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Multifractal formalism

If ρ is a fully supported finite positive Borel measure on Σ, its Lq-spectrum
is the non decreasing concave function

τρ : q ∈ R 7→ lim inf
n→∞

(
τρ,n(q) = −n−1 log

∑
|u|=n

ρ([u])q
)
,

For α ∈ R set

fµ(α) = lim
ϵ→0

lim sup
n→∞

n−1 log#{u : |u| = n, µ([u]) ∈ [e−n(α+ϵ), e−n(α−ϵ)]},

f
µ
(α) = lim

ϵ→0
lim inf
n→∞

n−1 log#{u : |u| = n, µ([u]) ∈ [e−n(α+ϵ), e−n(α−ϵ)]},

E(ρ, α) =

{
t ∈ Σ : lim

n→∞

log ρ([t|n])

−n
= α

}
.

One always has:

dimE(ρ, α) ≤ f
µ
(α) ≤ fµ(α) ≤ τ∗

ρ (α) := inf
q∈R

αq − τρ(q).

Also, by Gartner-Ellis theorem, f
µ
(α) = fµ(α) = τ∗

ρ (α) at all α of the form

τ ′
µ(q), and by a result of Ngai, τ ′

µ(1
+) ≤ dimH(ρ) ≤ dimP (ρ) ≤ τ ′

µ(1−).

Say that the multifractal formalism holds for ρ at α if

dimE(ρ, α) = τ∗
ρ (α).
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Multifractal analysis of the Bernoulli product measure ν = νp

τν(q)

q
0

− dim supp(ν)

1
τ∗
ν (α)

α0

dim supp(ν)

τν(q) = τν,n(q) = − log

b−1∑
i=0

pqi ,

dom(τ∗
ν ) = [τ ′

ν(∞), τ ′
ν(−∞)] = [− log(max

i
pi),− log(min

i
pi)].

The multifractal formalism holds at any α.
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Multifractal formalism for Mandelbrot measures

Set τ(q) = τW̃ (q) = − log(E
(∑b−1

i=0 W̃ q
i

)
for all q ∈ R.

Suppose τ ′(1−) > 0 and τ(q) > −∞ for some q < 0 (in particular the
components of W̃ are > 0 and supp(µ) = Σ a.s.

Theorem (Molchan (1996), B. (2000), Attia-B. (2014))
With probability 1, the Mandelbrot measure µ obeys the multifractal
formalism. Specifically, for all α ∈ R,
dimH E(µ, α) = τ∗

µ(α) := inf{αq − τµ(q) : q ∈ R}, where

τµ(q) = lim
n→∞

(
τµ,n(q) := −n−1 log

∑
|u|=n

µ([u])q
)
,

and setting J = {q ∈ R : τ ′(q)q − τ(q) > 0}, q− = inf(J) and q+ = sup(J),
one has

τµ(q) = T (q) :=


τ(q) if q ∈ (q−, q+)

q
τ(q+)

q+
if q ≥ q+

q
τ(q−)

q−
if q ≤ q−

.

Note: it is easily seen that for q ∈ {q−, q+}, |q| < ∞ implies τ(q) > −∞
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Note: If q+ < ∞, τµ presents a second order phase transition or a first
order phase transition at q+ according to whether τ ′(q+−) =

τ(q+)

q+
or

τ ′(q+−) >
τ(q+)

q+
(the same phenomenon occurs at q− if q− > −∞.
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Illustration

τ(q)

q
0 1

q−

q+

− dimF

(a) Function τ .

τ∗(h)

h0
τ ′(q−)τ ′(q+) τ ′(0)

dimF

(b) Its Legendre transform τ∗.
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Illustration

τµ(q)

q
0 1

q−

q+

− dimΣ

(a) The Lq spectrum of µ.

τ∗
µ(α)

α0
τ ′(q−)τ ′(q+) τ ′(0)

dimΣ

−∞

(b) Hausdorff spectrum of µ.

