Multifractal formalism for Mandelbrot measures, KPZ formula, and projections of planar Mandelbrot measures

Julien Barral, Darmstadt spring school, session 5/5

J. Barral Multifractal formalism, KPZ, and projections

Multifractal formalism

If ρ is a fully supported finite positive Borel measure on Σ , its L^q -spectrum is the non decreasing concave function

$$\tau_{\rho}: q \in \mathbb{R} \mapsto \liminf_{n \to \infty} \left(\tau_{\rho, n}(q) = -n^{-1} \log \sum_{|u|=n} \rho([u])^q \right),$$

For $\alpha \in \mathbb{R}$ set

$$\begin{split} \overline{f}_{\mu}(\alpha) &= \lim_{\epsilon \to 0} \limsup_{n \to \infty} n^{-1} \log \#\{u : |u| = n, \, \mu([u]) \in [e^{-n(\alpha+\epsilon)}, e^{-n(\alpha-\epsilon)}]\},\\ \underline{f}_{\mu}(\alpha) &= \lim_{\epsilon \to 0} \liminf_{n \to \infty} n^{-1} \log \#\{u : |u| = n, \, \mu([u]) \in [e^{-n(\alpha+\epsilon)}, e^{-n(\alpha-\epsilon)}]\},\\ E(\rho, \alpha) &= \left\{t \in \Sigma : \lim_{n \to \infty} \frac{\log \rho([t_{|}n])}{-n} = \alpha\right\}. \end{split}$$

One always has:

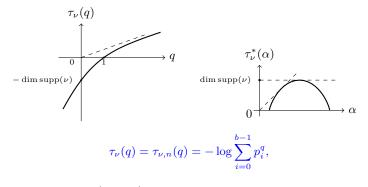
$$\dim E(\rho, \alpha) \leq \underline{f}_{\mu}(\alpha) \leq \overline{f}_{\mu}(\alpha) \leq \tau_{\rho}^{*}(\alpha) := \inf_{q \in \mathbb{R}} \alpha q - \tau_{\rho}(q).$$

Also, by Gartner-Ellis theorem, $\underline{f}_{\mu}(\alpha) = \overline{f}_{\mu}(\alpha) = \tau_{\rho}^{*}(\alpha)$ at all α of the form $\tau'_{\mu}(q)$, and by a result of Ngai, $\tau'_{\mu}(1^{+}) \leq \underline{\dim}_{H}(\rho) \leq \overline{\dim}_{P}(\rho) \leq \tau'_{\mu}(1^{-})$. Say that the multifractal formalism holds for ρ at α if

 $\dim E(\rho, \alpha) = \tau_{\rho}^*(\alpha).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Multifractal analysis of the Bernoulli product measure $\nu = \nu_p$



 $dom(\tau_{\nu}^{*}) = [\tau_{\nu}'(\infty), \tau_{\nu}'(-\infty)] = [-\log(\max_{i} p_{i}), -\log(\min_{i} p_{i})].$

The multifractal formalism holds at any α .

Multifractal formalism for Mandelbrot measures

Set
$$\tau(q) = \tau_{\widetilde{W}}(q) = -\log(\mathbb{E}\left(\sum_{i=0}^{b-1} \widetilde{W}_i^q\right)$$
 for all $q \in \mathbb{R}$.
Suppose $\tau'(1-) > 0$ and $\tau(q) > -\infty$ for some $q < 0$ (in particular the components of \widetilde{W} are > 0 and $\operatorname{supp}(\mu) = \Sigma$ a.s.

Theorem (Molchan (1996), B. (2000), Attia-B. (2014))

With probability 1, the Mandelbrot measure μ obeys the multifractal formalism. Specifically, for all $\alpha \in \mathbb{R}$, $\dim_H E(\mu, \alpha) = \tau^*_{\mu}(\alpha) := \inf\{\alpha q - \tau_{\mu}(q) : q \in \mathbb{R}\}, \text{ where }$

$$\tau_{\mu}(q) = \lim_{n \to \infty} \left(\tau_{\mu,n}(q) := -n^{-1} \log \sum_{|u|=n} \mu([u])^q \right),$$

and setting $J = \{q \in \mathbb{R} : \tau'(q)q - \tau(q) > 0\}, q_- = \inf(J) \text{ and } q_+ = \sup(J),$ one has

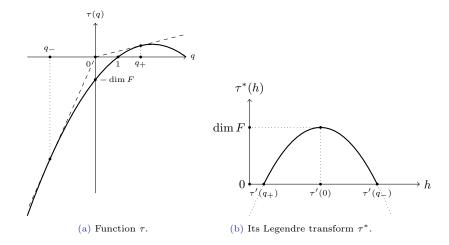
$$\tau_{\mu}(q) = T(q) := \begin{cases} \tau(q) & \text{if } q \in (q_{-}, q_{+}) \\ q \frac{\tau(q_{+})}{q_{+}} & \text{if } q \ge q_{+} \\ q \frac{\tau(q_{-})}{q_{-}} & \text{if } q \le q_{-} \end{cases}$$

Note: it is easily seen that for $q \in \{q_-, q_+\}, |q| < \infty$ implies $\tau(q) > -\infty$

Note: If $q_+ < \infty$, τ_{μ} presents a second order phase transition or a first order phase transition at q_+ according to whether $\tau'(q_+-) = \frac{\tau(q_+)}{q_+}$ or $\tau'(q_+-) > \frac{\tau(q_+)}{q_+}$ (the same phenomenon occurs at q_- if $q_- > -\infty$.

