely that G∞

0 is the weak local limit of (Gt)t>0.

3. Clustering in the spatial preferential attachment model

If G is a finite graph, we call a pair of edges in G a wedge if they share an endpoint (called its tip). To
show that the age-based spatial preferential attachment model is clustering we compare the number of
triangles and wedges with tip at a fixed vertex x. For a vertex x with at least two neighbours, define
the local clustering coefficient of a graph G as

clocx (G) :=
Number of triangles in G containing vertex x

Number of wedges with tip x in G
,

which is also an element of [0, 1]. Let V2(G) ⊆ G be the set of vertices in G with degree at least two,
and define the average clustering coefficient by

cav(G) :=
1

|V2(G)|
!

x∈V2(G)

clocx (G).

For the average clustering coefficient we then get from the weak local limit theorem (2.2),

cav(Gt) −→
& 1

0
P
)
(X(1)

u , S(1)
u ) ∼ (X(2)

u , S(2)
u )

*
π(du),

in probability as t → ∞, where (X(1)
u , S(1)

u ) resp. (X(2)
u , S(2)

u ) are two independent random variables on
Rd × [0, 1] with distribution

1

λu

'
ρ(β−1s1−γuγ |x|d) (u,1](s) + ρ(β−1u1−γsγ |x|d) [0,u](s)

(
dx ds, (2.1)

where λu = β
γ (

2γ−1
1−γ + u−γ) is the normalising factor, and π is the probability measure on [0, 1] with

density proportional to 1 − e−λu − λue
−λu . We see that the average clustering coefficient of (Gt)

converges to a positive constant indicating strong clustering of the model.



CHAPTER 3

Scale-free geometric random graphs

We now look at generalisation of the age-dependent random-connection model. The age parameter
is replaced by a mark, which can play the role of a weight or radius. Although the behaviour of the
general models can differ vastly, there is some common ground and synergy in studying them together.

1. Weight-dependent random connection model

We introduce the weight-dependent random connection model alternatively known as kernel-based
random geometric graphs. The vertex set of the graph G = Gβ is a Poisson point process of unit

intensity on Rd × (0, 1]. We think of a Poisson point x = (x, t) as a vertex at position x with mark t.
Two vertices x and y are connected by an edge in G independently of any other (possible) edge with
probability ϕ(x,y). Here, ϕ is a connectivity function

ϕ : (Rd × (0, 1])× (Rd × (0, 1]) → [0, 1],

of the form
ϕ(x,y) = ϕ((x, t), (y, s)) = ρ(g(t, s)|x− y|d)

for a non-increasing, integrable profile function

ρ : R+ → [0, 1]

and a kernel
g : (0, 1]× (0, 1] → R+,

which is symmetric and non-decreasing in both arguments, so that we give preference to short edges
or edges that are connected to vertices with large weight. We assume (without loss of generality) that

&

Rd

ρ(|x|d) dx = 1. (3.1)

Then, the degree distribution of a vertex only depends on the function g. Indeed, the expected degree
of a vertex x = (x, s) is

& 1

0
dr

&

Rd

dy ρ
"
g(r, s)|x− y|d

#
=

& 1

0
dr

&

Rd

dy ρ
"
|g(r, s)1/dy|d

#

=

& 1

0
dr g(r, s)−1

&

Rd

ρ(|x|d) dx =

& 1

0
g(r, s)−1dr.

While the profile function ρ has no influence on the degree distribution, it does influence the intensity
of long edges in the graph. Roughly speaking, the heavier the tails of ρ the weaker the influence of
the geometry. If ρ is an indicator function the model is purely geometric, i.e. whether x ∼ y depends
only on the vertex positions in Rd × (0, 1] and not on extra randomness. But when the tails of ρ are
decaying polynomially at infinity long edges can occur spontaneously and geometric restrictions are
softened. These are known as weak links in the networks literature.

