Persistence probabilities for integrated random walks

Steffen Dereich

joint with Frank Aurzada and Misha Lifshits
WWU Münster
http://wwwmath.uni-muenster.de/statistik/dereich/

Persistence probabilities @ Darmstadt 16/07/2014

Outline

Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

Outline

Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

Statement of the problem

Given: $\left(A_{t}\right)_{t \geq 0}$ stochastic process with $A_{0}=0$.
Goal: Find asymptotics of

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} A_{t} \leq 1\right] \approx ?, \quad \text { as } T \rightarrow \infty
$$

Statement of the problem

Given: $\left(A_{t}\right)_{t \geq 0}$ stochastic process with $A_{0}=0$.
Goal: Find asymptotics of

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} A_{t} \leq 1\right] \approx ?, \quad \text { as } T \rightarrow \infty
$$

Statement of the problem

Given: $\left(A_{t}\right)_{t \geq 0}$ stochastic process with $A_{0}=0$.
Goal: Find asymptotics of

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} A_{t} \leq 1\right] \approx ?, \quad \text { as } T \rightarrow \infty
$$

Typically, one expects

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} A_{t} \leq 1\right]=T^{-\theta+o(1)}, \quad \text { as } T \rightarrow \infty
$$

with $\theta>0$, called survival exponent

Relations to other questions

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} A_{t} \leq 1\right]=T^{-\theta+o(1)}, \quad \text { as } T \rightarrow \infty
$$

- statistical mechanics: Burgers' equation - a PDE considered with random initial condition (Sinaǐ'92, Bertoin'98, Molchan'99, Simon'08)
- Entropic repulsion/wetting models - discrete case (Caravenna/Deuschel'08)
- pursuit problems - 'random prisoner is followed by a random policeman' (Li/Shao'02)
- zeros of random polynomials (Dembo/Poonen/Shao/Zeitouni'02, Li/Shao'04)

Relations to other questions

For an H -self-similar processes, the question is the same as

$$
\mathbb{P}\left[\sup _{0 \leq t \leq 1} A_{t} \leq \varepsilon\right]=\varepsilon^{\theta / H+o(1)}, \quad \text { as } \varepsilon \rightarrow 0
$$

that is, the lower tail of $A_{1}^{*}:=\sup _{t \in[0,1]} A_{t}$

Outline

Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

Known results: continuous-time processes

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} A_{t} \leq 1\right]=T^{-\theta+o(1)}, \quad \text { as } T \rightarrow \infty .
$$

- Brownian motion: $\theta=1 / 2$ (reflection principle gives even the law)
- $A_{t}=\int_{0}^{t} B_{s} \mathrm{~d} s$ integrated Brownian motion: $\theta=1 / 4$ (McKean '63, Goldman '71, Sinaĭ '92)
- fractional Brownian motion: $\theta=1-H$ (Molchan '99)
- Lévy processes (LP) (classical results of fluctuation theory)
- many Gaussian processes: polynomial scale (Li/Shao '04)
- integrated stable LP with no negative jumps (Simon '07)

Known results: discrete case

$$
\mathbb{P}\left[\sup _{1 \leq n \leq T} A_{n} \leq 1\right]=T^{-\theta+o(1)}, \quad \text { as } T \rightarrow \infty
$$

Let $A_{n}=\sum_{i=1}^{n} X_{i}$ be integrated random walk.

- X simple RW: $\theta=1 / 4$ (Sinaĭ '92)

Known results: discrete case

$$
\mathbb{P}\left[\sup _{1 \leq n \leq T} A_{n} \leq 1\right]=T^{-\theta+o(1)}, \quad \text { as } T \rightarrow \infty
$$

Let $A_{n}=\sum_{i=1}^{n} X_{i}$ be integrated random walk.

- X simple RW: $\theta=1 / 4$ (Sinaĭ '92)
- X with finite \exp. moments: $\theta \leq 1 / 2$ and logarithmic upper bound (Caravenna/Deuschel '08)
- X with Gaussian increments: polynomial scale (Li/Shao '04)
- X (lattice valued, other special cases): $\theta=1 / 4$ (Vysotsky '10)

Known results: discrete case

$$
\mathbb{P}\left[\sup _{1 \leq n \leq T} A_{n} \leq 1\right]=T^{-\theta+o(1)}, \quad \text { as } T \rightarrow \infty
$$

Let $A_{n}=\sum_{i=1}^{n} X_{i}$ be integrated random walk.

