Hyperbolic Hole Probabilities.

Jeremiah Buckley

Tel Aviv University

International Workshop on Persistence Probabilities and Related Fields, 15th of July, 2014

Joint work with Alon Nishry, Ron Peled and Mikhail Sodin.

The hyperbolic GAF

Fix L > 0 and let $(\zeta_n)_n$ be iid $N_{\mathbb{C}}(0,1)$.

$$f_L(z) = \sum_{n=0}^{\infty} \zeta_n {n+L-1 \choose n}^{1/2} z^n, \qquad z \in \mathbb{D},$$

where

$$\binom{n+L-1}{n} = \frac{(n+L-1)(n+L-2)\dots(L+1)L}{n!} = \frac{\Gamma(n+L)}{\Gamma(L)\Gamma(n)}.$$

The hyperbolic GAF

Fix L > 0 and let $(\zeta_n)_n$ be iid $N_{\mathbb{C}}(0,1)$.

$$f_L(z) = \sum_{n=0}^{\infty} \zeta_n {n+L-1 \choose n}^{1/2} z^n, \qquad z \in \mathbb{D},$$

where

$$\binom{n+L-1}{n} = \frac{(n+L-1)(n+L-2)\dots(L+1)L}{n!} = \frac{\Gamma(n+L)}{\Gamma(L)\Gamma(n)}.$$

The distribution of the zero set is invariant under automorphisms of the disc.

 f_L the only GAF with this property (up to trivialities).

Hyperbolic geometry

$$K_L(z, w) = \mathbb{E}[f_L(z)\overline{f_L(w)}] = \frac{1}{(1 - z\overline{w})^L}$$

$$K_L(z, w) = \mathbb{E}[f_L(z)\overline{f_L(w)}] = \frac{1}{(1 - z\overline{w})^L}$$

The average number of zeroes of this GAF is given by

$$\frac{1}{4\pi}\Delta\log K_L(z,z)dm(z) = \frac{L}{\pi}\frac{dm(z)}{(1-|z|^2)^2}$$

Different *L* give genuinely different processes

We now focus on the random variable

$$n_L(r) = \text{number of zeroes of } f_L \text{ in } D(0, r)$$

for 0 < r < 1. Centre of the disc not important.

We now focus on the random variable

$$n_L(r)$$
 = number of zeroes of f_L in $D(0, r)$

for 0 < r < 1. Centre of the disc not important.

$$\mathbb{E}[n_L(r)] = \frac{Lr^2}{1-r^2}.$$

No scaling!

The case L=1

Theorem (Peres-Virág 05)

The point process given by the zero set of the hyperbolic GAF forms a determinantal point process for L=1. The random variable $n_1(r)$ has the same distribution as

$$\sum_{n=0}^{\infty} B_n$$

where B_n are independent Bernoulli random variables with $\mathbb{P}[B_n=1]=r^{2n}$.

The case L=1

Theorem (Peres-Virág 05)

The point process given by the zero set of the hyperbolic GAF forms a determinantal point process for L=1. The random variable $n_1(r)$ has the same distribution as

$$\sum_{n=0}^{\infty} B_n$$

where B_n are independent Bernoulli random variables with $\mathbb{P}[B_n = 1] = r^{2n}$.

Corollary

- $\mathbb{V}[n_1(r)] = \frac{r^2}{1-r^4}$
- $\mathbb{P}[n_1(r)=0]=\exp\left(-rac{\pi^2}{12}rac{1}{1-r}(1+o(1))
 ight)$ as r o 1

$$\mathbb{V}[n_L(r)] \sim rac{\zeta(3/2)}{8\pi^{3/2}} \, \sqrt{L} \, \operatorname{length}_{\operatorname{hyp}}(r\mathbb{T}) \qquad \text{as } L o \infty.$$

$$\mathbb{V}[n_L(r)] \sim \frac{\zeta(3/2)}{8\pi^{3/2}} \sqrt{L} \, \frac{2\pi}{1-r^2}$$
 as $L \to \infty$.

$$\mathbb{V}[n_L(r)] \sim rac{\zeta(3/2)}{8\pi^{3/2}} \, \sqrt{L} \, rac{\pi}{1-r} \qquad \text{as } L o \infty, r o 1^-.$$

$$\mathbb{V}[n_L(r)] \sim rac{\zeta(3/2)}{8\pi^{3/2}} \, \sqrt{L} \, \operatorname{length}_{\operatorname{hyp}}(r\mathbb{T}) \qquad \text{as } L o \infty.$$

