Hyperbolic Hole Probabilities.

Jeremiah Buckley
Tel Aviv University
International Workshop on Persistence Probabilities and Related
Fields, 15th of July, 2014

Joint work with Alon Nishry, Ron Peled and Mikhail Sodin.

The hyperbolic GAF

Fix $L>0$ and let $\left(\zeta_{n}\right)_{n}$ be iid $N_{\mathbb{C}}(0,1)$.

$$
f_{L}(z)=\sum_{n=0}^{\infty} \zeta_{n}\binom{n+L-1}{n}^{1 / 2} z^{n}, \quad z \in \mathbb{D}
$$

where

$$
\binom{n+L-1}{n}=\frac{(n+L-1)(n+L-2) \ldots(L+1) L}{n!}=\frac{\Gamma(n+L)}{\Gamma(L) \Gamma(n)} .
$$

The hyperbolic GAF

Fix $L>0$ and let $\left(\zeta_{n}\right)_{n}$ be iid $N_{\mathbb{C}}(0,1)$.

$$
f_{L}(z)=\sum_{n=0}^{\infty} \zeta_{n}\binom{n+L-1}{n}^{1 / 2} z^{n}, \quad z \in \mathbb{D}
$$

where

$$
\binom{n+L-1}{n}=\frac{(n+L-1)(n+L-2) \ldots(L+1) L}{n!}=\frac{\Gamma(n+L)}{\Gamma(L) \Gamma(n)} .
$$

The distribution of the zero set is invariant under automorphisms of the disc.
f_{L} the only GAF with this property (up to trivialities).

Hyperbolic geometry

$$
K_{L}(z, w)=\mathbb{E}\left[f_{L}(z) \overline{f_{L}(w)}\right]=\frac{1}{(1-z \bar{w})^{L}}
$$

$$
K_{L}(z, w)=\mathbb{E}\left[f_{L}(z) \overline{f_{L}(w)}\right]=\frac{1}{(1-z \bar{w})^{L}}
$$

The average number of zeroes of this GAF is given by

$$
\frac{1}{4 \pi} \Delta \log K_{L}(z, z) d m(z)=\frac{L}{\pi} \frac{d m(z)}{\left(1-|z|^{2}\right)^{2}}
$$

Different L give genuinely different processes

We now focus on the random variable

$$
n_{L}(r)=\text { number of zeroes of } f_{L} \text { in } D(0, r)
$$

for $0<r<1$.
Centre of the disc not important.

We now focus on the random variable

$$
n_{L}(r)=\text { number of zeroes of } f_{L} \text { in } D(0, r)
$$

for $0<r<1$.
Centre of the disc not important.

$$
\mathbb{E}\left[n_{L}(r)\right]=\frac{L r^{2}}{1-r^{2}} .
$$

No scaling!

The case $L=1$

Theorem (Peres-Virág 05)
The point process given by the zero set of the hyperbolic GAF forms a deteminantal point process for $L=1$. The random variable $n_{1}(r)$ has the same distribution as

$$
\sum_{n=0}^{\infty} B_{n}
$$

where B_{n} are independent Bernoulli random variables with $\mathbb{P}\left[B_{n}=1\right]=r^{2 n}$.

The case $L=1$

Theorem (Peres-Virág 05)

The point process given by the zero set of the hyperbolic GAF forms a deteminantal point process for $L=1$. The random variable $n_{1}(r)$ has the same distribution as

$$
\sum_{n=0}^{\infty} B_{n}
$$

where B_{n} are independent Bernoulli random variables with $\mathbb{P}\left[B_{n}=1\right]=r^{2 n}$.

Corollary

- $\mathbb{V}\left[n_{1}(r)\right]=\frac{r^{2}}{1-r^{4}}$
- $\mathbb{P}\left[n_{1}(r)=0\right]=\exp \left(-\frac{\pi^{2}}{12} \frac{1}{1-r}(1+o(1))\right)$ as $r \rightarrow 1$

The variance

Theorem (Sodin, unpublished)

$$
\mathbb{V}\left[n_{L}(r)\right] \sim \frac{\zeta(3 / 2)}{8 \pi^{3 / 2}} \sqrt{L} \text { length }_{\mathrm{hyp}}(r \mathbb{T}) \quad \text { as } L \rightarrow \infty
$$