9



10 3. SCALE-FREE GEOMETRIC RANDOM GRAPHS

2. Some interesting kernels

We next give explicit examples for the function g. We define the functions in terms of two parameters
γ ∈ (0, 1) and β ∈ (0,∞). The parameter γ describes the strength of the influence of the vertices’
marks on the connection probability; the larger γ, the stronger the preference of connecting to vertices
with small mark. All kernel functions we consider lead to models that are scale-free with power law
exponent

τ = 1 +
1

γ
,

see [16, 14]. In particular, all graphs are locally finite, i.e. every vertex has finite degree. The
parameter β is used to control the edge density, i.e. increasing β increases the expected number of
edges connected to a typical vertex [14]. Our focus is on the following examples, see [16].

• The sum kernel, defined as

g(s, t) = β−1(s−γ/d + t−γ/d)−d.

The interpretation of (βas−γ)1/d, (βat−γ)1/d as random radii together with ρ(r) = [0,a](r)
leads to the Boolean model in which two vertices are connected by an edge when their
associated balls intersect. Indeed, with r(x) = (βa)1/ds−γ/d we have

g(s, t)|x− y|d ≤ a ⇔ |x− y| ≤ (βa)1/ds−γ/d + (βa)1/dt−γ/d

⇔ |x− y|
r(x) + r(y)

≤ 1.

A natural generalisation replaces the hard constraint by a soft constraint

|x− y|
r(x) + r(y)

≤ X,

where X is an independent random variable for every pair x,y of vertices. If ρ is the
(decreasing) tail probability function of aXd then U = ρ(aXd) is uniformly distributed and
hence the probability of a connection between x and y is

ρ(g(t, s)|x− y|d).
We call this model the soft Boolean model. It allows for weak links between far away vertices
even if they are not particularly powerful.

• The strong kernel, defined as

g(s, t) = β−1(s ∧ t)γ .

Here, in the case of an indicator profile function as above, two vertices are connected by
an edge when one of them lies inside the ball associated with the other one. As the ratio
of strong kernel and sum kernel is bounded from zero and infinity they show qualitatively
similar behaviour.

• The product kernel, defined as

g(s, t) = β−1sγtγ .

This is a continuum space version of scale-free percolation, a model introduced by Deijfen,
van der Hofstad, Hooghiemstra [8]. Results specifically for the continuum can be found,
for example, in [9, 7]. Note that the much studied random hyperbolic graphs can also be
mapped on this model, see [7, 21].
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• The preferential attachment kernel, defined as

g(s, t) = β−1(s ∨ t)1−γ(s ∧ t)γ (3.1)

gives rise to the age-dependent random connection model introduced by Gracar et al. [14]. As
seen above this model is the weak local limit of the age-based spatial preferential attachment
model. In this model, s and t play the role of the vertices’ birth times in the underlying
dynamic network. We therefore also refer to vertices with small s as old vertices.

• The weak kernel, defined as

g(s, t) = β−1(s ∨ t)1+γ

gives rise to a model where connections require both kernels to be strong to make a connection
likely. It generalises the scale-free random graph model of Yukich [24] by allowing a general
profile function and places points randomly rather than at lattice points. If ρ = 1[0,a] is an
indicator function we connect two vertices (x, s) and (y, t) if both

x ∈ B(y, (aβ)1/dt−
1+γ
d ) and y ∈ B(x, (aβ)1/ds−

1+γ
d ).

• One obtains the classical random connection model or long-range percolation by choosing the
kernel g constant and allowing for a general profile function ρ. As this graph is (interesting
but) not scale-free it is not in our focus in this course. However, in some cases we will be
able to extend methods designed for long-range percolation in our proofs.

As we want to study the influence of long-range effects on the percolation problem, we focus primarily
on profile functions that are regularly varying with index −δ for some δ > 1, that is

lim
r↑∞

ρ(cr)

ρ(r)
= c−δ for all c ≥ 1. (3.2)

3. Exercise 1: The weak kernel: Non-spatial and spatial

(a) Identify the weak local limit of the inhomogeneous random graph with weak kernel and find
the parameters 0 < β, γ < 1 for which these random graphs have a giant component.

(b) Find the parameters for which the weight-dependent random connection model with weak
kernel has an infinite component.

Sketch of solution (a): We still use

tn =

n−1!

k=1

1

k
and the mapping

φN : {1, . . . , N} → (−∞, 0], n *→ tn − tN .