- X simple RW: $\theta=1 / 4$ (Sinaĭ '92)
- X with finite \exp. moments: $\theta \leq 1 / 2$ and logarithmic upper bound (Caravenna/Deuschel '08)
- X with Gaussian increments: polynomial scale (Li/Shao '04)
- X (lattice valued, other special cases): $\theta=1 / 4$ (Vysotsky '10)
- Our work: true for general X with finite exp. moments

Known results: discrete case

$$
\mathbb{P}\left[\sup _{1 \leq n \leq T} A_{n} \leq 1\right]=T^{-\theta+o(1)}, \quad \text { as } T \rightarrow \infty
$$

Let $A_{n}=\sum_{i=1}^{n} X_{i}$ be integrated random walk.

- X simple RW: $\theta=1 / 4$ (Sinaĭ '92)
- X with finite exp. moments: $\theta \leq 1 / 2$ and logarithmic upper bound (Caravenna/Deuschel '08)
- X with Gaussian increments: polynomial scale (Li/Shao '04)
- X (lattice valued, other special cases): $\theta=1 / 4$ (Vysotsky '10)
- Our work: true for general X with finite exp. moments
- Strong asymptotics with $\theta=1 / 4$, if $2+\varepsilon$-moment finite (Dembo/Ding/Gao 13, Denisov/Wachtel '14+)

Outline

Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

Main results: overview

Three main results:

- (1) universality of the asymptotics
- (2) existence of the survival exponent

(1) Universality result

- X : either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$

(1) Universality result

- X : either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$
- Integration operator:

$$
\mathcal{I}(X)_{t}=\int_{0}^{t} K(t-s) X_{s} \mathrm{~d} s, \quad t \geq 0
$$

(1) Universality result

- X : either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$
- Integration operator:

$$
\mathcal{I}(X)_{t}=\int_{0}^{t} K(t-s) X_{s} \mathrm{~d} s, \quad t \geq 0
$$

- with $K:(0, \infty) \rightarrow[0, \infty)$ such that $K(s) \leq k\left(s^{\beta-1}+s^{\alpha-1}\right)$ (and some unimportant regularity condition)

(1) Universality result

- X : either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$
- Integration operator:

$$
\mathcal{I}(X)_{t}=\int_{0}^{t} K(t-s) X_{s} \mathrm{~d} s, \quad t \geq 0
$$

- with $K:(0, \infty) \rightarrow[0, \infty)$ such that $K(s) \leq k\left(s^{\beta-1}+s^{\alpha-1}\right)$ (and some unimportant regularity condition)

Theorem: For two processes X and Y as above we have

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}(X)_{t} \leq 1\right] \asymp \log \mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}(Y)_{t} \leq 1\right]
$$

Here: $f \asymp_{\log } g$ means that there exists $c, \delta>0$ such that for large T

$$
(c \log T)^{-\delta} f(T) \leq g(T) \leq(c \log T)^{\delta} f(T)
$$

(1) Universality result: Main example

Fractional integration operator:

$$
\mathcal{I}_{\alpha}(X)_{t}:=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} X_{s} \mathrm{~d} s, \quad t \geq 0
$$

for some $\alpha>0$ (recall: $\mathcal{I}_{\alpha}=\left(\mathcal{I}_{1}\right)^{\alpha}$ for integer α).
Corollary: For two processes X and Y as above we have

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}_{\alpha}(X)_{t} \leq 1\right] \asymp \log \mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}_{\alpha}(Y)_{t} \leq 1\right]
$$

In particular, the asymptotics are equivalent w.r.t. $\asymp_{\log \text { ! }}$

(1) Universality result: Integrated random walk

Usual integration operator:

$$
\mathcal{I}_{1}(X)_{t}=\int_{0}^{t} X_{s} \mathrm{~d} s, \quad t \geq 0
$$

Corollary: For any LP X with $\exists \beta>0: \mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$.

