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Liouville Quantum Gravity

Construct a random metric on a 2d-manifold D ⊆ R2 of the form

eγX (x) dx2, γ ∈ (0, 2), (1)

where X is a Gaussian Free Field (GFF) on D.

To give sense to the expression in (1) is highly non-trivial as
I the correlation function of the GFF X is logarithmically divergent on a

short scale!
I the GFF X is not a function but a random distribution!

The Liouville Brownian motion (LBM) B is formally the solution of

dBt = e−
γ
2X (Bt)+

γ2

4 E[X (Bt)2]dB̄t ,

where B̄ is a BM on D independent of X .

Dambis-Dubins-Schwarz Theorem: Try to define B as a time-change
of a planar Brownian motion B.
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Gaussian free field

Let D be bounded. The (continuum) GFF X is the Gaussian Hilbert
space associated with the Sobolev space H1

0 (D), which is the closure of
C∞0 (D) w.r.t. the Dirichlet inner product

(f , g)∇ =

∫
D
∇f · ∇g dx ,

i.e. {(X , f )∇}f ∈H1
0 (D) is a family of centered Gaussian random variables on

(Ω,A,P) satisfying

cov((X , f )∇, (X , g)∇) = (f , g)∇ =
(
f , (−∆)g

)
L2
.

The covariance function is given by the standard Green function on D.
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Irregularity of the GFF

Formally,

X =
∑
n

αnfn,

where (αn) i.i.d. N (0, 1) and (fn) ONB of H1
0 (D). Since

∥∥∥ N∑
n=1

αnfn
∥∥2
∇ =

N∑
n=1

α2
n →∞ as N →∞,

the GFF cannot be defined pointwise as a random element in H1
0 (D), but

it can be identified as random distribution.
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Massive Gaussian free field

From now on: D = R2.

The massive GFF X is the Gaussian Hilbert space associated with the
Sobolev space H1

m, which is the closure of C∞0 (R2) w.r.t. the Dirichlet
inner product

(f , g)m = m2(f , g)L2 + (f , g)∇, m > 0 mass,

i.e. {(X , f )m}f ∈H1
m

is a family of centered Gaussian random variables on
(Ω,A,P) satisfying

cov
(
(X , f )m, (X , g)m

)
= (f , g)m =

(
f , (m2 −∆)g

)
L2
.

The covariance function is given by the massive Green function associated
with m2 −∆.
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Liouville Measure

By a cutoff-procedure define a sequence (Xn) of smooth
approximating fields.

Let Mn,γ be the volume measure

Mn,γ(dx) = exp
(
γXn(x)− γ2

2 E[Xn(x)2]
)

dx ,

associated with the metric

eγXn(x)− 1
2
E[Xn(x)2]dx2.

By the theory of Gaussian multiplicative chaos (Kahane ’85), P-a.s.

Mn,γ ⇀ Mγ , γ ∈ [0, 2),

for some Radon measure Mγ called Liouville measure.

For γ ∈ (0, 2), Mγ ⊥ dx and Mγ is concentrated on the set of
γ-thick points of the field X .
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n-regularized Liouville Brownian motion

The n-regularized LBM Bn is the solution of

dBnt = e−
γ
2Xn(Bnt )+

γ2

4 E[Xn(Bnt )2]dB̄t ,

where B̄ is a standard BM on R2.

By the Dambis-Dubins-Schwarz theorem

Bnt = B(F n)−1
t

is a time-change of a standard BM (B, {Px}x∈R2), where

F n
t :=

∫ t

0
eγXn(Bs)−

γ2

2 E[Xn(Bs)2] ds, t ≥ 0,

which is strictly increasing.
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Definition of Liouville Brownian motion

Theorem (Garban, Rhodes, Vargas (2013))

Let γ ∈ [0, 2). Then, P-a.s. the following hold:

i) For all x ∈ R2, F n converges to some F in Px -probability in
C ([0,∞),R).

ii) For all x ∈ R2, Px -a.s., F is strictly increasing and satisfies
limt→∞ Ft =∞.

iii) The functional F is the unique PCAF with Revuz measure Mγ .

The process (B, {Px}x∈R2), P-a.s. defined by

Bt := BF−1
t
, t ≥ 0,

is called the (massive) Liouville Brownian motion (LBM).