Figure: Multifractal nature of a Mandelbrot measure with a second phase
transition at both q− and q+. This situation occurs, e.g., when the Wi are i.i.d
and is lognormal.
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Illustration

τµ(q)

q0 1q−

τ(q−)

−dimΣ

(a) Lq-spectrum of µ.

τ∗
µ(α)

α0
τ ′(q−)τ ′(0)τ ′(1−)

τ ′(1−)

dimΣ

(b) Hausdorff spectrum of µ.

Figure: Multifractal nature of a Mandelbrot measure with a second order phase
transition at some negative q− and a first order phase transition at q+ = 1 (i.e.
when Kahane’s non degeneracy theorem is optimal: τ(q) = −∞ for all q > 1.
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Sketch of proof

It sufficies to prove:
(1) for all q ∈ R, a.s. lim infn→∞ τµ,n(q) ≥ T (q) and use the concavity to
get a.s., for all q ∈ R, lim infn→∞ τµ,n(q) ≥ T (q).

(2) a.s. for all α ∈ [T ′(∞), T ′(−∞)], dimH E(µ, α) ≥ T ∗(α), and
specifically,

(2) (a) a.s. for all α = τ ′(q), with q ∈ (q−, q+),
dimH E(µ, α) ≥ T ∗(α) = τ ′(q)q − τ(q);

(2) (b) a.s. dimH E(µ, α) ≥ T ∗(α) for α ∈ {τ ′(q+−), τ ′(q−+)};

(2) (c) If q+ < ∞ and τ ′(q+−) >
τ(q+)

q+
, a.s., for all α ∈ [

τ(q+)

q+
, τ ′(q+−)),

dimH E(µ, α) ≥ T ∗(α) = αq+ − τ(q+),
and a similar result if q− > −∞ and τ ′(q−+) >

τ(q−)

q−
.
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(1) for all q ∈ R, a.s. lim infn→∞ τµ,n(q) ≥ T (q). Then the concavity yields
a.s., for all q ∈ R, lim infn→∞ τµ,n(q) ≥ T (q).
For q ∈ (q−, q+), one has

E(e−τµ,n(q)) = E
( ∑

|u|=n

µ([u])q
)
= E

( ∑
|u|=n

( n∏
k=1

W̃u1···uk

)q

Y∞(u)q
)

= e−nτ(q)E(Y q
∞)

This yields lim infn→∞ τµ,n(q) ≥ τ(q) = T (q) a.s.

For q > q+ (if q+ < ∞), take 0 < q′ < q+, and write∑
|u|=n

µ([u])q =
∑
|u|=n

(µ([u])q
′
)q/q

′
≤

( ∑
|u|=n

(µ([u])q
′
)
)q/q′

,

which implies a.s lim infn→∞ τµ,n(q) ≥ q
q′ · lim infn→∞ τµ,n(q

′) ≥ q
q′ τ(q

′).
This holds for all 0 < q′ < q+, hence lim infn→∞ τµ,n(q) ≥ q

q+
τ(q+) = T (q)

by letting q′ tend to q+.
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(2) a.s. for all α ∈ [T ′(∞), T ′(−∞)], dimH E(µ, α) ≥ T ∗(α), and
specifically,

(2) (a) a.s. for all α = τ ′(q), with q ∈ (q−, q+),
dimH E(µ, α) ≥ T ∗(α) = τ ′(q)q − τ(q):

I explained that if we consider W̃q = (Wq,i = W̃ q
i e

τ(q))0≤i≤b−1, one gets a
new Mandelbrot measure µq, as weak limit of the sequence (µq,n)n≥1, where

dµq,n

dλ
(t) = bn W q

t1
eτ(q)︸ ︷︷ ︸

Wq,t1

· · ·W q
t1···tne

τ(qn)︸ ︷︷ ︸
Wq,t1···tn

,

such that (by a simple computation), τ ′
W̃q

(1) = qτ ′(q)− τ(q).

Also, τ ′(q) = −E(W̃q,i log(W̃i)) and using the Peyrière measure
P(dω)µq,ω(dt), as well as the fact that E(Y −ϵ

∞ ) < ∞ for some ϵ > 0, one gets
(cf exercise 2(d)) that

µq(E(µ, α = τ ′(q))) = ∥µq∥.

