Exercises

Let $b \geq 2$ be an integer and Σ be the symbolic space $\{0, \ldots, b-1\}^{\mathbb{N}}$ endowed with the topology associated with cylinders as basis of open sets. Set $\Sigma^{*}=\bigcup_{n \geq 0}\{0, \ldots, b-1\}^{n}$.

Recall the following inequality due to von Bahr and Esseen: If $p \in[1,2], N \geq 1$, and X_{1}, \ldots, X_{N} are centered and independent real valued random variables, then

$$
\mathbb{E}\left|X_{1}+\cdots+X_{N}\right|^{p} \leq 2\left(\mathbb{E}\left(\left|X_{1}\right|^{p}\right)+\cdots+\mathbb{E}\left(\left|X_{N}\right|^{p}\right)\right) .
$$

(1) Show that if μ is a non degenerate canonical Mandelbrot measure on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a non negative random variable W of expectation 1 , one has $\left(\mathbb{E}\left(\|\mu\|^{q}\right)<+\infty\right.$ for all $q>0$) if and only if ($W \leq b$ almost surely and $\mathbb{P}(W=b)<1 / b)$. Then, treat the general case where the cascade is not necessarily canonical.
(2) Consider μ and μ^{\prime} two Mandelbrot measures constructed simultaneously on ($\Sigma, \mathcal{B}(\Sigma)$) by considering a couple $\left(\widetilde{W}=\left(\widetilde{W}_{0}, \ldots, \widetilde{W}_{b-1}\right), \widetilde{W}=\left(\widetilde{W}_{0}^{\prime}, \ldots, \widetilde{W}_{b-1}^{\prime}\right)\right)$ of random vectors, and a sequence $\left(\widetilde{W}(u), \widetilde{W}^{\prime}(u)\right)$ of independent copies of $\left(\widetilde{W}, \widetilde{W}^{\prime}\right)$.
(a) Show that if $\mathbb{P}\left(\forall 0 \leq i \leq b-1, W_{i}=0 \Leftrightarrow W_{i}^{\prime}=0\right)=1$, then $\mathbb{P}(\mu=0)$ and $\mathbb{P}\left(\mu^{\prime}=0\right)$ are fixed points of the same polynomial function, and that if both μ and μ^{\prime} are non degenerate, then $\mathbb{P}\left(\{\mu \neq 0\} \Delta\left\{\mu^{\prime} \neq 0\right\}\right)=0$.
(b) Show that $\lim _{n \rightarrow \infty} \mathbb{E}\left(\sum_{|u|=n} \sqrt{\mu([u]) \mu^{\prime}([u])}\right)=0$, except if $\widetilde{W}^{\prime}=\widetilde{W}$ and μ is non degenerate.
(c) (Mutual singularity) Suppose that μ is non degenerate. Show that conditional on $\{\mu \neq 0\}$, one has $W \neq W^{\prime} \Rightarrow \mu^{\prime} \perp \mu$.

Hint: Interpret $\sum_{|u|=n} \sqrt{\mu([u]) \mu^{\prime}([u])}$ as $\int_{\Sigma} \sqrt{\frac{\mu^{\prime}([t \mid n])}{\mu([t \mid n])}} \mu(\mathrm{d} t)$.
(d) (Local dimension of μ^{\prime} with respect to μ). Suppose that μ and μ^{\prime} are non degenerate and $\mathbb{P}\left(\forall 0 \leq i \leq b-1, W_{i}>0 \Rightarrow W_{i}^{\prime}>0\right)=1$. Suppose also that $\mathbb{E}\left(Y^{q}\right)<\infty$ for some $q>1, \mathbb{E}\left(Y^{\prime-\epsilon} \mid Y^{\prime}>0\right)<\infty$ for some $\epsilon>0$, and $\mathbb{E}\left(\sum_{i=0}^{b-1} \widetilde{W}_{i}\left|\log \left(\widetilde{W}_{i}^{\prime}\right)\right|\right)<\infty$. By using either a large deviation approach or the Peyrière measure associated with μ, show that for μ-almost every t, one has

$$
\lim _{n \rightarrow \infty} \frac{\log \left(\mu^{\prime}([t \mid n])\right)}{-n}=-\mathbb{E}\left(\sum_{i=0}^{b-1} \widetilde{W}_{i} \log \left(\widetilde{W}_{i}^{\prime}\right)\right)
$$

Then, revisit the previous question.
(e) (Continuity) Set $Y=\|\mu\|$ and $Y^{\prime}=\left\|\mu^{\prime}\right\|$. Suppose that both μ and μ^{\prime} are non degenerate and that $\mathbb{E}\left(Y^{h}+Y^{\prime h}\right)<\infty$ for some $h>1$. By using von Bahr and Esseen inequality and iterating if necessary the relations $Y=\sum_{i=0} \widetilde{W}_{i} Y(i)$ and $Y^{\prime}=\sum_{i=0} \widetilde{W}_{i}^{\prime} Y^{\prime}(i)$, show that there exists a continuous function of $\left.C=C\left(h,\left(\left\|\widetilde{W}_{i}\right\|_{h}\right)_{0, \ldots, b-1}\right),\left(\left\|\widetilde{W}_{i}^{\prime}\right\|_{h}\right)_{0, \ldots, b-1}\right)$ such that

$$
\left\|Y-Y^{\prime}\right\|_{h} \leq C \sum_{i=0}^{b-1}\left\|\widetilde{W}_{i}-\widetilde{W}_{i}^{\prime}\right\|_{h}
$$