A similar result has been obtained by N. Berestycki (2013).
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Properties of the LBM

The LBM is Markovian and induces a semigroup Pt f (x) = Ex [f (Bt)].

The LBM is a recurrent diffusion (as a time-change of the planar
BM).

The LBM is symmetric (reversible) w.r.t. Mγ .

For t ≥ 0, Pt is absolutely continuous w.r.t. Mγ , so there exists the
Liouville heat kernel pt(·, ·) such that

Pt f (x) =

∫
R2

f (y) pt(x , y) Mγ(dy).

The intrinsic metric dB associated with the LBM is identically zero,
which indicates that

lim
t→0

t log pt(x , y) = −dB(x , y)2

2
= 0.

That is, irregular off-diagonal behaviour of pt(·, ·) is expected.
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Continuity and on-diagonal upper bounds on pt(x , y)

Theorem (A., Kajino (2014))

i) The Liouville heat kernel pt(x , y) is jointly continuous on
(0,∞)× R2 × R2.

ii) For any bounded U ⊂ R2 and β > (γ + 2)2/2 > 2, P-a.s., there exists
ci = ci (X , γ,U, β) such that for all t < 1

2 , x , y ∈ U,

pt(x , y) ≤ c1 t−1 log(t−1) exp
(
− c2(|x − y |β/t)1/(β−1)

)
.

Related previous result by Maillard, Rhodes, Vargas, Zeitouni (2014):

Continuity of the Liouville heat kernel on the torus T.

For any δ > 0 there exists βδ > 0 such that for t > 0 and x , y ∈ T.

pt(x , y) ≤ c1 t−(1+δ) exp
(
−c2(|x − y |βδ/t)1/(βδ−1)

)
,

pt(x , y) ≥ exp
(
− t
− 1

1+γ2/4−δ
)
, ∀t ∈ (0, t0] with t0 = t0(X , γ, x , y).
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On-diagonal lower bound

Theorem (A., Kajino (2014))

Let γ ∈ [0, 2). Then, P-a.s., for Mγ-a.e. x ∈ R2 there exist c3 = c3(X , γ)
and t0 = t0(X , γ, x) such that

pt(x , x) ≥ c3 t−1
(

log(t−1)
)−η

, ∀t ∈ (0, t0],

for some explicit constant η > 0 (η = 34 would be enough).

Corollary (A., Kajino (2014))

Let γ ∈ [0, 2). Then, P-a.s., for Mγ-a.e. x ∈ R2,

lim
t↓0

2 log pt(x , x)

− log t
= 2.

Rhodes, Vargas (2013): lim
y→x

∫ ∞
0

e−λttαpt(x , y) dt

{
<∞, if α > 0,

=∞, if α = 0.
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Volume and exit time estimates

Lemma

Let ε > 0, α1 := 1
2(γ + 2)2 and α2 := 2(1− γ

2 )2. Then, P-a.s., for any
R > 0 there exists ci = ci (X , γ,R, ε) > 0, such that

c4 rα1+ε ≤ Mγ(B(x , r)) ≤ c5 rα2−ε, ∀x ∈ B(0,R), r ∈ (0, 1).

Let τU := inf{s ≥ 0 : Bs 6∈ U} be the first exit time from an open set U.

Proposition

For any β > α1 and R ≥ 1, P-a.s., there exist ci = ci (X , γ,R, β) such that

Px [τB(x ,r) ≤ t] ≤ c6 exp
(
−c7(rβ/t)1/(β−1)

)
,

for all t > 0, x ∈ B(0,R) and r ∈ (0, 1].
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The Dirichlet heat kernel

Consider the heat kernel pU
t (x , y) of the LBM killed upon exiting a

bounded open set U.

Strong Feller property of the resolvent.

Faber-Krahn inequality, which implies a Nash inequality and
on-diagonal bounds (ultracontractivity).

By a general result by Davies (’89)

pU
t (x , y) =

∞∑
n=1

e−λntϕn(x)ϕn(y)

converges uniformly on [s0,∞)× U × U for all s0 > 0, which implies
continuity of pU

t (x , y).

In combination with the exit time estimate a general result by
Grigor’yan, Hu and Lau (2010) gives the off-diagonal bound.
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