(本部) (本語) (本語) (語)

Illustration



< ∃ > <

< ⊒⇒

æ

Illustration

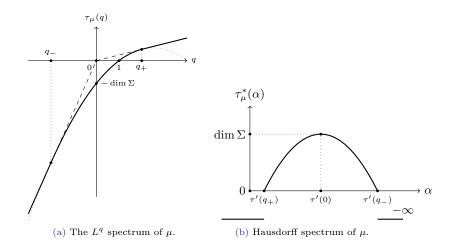


Figure: Multifractal nature of a Mandelbrot measure with a second phase transition at both q_{-} and q_{+} . This situation occurs, e.g., when the W_i are i.i.d and is lognormal.

Illustration

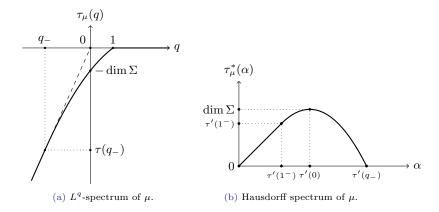


Figure: Multifractal nature of a Mandelbrot measure with a second order phase transition at some negative q_{-} and a first order phase transition at $q_{+} = 1$ (i.e. when Kahane's non degeneracy theorem is optimal: $\tau(q) = -\infty$ for all q > 1.

It sufficies to prove: (1) for all $q \in \mathbb{R}$, a.s. $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge T(q)$ and use the concavity to get a.s., for all $q \in \mathbb{R}$, $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge T(q)$.

(2) a.s. for all $\alpha \in [T'(\infty), T'(-\infty)]$, dim_H $E(\mu, \alpha) \ge T^*(\alpha)$, and specifically,

(2) (a) a.s. for all
$$\alpha = \tau'(q)$$
, with $q \in (q_-, q_+)$,
dim_H $E(\mu, \alpha) \ge T^*(\alpha) = \tau'(q)q - \tau(q)$;
(2) (b) a.s. dim_H $E(\mu, \alpha) \ge T^*(\alpha)$ for $\alpha \in \{\tau'(q_+-), \tau'(q_-+)\}$;
(2) (c) If $q_+ < \infty$ and $\tau'(q_+-) > \frac{\tau(q_+)}{q_+}$, a.s., for all $\alpha \in [\frac{\tau(q_+)}{q_+}, \tau'(q_+-))$,
dim_H $E(\mu, \alpha) \ge T^*(\alpha) = \alpha q_+ - \tau(q_+)$,
and a similar result if $q_- > -\infty$ and $\tau'(q_-+) > \frac{\tau(q_-)}{q_-}$.

- 4 The b

(1) for all $q \in \mathbb{R}$, a.s. $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge T(q)$. Then the concavity yields a.s., for all $q \in \mathbb{R}$, $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge T(q)$. For $q \in (q_-, q_+)$, one has

$$\mathbb{E}(e^{-\tau_{\mu,n}(q)}) = \mathbb{E}\left(\sum_{|u|=n} \mu([u])^q\right) = \mathbb{E}\left(\sum_{|u|=n} \left(\prod_{k=1}^n \widetilde{W}_{u_1\cdots u_k}\right)^q Y_\infty(u)^q\right)$$
$$= e^{-n\tau(q)}\mathbb{E}(Y_\infty^q)$$

This yields $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge \tau(q) = T(q)$ a.s.

法国际 化基本

-

(1) for all $q \in \mathbb{R}$, a.s. $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge T(q)$. Then the concavity yields a.s., for all $q \in \mathbb{R}$, $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge T(q)$. For $q \in (q_-, q_+)$, one has

$$\mathbb{E}(e^{-\tau_{\mu,n}(q)}) = \mathbb{E}\left(\sum_{|u|=n} \mu([u])^q\right) = \mathbb{E}\left(\sum_{|u|=n} \left(\prod_{k=1}^n \widetilde{W}_{u_1\cdots u_k}\right)^q Y_\infty(u)^q\right)$$
$$= e^{-n\tau(q)}\mathbb{E}(Y_\infty^q)$$

This yields $\liminf_{n\to\infty} \tau_{\mu,n}(q) \ge \tau(q) = T(q)$ a.s.