Since the dimension fo µq is τ ′(q)q − τ(q), we get the desired inequality, for
a fixed α = τ ′(q), almost surely.
- To get a result valid a.s. for all α ∈ τ ′((q−, q+)), one must modify the
approach:
(i) Construct a.s. simultaneously the measures µq:uses a complex extension
of the martingales in a neighborhood of (q−, q+);
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(ii) Prove that a.s., for all q ∈ (q−, q+) and ϵ > 0,∑
n≥1

µq

(
{t : µ([t|n]) ̸∈ [e−n(τ ′(q)+ϵ), e−n(τ ′(q)−ϵ)]}

)
< ∞.

The n-th term of the previous sum can be bounded from above (using
Markov inequality), for any η > 0, by

fn,ϵ,η(q) =
∑
n≥1

∑
|u|=n

µq([u])
(
µ([u])ηenη(τ ′(q)−ϵ) + µ([u])−ηe−nη(τ ′(q)+ϵ)).

For any [a, b] ⊂ J , one can find η such that∑
n≥1

sup
q∈[a,b]

E(fn,ϵ,η(q)) + sup
q∈[a,b]

E(|f ′
n,ϵ,η(q)|) < ∞.

This yields the almost sure uniform convergence of
∑

n≥1 fn,ϵ,η on compact
subsets of J , and the desired conclusion.
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It remains to prove (we consider q+, the situation is similar for q−):

(2) (b) a.s. dimH E(µ, α) ≥ T ∗(α) for α ∈ {τ ′(q+−), τ ′(q−+)};
If q+ < ∞ is finite and τ ′(q+−) =

τ(q+)

q+
, under mild conditions, one can use

the so called critical Mandelbrot measure associated with W̃q+ .

If q+ = ∞, there is no such an adhoc choice.

(2) (c) If q+ < ∞ and τ ′(q+−) >
τ(q+)

q+
, a.s., for all α ∈ [

τ(q+)

q+
, τ ′(q+−)),

dimH E(µ, α) ≥ T ∗(α) = αq+ − τ(q+),
and a similar result if τ ′(q−+) >

τ(q−)

q−
,

one uses a method which treats 2(a), 2(b), and 2(c) simultaneously by
considering inhomogenous Mandelbrot measures, in the sense that one
allows the using of vectors of different laws at each generation.
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For A > 1 and 0 ≤ i ≤ b− 1, set

W̃A,i =
1{A−1≤Wi≤A}Wi

E
∑b−1

j=0 1{A−1≤Wj≤A}Wj

.

There exists a non decreasing sequence (An)n≥1 tending to ∞ and a
sequence (Dn)n≥1 of finite sets such that a.s., for all p ≥ 0, for all
q = (qn)n≥1 ∈ Jp =

∏
n≥1 Dn+p, the sequence of measures (µq,n)n≥1

converges weakly to a measure µq, where

dµq,n

dλ
(t) = bn W q1

Ap+1,t1
e
τ
W̃Ap+1

(q1)︸ ︷︷ ︸
Wq,t1

· · ·W qn
Ap+n,t1···tne

τ
W̃Ap+n

(qn)

︸ ︷︷ ︸
Wq,t1···tn

;

moreover, for all α ∈ [T ′(∞), T ′(−∞)], there exists p ≥ 0 and
q = (qn)n≥1 ∈ Jp such that

lim
n→∞

τ ′
W̃Ap+n

(qn) = α, lim
n→∞

τ ′
Wq,t1···tn

(1) = T ∗(α),

and and both µq(E(µ, α)) > 0 and dimH(µq) ≥ T ∗(α).

J. Barral Multifractal formalism, KPZ, and projections



For A > 1 and 0 ≤ i ≤ b− 1, set

W̃A,i =
1{A−1≤Wi≤A}Wi

E
∑b−1

j=0 1{A−1≤Wj≤A}Wj

.