The variance

Theorem (Sodin, unpublished)

$$
\mathbb{V}\left[n_{L}(r)\right] \sim \frac{\zeta(3 / 2)}{8 \pi^{3 / 2}} \sqrt{L} \frac{2 \pi}{1-r^{2}} \quad \text { as } L \rightarrow \infty
$$

The variance

Theorem (Sodin, unpublished)

$$
\mathbb{V}\left[n_{L}(r)\right] \sim \frac{\zeta(3 / 2)}{8 \pi^{3 / 2}} \sqrt{L} \frac{\pi}{1-r} \quad \text { as } L \rightarrow \infty, r \rightarrow 1^{-}
$$

The variance

Theorem (Sodin, unpublished)

$$
\mathbb{V}\left[n_{L}(r)\right] \sim \frac{\zeta(3 / 2)}{8 \pi^{3 / 2}} \sqrt{L} \text { length }_{\mathrm{hyp}}(r \mathbb{T}) \quad \text { as } L \rightarrow \infty
$$

The variance

Theorem (Sodin, unpublished)

$$
\mathbb{V}\left[n_{L}(r)\right] \sim \frac{\zeta(3 / 2)}{8 \pi^{3 / 2}} \sqrt{L} \text { length }_{\mathrm{hyp}}(r \mathbb{T}) \quad \text { as } L \rightarrow \infty
$$

Theorem
As $r \rightarrow 1^{-}$

$$
\mathbb{V}\left[n_{L}(r)\right] \sim \begin{cases}c_{L} \frac{1}{1-r} & \text { for } L>1 / 2 \\ \frac{1}{8 \pi} \frac{1}{1-r} \log \frac{1}{1-r} & \text { for } L=1 / 2 \\ c_{L} \frac{1}{(1-r)^{2-2 L}} & \text { for } L<1 / 2\end{cases}
$$

Hole Probability

Theorem

As $L \rightarrow \infty$

$$
\mathbb{P}\left[n_{L}(r)=0\right] \begin{cases}\approx \exp \left(-c(r) L^{2}\right) & \text { for fixed } r \\ =\exp \left(-\frac{e^{2}}{4} L^{2} r^{4}(1+o(1))\right) & \text { for } r \rightarrow 0, L r^{2} \rightarrow \infty\end{cases}
$$

Hole Probability

Theorem

As $L \rightarrow \infty$

$$
\mathbb{P}\left[n_{L}(r)=0\right] \begin{cases}\approx \exp \left(-c(r) L^{2}\right) & \text { for fixed } r \\ =\exp \left(-\frac{e^{2}}{4} L^{2} r^{4}(1+o(1))\right) & \text { for } r \rightarrow 0, L r^{2} \rightarrow \infty\end{cases}
$$

Recall Peres-Virag

$$
\mathbb{P}\left[n_{1}(r)=0\right]=\exp \left(-\frac{\pi^{2}}{12} \frac{1}{1-r}(1+o(1))\right) \quad r \rightarrow 1 .
$$

Hole Probability

Theorem

As $L \rightarrow \infty$

$$
\mathbb{P}\left[n_{L}(r)=0\right] \begin{cases}\approx \exp \left(-c(r) L^{2}\right) & \text { for fixed } r \\ =\exp \left(-\frac{e^{2}}{4} L^{2} r^{4}(1+o(1))\right) & \text { for } r \rightarrow 0, L r^{2} \rightarrow \infty\end{cases}
$$

Recall Peres-Virag

$$
\mathbb{P}\left[n_{1}(r)=0\right]=\exp \left(-\frac{\pi^{2}}{12} \frac{1}{1-r}(1+o(1))\right) \quad r \rightarrow 1
$$

Theorem (B., Nishry, Peled, Sodin)
As $r \rightarrow 1^{-}$

$$
\mathbb{P}\left[n_{L}(r)=0\right]\left\{\begin{array}{lr}
=\exp \left(-\frac{(L-1)^{2}}{4} \frac{1}{1-r}\left(\log \frac{1}{1-r}\right)^{2}(1+o(1))\right) & \text { for } L>1 \\
\approx \exp \left(-c_{L} \frac{1}{(1-r)^{L}} \log \frac{1}{1-r}\right) & \text { for } L<1
\end{array}\right.
$$

What changes at $L=1$?