Theorem (Sodin, unpublished)

$$\mathbb{V}[n_L(r)] \sim rac{\zeta(3/2)}{8\pi^{3/2}} \, \sqrt{L} \, \operatorname{length}_{\mathrm{hyp}}(r\mathbb{T}) \qquad \text{as } L o \infty.$$

Theorem As $r \rightarrow 1^-$

$$\mathbb{V}[n_L(r)] \sim \begin{cases} c_L \frac{1}{1-r} & \text{for } L > 1/2\\ \frac{1}{8\pi} \frac{1}{1-r} \log \frac{1}{1-r} & \text{for } L = 1/2\\ c_L \frac{1}{(1-r)^{2-2L}} & \text{for } L < 1/2. \end{cases}$$

Hole Probability

Theorem

As
$$L \to \infty$$

$$\mathbb{P}[n_L(r) = 0] \begin{cases} \approx \exp\left(-c(r)L^2\right) & \text{for fixed } r \\ = \exp\left(-\frac{e^2}{4}L^2r^4(1+o(1))\right) & \text{for } r \to 0, Lr^2 \to \infty \end{cases}$$

Hole Probability

Theorem

As $L \to \infty$

$$\mathbb{P}[n_L(r) = 0] \begin{cases} \approx \exp\left(-c(r)L^2\right) & \text{for fixed } r \\ = \exp\left(-\frac{e^2}{4}L^2r^4(1+o(1))\right) & \text{for } r \to 0, Lr^2 \to \infty \end{cases}$$

Recall Peres-Virag

$$\mathbb{P}[n_1(r) = 0] = \exp\left(-\frac{\pi^2}{12}\frac{1}{1-r}(1+o(1))\right) \qquad r \to 1.$$

Hole Probability

Theorem

As $L \to \infty$

$$\mathbb{P}[n_L(r) = 0] \begin{cases} \approx \exp\left(-c(r)L^2\right) & \text{for fixed } r \\ = \exp\left(-\frac{e^2}{4}L^2r^4(1 + o(1))\right) & \text{for } r \to 0, Lr^2 \to \infty \end{cases}$$

Recall Peres-Virag

$$\mathbb{P}[n_1(r)=0]=\exp\left(-rac{\pi^2}{12}rac{1}{1-r}(1+o(1))
ight) \qquad r o 1.$$

Theorem (B., Nishry, Peled, Sodin)

As
$$r o 1^-$$

$$\mathbb{P}[n_L(r) = 0] \begin{cases} = \exp\left(-\frac{(L-1)^2}{4} \frac{1}{1-r} (\log \frac{1}{1-r})^2 (1+o(1))\right) & \text{for } L > 1 \\ \approx \exp\left(-c_L \frac{1}{(1-r)^L} \log \frac{1}{1-r}\right) & \text{for } L < 1 \end{cases}$$

Recall

$$f_L(z) = \sum_{n=0}^{\infty} \zeta_n {n+L-1 \choose n}^{1/2} z^n, \qquad z \in \mathbb{D},$$

where

$$\binom{n+L-1}{n} = \frac{\Gamma(n+L)}{\Gamma(L)\Gamma(n)} \sim \frac{n^{L-1}}{\Gamma(L)} \text{ for large } n.$$

Look at

$$\binom{n+L-1}{n} r^{2n}$$

Look at

$$n^{L-1}r^{2n}$$

Look at

 $n^{L-1}r^{2n}$

L > 1

Look at

 $n^{L-1}r^{2n}$

L < 1

Subharmonicity:

$$\log |f_L(0)| \leq \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$

Subharmonicity:

$$\log |f_L(0)| \le \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$

Hole iff

$$\log |f_L(0)| \ge \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$

Subharmonicity:

$$\log |f_L(0)| \le \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$

Hole iff

$$\log |f_L(0)| \ge \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$

We may assume $|f_L(0)| \leq \sqrt{\frac{c}{(1-r)^L} \log \frac{1}{1-r}}$.

Subharmonicity:

$$\log |f_L(0)| \le \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$

Hole iff

$$\log |f_L(0)| \ge \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$

We may assume $|f_L(0)| \le \sqrt{\frac{c}{(1-r)^L} \log \frac{1}{1-r}}$. Condition on $f_L(0)$

Define
$$I = \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$
 and write $f_L(z) = f_L(0) + g_L(z)$.

$$\mathbb{E}[I|f_L(0)] = \log|f_L(0)| + \mathbb{E}\left[\log\left|1 + \frac{g_L(r)}{f_L(0)}\right||f_L(0)\right]$$

Define
$$I = \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$
 and write $f_L(z) = f_L(0) + g_L(z)$.