$$
\mathbb{P}\left[\sup _{0 \leq n \leq T} \sum_{i=1}^{n} X_{i} \leq 1\right] \asymp \log \mathbb{P}\left[\sup _{0 \leq t \leq T} \int_{0}^{t} X_{s} \mathrm{~d} s \leq 1\right]
$$

(1) Universality result: Integrated random walk

Usual integration operator:

$$
\mathcal{I}_{1}(X)_{t}=\int_{0}^{t} X_{s} \mathrm{~d} s, \quad t \geq 0
$$

Corollary: For any LP X with $\exists \beta>0: \mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$.

$$
\mathbb{P}\left[\sup _{0 \leq n \leq T} \sum_{i=1}^{n} X_{i} \leq 1\right] \asymp_{\log } \mathbb{P}\left[\sup _{0 \leq t \leq T} \int_{0}^{t} X_{s} \mathrm{~d} s \leq 1\right] \asymp_{\log } T^{-1 / 4}
$$

(1) Universality result: More precise formulation

- X: either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$.
- Integration operator:

$$
\mathcal{I}(X)_{t}=\int_{0}^{t} K(t-s) X_{s} \mathrm{~d} s, \quad t \geq 0
$$

- with $K:(0, \infty) \rightarrow[0, \infty)$ such that $K(s) \leq k\left(s^{\beta-1}+s^{\alpha-1}\right)$, $\alpha \geq \beta$ (and some unimportant regularity condition)

(1) Universality result: More precise formulation

- X: either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$.
- Integration operator:

$$
\mathcal{I}(X)_{t}=\int_{0}^{t} K(t-s) X_{s} \mathrm{~d} s, \quad t \geq 0
$$

- with $K:(0, \infty) \rightarrow[0, \infty)$ such that $K(s) \leq k\left(s^{\beta-1}+s^{\alpha-1}\right)$, $\alpha \geq \beta$ (and some unimportant regularity condition)

Theorem: For a process X as above and a Brownian motion B

$$
(c \log T)^{-2(1+\alpha)} \leq \frac{\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}(X)_{t} \leq 1\right]}{\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}(B)_{t} \leq 1\right]} \leq(c \log T)^{2(1+\alpha)}
$$

(2) Existence of the survival exponent

- X : either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$.
- fractional integration operator ($\left.\mathcal{I}_{0}:=\mathrm{Id}\right)$:

$$
\mathcal{I}_{\alpha}(X)_{t}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} X_{s} \mathrm{~d} s, \quad t \geq 0
$$

(2) Existence of the survival exponent

- X: either a LP or RW with $\exists \beta>0$ s.th. $\mathbb{E} e^{\beta\left|X_{1}\right|}<\infty$ and $\mathbb{E} X_{1}=0$.
- fractional integration operator ($\left.\mathcal{I}_{0}:=\mathrm{Id}\right)$:

$$
\mathcal{I}_{\alpha}(X)_{t}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} X_{s} \mathrm{~d} s, \quad t \geq 0
$$

Theorem: There is a non-increasing function $\theta:[0, \infty) \rightarrow(0,1 / 2]$ such that for any process X as above

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}_{\alpha}(X)_{t} \leq 1\right]=T^{-\theta(\alpha)+o(1)}
$$

In particular, $\theta(0)=1 / 2$ and $\theta(1)=1 / 4$.
(2) Existence of the survival exponent: boundedness

$$
\begin{gathered}
\mathcal{I}_{\alpha}(B)_{t}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} B_{s} \mathrm{~d} s, \quad t \geq 0 \\
\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}_{\alpha}(B)_{t} \leq 1\right]=T^{-\theta(\alpha)+o(1)}
\end{gathered}
$$

(2) Existence of the survival exponent: boundedness

$$
\begin{gathered}
\mathcal{I}_{\alpha}(B)_{t}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} B_{s} \mathrm{~d} s, \quad t \geq 0 \\
\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}_{\alpha}(B)_{t} \leq 1\right]=T^{-\theta(\alpha)+o(1)}
\end{gathered}
$$