For $q > q_+$ (if $q_+ < \infty$), take $0 < q' < q_+$, and write

$$\sum_{|u|=n} \mu([u])^q = \sum_{|u|=n} (\mu([u])^{q'})^{q/q'} \le \Big(\sum_{|u|=n} (\mu([u])^{q'})\Big)^{q/q'},$$

which implies a.s $\liminf_{n\to\infty} \tau_{\mu,n}(q) \geq \frac{q}{q'} \cdot \liminf_{n\to\infty} \tau_{\mu,n}(q') \geq \frac{q}{q'}\tau(q')$. This holds for all $0 < q' < q_+$, hence $\liminf_{n\to\infty} \tau_{\mu,n}(q) \geq \frac{q}{q_+}\tau(q_+) = T(q)$ by letting q' tend to q_+ . (2) a.s. for all $\alpha \in [T'(\infty), T'(-\infty)]$, dim_H $E(\mu, \alpha) \ge T^*(\alpha)$, and specifically,

(2) (a) a.s. for all $\alpha = \tau'(q)$, with $q \in (q_-, q_+)$, $\dim_H E(\mu, \alpha) \ge T^*(\alpha) = \tau'(q)q - \tau(q)$:

I explained that if we consider $\widetilde{W}_q = (W_{q,i} = \widetilde{W}_i^q e^{\tau(q)})_{0 \le i \le b-1}$, one gets a new Mandelbrot measure μ_q , as weak limit of the sequence $(\mu_{q,n})_{n \ge 1}$, where

$$\frac{\mathrm{d}\mu_{q,n}}{\mathrm{d}\lambda}(t) = b^n \underbrace{W_{t_1}^q e^{\tau(q)}}_{W_{q,t_1}} \cdots \underbrace{W_{t_1\cdots t_n}^q e^{\tau(q_n)}}_{W_{q,t_1\cdots t_n}},$$

such that (by a simple computation), $\tau'_{\widetilde{W}_q}(1) = q\tau'(q) - \tau(q).$

(2) a.s. for all $\alpha \in [T'(\infty), T'(-\infty)]$, $\dim_H E(\mu, \alpha) \ge T^*(\alpha)$, and specifically,

(2) (a) a.s. for all $\alpha = \tau'(q)$, with $q \in (q_-, q_+)$, $\dim_H E(\mu, \alpha) \ge T^*(\alpha) = \tau'(q)q - \tau(q)$:

I explained that if we consider $\widetilde{W}_q = (W_{q,i} = \widetilde{W}_i^q e^{\tau(q)})_{0 \le i \le b-1}$, one gets a new Mandelbrot measure μ_q , as weak limit of the sequence $(\mu_{q,n})_{n \ge 1}$, where

$$\frac{\mathrm{d}\mu_{q,n}}{\mathrm{d}\lambda}(t) = b^n \underbrace{W_{t_1}^q e^{\tau(q)}}_{W_{q,t_1}} \cdots \underbrace{W_{t_1\cdots t_n}^q e^{\tau(q_n)}}_{W_{q,t_1\cdots t_n}},$$

such that (by a simple computation), $\tau'_{\widetilde{W}_q}(1) = q\tau'(q) - \tau(q)$.

Also, $\tau'(q) = -\mathbb{E}(\widetilde{W}_{q,i} \log(\widetilde{W}_i))$ and using the Peyrière measure $\mathbb{P}(d\omega)\mu_{q,\omega}(dt)$, as well as the fact that $\mathbb{E}(Y_{\infty}^{-\epsilon}) < \infty$ for some $\epsilon > 0$, one gets (cf exercise 2(d)) that

$$\mu_q(E(\mu, \alpha = \tau'(q))) = \|\mu_q\|.$$

Since the dimension fo μ_q is $\tau'(q)q - \tau(q)$, we get the desired inequality, for a fixed $\alpha = \tau'(q)$, almost surely.

(2) a.s. for all $\alpha \in [T'(\infty), T'(-\infty)]$, $\dim_H E(\mu, \alpha) \ge T^*(\alpha)$, and specifically,

(2) (a) a.s. for all
$$\alpha = \tau'(q)$$
, with $q \in (q_-, q_+)$,
dim_H $E(\mu, \alpha) \ge T^*(\alpha) = \tau'(q)q - \tau(q)$:

I explained that if we consider $\widetilde{W}_q = (W_{q,i} = \widetilde{W}_i^q e^{\tau(q)})_{0 \le i \le b-1}$, one gets a new Mandelbrot measure μ_q , as weak limit of the sequence $(\mu_{q,n})_{n \ge 1}$, where

$$\frac{\mathrm{d}\mu_{q,n}}{\mathrm{d}\lambda}(t) = b^n \underbrace{W_{t_1}^q e^{\tau(q)}}_{W_{q,t_1}} \cdots \underbrace{W_{t_1\cdots t_n}^q e^{\tau(q_n)}}_{W_{q,t_1\cdots t_n}},$$

such that (by a simple computation), $\tau'_{\widetilde{W}_q}(1) = q\tau'(q) - \tau(q)$.