We fix a point uN ∈ GN and look at the point process consisting of all points φN (j) with j ∼ uN .
The claim is that this process converges to the Poisson point process log u+πu with intensity measure

νu(dz) = βu−γ(ez1z<0 + e−γz1z>0) dz.

Take a < b < u, then

P
"
uN does not connect to any j ∈ (aN, bN)

#
=

bN%

i=aN

"
1− β

1

N
u−γ−1

#

→ exp
"
− β(b− a)u−γ−1

#
= exp

"
− βu−γ

& log b−log u

log a−log u
ez dz

#
.
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Take u < a < b < 1, then

P
"
uN does not connect to any j ∈ (aN, bN)

#
=

bN%

i=aN

"
1− β

1

N
(i/N)−γ−1

#

→ exp
"
− β

1

N

bN!

i=aN

(i/N)−γ−1
#
= exp

"
− β

& b

a
z−γ−1 dz

#
= exp

"
− βu−γ

& log b−log u

log a−log u
e−γy dy

#
.

Hence the probability that there are no points φN (j) ∈ [log a, log b] with j ∼ un converges to the
probability that πu([log a − log u, log b − log u]) = 0 and, by essentially the same calculation, the
expected number of points φN (j) ∈ [log a, log b] with j ∼ un converges to the expectation of πu([log a−
log u, log b− log u]). By Kallenberg’s theorem this implies convergence to πu.

The branching process with the given (state-dependent) offspring distribution is the weak local limit
of the inhomogeneous random graph with weak kernel. Note that this is not a branching random walk
anymore. But just restricting attention to the offspring left of the parent one can see that starting
from a sufficiently powerful vertex this process is dominating a supercritical Galton-Watson process
and hence a giant component exists for any γ,β > 0.

Sketch of solution (b): Again such a component exists for any γ,β > 0. The non-spatial model
has taught us that in this case we can build a large connected component by going to more and more
powerful vertices without detour.

Suppose we start with a vertex (x, s), for s small. This vertex is at the center of a ball with volume
of order s−γ−1, it will connect to a vertex (y, t) in this ball with t < s with probability bounded from
zero. For every 1 < η < γ+1 with high probability there exists a large number of vertices (y, t) in this
ball with 0 < t < sη. They all connect independently with a fixed positive probability to (x, s). Hence
with high probability we find an edge from (x, s) to (y, t) with t < sη. As the error probability can be
made exponentially decreasing we can continue this chain ad infinitum and get an infinite component
with a probability that goes to one as the initial mark s ↓ 0.



CHAPTER 4

Phase transitions in scale-free geometric random graphs

1. Existence and non-existence of a subcritical phase

We have seen in Section 1 that in the non-spatial preferential attachment model a subcritical phase,
i.e. a phase where for small β > 0 there is no giant component almost surely, exists if γ < 1

2 but not

if γ ≥ 1
2 . We now ask the analogous question for the weight-dependent random connection model, i.e.

whether
βc := inf{β > 0: Gβ has an infinite component}

is positive. It is shown in [8, 9] that for the product kernel we have the same behaviour as in the
non-spatial models, i.e. if γ < 1

2 , then βc > 0, if γ ≥ 1
2 , then βc = 0. For the weak kernel we always

have βc = 0. The interesting problem are the other kernels. The following result is from [17].

Theorem. For the weight-dependent random connection model with preferential attachment, sum or
strong kernel and parameters δ > 1 and 0 < γ < 1, we have

(i) if γ < δ
δ+1 , then βc > 0,

(ii) if γ > δ
δ+1 , then βc = 0.

Remark 1. This means that the weak links are necessary to make a scale-free geometric random
graph have βc = 0. On the other hand graphs with weak links that are not scale-free (like long-range
percolation) do not have βc = 0 either, so that only the combination of weak links and powerful
vertices is successful in qualitatively changing the graph topology.

Remark 2. With some additional effort the result can be transferred to the spatial preferential attach-
ment model, i.e. the dynamic network that motivates our study.