Recall

$$
f_{L}(z)=\sum_{n=0}^{\infty} \zeta_{n}\binom{n+L-1}{n}^{1 / 2} z^{n}, \quad z \in \mathbb{D}
$$

where

$$
\binom{n+L-1}{n}=\frac{\Gamma(n+L)}{\Gamma(L) \Gamma(n)} \sim \frac{n^{L-1}}{\Gamma(L)} \text { for large } n .
$$

What changes at $L=1$?
Look at

$$
\binom{n+L-1}{n} r^{2 n}
$$

What changes at $L=1$?
Look at

$$
n^{L-1} r^{2 n}
$$

What changes at $L=1$?

Look at

$$
n^{L-1} r^{2 n}
$$

$L>1$

What changes at $L=1$?
Look at

$$
n^{L-1} r^{2 n}
$$

$L<1$

Upper bound

Subharmonicity:

$$
\log \left|f_{L}(0)\right| \leq \int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

Upper bound

Subharmonicity:

$$
\log \left|f_{L}(0)\right| \leq \int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

Hole iff

$$
\log \left|f_{L}(0)\right| \geq \int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

Upper bound

Subharmonicity:

$$
\log \left|f_{L}(0)\right| \leq \int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

Hole iff

$$
\log \left|f_{L}(0)\right| \geq \int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

We may assume $\left|f_{L}(0)\right| \leq \sqrt{\frac{c}{(1-r)^{2}} \log \frac{1}{1-r}}$.

Upper bound

Subharmonicity:

$$
\log \left|f_{L}(0)\right| \leq \int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

Hole iff

$$
\log \left|f_{L}(0)\right| \geq \int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

We may assume $\left|f_{L}(0)\right| \leq \sqrt{\frac{c}{(1-r)^{L}} \log \frac{1}{1-r}}$.
Condition on $f_{L}(0)$

Upper bound heuristics

Define $I=\int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ and write $f_{L}(z)=f_{L}(0)+g_{L}(z)$.

$$
\mathbb{E}\left[I \mid f_{L}(0)\right]=\log \left|f_{L}(0)\right|+\mathbb{E}\left[\left.\log \left|1+\frac{g_{L}(r)}{f_{L}(0)}\right| \right\rvert\, f_{L}(0)\right]
$$

Upper bound heuristics

Define $I=\int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ and write $f_{L}(z)=f_{L}(0)+g_{L}(z)$.

$$
\begin{aligned}
\mathbb{E}\left[I \mid f_{L}(0)\right] & =\log \left|f_{L}(0)\right|+\mathbb{E}\left[\left.\log \left|1+\frac{g_{L}(r)}{f_{L}(0)}\right| \right\rvert\, f_{L}(0)\right] \\
& =\log \left|f_{L}(0)\right|+e^{-c\left|f_{L}(0)\right|^{2}(1-r)^{L}}
\end{aligned}
$$

Upper bound heuristics

Define $I=\int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ and write $f_{L}(z)=f_{L}(0)+g_{L}(z)$.

$$
\begin{aligned}
\mathbb{E}\left[I \mid f_{L}(0)\right] & =\log \left|f_{L}(0)\right|+\mathbb{E}\left[\left.\log \left|1+\frac{g_{L}(r)}{f_{L}(0)}\right| \right\rvert\, f_{L}(0)\right] \\
& =\log \left|f_{L}(0)\right|+e^{-c\left|f_{L}(0)\right|^{2}(1-r)^{L}}
\end{aligned}
$$

$$
\mathbb{V}[I] \simeq \begin{cases}1-r & \text { for } L>\frac{1}{2} \\ (1-r)^{2 L} & \text { for } L<\frac{1}{2}\end{cases}
$$

Upper bound heuristics

Define $I=\int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ and write $f_{L}(z)=f_{L}(0)+g_{L}(z)$.

$$
\begin{aligned}
\mathbb{E}\left[I \mid f_{L}(0)\right] & =\log \left|f_{L}(0)\right|+\mathbb{E}\left[\left.\log \left|1+\frac{g_{L}(r)}{f_{L}(0)}\right| \right\rvert\, f_{L}(0)\right] \\
& =\log \left|f_{L}(0)\right|+e^{-c\left|f_{L}(0)\right|^{2}(1-r)^{L}}
\end{aligned}
$$

$$
\mathbb{V}\left[I \mid f_{L}(0)\right] \simeq \begin{cases}1-r & \text { for } L>\frac{1}{2} \\ (1-r)^{2 L} & \text { for } L<\frac{1}{2}\end{cases}
$$