Also, $\tau'(q) = -\mathbb{E}(\widetilde{W}_{q,i}\log(\widetilde{W}_i))$ and using the Peyrière measure $\mathbb{P}(\mathrm{d}\omega)\mu_{q,\omega}(\mathrm{d}t)$, as well as the fact that $\mathbb{E}(Y_{\infty}^{-\epsilon}) < \infty$ for some $\epsilon > 0$, one gets (cf exercise 2(d)) that

$$\mu_q(E(\mu, \alpha = \tau'(q))) = \|\mu_q\|.$$

Since the dimension fo μ_q is $\tau'(q)q - \tau(q)$, we get the desired inequality, for a fixed $\alpha = \tau'(q)$, almost surely.

- To get a result valid a.s. for all $\alpha \in \tau'((q_-, q_+))$, one must modify the approach:

(i) Construct a.s. simultaneously the measures μ_q : uses a complex extension of the martingales in a neighborhood of (q_-, q_+) ;

(*ii*) Prove that a.s., for all $q \in (q_-, q_+)$ and $\epsilon > 0$,

$$\sum_{n\geq 1} \mu_q \big(\{ t : \mu([t_{|n}]) \notin [e^{-n(\tau'(q)+\epsilon)}, e^{-n(\tau'(q)-\epsilon)}] \} \big) < \infty.$$

The *n*-th term of the previous sum can be bounded from above (using Markov inequality), for any $\eta > 0$, by

$$f_{n,\epsilon,\eta}(q) = \sum_{n\geq 1} \sum_{|u|=n} \mu_q([u]) \big(\mu([u])^{\eta} e^{n\eta(\tau'(q)-\epsilon)} + \mu([u])^{-\eta} e^{-n\eta(\tau'(q)+\epsilon)} \big).$$

For any $[a, b] \subset J$, one can find η such that

$$\sum_{n\geq 1} \sup_{q\in[a,b]} \mathbb{E}(f_{n,\epsilon,\eta}(q)) + \sup_{q\in[a,b]} \mathbb{E}(|f'_{n,\epsilon,\eta}(q)|) < \infty.$$

This yields the almost sure uniform convergence of $\sum_{n\geq 1} f_{n,\epsilon,\eta}$ on compact subsets of J, and the desired conclusion.

(1日) (1日) (日)

-

It remains to prove (we consider q_+ , the situation is similar for q_-):

(2) (b) a.s. $\dim_H E(\mu, \alpha) \ge T^*(\alpha)$ for $\alpha \in \{\tau'(q_+-), \tau'(q_-+)\}$; If $q_+ < \infty$ is finite and $\tau'(q_+-) = \frac{\tau(q_+)}{q_+}$, under mild conditions, one can use the so called critical Mandelbrot measure associated with \widetilde{W}_{q_+} .

If $q_{+} = \infty$, there is no such an adhoc choice.

(2) (c) If
$$q_+ < \infty$$
 and $\tau'(q_+-) > \frac{\tau(q_+)}{q_+}$, a.s., for all $\alpha \in [\frac{\tau(q_+)}{q_+}, \tau'(q_+-))$,
dim_H $E(\mu, \alpha) \ge T^*(\alpha) = \alpha q_+ - \tau(q_+)$,
and a similar result if $\tau'(q_-+) > \frac{\tau(q_-)}{q_-}$,

one uses a method which treats 2(a), 2(b), and 2(c) simultaneously by considering *inhomogenous Mandelbrot measures*, in the sense that one allows the using of vectors of different laws at each generation.

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・ ・

-

For A > 1 and $0 \le i \le b - 1$, set

$$\widetilde{W}_{A,i} = \frac{\mathbf{1}_{\{A^{-1} \le W_i \le A\}} W_i}{\mathbb{E} \sum_{j=0}^{b-1} \mathbf{1}_{\{A^{-1} \le W_j \le A\}} W_j}.$$

J. Barral Multifractal formalism, KPZ, and projections

イロト イヨト イヨト イヨト

E 990

For A > 1 and $0 \le i \le b - 1$, set

$$\widetilde{W}_{A,i} = \frac{\mathbf{1}_{\{A^{-1} \le W_i \le A\}} W_i}{\mathbb{E} \sum_{j=0}^{b-1} \mathbf{1}_{\{A^{-1} \le W_j \le A\}} W_j}$$

There exists a non decreasing sequence $(A_n)_{n\geq 1}$ tending to ∞ and a sequence $(D_n)_{n\geq 1}$ of finite sets such that a.s., for all $p\geq 0$, for all $\boldsymbol{q}=(q_n)_{n\geq 1}\in \boldsymbol{J}_p=\prod_{n\geq 1}D_{n+p}$, the sequence of measures $(\mu_{\boldsymbol{q},n})_{n\geq 1}$ converges weakly to a measure $\mu_{\boldsymbol{q}}$, where

$$\frac{\mathrm{d}\mu_{\boldsymbol{q},n}}{\mathrm{d}\lambda}(t) = b^n \underbrace{W_{A_{p+1},t_1}^{q_1} e^{\tau_{\widetilde{W}_{A_{p+1}}}(q_1)}}_{W_{\boldsymbol{q},t_1}} \cdots \underbrace{W_{A_{p+n},t_1\cdots t_n}^{q_n} e^{\tau_{\widetilde{W}_{A_{p+n}}}(q_n)}}_{W_{\boldsymbol{q},t_1\cdots t_n}};$$

moreover, for all $\alpha \in [T'(\infty), T'(-\infty)]$, there exists $p \ge 0$ and $q = (q_n)_{n \ge 1} \in J_p$ such that

$$\lim_{n \to \infty} \tau'_{\widetilde{W}_{A_{p+n}}}(q_n) = \alpha, \ \lim_{n \to \infty} \tau'_{W_{\boldsymbol{q},t_1\cdots t_n}}(1) = T^*(\alpha),$$

and and both $\mu_{q}(E(\mu, \alpha)) > 0$ and $\underline{\dim}_{H}(\mu_{q}) \geq T^{*}(\alpha)$.