There exists a non decreasing sequence (An)n≥1 tending to ∞ and a
sequence (Dn)n≥1 of finite sets such that a.s., for all p ≥ 0, for all
q = (qn)n≥1 ∈ Jp =

∏
n≥1 Dn+p, the sequence of measures (µq,n)n≥1

converges weakly to a measure µq, where

dµq,n

dλ
(t) = bn W q1

Ap+1,t1
e
τ
W̃Ap+1

(q1)︸ ︷︷ ︸
Wq,t1

· · ·W qn
Ap+n,t1···tne

τ
W̃Ap+n

(qn)

︸ ︷︷ ︸
Wq,t1···tn

;

moreover, for all α ∈ [T ′(∞), T ′(−∞)], there exists p ≥ 0 and
q = (qn)n≥1 ∈ Jp such that

lim
n→∞

τ ′
W̃Ap+n

(qn) = α, lim
n→∞

τ ′
Wq,t1···tn

(1) = T ∗(α),

and and both µq(E(µ, α)) > 0 and dimH(µq) ≥ T ∗(α).

J. Barral Multifractal formalism, KPZ, and projections



KPZ formula

Note that if ρ is a continuous and fully supported Borel measure on σ,
dρ(x, y) = ρ([x ∧ y]) defines an ultrametric distance on Σ.

dλ(x, y) = b−|x∧y|, and we consider the random distance dµ, associated to a
fully supported non degenerate canonical Mandelbrot measure µ = Q · λ
(the Wu are i.i.d and Q acts on λ). Here τW̃ (q) = − logb E

∑b−1
i=1 W̃ q

i .

Given a deterministic Borel set E, there is a connection between dim
dλ
H (E)

and dim
dµ
H (E).

Note that the mapping 1 + τW̃ is an increasing homeomorphism of [0, 1],
and that dim

dλ
H (Σ) = 1.

Theorem (Benjamini-Schram (2009))
Fix a Borel subset E of Σ. Denote dim

dλ
H (E) by s0 and define s by the

relation
s0 = 1 + τW̃ (s).

If s0 = 0, or s0 > 0 and τW̃ (−t) < ∞ for all t ∈ (0, s), then dim
dµ
H (E) = s

almost surely.
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Proof of the upper bound: It is clear that dim
dµ
H (Σ) = 1 (use the coverings

(
⋃

|u|=n[u])n≥1 of Σ to get Hdµ,1(Σ) ≤ ∥µ∥), so if dimdλ
H (E) = s0 = 1, as

s = 1, one has dim
dµ
H (E) ≤ dim

dµ
H (Σ) = 1 = s.

If dimdλ
H (E) = s0 < 1, let t0 ∈ (s0, 1) and for all j ≥ 1 take a covering

([uj
k]k≥1) a b−j covering of E such that∑

k≥1

(diamdλ([uj
k]))

t0 ≤ 1/j2.

Define t by t0 = 1 + τW̃ (t). One has

E
∑
k≥1

diamdµ([uj
k]))

t =
∑
k≥1

Eµ([uj
k])

t

= E(Y t
∞)

∑
k≥1

(diamdλ([uj
k]))

t0 ≤ E(Y t
∞)/j2.

So a.s. limj→∞
∑

k≥1 diam
dµ([uj

k]))
t = 0, and the ([uj

k])k≥1 are δj coverings
w.r.t. dµ, where δj = supk≥1 µ([u

j
k]) tends to 0 as j → ∞, since µ is

atomless and supk≥1 λ([u
j
k]) ≤ b−j . It follows that dim

dµ
H (E) ≤ t, and this

holds for all t ∈ (s, 1).
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([uj
k]k≥1) a b−j covering of E such that∑

k≥1

(diamdλ([uj
k]))

t0 ≤ 1/j2.

Define t by t0 = 1 + τW̃ (t). One has

E
∑
k≥1

diamdµ([uj
k]))

t =
∑
k≥1

Eµ([uj
k])

t

= E(Y t
∞)

∑
k≥1

(diamdλ([uj
k]))

t0 ≤ E(Y t
∞)/j2.