Sketch of upper bound. We can work with the strong kernel, which dominates the preferential attach-
ment and sum kernels. If γ > δ

δ+1 we can find α ∈ (1, γ
δ(1−γ)). Starting from a vertex x = (x, s) we are

looking for a vertex y = (y, t) with t < sα that is connected to x. Typically, the nearest such vertex
is in a ball of volume s−α, but the probability of y connecting to x is at most ρ( 1β s

(γ−1)α), which is
very small. However, if we look at all vertices in a ball of volume s−γ around y, for each one the
probability that it is connected to both x and y is at least ρ( 1β s

γs−α)ρ( 1β s
αγs−γ) ≫ sγ , so that x and

y are with high probability connected by a path of length two.

Hence, as s ↓ 0 the probability that for a fixed vertex (x0, s0) with s0 < s there exists an infinite
sequence of vertices (x0, s0), (x1, s1), (x2, s2), . . . such that

• sk+1 < sαk and |xk+1 − xk|d < β
2 s

−α
k , and

• (xk, sk) is connected to (xk+1, sk+1) by a path of length two;

converges to one.

13
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1
t

2
t

3
t

4
t

Sketch of lower bound. As the strong kernel and 2d times the sum kernel dominate the preferential
attachment kernel we can work with the latter. A first idea is to bound the expected number of
shortcut-free paths by

E[.shortcut-free paths of length n starting in 0] ≤ (Cβ)n.

This would gives that the origin is not in an infinite component almost surely and hence there is none.
This method works only if γ < 1

2 . If 1
2 ≤ γ < δ

δ+1 the expectation is dominated by highly unlikely
events and a more detailed analysis is needed.

We look at a path of length n and identify its skeleton, see figure above. Let E(x
k↔ y) be the set of

all shortcut-free paths connecting x and y by k − 1 vertices with larger marks, then

Ex,y

+
.E(x

k↔ y)
,
≤ (Cβ)k−1Px,y{x ∼ y}.

The ways in which the k − 1 vertices are inserted is encoded by a binary tree.

t

y1

y3

y2

y0

y4

y6

y5

y2

y3

y4

y6

y5

Add local maxima successively according to the tree using
& 1

t0∨t1
dt2

&

Rd

dy2 ϕ((y0, t0), (y2, t2))ϕ((y2, t2), (y1, t1)) ≤ (Cβ)Py0,y1{y0 ∼ y1}.

Now use a truncated first moment method on the skeletons. We only count paths that are free of
shortcuts. A skeleton S = (x0,x1, . . . ,xm) of length m is regular if its lowest mark is larger than 2−m.
A path is regular if its skeleton is regular. An infinite path (x0,x1, . . . ) is regular if there exists N
such that all paths (x0, . . . ,xn), n ≥ N are regular. By stopping a path when it goes below the
threshold and using our tool, we show that if β is below some positive constant depending only on ρ, γ
and d, almost surely every infinite path is regular. The probability that there exists a regular path
of length n can be bounded by (Cβ)n combining our tool with the first moment method. Hence for
0 < β < 1

C there are no infinite regular paths.
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2. Existence and non-existence of a supercritical phase

As the weight-dependent random connection models are, thanks to the presence of long edges, more
connected than a standard nearest neighbour or Gilbert graph model, the existence of a supercritical
phase is obvious if d ≥ 2. However this is an interesting issue in dimension one, when these models
fail to have an infinite component for any choice of β. This problem is studied by Gracar, Lüchtrath
and Mönch [18].

The idea is that in the long-range percolation model, i.e. when g = 1
β a supercritical phase exists

(which means βc < ∞) when δ < 2 and it does not exist when δ > 2. A heuristic argument for this
is the following. We divide space in boxes of length n, or with n particles. The number of edges
connecting two boxes at distance n is then approximately binomially distributed with parameters n2

and p ≈ 1
βn

−δ. Hence if δ > 2 the probability that no edge of length ℓ ∈ (2n, 100n) across the origin
exists is approximately

(1− p)n
2 ≈ e

− 1
β
n2−δ

≈ 1− 1
βn

2−δ,

whence the complementary event is summable for nk = 50kn0, for k = 1, 2, . . .. By a union bound the
probability that there is no edge crossing the origin is positive. We conclude with the ergodic theorem
that almost surely there is no infinite connected component.