(周) イヨト イヨト

KPZ formula

Note that if ρ is a continuous and fully supported Borel measure on σ , $d_{\rho}(x, y) = \rho([x \wedge y])$ defines an ultrametric distance on Σ .

 $d_{\lambda}(x,y) = b^{-|x \wedge y|}$, and we consider the random distance d_{μ} , associated to a fully supported non degenerate canonical Mandelbrot measure $\mu = Q \cdot \lambda$ (the W_u are i.i.d and Q acts on λ). Here $\tau_{\widetilde{W}}(q) = -\log_b \mathbb{E} \sum_{i=1}^{b-1} \widetilde{W}_i^q$.

Given a deterministic Borel set E, there is a connection between $\dim_{H}^{d_{\lambda}}(E)$ and $\dim_{H}^{d_{\mu}}(E)$.

Note that the mapping $1 + \tau_{\widetilde{W}}$ is an increasing homeomorphism of [0, 1], and that $\dim_{H}^{d_{\lambda}}(\Sigma) = 1$.

Theorem (Benjamini-Schram (2009))

Fix a Borel subset E of Σ . Denote $\dim_H^{d_\lambda}(E)$ by s_0 and define s by the relation

$$s_0 = 1 + \tau_{\widetilde{W}}(s).$$

If $s_0 = 0$, or $s_0 > 0$ and $\tau_{\widetilde{W}}(-t) < \infty$ for all $t \in (0, s)$, then $\dim_H^{d_{\mu}}(E) = s$ almost surely.

(人間) トイヨト イヨト

If $\dim_H^{d_\lambda}(E) = s_0 < 1$, let $t_0 \in (s_0, 1)$ and for all $j \ge 1$ take a covering $([u_k^j]_{k\ge 1})$ a b^{-j} covering of E such that

$$\sum_{k \ge 1} (\operatorname{diam}^{d_{\lambda}}([u_k^j]))^{t_0} \le 1/j^2.$$

If $\dim_H^{d_\lambda}(E) = s_0 < 1$, let $t_0 \in (s_0, 1)$ and for all $j \ge 1$ take a covering $([u_k^j]_{k\ge 1})$ a b^{-j} covering of E such that

$$\sum_{k \ge 1} (\operatorname{diam}^{d_{\lambda}}([u_k^j]))^{t_0} \le 1/j^2.$$

Define t by $t_0 = 1 + \tau_{\widetilde{W}}(t)$. One has

$$\begin{split} \mathbb{E}\sum_{k\geq 1} \operatorname{diam}^{d_{\mu}}([u_{k}^{j}]))^{t} &= \sum_{k\geq 1} \mathbb{E}\mu([u_{k}^{j}])^{t} \\ &= \mathbb{E}(Y_{\infty}^{t})\sum_{k\geq 1} (\operatorname{diam}^{d_{\lambda}}([u_{k}^{j}]))^{t_{0}} \leq \mathbb{E}(Y_{\infty}^{t})/j^{2}. \end{split}$$

If $\dim_H^{d_\lambda}(E) = s_0 < 1$, let $t_0 \in (s_0, 1)$ and for all $j \ge 1$ take a covering $([u_k^j]_{k\ge 1})$ a b^{-j} covering of E such that

$$\sum_{k \ge 1} (\operatorname{diam}^{d_{\lambda}}([u_k^j]))^{t_0} \le 1/j^2.$$

Define t by $t_0 = 1 + \tau_{\widetilde{W}}(t)$. One has

$$\mathbb{E}\sum_{k\geq 1} \operatorname{diam}^{d_{\mu}}([u_{k}^{j}]))^{t} = \sum_{k\geq 1} \mathbb{E}\mu([u_{k}^{j}])^{t}$$
$$= \mathbb{E}(Y_{\infty}^{t})\sum_{k\geq 1} (\operatorname{diam}^{d_{\lambda}}([u_{k}^{j}]))^{t_{0}} \leq \mathbb{E}(Y_{\infty}^{t})/j^{2}.$$

