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Typically, one expects

P l sup A; < 1] = T 0+o(1), as T — oo
o<t<T

with ¢ > 0, called survival exponent



Relations to other questions

P [ sup A; < 1] = T—0+o(1), as T — oo.
0<t<T

» statistical mechanics: Burgers’ equation —a PDE considered
with random initial condition (Sinar92, Bertoin’98, Molchan’99,
Simon’08)

» Entropic repulsion/wetting models — discrete case
(Caravenna/Deuschel’08)

» pursuit problems — ‘random prisoner is followed by a random
policeman’ (Li/Shao’02)

» zeros of random polynomials (Dembo/Poonen/Shao/Zeitouni’02,
Li/Shao’04)



Relations to other questions

For an H-self-similar processes, the question is the same as

]P’[sup A < el| = l/Hto) ase— 0.

0<t<1

€l 0
N C: 1
A

that is, the lower tail of A} := sup;¢(o 1) At
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Known results: continuous-time processes

P l sup A; < 1] = T-0+o(1), as T — oo.
0<t<T

» Brownian motion: § = 1/2 (reflection principle gives even the
law)

> A= fot B; ds integrated Brownian motion: § = 1/4
(McKean ’63, Goldman '71, Sinai '92)

» fractional Brownian motion: § = 1 — H (Molchan ’99)
» Lévy processes (LP) (classical results of fluctuation theory)
» many Gaussian processes: polynomial scale (Li/Shao '04)

» integrated stable LP with no negative jumps (Simon '07)



Known results: discrete case

P [ sup A, < 1| = T 0+t as T — oo.

1<n<T

Let A, = 37, X; be integrated random walk.
» X simple RW: § = 1/4 (Sinal '92)
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= 7—0+o(1), as T — oc.
1<n<T

Plsup A <1

Let A, = 37, X; be integrated random walk.
» X simple RW: § = 1/4 (Sinal '92)

» X with finite exp. moments: § < 1/2 and logarithmic upper
bound (Caravenna/Deuschel '08)

X with Gaussian increments: polynomial scale (Li/Shao '04)

v

v

X (lattice valued, other special cases): § = 1/4 (Vysotsky '10)

v

Our work: true for general X with finite exp. moments

v

Strong asymptotics with 6§ = 1/4, if 2 + e-moment finite
(Dembo/Ding/Gao 13, Denisov/Wachtel '14+)
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Main results [Aurzada, D ’13]



Main results: overview

Three main results:
» (1) universality of the asymptotics

> (2) existence of the survival exponent
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(1) Universality result

» X: either a LP or RW with 33 > 0 s.th. Ee’X1l < oo and EX; = 0

» Integration operator:

t
I(X),:/ K(t—s)Xsds, t>0
0

» with K : (0,00) — [0, 00) such that K(s) < k(s?~1 + s> 1)
(and some unimportant regularity condition)

Theorem: For two processes X and Y as above we have

P [ sup Z(X); < 1] =iog P l sup Z(Y): < 1]

0<t<T 0<t<T
Here: f =<,y g means that there exists ¢,d > 0 such that for large T

(clog T)°f(T) < g(T) < (clog T)°f(T)



(1) Universality result: Main example

Fractional integration operator:

t
To(X)e = r(1a) /O (t—8)° ' Xeds, >0

for some o > 0 (recall: Z,, = (Z1)“ for integer a).

Corollary: For two processes X and Y as above we have

0<t<T 0<t<T

P [ sup Z,(X): < 1] =iog P [ sup Z,(Y): < 1]

In particular, the asymptotics are equivalent w.r.t. <oq !



(1) Universality result: Integrated random walk

Usual integration operator:
t
L(X),:/ Xsds, t>0
0

Corollary: For any LP X with 35 > 0: Ee®¥| < 0o and EX; = 0.

n t
P[sup ZX,-§1] x|og]P’[sup / Xsds§1]
0

0<n<T 0<i<T
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Corollary: For any LP X with 35 > 0: Ee®¥| < 0o and EX; = 0.
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(1) Universality result: More precise formulation

» X: either a LP or RW with 35 > 0 s.th. Ee®IX| < oo and EX; = 0.

» Integration operator:
t
I(X),:/ K(t—$)Xsds,  t>0
0

» with K : (0,00) — [0, 00) such that K(s) < k(s?~" + s~ 1),
a > B (and some unimportant regularity condition)

Theorem: For a process X as above and a Brownian motion B

P [supp< <7 Z(X): < 1] < (clog T)2(+)
t<1] ~

(clog T)~2(1+a) <
P [supo<;<7Z(B)



(2) Existence of the survival exponent

» X: either a LP or RW with 35 > 0 s.th. Ee®IX| < oo and EXy = 0.

» fractional integration operator (Zp := Id):

t
LX) = 1)/O(t—s)°“_1Xsds, t>0
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(2) Existence of the survival exponent

» X: either a LP or RW with 35 > 0 s.th. Ee®IX| < oo and EXy = 0.