Theorem: The function $\theta:[0, \infty) \rightarrow(0,1 / 2]$ is non-increasing, $\theta(0)=1 / 2, \theta(1)=1 / 4$ and

$$
b:=\inf _{\alpha \geq 0} \theta(\alpha)>0 .
$$

(2) Existence of the survival exponent: boundedness

$$
\begin{gathered}
\mathcal{I}_{\alpha}(B)_{t}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} B_{s} \mathrm{~d} s, \quad t \geq 0 \\
\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}_{\alpha}(B)_{t} \leq 1\right]=T^{-\theta(\alpha)+o(1)} .
\end{gathered}
$$

Theorem: The function $\theta:[0, \infty) \rightarrow(0,1 / 2]$ is non-increasing, $\theta(0)=1 / 2, \theta(1)=1 / 4$ and

$$
b:=\inf _{\alpha \geq 0} \theta(\alpha)>0 .
$$

The constant b actually has a relation to the question of random polynomials having no real zeros (studied by Dembo et al. '02):

$$
\mathbb{P}\left[\sum_{i=0}^{2 n} \xi_{i} x^{i}<0 \quad \forall x \in \mathbb{R}\right]=n^{-4 b+o(1)}, \quad n \rightarrow \infty
$$

(2) Existence of the survival exponent: boundedness

$$
\begin{gathered}
\mathcal{I}_{\alpha}(B)_{t}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} B_{s} \mathrm{~d} s, \quad t \geq 0 \\
\mathbb{P}\left[\sup _{0 \leq t \leq T} \mathcal{I}_{\alpha}(B)_{t} \leq 1\right]=T^{-\theta(\alpha)+o(1)} .
\end{gathered}
$$

Theorem: The function $\theta:[0, \infty) \rightarrow(0,1 / 2]$ is non-increasing, $\theta(0)=1 / 2, \theta(1)=1 / 4$ and

$$
b:=\inf _{\alpha \geq 0} \theta(\alpha)>0 .
$$

Except $\theta(0)=1 / 2$ and $\theta(1)=1 / 4$, no other values are known. Even $\theta(2)$ is unknown:

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} \int_{0}^{t} \int_{0}^{s} B_{u} \mathrm{~d} u \mathrm{~d} s \leq 1\right]=T^{-\theta(2)+o(1)} .
$$

(2) Survival exponent: comparison to FBM

Recall that $\mathcal{I}_{\alpha}(B)$ and FBM B^{H} with $H=\alpha+1 / 2, \alpha \in[0,1 / 2]$ are closely related: with an independent, very smooth process M^{H},

$$
B^{H}=\mathcal{I}_{\alpha}(B)+M^{H}
$$

Theorem: [Molchan '99, Aurzada '11] For fractional Brownian motion we have, for some $c>0$,

$$
(\log T)^{-c} T^{-(1-H)} \leq \mathbb{P}\left[\sup _{0 \leq t \leq T} B_{t}^{H} \leq 1\right] \leq(\log T)^{c} T^{-(1-H)}
$$

(2) Survival exponent: comparison to FBM

Recall that $\mathcal{I}_{\alpha}(B)$ and FBM B^{H} with $H=\alpha+1 / 2, \alpha \in[0,1 / 2]$ are closely related: with an independent, very smooth process M^{H},

$$
B^{H}=\mathcal{I}_{\alpha}(B)+M^{H}
$$

Theorem: [Molchan '99, Aurzada '11] For fractional Brownian motion we have, for some $c>0$,

$$
(\log T)^{-c} T^{-(1-H)} \leq \mathbb{P}\left[\sup _{0 \leq t \leq T} B_{t}^{H} \leq 1\right] \leq(\log T)^{c} T^{-(1-H)}
$$

Corollary: The survival exponents of α-times integrated $\mathrm{BM} \mathcal{I}_{\alpha}(B)$ and FBM B^{H} with $H=\alpha+1 / 2$ do not coincide, at least for $\alpha>1 / 4$, i.e. $H \in(3 / 4,1]$.

