Exercises

Let $b \ge 2$ be an integer and Σ be the symbolic space $\{0, \ldots, b-1\}^{\mathbb{N}}$ endowed with the topology associated with cylinders as basis of open sets. Set $\Sigma^* = \bigcup_{n>0} \{0, \ldots, b-1\}^n$.

Recall the following inequality due to von Bahr and Esseen: If $p \in [1, 2]$, $N \ge 1$, and X_1, \ldots, X_N are centered and independent real valued random variables, then

$$\mathbb{E}|X_1 + \dots + X_N|^p \le 2(\mathbb{E}(|X_1|^p) + \dots + \mathbb{E}(|X_N|^p))$$

(1) Show that if μ is a non degenerate canonical Mandelbrot measure on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a non negative random variable W of expectation 1, one has $(\mathbb{E}(\|\mu\|^q) < +\infty)$ for all q > 0 if and only if $(W \leq b$ almost surely and $\mathbb{P}(W = b) < 1/b)$. Then, treat the general case where the cascade is not necessarily canonical.

(2) Consider μ and μ' two Mandelbrot measures constructed simultaneously on $(\Sigma, \mathcal{B}(\Sigma))$ by considering a couple $(\widetilde{W} = (\widetilde{W}_0, \dots, \widetilde{W}_{b-1}), \widetilde{W} = (\widetilde{W}'_0, \dots, \widetilde{W}'_{b-1}))$ of random vectors, and a sequence $(\widetilde{W}(u), \widetilde{W}'(u))$ of independent copies of $(\widetilde{W}, \widetilde{W}')$.

(a) Show that if $\mathbb{P}(\forall 0 \leq i \leq b-1, W_i = 0 \Leftrightarrow W'_i = 0) = 1$, then $\mathbb{P}(\mu = 0)$ and $\mathbb{P}(\mu' = 0)$ are fixed points of the same polynomial function, and that if both μ and μ' are non degenerate, then $\mathbb{P}(\{\mu \neq 0\}\Delta\{\mu' \neq 0\}) = 0$.

(b) Show that $\lim_{n\to\infty} \mathbb{E}\left(\sum_{|u|=n} \sqrt{\mu([u])\mu'([u])}\right) = 0$, except if $\widetilde{W}' = \widetilde{W}$ and μ is non degenerate.

(c) (Mutual singularity) Suppose that μ is non degenerate. Show that conditional on $\{\mu \neq 0\}$, one has $W \neq W' \Rightarrow \mu' \perp \mu$.

Hint: Interpret
$$\sum_{|u|=n} \sqrt{\mu([u])\mu'([u])}$$
 as $\int_{\Sigma} \sqrt{\frac{\mu'([t|n])}{\mu([t|n])}} \mu(\mathrm{d}t)$.

(d) (Local dimension of μ' with respect to μ). Suppose that μ and μ' are non degenerate and $\mathbb{P}(\forall 0 \leq i \leq b-1, W_i > 0 \Rightarrow W'_i > 0) = 1$. Suppose also that $\mathbb{E}(Y^q) < \infty$ for some q > 1, $\mathbb{E}(Y'^{-\epsilon}|Y' > 0) < \infty$ for some $\epsilon > 0$, and $\mathbb{E}\left(\sum_{i=0}^{b-1} \widetilde{W}_i |\log(\widetilde{W}'_i)|\right) < \infty$. By using either a large deviation approach or the Peyrière measure associated with μ , show that for μ -almost every t, one has

$$\lim_{n \to \infty} \frac{\log(\mu'([t|n]))}{-n} = -\mathbb{E}\Big(\sum_{i=0}^{b-1} \widetilde{W}_i \log(\widetilde{W}'_i)\Big).$$

Then, revisit the previous question.

(e) (Continuity) Set $Y = \|\mu\|$ and $Y' = \|\mu'\|$. Suppose that both μ and μ' are non degenerate and that $\mathbb{E}(Y^h + {Y'}^h) < \infty$ for some h > 1. By using von Bahr and Esseen inequality and iterating if necessary the relations $Y = \sum_{i=0} \widetilde{W}_i Y(i)$ and $Y' = \sum_{i=0} \widetilde{W}'_i Y'(i)$, show that there exists a continuous function of $C = C(h, (\|\widetilde{W}_i\|_h)_{0,\dots,b-1}), (\|\widetilde{W}'_i\|_h)_{0,\dots,b-1})$ such that

$$||Y - Y'||_h \le C \sum_{i=0}^{b-1} ||\widetilde{W}_i - \widetilde{W}'_i||_h.$$

(f) Suppose that μ is non degenerate. Set $\tau_{\widetilde{W}} : q \in \mathbb{R} \mapsto -\log \mathbb{E}(\sum_{i=0}^{b-1} \mathbf{1}_{\{W_i > 0\}} \widetilde{W}_i^q)$. Let J be the interior of $\{q \in \mathbb{R} : \tau'_{\widetilde{W}}(q)q - \tau_{\widetilde{W}}(q) > 0\}$. For $q \in J$, denote by μ_q the non degenerate Mandelbrot measure associated with $\widetilde{W}_i(q) = (\widetilde{W}_i^q e^{\tau_{\widetilde{W}}(q)})_{0 \leq i \leq b-1}$. Use the previous question to show that the process $(Y_q)_{q \in J}$ possesses a continuous modification.