$$\mathbb{E}[I|f_L(0)] = \log|f_L(0)| + \mathbb{E}\left[\log\left|1 + \frac{g_L(r)}{f_L(0)}\right||f_L(0)\right]$$
$$= \log|f_L(0)| + e^{-c|f_L(0)|^2(1-r)^L}$$

Define
$$I = \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$
 and write $f_L(z) = f_L(0) + g_L(z)$.

$$\mathbb{E}[I|f_L(0)] = \log|f_L(0)| + \mathbb{E}\left[\log\left|1 + \frac{g_L(r)}{f_L(0)}\right||f_L(0)\right]$$
$$= \log|f_L(0)| + e^{-c|f_L(0)|^2(1-r)^L}$$

$$\mathbb{V}[I] \simeq \begin{cases} 1 - r & \text{for } L > \frac{1}{2} \\ (1 - r)^{2L} & \text{for } L < \frac{1}{2} \end{cases}$$

Define
$$I = \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$
 and write $f_L(z) = f_L(0) + g_L(z)$.

$$\mathbb{E}[I|f_L(0)] = \log|f_L(0)| + \mathbb{E}\left[\log\left|1 + \frac{g_L(r)}{f_L(0)}\right||f_L(0)\right]$$
$$= \log|f_L(0)| + e^{-c|f_L(0)|^2(1-r)^L}$$

$$\mathbb{V}[I|f_L(0)] \simeq \begin{cases} 1-r & \text{for } L > \frac{1}{2} \\ (1-r)^{2L} & \text{for } L < \frac{1}{2} \end{cases}$$

Define
$$I = \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$
 and write $f_L(z) = f_L(0) + g_L(z)$.

$$\begin{split} \mathbb{E}[I|f_L(0)] &= \log|f_L(0)| + \mathbb{E}\left[\log\left|1 + \frac{g_L(r)}{f_L(0)}\right| |f_L(0)\right] \\ &= \log|f_L(0)| + e^{-c|f_L(0)|^2(1-r)^L} \end{split}$$

$$\mathbb{V}[I|f_L(0)] \simeq \begin{cases} 1-r & \text{for } L > \frac{1}{2} \\ (1-r)^{2L} & \text{for } L < \frac{1}{2} \end{cases}$$

$$\mathbb{P}\big[I \leq \log|f_L(0)| \, \big| f_L(0)\big] \leq \mathbb{P}\Big[\big|I - \mathbb{E}[I|f_L(0)]\big| \leq e^{-c|f_L(0)|^2(1-r)^L} \bigg| f_L(0)\Big]$$

Define
$$I = \int_0^{2\pi} \log |f_L(re^{i\theta})| \frac{d\theta}{2\pi}$$
 and write $f_L(z) = f_L(0) + g_L(z)$.

$$\begin{split} \mathbb{E}[I|f_L(0)] &= \log|f_L(0)| + \mathbb{E}\left[\log\left|1 + \frac{g_L(r)}{f_L(0)}\right| |f_L(0)\right] \\ &= \log|f_L(0)| + e^{-c|f_L(0)|^2(1-r)^L} \end{split}$$

$$\mathbb{V}[I|f_L(0)] \simeq \begin{cases} 1-r & \text{for } L > \frac{1}{2} \\ (1-r)^{2L} & \text{for } L < \frac{1}{2} \end{cases}$$

$$\begin{split} \mathbb{P}\big[I \leq \log|f_L(0)| \, \big| f_L(0) \big] &\leq \mathbb{P}\Big[\big|I - \mathbb{E}[I|f_L(0)] \big| \leq e^{-c|f_L(0)|^2(1-r)^L} \Big| f_L(0) \Big] \\ &\leq \exp(-Ce^{-2c|f_L(0)|^2(1-r)^L} / \mathbb{V}[I|f_L(0)]) \end{split}$$

Maybe, for L < 1,

$$\mathbb{P}[n_L(r) = 0] = \exp\left(-c_L \frac{1}{(1-r)^L} \log \frac{1}{1-r} (1+o(1))\right)$$

with

$$c_L \simeq egin{cases} 1-L & ext{ for L near 1} \ L & ext{ for L near 0}. \end{cases}$$

Maybe, for L < 1,

$$\mathbb{P}[n_L(r) = 0] = \exp\left(-c_L \frac{1}{(1-r)^L} \log \frac{1}{1-r} (1+o(1))\right)$$

with

$$c_L \simeq egin{cases} 1-L & ext{ for L near 1} \ L & ext{ for L near 0.} \end{cases}$$

Wild speculation:

$$c_L = \begin{cases} \frac{1-L}{2^L} & \text{for } L \le 1/2\\ \frac{L}{2^L} & \text{for } L \ge 1/2. \end{cases}$$

Go raibh maith agaibh as éisteacht liom