(f) Suppose that μ is non degenerate. Set $\tau_{\widetilde{W}}: q \in \mathbb{R} \mapsto-\log \mathbb{E}\left(\sum_{i=0}^{b-1} \mathbf{1}_{\left\{W_{i}>0\right\}} \widetilde{W}_{i}^{q}\right)$. Let J be the interior of $\left\{q \in \mathbb{R}: \tau_{\widetilde{W}}^{\prime}(q) q-\tau_{\widetilde{W}}(q)>0\right\}$. For $q \in J$, denote by μ_{q} the non degenerate Mandelbrot measure associated with $\widetilde{W}_{i}(q)=\left(\widetilde{W}_{i}^{q} e^{\tau} \widetilde{W}^{(q)}\right)_{0 \leq i \leq b-1}$. Use the previous question to show that the process $\left(Y_{q}\right)_{q \in J}$ possesses a continuous modification.
(3) Under the same assumptions as in exercise (2), assume that μ is positive almost surely and use it to define an ultrametric distance over Σ. Find an assumption under which you can compute the dimension of μ^{\prime} with respect to this metric.
(4) Show that if Q is the operator on finite non negative Borel measures on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a canonical Mandelbrot cascade and ρ is an invariant measure on $(\Sigma, \mathcal{B}(\Sigma), \sigma)$, where σ is the left shift operation on Σ, then $\mathbb{E}(Q \cdot \varrho)$ is invariant.
(5) Suppose that μ is a on degenerate Mandelbrot measures constructed on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a random vector $\widetilde{W}=\left(\widetilde{W}_{0}, \ldots, \widetilde{W}_{b-1}\right)$. Suppose that the components of \widetilde{W} are bounded from below by a positive constant. Show that there are constants $c>0$ and $\gamma \in(0,1)$ such that $\mathbb{E}\left(e^{-t\|\mu\|}\right) \leq e^{-c t^{\gamma}}$ for all $t \geq 0$.
(6) Suppose that the vector $\widetilde{W}=\left(\widetilde{W}_{0}, \ldots, \widetilde{W}_{b-1}\right)$ used to define a Mandelbrot measure satisfies, $\tau_{\widetilde{W}}(1-)>0$ and $\tau_{\widetilde{W}}(h)=-\infty$ for all $h>1$. Fix $\delta \in(0,1)$. For $\gamma>1$ and $x_{0}>1$, set $m\left(\gamma, x_{0}\right)=\mathbb{E}\left(\sum_{i=0}^{b-1} \mathbf{1}_{\left\{\widetilde{W}_{i} \leq x_{0}\right\}} \widetilde{W}_{i}^{\gamma}\right)$. Check that if x_{0} is large enough, then $m\left(\gamma, x_{0}\right)>1$. Then set $\eta\left(\gamma, x_{0}\right)=\eta=\left(\eta_{0}, \ldots, \eta_{b-1}\right)$, where

$$
\eta_{i}=d\left(\mathbf{1}_{\left\{\widetilde{W}_{i} \leq x_{0}\right\}} \frac{\widetilde{W}_{i}^{\gamma}}{m\left(x_{0}, \gamma\right)}+\mathbf{1}_{\left\{\widetilde{W}_{i}>x_{0}\right\}} \widetilde{W}_{i}^{1-\delta}\right)
$$

and d is a normalizing constant such that $\mathbb{E} \sum_{i=0}^{b-1} \eta_{i}=1$.
Show that for all $0 \leq i \leq b-1$, one has $\eta_{i} \leq \widetilde{W}_{i}$, and $\eta_{i}=0$ if and only if $W_{i}=0$. Also, prove that if x_{0} is chosen big enough, for γ close enough to 1 , one has $-\mathbb{E} \sum_{i=0}^{b-1} \eta_{i} \log \eta_{i}>0$ and $\mathbb{E} \sum_{i=0}^{b-1} \eta_{i}^{1 /(1-\delta)}<1$.
(7) Suppose that μ is a on degenerate Mandelbrot measures constructed on $(\Sigma, \mathcal{B}(\Sigma))$ associated with a positive random vector $\widetilde{W}=\left(\widetilde{W}_{0}, \ldots, \widetilde{W}_{b-1}\right)$. Let J be the interior of $\left\{q \in \mathbb{R}: \tau^{\prime}(q) q-\tau(q)>0\right\}$. Fix $q \in J$.
(i) Use von Bahr and Esseen inequality to show that the martingale $\left(\sum_{|u|=n} W_{u_{1}}^{q} e^{\tau \widetilde{W}}(q) \cdots W_{u_{1} \cdots u_{n}}^{q} e^{\tau \widetilde{W}}{ }^{(q)}\right)_{n \geq 1}$ and the sequence $\left(e^{n \tau_{\widetilde{W}}(q)} \sum_{|u|=n} \mu([u])^{q}\right)_{n \geq 1}$ have almost surely the same positive limit. Deduce from this observation that a.s. $\tau_{\mu}(q)=\tau_{\widetilde{W}}(q)$ for all $q \in J$. (ii) Suppose that $q_{+}=\sup (J)<\infty$ and $\tau_{\widetilde{W}}^{\prime}\left(q_{+}-\right)<\tau_{\widetilde{W}}\left(q_{+}\right) / q_{+}$. Show that $\tau_{\widetilde{W}}\left(q_{+}\right)<\infty$ and $\tau_{\widetilde{W}}(q)=-\infty$ for all $q>q_{+}$. Then, use exercice (6), and inspire yourself from (i) to prove that if q is chosen in a right neighborhood of q_{+}, one has

$$
\liminf _{n \rightarrow \infty} e^{n \frac{q}{q_{+}} \tau \widetilde{W}\left(q_{+}\right)} \sum_{|u|=n} \mu([u])^{q}>0
$$

a.s. (non trivial).
(8) Show that the branching measure is the unique Mandelbrot measure of maximal Hausdorff dimension supported on a non-empty fractal percolation subset of Σ.