Showing that for δ < 2, when two boxes with n particles at distance of order n are typically connected
by an abundance of edges, there is an infinite component for sufficiently large β, requires an elegant
renormalisation argument of Duminil-Copin, Garban, and Tassion [12]. The rough idea is, for each
scale, to divide the line into overlapping blocks so that each point is covered exactly twice. A block
is called good if it contains a connected component of density θ > 3

4 . In the smallest scale blocks can
be made good with high probability by increasing β. If all subblocks of a block are good, then so is
the big block containing them. The estimates on the connection probability of subblocks are used to
show that if just one subblock is bad, then a block is still likely to be good, and then iteratively use
the bound on the probability that two or more subblocks are bad.

This argument can be extended to our weight-dependent random connection models. Except for
significant technical difficulties, the main thing that changes is the probability p that two vertices in
boxes of length n and at distance n are connected. As the smallest mark in a box of length n is
typically of order 1/n, we assume that such a vertex has uniformly distributed mark on the interval
(1/n, 1) and hence

p =

& 1

1/n
ds

& 1

1/n
dtρ(g(s, t)n),

which leads to the definition of an effective delta

δeff := − lim
n→∞

log
- 1
1/n ds

- 1
1/n dtρ(g(s, t)n)

log n
.

Gracar, Lüchtrath and Mönch [18] prove that

δeff < 2 ⇒ βc < ∞
and

δeff > 2 ⇒ βc = ∞.



16 4. PHASE TRANSITIONS IN SCALE-FREE GEOMETRIC RANDOM GRAPHS

3. Exercise 2: Calculate δeff for the most important kernels.

Check that for δ > 2,

• for the product kernel if γ < 1
2 , then δeff > 2, but if γ > 1

2 , then δeff < 2.

• for the sum and strong kernel if γ < δ−1
δ , then δeff > 2, but if γ > δ−1

δ , then δeff < 2.

• for the preferential attachment kernel if γ < δ−1
δ , then δeff = 2, but if γ > δ−1

δ , then δeff < 2.

Infer that for the sum kernel and strong kernel we have

βc = ∞ if γ <
δ − 1

δ
,

0 < βc < ∞ if
δ − 1

δ
< γ <

δ

δ + 1
,

βc = 0 if γ >
δ

δ + 1
.

For the preferential attachment kernel the behaviour for γ < δ−1
δ is an open problem.



CHAPTER 5

Shortest paths

A hard problem, already for long-range percolation but particularly for scale-free geometric graphs, is
to find the asymptotic length of the shortest path connecting two vertices on the infinite component
that are far away. In the case of long-range percolation, for example, one expects

• shortest paths to be linear in the Euclidean distance if δ > 2,
• and behave like a power of the logarithm of the distance if δ < 2,

see Biskup [5, 6] and Berger [2] for partial results. For weight-dependent random connection models
one expects an ultrasmall phase of shortest paths of loglog length in the Euclidean distance if γ is
above some threshold. In this chapter we focus on this situation. We present results from a recent
paper of Gracar, Grauer and Mörters [15].

1. Ultrasmallness with or without connectors

Let us first see how we can construct short paths between two vertices x and y.

• for the weak kernel and product kernel.

As x is in the infinite component it is connected in finitely many steps with a powerful
vertex (x0, s0), which we use to start a path of increasingly powerful vertices (xn, sn) with
sn = sαn−1 for some α > 1. We do this starting from both x and y until we reach a scale sn
at which points (xn, sn) and (yn, tn) are connected with high (or positive) probability. Then
the path constructed has length of order 2n.

We quickly calculate this for the weak kernel, which is the easiest case, see [8, 9] for calcu-
lations in the product kernel case if γ > 1

2 . In the weak kernel case we do not benefit from
weak links, so we may assume that ρ has bounded support. Suppose x = (x, s) is given, then
to be connected to x points need to be contained in a ball with volume of order s−γ−1. The
most powerful vertices y = (y, t) in this ball have t ≈ sγ+1 and, with high probability, we
can find such a y connecting to x. Hence the connecting strategy works for 1 < α < γ + 1.

• for the strong, sum and preferential attachment kernel.

As indicated in Chapter 3 one cannot connect xn = (xn, sn) directly to a vertex xn+1 =
(xn+1, sn+1) with sn+1 < sαn in these cases. Instead one looks for a connector, a vertex in

a ball of radius ≈ s−γ
n around xn+1 that connects to both xn and xn+1. If γ > δ

δ+1 this is
possible for α ∈ (1, γ

δ(1−γ)).