(2) Survival exponent: comparison to FBM

Theorem: (Molchan '99, Aurzada '11) For fractional Brownian motion we have, for some $c>0$,

$$
(\log T)^{-c} T^{-(1-H)} \leq \mathbb{P}\left[\sup _{0 \leq t \leq T} B_{t}^{H} \leq 1\right] \leq(\log T)^{c} T^{-(1-H)},
$$

Corollary: The survival exponents of α-times integrated $\mathrm{BM} \mathcal{I}_{\alpha}(B)$ and FBM B^{H} with $H=\alpha+1 / 2$ do not coincide, at least for $\alpha>1 / 4$, i.e. $H \in(3 / 4,1]$.

Outline

Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

Main idea for the universality result

Coupling of the LP/RW with BM via KMT

Main idea for the universality result

Coupling of the LP/RW with BM via KMT

- Komlós/Major/Tusnády '75: one can couple a LP/RW X with a BM B such that

$$
\left|X_{s}-B_{s}\right| \leq c \log T \quad \text { for all } 0 \leq s \leq T
$$

with very high probability.

- Problem: $\left|X_{s}-B_{s}\right| \approx \log T$ may happen at the beginning (for small s), which adds up too much error when integrating:

$$
\begin{gathered}
\int_{0}^{t} X_{s} d s \leq \int_{0}^{t} B_{s} d s+c t \log T \leq 1+t \log T \\
\mathbb{P}\left[\int_{0}^{t} B_{s} d s \leq 1, \forall t \leq T\right] \leq \mathbb{P}\left[\int_{0}^{t} X_{s} d s \leq 1+t \log T, \forall t \leq T\right]
\end{gathered}
$$

Main idea for the universality result

Make the process X behave as follows:

- Behaviour of X costs only a logarithmic probability... (one has to use a decoupling argument, FKG-type inequality)
- After $\approx(\log T)^{2}$, the process can be estimated by B using the coupling.

Main idea for the universality result

Make the process X behave as follows:

$\mathbb{P}\left[\int_{0}^{t} X_{s} d s \leq 1, \forall t \leq T\right] \geq \mathbb{P}[$ construction $] \mathbb{P}\left[\int_{0}^{t} B_{s} d s \leq 1, \forall t \leq T\right]$

Outline

Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

Problem

Now:

- $\left(X_{n}\right)_{n \in \mathbb{N}}$ simple random walk
- $\left(A_{n}\right)_{n \in \mathbb{N}}$ given by $A_{n}=\mathcal{I}_{1}(X)=\sum_{k=1}^{n} X_{k}$

Question: For $T \in 4 \mathbb{N}$

$$
\mathbb{P}\left(\min _{n=1, \ldots, T} A_{n} \geq 0 \mid X_{T}=A_{T}=0\right) \approx T^{-?}
$$

Origin of the problem: Caravenna and Deuschel '09

Result

Theorem: One has for $T \in 4 \mathbb{N}$

$$
\mathbb{P}\left(\min _{n=1, \ldots, T} A_{n} \geq 0 \mid X_{T}=A_{T}=0\right) \approx T^{-1 / 2}
$$

Result

Theorem: One has for $T \in 4 \mathbb{N}$

$$
\mathbb{P}\left(\min _{n=1, \ldots, T} A_{n} \geq 0 \mid X_{T}=A_{T}=0\right) \approx T^{-1 / 2}
$$

Proof based on:

- Local central limit theorem for $\left(n^{-1 / 2} X_{n}, n^{-3 / 2} A_{n}\right)$ as $n \rightarrow \infty$ \rightsquigarrow functional central limit theorem for pinned bridges

Result

Theorem: One has for $T \in 4 \mathbb{N}$

$$
\mathbb{P}\left(\min _{n=1, \ldots, T} A_{n} \geq 0 \mid X_{T}=A_{T}=0\right) \approx T^{-1 / 2}
$$

Proof based on:

- Local central limit theorem for $\left(n^{-1 / 2} X_{n}, n^{-3 / 2} A_{n}\right)$ as $n \rightarrow \infty$ \rightsquigarrow functional central limit theorem for pinned bridges
- The conditioned process has the same fluctuations as the unconditional one:
- $\mathbb{E}\left[\left|X_{n}\right| \mid \min _{k=1, \ldots, n} A_{k} \geq 0\right] \leq$ const $n^{1 / 2}$
- $\mathbb{E}\left[A_{n} \mid \min _{k=1, \ldots, n} A_{k} \geq 0\right] \leq$ const $n^{3 / 2}$

