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Statement of the problem
Given: (At )t≥0 stochastic process with A0 = 0.
Goal: Find asymptotics of

P

[
sup

0≤t≤T
At ≤ 1

]
≈ ? , as T →∞.

T → ∞

1

A

Typically, one expects

P

[
sup

0≤t≤T
At ≤ 1

]
= T−θ+o(1), as T →∞

with θ > 0, called survival exponent
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Relations to other questions

P

[
sup

0≤t≤T
At ≤ 1

]
= T−θ+o(1), as T →∞.

I statistical mechanics: Burgers’ equation – a PDE considered
with random initial condition (Sinaı̆’92, Bertoin’98, Molchan’99,
Simon’08)

I Entropic repulsion/wetting models – discrete case
(Caravenna/Deuschel’08)

I pursuit problems – ‘random prisoner is followed by a random
policeman’ (Li/Shao’02)

I zeros of random polynomials (Dembo/Poonen/Shao/Zeitouni’02,
Li/Shao’04)



Relations to other questions

For an H-self-similar processes, the question is the same as

P

[
sup

0≤t≤1
At ≤ ε

]
= εθ/H+o(1), as ε→ 0.

1

ε ↓ 0

A

that is, the lower tail of A∗1 := supt∈[0,1] At
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Known results: continuous-time processes

P

[
sup

0≤t≤T
At ≤ 1

]
= T−θ+o(1), as T →∞.

I Brownian motion: θ = 1/2 (reflection principle gives even the
law)

I At =
∫ t

0 Bs ds integrated Brownian motion: θ = 1/4
(McKean ’63, Goldman ’71, Sinaı̆ ’92)

I fractional Brownian motion: θ = 1− H (Molchan ’99)

I Lévy processes (LP) (classical results of fluctuation theory)

I many Gaussian processes: polynomial scale (Li/Shao ’04)

I integrated stable LP with no negative jumps (Simon ’07)



Known results: discrete case

P

[
sup

1≤n≤T
An ≤ 1

]
= T−θ+o(1), as T →∞.

Let An =
∑n

i=1 Xi be integrated random walk.

I X simple RW: θ = 1/4 (Sinaı̆ ’92)

I X with finite exp. moments: θ ≤ 1/2 and logarithmic upper
bound (Caravenna/Deuschel ’08)

I X with Gaussian increments: polynomial scale (Li/Shao ’04)

I X (lattice valued, other special cases): θ = 1/4 (Vysotsky ’10)

I Our work: true for general X with finite exp. moments

I Strong asymptotics with θ = 1/4, if 2 + ε-moment finite
(Dembo/Ding/Gao 13, Denisov/Wachtel ’14+)
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Main results: overview

Three main results:

I (1) universality of the asymptotics

I (2) existence of the survival exponent



(1) Universality result
I X : either a LP or RW with ∃β > 0 s.th. Eeβ|X1| <∞ and EX1 = 0

I Integration operator:

I(X )t =

∫ t

0
K (t − s) Xs ds, t ≥ 0

I with K : (0,∞)→ [0,∞) such that K (s) ≤ k(sβ−1 + sα−1)
(and some unimportant regularity condition)

Theorem: For two processes X and Y as above we have

P

[
sup

0≤t≤T
I(X )t ≤ 1

]
�log P

[
sup

0≤t≤T
I(Y )t ≤ 1

]

Here: f �log g means that there exists c, δ > 0 such that for large T

(c log T )−δf (T ) ≤ g(T ) ≤ (c log T )δf (T )
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(1) Universality result: Main example

Fractional integration operator:

Iα(X )t :=
1

Γ(α)

∫ t

0
(t − s)α−1Xs ds, t ≥ 0

for some α > 0 (recall: Iα = (I1)α for integer α).

Corollary: For two processes X and Y as above we have

P

[
sup

0≤t≤T
Iα(X )t ≤ 1

]
�log P

[
sup

0≤t≤T
Iα(Y )t ≤ 1

]

In particular, the asymptotics are equivalent w.r.t. �log !



(1) Universality result: Integrated random walk

Usual integration operator:

I1(X )t =

∫ t

0
Xs ds, t ≥ 0

Corollary: For any LP X with ∃β > 0: Eeβ|X1| <∞ and EX1 = 0.

P

[
sup

0≤n≤T

n∑
i=1

Xi ≤ 1

]
�log P

[
sup

0≤t≤T

∫ t

0
Xs ds ≤ 1

]

�log T−1/4
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(1) Universality result: More precise formulation

I X : either a LP or RW with ∃β > 0 s.th. Eeβ|X1| <∞ and EX1 = 0.

I Integration operator:

I(X )t =

∫ t

0
K (t − s) Xs ds, t ≥ 0

I with K : (0,∞)→ [0,∞) such that K (s) ≤ k(sβ−1 + sα−1),
α ≥ β (and some unimportant regularity condition)

Theorem: For a process X as above and a Brownian motion B

(c log T )−2(1+α) ≤
P
[
sup0≤t≤T I(X )t ≤ 1

]
P
[
sup0≤t≤T I(B)t ≤ 1

] ≤ (c log T )2(1+α)
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(2) Existence of the survival exponent

I X : either a LP or RW with ∃β > 0 s.th. Eeβ|X1| <∞ and EX1 = 0.

I fractional integration operator (I0 := Id):

Iα(X )t =
1

Γ(α)

∫ t

0
(t − s)α−1Xs ds, t ≥ 0

Theorem: There is a non-increasing function θ : [0,∞)→ (0,1/2]
such that for any process X as above

P

[
sup

0≤t≤T
Iα(X )t ≤ 1

]
= T−θ(α)+o(1).

