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The hyperbolic GAF

Fix L > 0 and let (ζn)n be iid NC(0, 1).

fL(z) =
∞∑
n=0

ζn

(
n + L− 1

n

)1/2

zn, z ∈ D,

where(
n + L− 1

n

)
=

(n + L− 1)(n + L− 2) . . . (L + 1)L

n!
=

Γ(n + L)

Γ(L)Γ(n)
.

The distribution of the zero set is invariant under automorphisms of the
disc.
fL the only GAF with this property (up to trivialities).
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Hyperbolic geometry



KL(z ,w) = E[fL(z)fL(w)] =
1

(1− zw)L

The average number of zeroes of this GAF is given by

1

4π
∆ log KL(z , z)dm(z) =

L

π

dm(z)

(1− |z |2)2

Different L give genuinely different processes
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We now focus on the random variable

nL(r) = number of zeroes of fL in D(0, r)

for 0 < r < 1.
Centre of the disc not important.

E[nL(r)] =
Lr2

1− r2
.

No scaling!
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The case L = 1

Theorem (Peres-Virág 05)
The point process given by the zero set of the hyperbolic GAF forms a
deteminantal point process for L = 1. The random variable n1(r) has the
same distribution as

∞∑
n=0

Bn

where Bn are independent Bernoulli random variables with
P[Bn = 1] = r2n.

Corollary

• V[n1(r)] = r2

1−r4

• P[n1(r) = 0] = exp
(
−π

2

12
1

1−r (1 + o(1))
)

as r → 1
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The variance

Theorem (Sodin, unpublished)

V[nL(r)] ∼ ζ(3/2)

8π3/2

√
L lengthhyp(rT) as L→∞.
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The variance

Theorem (Sodin, unpublished)

V[nL(r)] ∼ ζ(3/2)

8π3/2

√
L lengthhyp(rT) as L→∞.

Theorem
As r → 1−

V[nL(r)] ∼


cL

1
1−r for L > 1/2

1
8π

1
1−r log 1

1−r for L = 1/2

cL
1

(1−r)2−2L for L < 1/2.



Hole Probability

Theorem
As L→∞

P[nL(r) = 0]

{
≈ exp

(
−c(r)L2

)
for fixed r

= exp
(
− e2

4 L2r4(1 + o(1))
)

for r → 0, Lr2 →∞
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P[n1(r) = 0] = exp

(
−π

2

12

1

1− r
(1 + o(1))

)
r → 1.

Theorem (B., Nishry, Peled, Sodin)
As r → 1−

P[nL(r) = 0]

= exp
(
− (L−1)2

4
1

1−r (log 1
1−r )2(1 + o(1))

)
for L > 1

≈ exp
(
−cL

1
(1−r)L log 1

1−r

)
for L < 1



Hole Probability

Theorem
As L→∞

P[nL(r) = 0]

{
≈ exp

(
−c(r)L2

)
for fixed r

= exp
(
− e2

4 L2r4(1 + o(1))
)

for r → 0, Lr2 →∞

Recall Peres-Virag

P[n1(r) = 0] = exp

(
−π

2

12

1

1− r
(1 + o(1))

)
r → 1.

Theorem (B., Nishry, Peled, Sodin)
As r → 1−

P[nL(r) = 0]

= exp
(
− (L−1)2

4
1

1−r (log 1
1−r )2(1 + o(1))

)
for L > 1

≈ exp
(
−cL

1
(1−r)L log 1

1−r

)
for L < 1



Hole Probability

Theorem
As L→∞

P[nL(r) = 0]

{
≈ exp

(
−c(r)L2

)
for fixed r

= exp
(
− e2

4 L2r4(1 + o(1))
)

for r → 0, Lr2 →∞

Recall Peres-Virag

P[n1(r) = 0] = exp

(
−π

2

12

1

1− r
(1 + o(1))

)
r → 1.

Theorem (B., Nishry, Peled, Sodin)
As r → 1−

P[nL(r) = 0]

= exp
(
− (L−1)2

4
1

1−r (log 1
1−r )2(1 + o(1))

)
for L > 1

≈ exp
(
−cL

1
(1−r)L log 1

1−r

)
for L < 1



What changes at L = 1?

Recall

fL(z) =
∞∑
n=0

ζn

(
n + L− 1

n

)1/2

zn, z ∈ D,

where (
n + L− 1

n

)
=

Γ(n + L)

Γ(L)Γ(n)
∼ nL−1

Γ(L)
for large n.
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Look at (
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Upper bound

Subharmonicity:

log |fL(0)| ≤
∫ 2π

0

log |fL(re iθ)|dθ
2π

Hole iff

log |fL(0)| ≥
∫ 2π

0

log |fL(re iθ)|dθ
2π

We may assume |fL(0)| ≤
√

c
(1−r)L log 1

1−r .

Condition on fL(0)
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Upper bound heuristics

Define I =
∫ 2π

0
log |fL(re iθ)| dθ2π and write fL(z) = fL(0) + gL(z).

E[I |fL(0)] = log |fL(0)|+ E
[

log

∣∣∣∣1 +
gL(r)

fL(0)

∣∣∣∣ |fL(0)

]
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Maybe, for L < 1,

P[nL(r) = 0] = exp
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Go raibh maith agaibh as éisteacht liom