So a.s. limj→∞
∑

k≥1 diam
dµ([uj

k]))
t = 0, and the ([uj

k])k≥1 are δj coverings
w.r.t. dµ, where δj = supk≥1 µ([u

j
k]) tends to 0 as j → ∞, since µ is

atomless and supk≥1 λ([u
j
k]) ≤ b−j . It follows that dim

dµ
H (E) ≤ t, and this

holds for all t ∈ (s, 1).
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Lower bound: If s0 = 0 there is nothing to prove. Suppose s0 > 0. Fix
t0 ∈ (0, s0). By Frostman’s lemma, there exists a Borel probability measure
ρ supported on E such that

I
dλ
t0

(ρ) =

∫∫
K×K

ρ(dx)ρ(dy)

dλ(x, y)t0
< ∞.

Again, define t by t0 = 1 + τW̃ (t). Denote by Qt the multiplicative chaos
associated with the weights W t

u/E(W t). The measure Qt · ρ is non
degenerate as shows an application of the criterion for non degeneracy that
we established.
Moreover, since the weights are > 0, the limit measure is positive almost
surely; and it is supported on E. Also, a calculation (using that
E(Y −t

∞ ) < ∞) shows

EIdµt (Qt · ρ) =
∫∫

K×K

Qt · ρ(dx)Qt · ρ(dy)
dλ(x, y)t

≤ C(W, t)I
dλ
t0

(ρ).

This implies that a.s., dimH(Qt · ρ) ≥ t, hence dim
dµ
H (E) ≥ t.
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Fractal percolation set

Fix m ≥ 2. Let K0 = [0, 1]2 be the unit square.
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Fractal percolation set

Fix m ≥ 2. Let K0 = [0, 1]2 be the unit square. Choose a random
subcollection A(ω) of the m2 subsquares
{R(i, j) = [im−1, (i+ 1)m−1]× [jm−1, (j + 1)m−1]}0≤i,j≤m−1 of side m−1,
according to some given distribution.
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Fractal percolation set

Fix m ≥ 2. Let K0 = [0, 1]2 be the unit square. Choose a random
subcollection of the m2 subsquares
{R(i, j) = [im−1, (i+ 1)m−1]× [jm−1, (j + 1)m−1]}0≤i,j≤m−1 of side m−1,
according to some given distribution. This yields a set K1.
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Fractal percolation

Repeat the selection independently and according to the same law in each
selected subsquare.
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Fractal percolation set

Repeat the selection independently and according to the same law in each
selected subsquare. This yields a set K2.
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K0 K1 K2

...

K =
⋂
n≥0

Kn.

Let N(ω) = #A(ω) denote the (random) number of squares kept at
generation 1. One has K ̸= ∅ if and only if E(N) > 1 or N = 1 almost
surely. In the later case K is a singleton.
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Hausdorff dimension of K

Theorem
Let N be the number of surviving squares at the first generation. Suppose
EN > 1. With probability 1, if K ̸= ∅ then

dimH K = dimB K = log(EN)/ log(m).

Let Nj be the number of surviving squares in line j, so that N =
∑m−1

j=0 Nj .
Suppose EN > 1.
Denote by π the orthogonal projection on the vertical axis.

Theorem (Dekking-Grimmett (1988), Falconer (1989))
With probability 1, if K ̸= ∅ then

dimH πK = dimB πK = inf
0≤θ≤1

logm

m−1∑
i=0

(ENj)
θ.