We obtain that the weight-dependent random connection model is ultrasmall

• for the weak kernel with any γ > 0,
• for the product kernel if γ > 1

2 ,

• for the strong, sum and preferential attachment kernel if γ > δ
1+δ .

17
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2. Non-ultrasmallness and a limit theorem

The criteria above are sharp, i.e. the weight-dependent random connection model is not ultrasmall
for the product kernel if γ < 1

2 , and for the strong, sum and preferential attachment kernel if γ < δ
1+δ .

To prove this and sharp limit theorems in the ultrasmall phase we need lower bounds. While these
can be proved by similar means as in the non-geometric case for the weak and product kernel [10, 7],
they are much harder to come by when we have a genuine dependence on the parameter δ. We get
the following limit theorems, where the principal result is specialising results from [15].

Theorem 5.1. Let G be the weight-dependent random connection model. For x,y ∈ Rd × (0, 1) and

• the strong, sum or preferential attachment kernel with γ > δ
δ+1 we have

d(x,y) = (4 + o(1))
log log |x− y|
log

" γ
δ(1−γ)

# ,

• the product kernel with γ > 1
2 we have

d(x,y) = (2 + o(1))
log log |x− y|
log

" γ
1−γ

# ,

• the weak kernel with 0 < γ < 1 we have

d(x,y) = (2 + o(1))
log log |x− y|
log(1 + γ)

,

under Px,y( · | x ↔ y) with high probability as |x− y| → ∞.

In the last section we illustrate the argument used for all lower bounds, the refined truncated moment
method, in the case of the preferential attachment kernel with γ > δ

δ+1 .

3. Refining the truncated moment method

To prove lower bounds we find an upper bound for Px,y{d(x,y) ≤ 2∆} and choose ∆ as large as
possible while keeping the probability sufficiently small. This event is equivalent to the existence
of at least one path between x and y of length smaller than 2∆. As seen before, estimating its
probability by the expected number of short-cut free paths is only good enough if γ < 1

2 , as otherwise
the expectation is dominated by very unlikely events. We therefore truncate the admissible mark
of the vertices of a possible path between x and y. We define a decreasing sequence (ℓk)k∈N0 of
thresholds and call a tuple of vertices (x0, . . . ,xn) good if their marks satisfy tk ∧ tn−k ≥ ℓk for all
k ∈ {0, . . . , n}. A path consisting of a good tuple of vertices is called a good path. We denote by A(x)

k
the event that there exists a path starting in x which fails this condition after exactly k steps, i.e. a
path ((x, t), (x1, t1), . . . (xk, tk)) with t ≥ ℓ0, t1 ≥ ℓ1, . . . , tk−1 ≥ ℓk−1, but tk < ℓk. Furthermore we
denote by B(x,y)

n the event that there exists a good path of length n between x and y. Then, for given
vertices x and y

Px,y{d(x,y) ≤ 2∆} ≤
∆!

n=1

Px(A
(x)
n ) +

∆!

n=1

Py(A
(y)
n ) +

2∆!

n=1

Px,y(B
(x,y)
n ). (5.1)

This decomposition is the same as for the non-spatial models in [11]. The main feature of our proof is
to show that the geometric restrictions and resulting correlations in our spatial random graphs make
it much more difficult for a path to connect to a vertex with small mark. Hence a larger sequence (ℓk)
of thresholds can be chosen that still makes the two first sums on the right of (5.1) small, allowing
the third sum to be small for a larger choice of ∆.
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The proof of the upper bound suggests that the best way to connect (x, s) to a more powerful vertex
(y, t) is to use a path of length two. In the main technical part of the proof this is verified. This is
difficult as the abundance of other possibilities introduces an entropy term in the estimates that needs
to be controlled by ‘path surgery’ and clever coarse graining. Supposing this can be done, we now show
how the truncation sequences (ℓk)k∈N0 can be constructed using the geometry of the optimal paths.