» fractional integration operator (Zp := Id):

t
T (X) = F(1a) /O (t—s)*"Xsds, t>0

Theorem: There is a non-increasing function 6 : [0, 00) — (0,1/2]
such that for any process X as above

P [ sup Zo(X); < ] = T 0e)+o(1),

0<t<T

In particular, (0) = 1/2 and §(1) = 1/4.
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(2) Existence of the survival exponent: boundedness

t
Z.(B): = F(1a) /O (t—s)* 'Bsds, t>0

P l sup Z.(B): < 11 = T 0(a)+o(1),
0<t<T

Theorem: The function 4 : [0, 00) — (0, 1/2] is non-increasing,
6(0) =1/2,6(1)=1/4 and

b:= inf 6(a) > 0.

a>0

The constant b actually has a relation to the question of random poly-
nomials having no real zeros (studied by Dembo et al. '02):

— ,.'—4Io+o(1)7 n— oo

2n
P [Zf,x’<0 Vx e R

i=0




(2) Existence of the survival exponent: boundedness

t
Z.(B): = F(1a) /O (t—s)* 'Bsds, t>0

P [ sup Z,(B); < 1] = T 0e)+o(1),
0<t<T

Theorem: The function 4 : [0, 00) — (0, 1/2] is non-increasing,
6(0) =1/2,6(1)=1/4 and

b= (lrzlfo 0(a) > 0.
Except 6(0) = 1/2 and 6(1) = 1/4, no other values are known. Even
6(2) is unknown:

t s
P | sup / / Byduds < 1| = T-0@)+o(1),
o<t<7Jo Jo




(2) Survival exponent: comparison to FBM

Recall that Z,,(B) and FBM B with H = o +1/2, a € [0,1/2] are
closely related: with an independent, very smooth process M",

B" =1.8B)+ M

Theorem: [Molchan '99, Aurzada ’11] For fractional Brownian motion
we have, for some ¢ > 0,

(logT)¢T-0-H <Pl sup B <1] < (log T)®T-"=H),

0<t<T
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(2) Survival exponent: comparison to FBM

Theorem: (Molchan 99, Aurzada '11) For fractional Brownian motion
we have, for some ¢ > 0,

(log T)¢T~U-H <P[ sup B <1] < (log T)® T~('=H)
o<t<T

)

Corollary: The survival exponents of a-times integrated BM Z,(B)
and FBM B with H = o+ 1/2 do not coincide, at least for o > 1/4,
i.e. He (3/4,1].

0(a)

12 %

1/4

H=1/2 H=1 a=1
a=0 a=1/2
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Main idea for the universality result

Coupling of the LP/RW with BM via KMT

» Komlds/Major/Tusnady '75: one can couple a LP/RW X with a
BM B such that

[Xs —Bs| <clogT forall0<s<T

with very high probability.

> Problem: | X; — Bs| =~ log T may happen at the beginning (for
small s), which adds up too much error when integrating:

t t
/Xsdsg/ Bsds+ctlogT <1+tlogT
0 0

t t
Pl/ Bsds<1,Wt<T| <P /Xsds§1+tlogT7vl‘§T
0 0




Main idea for the universality result
Make the process X behave as follows:

~logT

<clogT

(log T) 2

~—log Tt \
~ —log T \/\\

» Behaviour of X costs only a logarithmic probability... (one has to
use a decoupling argument, FKG-type inequality)

» After ~ (log T)?, the process can be estimated by B using the
coupling.



Main idea for the universality result
Make the process X behave as follows:

~logT

<clogT

(log T) 2 - \.\
Ny (e TP
,H/\
\_“‘/“‘
Y
~ —logTT A \\/\

t
P l/ Xsds <1,Vt< T] > P [construction] P
0

t
/ Bsds <1,vt< T]
0
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Pinned bridges [Aurzada, D, Lifshits *14]



Problem

Now:
> (Xn)nen simple random walk
> (An)nen given by A, = T1(X) = 22:1 Xk

Question: For T € 4N

P( min TA” >0Xr=Ar=0)~T".

n=1

7777

Origin of the problem: Caravenna and Deuschel '09
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Result
Theorem: One has for T € 4N

]P)( q“n TAn > O|XT = AT — 0) s T_1/2.
n—

=1,...,

Proof based on:

» Local central limit theorem for (n='/2X,, n=3/2A,) as n — oo
~ functional central limit theorem for pinned bridges

» The conditioned process has the same fluctuations as the
unconditional one:

> E[|Xp|| ming=1,... » A > 0] < constn'/2
> ]E[A,,‘ Mink—1,..n Ak > 0] < const n®/2

» The conditional process escapes with sufficiently large
probability from the origin: for Ve, ¢ > 03k > 0 s.th. for large n

P(X, > c1n'/2, A, > con®/?| min Ay > 0) >«
=1,...,n
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Sketch of the proof

..... 7/4 Ak > 0, X7/4 € [C1 T2 0, T'/2],
Ar/s €[C1T32 0 T33)) ~ T4

e P(same property for reversed process) ~ T~ /4

e infoqy P (bridge stays pos. and ends in rbdy) > x T2

e P((X7,A7) = (0,0)) ~ T2



Thank you for your attention!
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