Moreover, dimH πK = dimK iff the infimum is reached at 1.
Remark: (1) The difficulty of the question partly comes from the fact that
it may happen that 0 < ENj < 1 for some j.
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(2) The upper bound dimB π(K) ≤ inf
0≤s≤1

logm

m−1∑
i=0

(ENj)
s is easily

obtained by using the fact that for all θ ∈ (0, 1),

#{I : |I| = n, I ∩ π(K) ̸= ∅}
= #{I : |I| = n, #{J : |J | = n, (I × J) ∩K ̸= ∅} ≥ 1}

≤
∑
|I|=n

(#{J : |J | = n, (I × J) ∩K ̸= ∅})θ,

hence (taking expectation and using Jensen’s inequality)

E
(
#{I : |I| = n, I ∩ π(K) ̸= ∅}

)
≤

∑
|I|=n

(
E(#{J : |J | = n, (I × J) ∩K ̸= ∅})

)θ

,

=
(m−1∑

j=0

E(Nj)
θ
)n

,

which implies that

lim sup
n→∞

n−1 logm #{I : |I| = n, I ∩ π(K) ̸= ∅} ≤ logm

m−1∑
i=0

(ENj)
θ.
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Projections of K in other directions

Before revisiting the previous result, let us mention the result by Rams and
Simon.
If θ ∈ (−π/2, π/2), denote by πθ the orthogonal projection on the line
y = tan(θ)x.

Theorem (Rams-Simon (2014, 2015))
Suppose the squares have been chosen independently and with equal
probability p > m−2. With probability 1, if K ̸= ∅, for all θ ∈ (−π/2, π/2),
the following holds

1. dimH πθK = min(1, dimH K);
2. if dimH K > 1 then πθK contains an interval.
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Revisiting the two first results with Mandelbrot measures

Take a random non negative vector W = (Wi,j)0≤i,j≤m−1 such that
E(

∑m−1
j=0 Wi,j) = 1.

W0,0 W1,0 W2,0

W0,1 W1,1 W2,1

W0,2 W1,2 W2,2
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Revisiting the two first results with Mandelbrot measures

Suppose that E(N) > 1. Take a random non negative vector
W = (Wi,j)0≤i,j≤m−1 such that E(

∑
i,j Wi,j) = 1. Assume that Wi,j = 0 if

(i, j) does not survive, i.e. (i, j) ̸∈ A(ω).

0 0 W2,0

W0,1 W1,1 0

0 W1,2 0

Set µ1(i1 × j1) = Wi1,j1
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Revisiting the two first results with Mandelbrot measures

Next independently in each surviving subsquare i1 × j1 take a copie
W (i1, j1) = (Wi2,j2(i1, j1))0≤i2,j2≤m−1 of W and set

µ2(i1i2 × j1j2) = Wi1,j1Wi2,j2(i1, j1)

W1,1W2,1(1,1)

12×11
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Revisiting the two first results with Mandelbrot measures

Iterate: for n ≥ 1 and I = i1 · · · in and J = j1 · · · jn,

µn(I × J) = Wi1,j1Wi2,j2(i1, j1) · · ·Win,jn(i1 · · · in−1, j1 · · · jn−1),

the mass being distributed uniformly.
One has

supp(µn) ⊂ Kn.

Set A = {0, . . . ,m− 1}2 and

τ(θ) = − logE
∑

(i,j)∈A

W θ
i,j ; note that τ ′(1−) = −E

∑
(i,j)∈A

Wi,j logWi,j .

Theorem (Kahane-Peyrière (1976), Kahane (1987))
With probability 1, conditional on K ̸= ∅, the sequence (µn)n≥1 weakly
converges towards a mesure µ supported on K.
If P(#{(i, j) : Wi,j > 0} = 1) = 1, then µ is a Dirac mass almost surely.
Otherwise, P(µ ̸= 0|K ̸= ∅) > 0 iff τ ′(1−) > 0, and in this case, conditional
on µ ̸= 0, then µ is exact dimensional with dim(µ) = dime(µ)/ log(m),
where

dime(µ) = lim
n→∞

n−1
∑

|I|=|J|=n

−µ(I × J) logµ(I × J) = τ ′(1−).
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Dimensions of projections of µ

Recall that τ(θ) = − logE
∑

(i,j)∈A W θ
i,j .

Theorem (Falconer-Jin, 2014)
Suppose that τ(θ) > −∞ for some θ > 1 and τ ′(1) > 0. With probability 1,
if µ ̸= 0, for all θ, the measure πθ∗µ is exact dimentional.