1

0

x
x2

xn

x2n−2

y
ℓ0

ℓ2

ℓn−2

ℓn

ℓn−2

ℓ2
ℓ0

Figure 1. An example of a path with optimal connection type for γ > δ
δ+1 . The

horizontal axis corresponds to the sequential numbering of vertices on the path, the
vertical axis represents the mark space. Powerful vertices (indicated by black dots)
alternate with connectors (indicated by grey dots).

We now establish an upper bound for the probability of the event A(x)
n that there exists a path starting

in x whose n-th vertex is the first vertex which has a mark smaller than the corresponding ℓn. We
denote by N(x,y, n) the number of paths of length n from x = (x, t) to a vertex y = (y, s) whose
vertices (x1, t1), . . . (xn−1, tn−1) fulfill t2(k+1) < t2k < t2k+1 for all k = 0, . . . , ⌈n/2⌉ − 1 and which is
one half of a good path, i.e. t ≥ ℓ0, t1 ≥ ℓ1, . . . , tn−1 ≥ ℓn−1. The mark of y is not restricted in this
definition and is therefore allowed to be smaller than ℓn. Hence, in this case the event A(x)

n can only
occur for n even and we have, with z0 = x,

Px(A
(x)
n ) ≤

&

Rd×(ℓ2,t0]

dz1 · · ·
&

Rd×(ℓn−2,t0]

dzn/2−1

&

Rd×(0,ℓn]

dzn/2 Ez0,...,zn/2

n/2%

i=1

eK(zi, zi−1, 2),

where, for x = (x, t), y = (y, s), z = (z, u), we set

eK(x,y, 2) =

&

Rd×(t∨s,1)

dz ρ
"
1
β t

γu1−γ |x− z|d
#
ρ
"
1
β s

γu1−γ |y − z|d
#
.

As either |x − z| ≥ |x−y|
2 or |y − z| ≥ |x−y|

2 , we have for two given vertices x,y far enough from each
other, after a calculation

eK(x,y, 2) ≤
1&

t∨s

duρ
"
2−d 1

β t
γu1−γ |x− y|d

# &

Rd

dzρ
"
1
β s

γu1−γ |y − z|d
#

+

1&

t∨s

duρ
"
2−d 1

β s
γu1−γ |x− y|d

# &

Rd

dzρ
"
1
β t

γu1−γ |x− z|d
#

≤ Cβ ρ
"
(t ∧ s)γ(t ∨ s)γ/δ|x− y|d

#
.
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Note the influence of the spatial embedding via the parameter δ. For a sufficiently large constant
c > 0 the probability of A(x)

n can be bounded by

cn/2ℓ1−γ
n ℓ

−γ/δ
0

n/2−1%

i=1

ℓ
1−γ−γ/δ
2i .

With ℓ0 smaller than the mark of x we choose the truncation sequence so that the product above
equals ε

π2n2 . Then we have

∆!

n=1

Px(A
(x)
n ) =

∆!

n=1
n even

Px(A
(x)
n ) ≤

∆!

n=1
n even

cn/2ℓ1−γ
n ℓ

−γ/δ
0

n/2−1%

i=1

ℓ
1−γ−γ/δ
2i ≤

∞!

n=1

ε

π2n2
=

ε

6
.

Writing ηn := ℓ−1
n we can deduce a recursive description of (ℓn)n∈N0 such that

η1−γ
n+2 =

(n+ 2)2

n2
cηγ/δn .

Consequently there exist b > 0 and B > 0 such that ηn ≤ b exp(B(γ/(δ(1 − γ)))n/2). We close the
argument with heuristics that leads from this truncation sequence to a lower bound for the chemical
distance. Let x and y be two given vertices. If there exists a path of length n < log |x − y| between
them, there must exist at least one edge in this path which is longer than |x−y|

log |x−y| . For |x− y| large,
this edge typically must have an endvertex whose mark is, up to a multiplicative constant, smaller
than |x− y|−d. Hence, if we choose

∆ < (2 + o(1))
log log |x− y|
log

" γ
δ(1−γ)

#

we ensure ℓ∆ is of larger order than |x− y|−d. Therefore there is no good path whose vertices are old
enough to be an endvertex of an edge longer than |x−y|

log |x−y| and consequently no good path of length
shorter than 2∆ can exist between x and y.
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