So a.s. $\lim_{j\to\infty} \sum_{k\geq 1} \operatorname{diam}^{d_{\mu}}([u_k^j]))^t = 0$, and the $([u_k^j])_{k\geq 1}$ are δ_j coverings w.r.t. d_{μ} , where $\delta_j = \sup_{k\geq 1} \mu([u_k^j])$ tends to 0 as $j \to \infty$, since μ is atomless and $\sup_{k\geq 1} \lambda([u_k^j]) \leq b^{-j}$. It follows that $\operatorname{dim}_H^{d_{\mu}}(E) \leq t$, and this holds for all $t \in (s, 1)$. Lower bound: If $s_0 = 0$ there is nothing to prove. Suppose $s_0 > 0$. Fix $t_0 \in (0, s_0)$. By Frostman's lemma, there exists a Borel probability measure ρ supported on E such that

$$I_{t_0}^{d_{\lambda}}(\rho) = \iint_{K \times K} \frac{\rho(\mathrm{d}x)\rho(\mathrm{d}y)}{d_{\lambda}(x,y)^{t_0}} < \infty.$$

Again, define t by $t_0 = 1 + \tau_{\widetilde{W}}(t)$. Denote by Q_t the multiplicative chaos associated with the weights $W_u^t / \mathbb{E}(W^t)$. The measure $Q_t \cdot \rho$ is non degenerate as shows an application of the criterion for non degeneracy that we established.

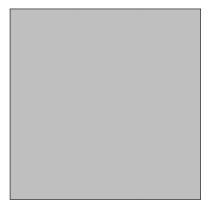
Moreover, since the weights are > 0, the limit measure is positive almost surely; and it is supported on E. Also, a calculation (using that $E(Y_{\infty}^{-t}) < \infty$) shows

$$\mathbb{E}I_t^{d_{\mu}}(Q_t \cdot \rho) = \iint_{K \times K} \frac{Q_t \cdot \rho(\mathrm{d}x)Q_t \cdot \rho(\mathrm{d}y)}{d_{\lambda}(x,y)^t} \le C(W,t)I_{t_0}^{d_{\lambda}}(\rho).$$

This implies that a.s., $\underline{\dim}_{H}(Q_t \cdot \rho) \ge t$, hence $\dim_{H}^{d_{\mu}}(E) \ge t$.

イヨト イヨト イヨト

Fix $m \ge 2$. Let $K_0 = [0, 1]^2$ be the unit square.



H b

Fractal percolation set

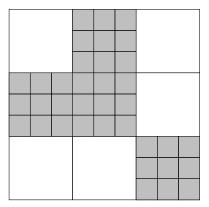
Fix $m \geq 2$. Let $K_0 = [0, 1]^2$ be the unit square. Choose a random subcollection $A(\omega)$ of the m^2 subsquares $\{R(i, j) = [im^{-1}, (i+1)m^{-1}] \times [jm^{-1}, (j+1)m^{-1}]\}_{0 \leq i,j \leq m-1}$ of side m^{-1} , according to some given distribution.

Fractal percolation set

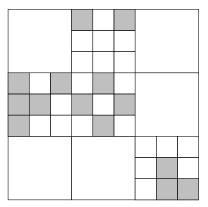
Fix $m \geq 2$. Let $K_0 = [0,1]^2$ be the unit square. Choose a random subcollection of the m^2 subsquares $\{R(i,j) = [im^{-1}, (i+1)m^{-1}] \times [jm^{-1}, (j+1)m^{-1}]\}_{0 \leq i,j \leq m-1}$ of side m^{-1} , according to some given distribution. This yields a set K_1 .

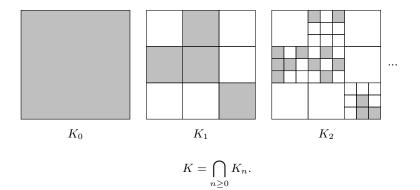
(4) (E) (b)

Repeat the selection independently and according to the same law in each selected subsquare.



Repeat the selection independently and according to the same law in each selected subsquare. This yields a set K_2 .





Let $N(\omega) = #A(\omega)$ denote the (random) number of squares kept at generation 1. One has $K \neq \emptyset$ if and only if $\mathbb{E}(N) > 1$ or N = 1 almost surely. In the later case K is a singleton.

Theorem

Let N be the number of surviving squares at the first generation. Suppose $\mathbb{E} N > 1$. With probability 1, if $K \neq \emptyset$ then

 $\dim_H K = \dim_B K = \log(\mathbb{E} N) / \log(m).$

Let N_j be the number of surviving squares in line j, so that $N = \sum_{j=0}^{m-1} N_j$. Suppose $\mathbb{E} N > 1$.

Denote by π the orthogonal projection on the vertical axis.

Theorem (Dekking-Grimmett (1988), Falconer (1989)) With probability 1, if $K \neq \emptyset$ then

$$\dim_H \pi K = \dim_B \pi K = \inf_{0 \le \theta \le 1} \log_m \sum_{i=0}^{m-1} (\mathbb{E} N_j)^{\theta}.$$

Moreover, $\dim_H \pi K = \dim K$ iff the infimum is reached at 1.

Remark: (1) The difficulty of the question partly comes from the fact that it may happen that $0 < \mathbb{E} N_j < 1$ for some j.