Result

Theorem: One has for $T \in 4 \mathbb{N}$

$$
\mathbb{P}\left(\min _{n=1, \ldots, T} A_{n} \geq 0 \mid X_{T}=A_{T}=0\right) \approx T^{-1 / 2}
$$

Proof based on:

- Local central limit theorem for $\left(n^{-1 / 2} X_{n}, n^{-3 / 2} A_{n}\right)$ as $n \rightarrow \infty$ \rightsquigarrow functional central limit theorem for pinned bridges
- The conditioned process has the same fluctuations as the unconditional one:
- $\mathbb{E}\left[\left|X_{n}\right| \mid \min _{k=1, \ldots, n} A_{k} \geq 0\right] \leq \operatorname{const} n^{1 / 2}$
- $\mathbb{E}\left[A_{n} \mid \min _{k=1, \ldots, n} A_{k} \geq 0\right] \leq$ const $n^{3 / 2}$
- The conditional process escapes with sufficiently large probability from the origin: for $\forall c_{1}, c_{2}>0 \exists \kappa>0$ s.th. for large n

$$
\mathbb{P}\left(X_{n} \geq c_{1} n^{1 / 2}, A_{n} \geq c_{2} n^{3 / 2} \mid \min _{k=1, \ldots, n} A_{k} \geq 0\right) \geq \kappa
$$

Sketch of the proof

- $\mathbb{P}\left(\min _{k=1, \ldots, T / 4} A_{k} \geq 0, X_{T / 4} \in\left[c_{1} T^{1 / 2}, c_{2} T^{1 / 2}\right]\right.$,

$$
\left.A_{T / 4} \in\left[c_{1} T^{3 / 2}, c_{2} T^{3 / 2}\right]\right) \approx T^{-1 / 4}
$$

Sketch of the proof

- $\mathbb{P}\left(\min _{k=1, \ldots, T / 4} A_{k} \geq 0, X_{T / 4} \in\left[c_{1} T^{1 / 2}, c_{2} T^{1 / 2}\right]\right.$,

$$
\left.A_{T / 4} \in\left[c_{1} T^{3 / 2}, c_{2} T^{3 / 2}\right]\right) \approx T^{-1 / 4}
$$

- $\mathbb{P}($ same property for reversed process $) \approx T^{-1 / 4}$

Sketch of the proof

- $\mathbb{P}\left(\min _{k=1, \ldots, T / 4} A_{k} \geq 0, X_{T / 4} \in\left[c_{1} T^{1 / 2}, c_{2} T^{1 / 2}\right]\right.$,

$$
\left.A_{T / 4} \in\left[c_{1} T^{3 / 2}, c_{2} T^{3 / 2}\right]\right) \approx T^{-1 / 4}
$$

- $\mathbb{P}($ same property for reversed process $) \approx T^{-1 / 4}$
- $\inf _{\text {bdy }} \mathbb{P}^{\text {pbdy }}$ (bridge stays pos. and ends in rbdy) $\geq \kappa T^{-2}$

Sketch of the proof

- $\mathbb{P}\left(\min _{k=1, \ldots, T / 4} A_{k} \geq 0, X_{T / 4} \in\left[c_{1} T^{1 / 2}, c_{2} T^{1 / 2}\right]\right.$,

$$
\left.A_{T / 4} \in\left[c_{1} T^{3 / 2}, c_{2} T^{3 / 2}\right]\right) \approx T^{-1 / 4}
$$

- $\mathbb{P}($ same property for reversed process $) \approx T^{-1 / 4}$
- $\inf _{\text {bdy }} \mathbb{P}^{\text {lbdy }}$ (bridge stays pos. and ends in rbdy) $\geq \kappa T^{-2}$
- $\mathbb{P}\left(\left(X_{T}, A_{T}\right)=(0,0)\right) \approx T^{-2}$

Thank you for your attention!

References:
Aurzada, D. Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincar (B) 49, No. 1, 236-251 (2013).

Aurzada, D, Lifshits. Persistence probabilities for an integrated random walk bridge. Probab. Math. Statist. 34, No. 1, 1-22 (2014)