Let
ν = E(π∗µ).

Setting pi,j = E(Wi,j), and qj =
∑m−1

i=0 pi,j so that q0 + q1 + . . .+ qm−1 = 1,
ν is the Bernoulli product measure on [0, 1] generated by the probability
vector (q0, . . . , qm−1).

Theorem (B.-Feng, 2018)
Suppose τ ′(1−) > 0. With probability 1, if µ ̸= 0:

1. If dim(µ) > dim(ν), then π∗µ ≪ ν, hence dim(π∗µ) = dim(ν).
2. If dim(µ) ≤ dim(ν), then π∗µ ⊥ ν.

If, moreover, τ(θ) > −∞ for some θ > 1, then π∗µ is exact
dimensional and dim(π∗µ) = dim(µ).
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Dimensions of projections of µ

Recall that τ(θ) = − logE
∑

(i,j)∈A W θ
i,j .

Theorem (Falconer-Jin, 2014)
Suppose that τ(θ) > −∞ for some θ > 1 and τ ′(1) > 0. With probability 1,
if µ ̸= 0, for all θ, the measure πθ∗µ is exact dimentional.
Let

ν = E(π∗µ).

Setting pi,j = E(Wi,j), and qj =
∑m−1

i=0 pi,j so that q0 + q1 + . . .+ qm−1 = 1,
ν is the Bernoulli product measure on [0, 1] generated by the probability
vector (q0, . . . , qm−1).

Theorem (B.-Feng, 2018)
Suppose τ ′(1−) > 0. With probability 1, if µ ̸= 0:

1. If dim(µ) > dim(ν), then π∗µ ≪ ν, hence dim(π∗µ) = dim(ν).
2. If dim(µ) ≤ dim(ν), then π∗µ ⊥ ν.

If, moreover, τ(θ) > −∞ for some θ > 1, then π∗µ is exact
dimensional and dim(π∗µ) = dim(µ).
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Thus, if τ(θ) > −∞ for some θ > 1 and τ ′(1) > 0, if µ ̸= 0, then

dim(π∗µ) = min{dim(µ), dim(ν)}, where ν = E(π∗µ).

Ingredients of the proof: The structure of πµ is as follows.
If y ∈ [0, 1) and J = Jn(y) is the semi-open to the right m-adic interval of
generation n containing y, then

π∗µ(J) =
∑
|I|=n

µ(I × J) = ν(J) · ZJ where ZJ =
∑
|I|=n

µn(I × J)

ν(J)
Y∞(I, J),

hence π∗µ is locally essentially the product of its expectation and an
inhomogeneous Mandelbrot martingale, more precisely a Mandelbrot
martingale in a random environment if one considers ZJn(y) for ν-almost
every y.

To get the dimension of π∗µ, one studies its Lq-spectrum and prove that in
a neighbourhood of 1,

E
∑

|J|=n

π∗µ(J)
θ ≤ Cqn

{
m−nmax(τµ(θ),τν(θ)) if θ < 1

m−nmin(τµ(θ),τν(θ)) if θ ≥ 1
.

This yields
τ ′
π∗µ(1) = min(τ ′

µ(1), τ
′
ν(1)).
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Dekking-Grimmett-Falconer formula revisited

Optimizing dim(π∗µ), one gets

Corollary (B.-Feng (2018))
With probability 1, conditionally on K ̸= ∅, one has

dimH π(K) = dimB(π(K))

= inf
0≤θ≤1

logm

m−1∑
j=0

E(Nj)
θ

= max{dimH(π∗µ) : µ is a Mandelbrot measure supported on K}.

Moreover, the above maximum is not attained at a unique point if and only
if the above infimum is attained at θ = 0 and

∑m−1
i=0 log(E(Ni)) > 0.

It is also clear that

dimH K = sup{dim(µ) : µ is a Mandelbrot measure supported on K},

and the supremum is uniquely attained at the so called “branching
measure”, that is the Mandelbrot measure associated to
Wi,j = 1Aω (i, j)/E(N).
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