(2) The upper bound $\dim_B \pi(K) \leq \inf_{0 \leq s \leq 1} \log_m \sum_{i=0}^{m-1} (\mathbb{E} N_j)^s$ is easily obtained by using the fact that for all $\theta \in (0, 1)$,

$$\begin{split} &\#\{I: |I| = n, I \cap \pi(K) \neq \emptyset\} \\ &= \#\{I: |I| = n, \#\{J: |J| = n, (I \times J) \cap K \neq \emptyset\} \ge 1\} \\ &\leq \sum_{|I| = n} (\#\{J: |J| = n, (I \times J) \cap K \neq \emptyset\})^{\theta}, \end{split}$$

hence (taking expectation and using Jensen's inequality)

$$\mathbb{E}(\#\{I: |I|=n, I \cap \pi(K) \neq \emptyset\}) \leq \sum_{|I|=n} \left(\mathbb{E}(\#\{J: |J|=n, (I \times J) \cap K \neq \emptyset\})\right)^{\theta},$$
$$= \left(\sum_{j=0}^{m-1} \mathbb{E}(N_j)^{\theta}\right)^n,$$

which implies that

$$\limsup_{n \to \infty} n^{-1} \log_m \# \{I : |I| = n, \ I \cap \pi(K) \neq \emptyset\} \le \log_m \sum_{i=0}^{m-1} (\mathbb{E} N_i)^{\theta}.$$

Before revisiting the previous result, let us mention the result by Rams and Simon.

If $\theta \in (-\pi/2, \pi/2)$, denote by π_{θ} the orthogonal projection on the line $y = \tan(\theta)x$.

Theorem (Rams-Simon (2014, 2015))

Suppose the squares have been chosen independently and with equal probability $p > m^{-2}$. With probability 1, if $K \neq \emptyset$, for all $\theta \in (-\pi/2, \pi/2)$, the following holds

- 1. $\dim_H \pi_{\theta} K = \min(1, \dim_H K);$
- 2. if $\dim_H K > 1$ then $\pi_{\theta} K$ contains an interval.

A B > A B >

Take a random non negative vector $W = (W_{i,j})_{0 \le i,j \le m-1}$ such that $\mathbb{E}(\sum_{j=0}^{m-1} W_{i,j}) = 1.$

W _{0,2}	$W_{1,2}$	$W_{2,2}$
$W_{0,1}$	$W_{1,1}$	$W_{2,1}$
W _{0,0}	$W_{1,0}$	$W_{2,0}$

・ロト ・ 一 ト ・ ヨト ・ ヨト

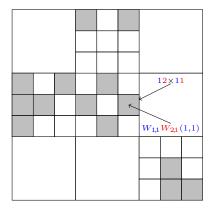
3

Suppose that $\mathbb{E}(N) > 1$. Take a random non negative vector $W = (W_{i,j})_{0 \le i,j \le m-1}$ such that $\mathbb{E}(\sum_{i,j} W_{i,j}) = 1$. Assume that $W_{i,j} = 0$ if (i,j) does not survive, i.e. $(i,j) \notin A(\omega)$.

0	W _{1,2}	0
$W_{0,1}$	$W_{1,1}$	0
0	0	$W_{2,0}$

Set $\mu_1(i_1 \times j_1) = W_{i_1, j_1}$

Next independently in each surviving subsquare $i_1 \times j_1$ take a copie $W(i_1, j_1) = (W_{i_2, j_2}(i_1, j_1))_{0 \le i_2, j_2 \le m-1}$ of W and set



 $\mu_2(i_1i_2 \times j_1j_2) = W_{i_1,j_1}W_{i_2,j_2}(i_1,j_1)$

Revisiting the two first results with Mandelbrot measures

Iterate: for $n \ge 1$ and $I = i_1 \cdots i_n$ and $J = j_1 \cdots j_n$,

 $\mu_n(I \times J) = W_{i_1, j_1} W_{i_2, j_2}(i_1, j_1) \cdots W_{i_n, j_n}(i_1 \cdots i_{n-1}, j_1 \cdots j_{n-1}),$

the mass being distributed uniformly. One has

$$\sup(\mu_n) \subset K_n.$$

Set $\mathcal{A} = \{0, \dots, m-1\}^2$ and
 $\tau(\theta) = -\log \mathbb{E} \sum_{(i,j) \in \mathcal{A}} W_{i,j}^{\theta};$ note that $\tau'(1^-) = -\mathbb{E} \sum_{(i,j) \in \mathcal{A}} W_{i,j} \log W_{i,j}.$

Theorem (Kahane-Peyrière (1976), Kahane (1987))

With probability 1, conditional on $K \neq \emptyset$, the sequence $(\mu_n)_{n\geq 1}$ weakly converges towards a mesure μ supported on K. If $\mathbb{P}(\#\{(i, j) : W_{i,j} > 0\} = 1) = 1$, then μ is a Dirac mass almost surely. Otherwise, $\mathbb{P}(\mu \neq 0 | K \neq \emptyset) > 0$ iff $\tau'(1^-) > 0$, and in this case, conditional on $\mu \neq 0$, then μ is exact dimensional with $\dim(\mu) = \dim_e(\mu)/\log(m)$, where

$$\dim_{e}(\mu) = \lim_{n \to \infty} n^{-1} \sum_{|I|=|J|=n} -\mu(I \times J) \log \mu(I \times J) = \tau'(1^{-}).$$

イロト イポト イラト イラト

Dimensions of projections of μ

Recall that $\tau(\theta) = -\log \mathbb{E} \sum_{(i,j) \in \mathcal{A}} W_{i,j}^{\theta}$.