In particular, θ(0) = 1/2 and θ(1) = 1/4.
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(2) Existence of the survival exponent: boundedness

Iα(B)t =
1

Γ(α)

∫ t

0
(t − s)α−1Bs ds, t ≥ 0

P

[
sup

0≤t≤T
Iα(B)t ≤ 1

]
= T−θ(α)+o(1).

Theorem: The function θ : [0,∞)→ (0,1/2] is non-increasing,
θ(0) = 1/2, θ(1) = 1/4 and

b := inf
α≥0

θ(α) > 0.

The constant b actually has a relation to the question of random poly-
nomials having no real zeros (studied by Dembo et al. ’02):

P

[
2n∑

i=0

ξix i < 0 ∀x ∈ R

]
= n−4b+o(1), n→∞
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(2) Existence of the survival exponent: boundedness

Iα(B)t =
1

Γ(α)

∫ t

0
(t − s)α−1Bs ds, t ≥ 0

P

[
sup

0≤t≤T
Iα(B)t ≤ 1
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Theorem: The function θ : [0,∞)→ (0,1/2] is non-increasing,
θ(0) = 1/2, θ(1) = 1/4 and

b := inf
α≥0

θ(α) > 0.

Except θ(0) = 1/2 and θ(1) = 1/4, no other values are known. Even
θ(2) is unknown:

P

[
sup

0≤t≤T

∫ t

0

∫ s

0
Bu du ds ≤ 1

]
= T−θ(2)+o(1).



(2) Survival exponent: comparison to FBM

Recall that Iα(B) and FBM BH with H = α + 1/2, α ∈ [0,1/2] are
closely related: with an independent, very smooth process MH ,

BH = Iα(B) + MH

Theorem: [Molchan ’99, Aurzada ’11] For fractional Brownian motion
we have, for some c > 0,

(log T )−c T−(1−H) ≤ P[ sup
0≤t≤T

BH
t ≤ 1] ≤ (log T )c T−(1−H),

Corollary: The survival exponents of α-times integrated BM Iα(B)

and FBM BH with H = α + 1/2 do not coincide, at least for α > 1/4,
i.e. H ∈ (3/4,1].
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(2) Survival exponent: comparison to FBM
Theorem: (Molchan ’99, Aurzada ’11) For fractional Brownian motion
we have, for some c > 0,

(log T )−c T−(1−H) ≤ P[ sup
0≤t≤T

BH
t ≤ 1] ≤ (log T )c T−(1−H),

Corollary: The survival exponents of α-times integrated BM Iα(B)
and FBM BH with H = α + 1/2 do not coincide, at least for α > 1/4,
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1/2

1/4

H = 1

α = 1/2

α = 1

θ(α)

H = 1/2

α = 0
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Main idea for the universality result

Coupling of the LP/RW with BM via KMT

I Komlós/Major/Tusnády ’75: one can couple a LP/RW X with a
BM B such that

|Xs − Bs| ≤ c log T for all 0 ≤ s ≤ T

with very high probability.

I Problem: |Xs − Bs| ≈ log T may happen at the beginning (for
small s), which adds up too much error when integrating:∫ t

0
Xs ds ≤

∫ t

0
Bs ds + ct log T ≤ 1 + t log T

P

[∫ t

0
Bs ds ≤ 1,∀t ≤ T

]
≤ P

[∫ t

0
Xs ds ≤ 1 + t log T ,∀t ≤ T

]
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Main idea for the universality result
Make the process X behave as follows:

X

B

≈ log T

≈ − log T

≤ c log T

(log T )−2α

≈ (log T )2

I Behaviour of X costs only a logarithmic probability... (one has to
use a decoupling argument, FKG-type inequality)

I After ≈ (log T )2, the process can be estimated by B using the
coupling.
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Problem

Now:

I (Xn)n∈N simple random walk

I (An)n∈N given by An = I1(X ) =
∑n

k=1 Xk

Question: For T ∈ 4N

P( min
n=1,...,T

An ≥ 0|XT = AT = 0) ≈ T−?.

Origin of the problem: Caravenna and Deuschel ’09



Result
Theorem: One has for T ∈ 4N

P( min
n=1,...,T

An ≥ 0|XT = AT = 0) ≈ T−1/2.

Proof based on:

I Local central limit theorem for (n−1/2Xn,n−3/2An) as n→∞
 functional central limit theorem for pinned bridges

I The conditioned process has the same fluctuations as the
unconditional one:

I E
[
|Xn|

∣∣mink=1,...,n Ak ≥ 0
]
≤ const n1/2

I E
[
An
∣∣mink=1,...,n Ak ≥ 0

]
≤ const n3/2

I The conditional process escapes with sufficiently large
probability from the origin: for ∀c1, c2 > 0∃κ > 0 s.th. for large n

P(Xn ≥ c1n1/2,An ≥ c2n3/2| min
k=1,...,n

Ak ≥ 0) ≥ κ
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Sketch of the proof

• P(mink=1,...,T/4 Ak ≥ 0, XT/4 ∈ [c1T 1/2, c2T 1/2],

0 T

AT/4 ∈ [c1T 3/2, c2T 3/2]) ≈ T−1/4
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• infbdy Plbdy(bridge stays pos. and ends in rbdy) ≥ κT−2

AT/4 ∈ [c1T 3/2, c2T 3/2]) ≈ T−1/4



Sketch of the proof

• P((XT ,AT ) = (0,0)) ≈ T−2

0 T

• P(same property for reversed process) ≈ T−1/4

• infbdy Plbdy(bridge stays pos. and ends in rbdy) ≥ κT−2

AT/4 ∈ [c1T 3/2, c2T 3/2]) ≈ T−1/4

• P(mink=1,...,T/4 Ak ≥ 0, XT/4 ∈ [c1T 1/2, c2T 1/2],



Thank you for your attention!
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