Upper bound heuristics

Define $I=\int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ and write $f_{L}(z)=f_{L}(0)+g_{L}(z)$.

$$
\begin{aligned}
\mathbb{E}\left[I \mid f_{L}(0)\right] & =\log \left|f_{L}(0)\right|+\mathbb{E}\left[\left.\log \left|1+\frac{g_{L}(r)}{f_{L}(0)}\right| \right\rvert\, f_{L}(0)\right] \\
& =\log \left|f_{L}(0)\right|+e^{-c\left|f_{L}(0)\right|^{2}(1-r)^{L}}
\end{aligned}
$$

$$
\mathbb{V}\left[I \mid f_{L}(0)\right] \simeq \begin{cases}1-r & \text { for } L>\frac{1}{2} \\ (1-r)^{2 L} & \text { for } L<\frac{1}{2}\end{cases}
$$

$$
\mathbb{P}\left[I \leq \log \left|f_{L}(0)\right| \mid f_{L}(0)\right] \leq \mathbb{P}\left[\left|I-\mathbb{E}\left[| | f_{L}(0)\right]\right| \leq e^{-c\left|f_{L}(0)\right|^{2}(1-r)^{L}} \mid f_{L}(0)\right]
$$

Upper bound heuristics

Define $I=\int_{0}^{2 \pi} \log \left|f_{L}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ and write $f_{L}(z)=f_{L}(0)+g_{L}(z)$.

$$
\begin{aligned}
\mathbb{E}\left[I \mid f_{L}(0)\right] & =\log \left|f_{L}(0)\right|+\mathbb{E}\left[\left.\log \left|1+\frac{g_{L}(r)}{f_{L}(0)}\right| \right\rvert\, f_{L}(0)\right] \\
& =\log \left|f_{L}(0)\right|+e^{-c\left|f_{L}(0)\right|^{2}(1-r)^{L}}
\end{aligned}
$$

$$
\mathbb{V}\left[I \mid f_{L}(0)\right] \simeq \begin{cases}1-r & \text { for } L>\frac{1}{2} \\ (1-r)^{2 L} & \text { for } L<\frac{1}{2}\end{cases}
$$

$$
\begin{aligned}
\mathbb{P}\left[I \leq \log \left|f_{L}(0)\right| \mid f_{L}(0)\right] & \leq \mathbb{P}\left[\left|I-\mathbb{E}\left[I \mid f_{L}(0)\right]\right| \leq e^{-c\left|f_{L}(0)\right|^{2}(1-r)^{L}} \mid f_{L}(0)\right] \\
& \leq \exp \left(-C e^{-2 c\left|f_{L}(0)\right|^{2}(1-r)^{L}} / \mathbb{V}\left[I \mid f_{L}(0)\right]\right)
\end{aligned}
$$

Maybe, for $L<1$,

$$
\mathbb{P}\left[n_{L}(r)=0\right]=\exp \left(-c_{L} \frac{1}{(1-r)^{L}} \log \frac{1}{1-r}(1+o(1))\right)
$$

with

$$
c_{L} \simeq \begin{cases}1-L & \text { for } L \text { near } 1 \\ L & \text { for } L \text { near } 0\end{cases}
$$

Maybe, for $L<1$,

$$
\mathbb{P}\left[n_{L}(r)=0\right]=\exp \left(-c_{L} \frac{1}{(1-r)^{L}} \log \frac{1}{1-r}(1+o(1))\right)
$$

with

$$
c_{L} \simeq \begin{cases}1-L & \text { for } L \text { near } 1 \\ L & \text { for } L \text { near } 0\end{cases}
$$

Wild speculation:

$$
c_{L}= \begin{cases}\frac{1-L}{2^{L}} & \text { for } L \leq 1 / 2 \\ \frac{L}{2^{L}} & \text { for } L \geq 1 / 2 .\end{cases}
$$

Go raibh maith agaibh as éisteacht liom