Theorem (Falconer-Jin, 2014)

Suppose that $\tau(\theta) > -\infty$ for some $\theta > 1$ and $\tau'(1) > 0$. With probability 1, if $\mu \neq 0$, for all θ , the measure $\pi_{\theta*}\mu$ is exact dimensional.

- 4 The b

Recall that
$$\tau(\theta) = -\log \mathbb{E} \sum_{(i,j) \in \mathcal{A}} W_{i,j}^{\theta}$$
.

Theorem (Falconer-Jin, 2014)

Suppose that $\tau(\theta) > -\infty$ for some $\theta > 1$ and $\tau'(1) > 0$. With probability 1, if $\mu \neq 0$, for all θ , the measure $\pi_{\theta*}\mu$ is exact dimensional. Let

$\nu = \mathbb{E}(\pi_*\mu).$

Setting $p_{i,j} = \mathbb{E}(W_{i,j})$, and $q_j = \sum_{i=0}^{m-1} p_{i,j}$ so that $q_0 + q_1 + \ldots + q_{m-1} = 1$, ν is the Bernoulli product measure on [0, 1] generated by the probability vector (q_0, \ldots, q_{m-1}) .

Theorem (B.-Feng, 2018)

Suppose $\tau'(1^-) > 0$. With probability 1, if $\mu \neq 0$:

- 1. If $\dim(\mu) > \dim(\nu)$, then $\pi_*\mu \ll \nu$, hence $\dim(\pi_*\mu) = \dim(\nu)$.
- If dim(μ) ≤ dim(ν), then π_{*}μ ⊥ ν.
 If, moreover, τ(θ) > -∞ for some θ > 1, then π_{*}μ is exact dimensional and dim(π_{*}μ) = dim(μ).

・ 同 ト ・ ヨ ト ・ ヨ ト

Thus, if $\tau(\theta) > -\infty$ for some $\theta > 1$ and $\tau'(1) > 0$, if $\mu \neq 0$, then

 $\dim(\pi_*\mu) = \min\{\dim(\mu), \dim(\nu)\}, \text{ where } \nu = \mathbb{E}(\pi_*\mu).$

Ingredients of the proof: The structure of π_{μ} is as follows.

If $y \in [0, 1)$ and $J = J_n(y)$ is the semi-open to the right *m*-adic interval of generation *n* containing *y*, then

$$\pi_* \mu(J) = \sum_{|I|=n} \mu(I \times J) = \nu(J) \cdot Z_J \quad \text{where } Z_J = \sum_{|I|=n} \frac{\mu_n(I \times J)}{\nu(J)} Y_{\infty}(I,J),$$

hence $\pi_*\mu$ is locally essentially the product of its expectation and an inhomogeneous Mandelbrot martingale, more precisely a Mandelbrot martingale in a random environment if one considers $Z_{J_n(y)}$ for ν -almost every y.

To get the dimension of $\pi_*\mu$, one studies its L^q -spectrum and prove that in a neighbourhood of 1,

$$\mathbb{E}\sum_{|J|=n} \pi_* \mu(J)^{\theta} \le C_q n \begin{cases} m^{-n \max(\tau_{\mu}(\theta), \tau_{\nu}(\theta))} & \text{if } \theta < 1\\ m^{-n \min(\tau_{\mu}(\theta), \tau_{\nu}(\theta))} & \text{if } \theta \ge 1 \end{cases}$$

This yields

$$\tau'_{\pi_*\mu}(1) = \min(\tau'_{\mu}(1), \tau'_{\nu}(1)).$$

Optimizing dim $(\pi_*\mu)$, one gets

Corollary (B.-Feng (2018))

With probability 1, conditionally on $K \neq \emptyset$, one has

 $\dim_H \pi(K) = \dim_B(\pi(K))$

$$= \inf_{0 \le \theta \le 1} \log_m \sum_{j=0}^{m-1} \mathbb{E}(N_j)^{\theta}$$

 $= \max\{\dim_H(\pi_*\mu) : \mu \text{ is a Mandelbrot measure supported on } K\}.$

Moreover, the above maximum is not attained at a unique point if and only if the above infimum is attained at $\theta = 0$ and $\sum_{i=0}^{m-1} \log(\mathbb{E}(N_i)) > 0$. It is also clear that

 $\dim_H K = \sup\{\dim(\mu) : \mu \text{ is a Mandelbrot measure supported on } K\},\$

and the supremum is uniquely attained at the so called "branching measure", that is the Mandelbrot measure associated to $W_{i,j} = \mathbf{1}_{A_{\omega}}(i,j)/\mathbb{E}(N).$

A (1) A (1) A (1) A (1)