(3) Under the same assumptions as in exercise (2), assume that μ is positive almost surely and use it to define an ultrametric distance over Σ . Find an assumption under which you can compute the dimension of μ' with respect to this metric.

(4) Show that if Q is the operator on finite non negative Borel measures on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a canonical Mandelbrot cascade and ρ is an invariant measure on $(\Sigma, \mathcal{B}(\Sigma), \sigma)$, where σ is the left shift operation on Σ , then $\mathbb{E}(Q \cdot \varrho)$ is invariant.

(5) Suppose that μ is a on degenerate Mandelbrot measures constructed on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a random vector $\widetilde{W} = (\widetilde{W}_0, \ldots, \widetilde{W}_{b-1})$. Suppose that the components of \widetilde{W} are bounded from below by a positive constant. Show that there are constants c > 0and $\gamma \in (0, 1)$ such that $\mathbb{E}(e^{-t||\mu||}) \leq e^{-ct^{\gamma}}$ for all $t \geq 0$.

(6) Suppose that the vector $\widetilde{W} = (\widetilde{W}_0, \ldots, \widetilde{W}_{b-1})$ used to define a Mandelbrot measure satisfies, $\tau_{\widetilde{W}}(1-) > 0$ and $\tau_{\widetilde{W}}(h) = -\infty$ for all h > 1. Fix $\delta \in (0,1)$. For $\gamma > 1$ and $x_0 > 1$, set $m(\gamma, x_0) = \mathbb{E}(\sum_{i=0}^{b-1} \mathbf{1}_{\{\widetilde{W}_i \leq x_0\}} \widetilde{W}_i^{\gamma})$. Check that if x_0 is large enough, then $m(\gamma, x_0) > 1$. Then set $\eta(\gamma, x_0) = \eta = (\eta_0, \ldots, \eta_{b-1})$, where

$$\eta_i = d\left(\mathbf{1}_{\{\widetilde{W}_i \le x_0\}} \frac{\widetilde{W}_i^{\gamma}}{m(x_0, \gamma)} + \mathbf{1}_{\{\widetilde{W}_i > x_0\}} \widetilde{W}_i^{1-\delta}\right)$$

and d is a normalizing constant such that $\mathbb{E}\sum_{i=0}^{b-1} \eta_i = 1$.

Show that for all $0 \le i \le b-1$, one has $\eta_i \le \widetilde{W}_i$, and $\eta_i = 0$ if and only if $W_i = 0$. Also, prove that if x_0 is chosen big enough, for γ close enough to 1, one has $-\mathbb{E}\sum_{i=0}^{b-1} \eta_i \log \eta_i > 0$ and $\mathbb{E}\sum_{i=0}^{b-1} \eta_i^{1/(1-\delta)} < 1$.

(7) Suppose that μ is a on degenerate Mandelbrot measures constructed on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a positive random vector $\widetilde{W} = (\widetilde{W}_0, \ldots, \widetilde{W}_{b-1})$. Let J be the interior of $\{q \in \mathbb{R} : \tau'(q)q - \tau(q) > 0\}$. Fix $q \in J$. (*i*) Use von Bahr and Esseen inequality to show that the martingale $\left(\sum_{|u|=n} W_{u_1}^q e^{\tau_{\widetilde{W}}(q)} \cdots W_{u_1 \cdots u_n}^q e^{\tau_{\widetilde{W}}(q)}\right)_{n \ge 1}$ and the sequence $\left(e^{n\tau_{\widetilde{W}}(q)} \sum_{|u|=n} \mu([u])^q\right)_{n \ge 1}$ have almost surely the same positive limit. Deduce from this observation that a.s. $\tau_{\mu}(q) = \tau_{\widetilde{W}}(q)$ for all $q \in J$. (*ii*) Suppose that $q_+ = \sup(J) < \infty$ and $\tau'_{\widetilde{W}}(q_+ -) < \tau_{\widetilde{W}}(q_+)/q_+$. Show that $\tau_{\widetilde{W}}(q_+) < \infty$ and $\tau_{\widetilde{W}}(q) = -\infty$ for all $q > q_+$. Then, use exercise (6), and inspire yourself from (*i*) to prove that if *q* is chosen in a right neighborhood of q_+ , one has

$$\liminf_{n \to \infty} e^{n \frac{q}{q_+} \tau_{\widetilde{W}}(q_+)} \sum_{|u|=n} \mu([u])^q > 0$$

a.s. (non trivial).

(8) Show that the branching measure is the unique Mandelbrot measure of maximal Hausdorff dimension supported on a non-empty fractal percolation subset of Σ .