# Persistence probabilities for integrated random walks

#### Steffen Dereich joint with Frank Aurzada and Misha Lifshits

WWU Münster

http://wwwmath.uni-muenster.de/statistik/dereich/

Persistence probabilities @ Darmstadt 16/07/2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@



Statement of the problem and relations to other questions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]



#### Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

#### Statement of the problem

Given:  $(A_t)_{t\geq 0}$  stochastic process with  $A_0 = 0$ . Goal: Find asymptotics of

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_t\leq 1\right]\approx \ ?\ ,\qquad \text{as }T\rightarrow\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

#### Statement of the problem

Given:  $(A_t)_{t\geq 0}$  stochastic process with  $A_0 = 0$ . Goal: Find asymptotics of

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_{t}\leq 1\right]\approx ?, \quad \text{as } T\to\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

#### Statement of the problem

Given:  $(A_t)_{t\geq 0}$  stochastic process with  $A_0 = 0$ . Goal: Find asymptotics of

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_{t}\leq 1\right]\approx ?, \quad \text{as } T\to\infty.$$

Typically, one expects

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_t\leq 1\right]=T^{-\theta+o(1)},\qquad\text{as }T\to\infty$$

with  $\theta > 0$ , called survival exponent

・ロト < 団ト < 三ト < 三ト < 三 ・ のへで</li>

# Relations to other questions

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_t\leq 1\right]=T^{-\theta+o(1)},\qquad\text{as }T\to\infty.$$

- statistical mechanics: Burgers' equation a PDE considered with random initial condition (Sinaĭ'92, Bertoin'98, Molchan'99, Simon'08)
- Entropic repulsion/wetting models discrete case (Caravenna/Deuschel'08)
- pursuit problems 'random prisoner is followed by a random policeman' (Li/Shao'02)
- zeros of random polynomials (Dembo/Poonen/Shao/Zeitouni'02, Li/Shao'04)

(ロ) (同) (三) (三) (三) (○) (○)

#### Relations to other questions

For an *H*-self-similar processes, the question is the same as

$$\mathbb{P}\left[\sup_{0\leq t\leq 1}A_t\leq \varepsilon\right]=\varepsilon^{\theta/H+o(1)},\qquad \text{as }\varepsilon\to 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



that is, the lower tail of  $A_1^* := \sup_{t \in [0,1]} A_t$ 



#### Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D'13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

## Known results: continuous-time processes

$$\mathbb{P}\left[\sup_{0\leq t\leq T}A_t\leq 1\right]=T^{-\theta+o(1)},\qquad \text{as }T\to\infty.$$

- Brownian motion: θ = 1/2 (reflection principle gives even the law)
- $A_t = \int_0^t B_s \, ds$  integrated Brownian motion:  $\theta = 1/4$  (McKean '63, Goldman '71, Sinaĭ '92)
- First fractional Brownian motion:  $\theta = 1 H$  (Molchan '99)
- Lévy processes (LP) (classical results of fluctuation theory)
- many Gaussian processes: polynomial scale (Li/Shao '04)
- integrated stable LP with no negative jumps (Simon '07)

$$\mathbb{P}\left[\sup_{1\leq n\leq T}A_n\leq 1\right]=T^{-\theta+o(1)},\qquad\text{as }T\to\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let  $A_n = \sum_{i=1}^n X_i$  be integrated random walk.

X simple RW: θ = 1/4 (Sinaĭ '92)

$$\mathbb{P}\left[\sup_{1\leq n\leq T}A_n\leq 1\right]=T^{-\theta+o(1)},\qquad\text{as }T\to\infty.$$

Let  $A_n = \sum_{i=1}^n X_i$  be integrated random walk.

- X simple RW: θ = 1/4 (Sinaĭ '92)
- ➤ X with finite exp. moments: θ ≤ 1/2 and logarithmic upper bound (Caravenna/Deuschel '08)
- X with Gaussian increments: polynomial scale (Li/Shao '04)
- ► X (lattice valued, other special cases):  $\theta = 1/4$  (Vysotsky '10)

$$\mathbb{P}\left[\sup_{1\leq n\leq T}A_n\leq 1\right]=T^{-\theta+o(1)},\qquad\text{as }T\to\infty.$$

Let  $A_n = \sum_{i=1}^n X_i$  be integrated random walk.

- X simple RW: θ = 1/4 (Sinaĭ '92)
- ➤ X with finite exp. moments: θ ≤ 1/2 and logarithmic upper bound (Caravenna/Deuschel '08)
- X with Gaussian increments: polynomial scale (Li/Shao '04)
- > X (lattice valued, other special cases):  $\theta = 1/4$  (Vysotsky '10)

Our work: true for general X with finite exp. moments

$$\mathbb{P}\left[\sup_{1\leq n\leq T}A_n\leq 1\right]=T^{-\theta+o(1)},\qquad\text{as }T\to\infty.$$

Let  $A_n = \sum_{i=1}^n X_i$  be integrated random walk.

- X simple RW: θ = 1/4 (Sinaĭ '92)
- X with finite exp. moments: θ ≤ 1/2 and logarithmic upper bound (Caravenna/Deuschel '08)
- X with Gaussian increments: polynomial scale (Li/Shao '04)
- > X (lattice valued, other special cases):  $\theta = 1/4$  (Vysotsky '10)
- Our work: true for general X with finite exp. moments
- Strong asymptotics with θ = 1/4, if 2 + ε-moment finite (Dembo/Ding/Gao 13, Denisov/Wachtel '14+)



Statement of the problem and relations to other questions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

# Main results: overview

Three main results:

- (1) universality of the asymptotics
- (2) existence of the survival exponent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$ 

- ► X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$
- Integration operator:

$$\mathcal{I}(X)_t = \int_0^t \mathcal{K}(t-s) X_s \; \mathrm{d}s, \qquad t \ge 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ► X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$
- Integration operator:

$$\mathcal{I}(X)_t = \int_0^t K(t-s) X_s \, \mathrm{d}s, \qquad t \ge 0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 with K : (0,∞) → [0,∞) such that K(s) ≤ k(s<sup>β-1</sup> + s<sup>α-1</sup>) (and some unimportant regularity condition)

- ► X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$
- Integration operator:

$$\mathcal{I}(X)_t = \int_0^t K(t-s) X_s \, \mathrm{d}s, \qquad t \ge 0$$

 with K : (0,∞) → [0,∞) such that K(s) ≤ k(s<sup>β-1</sup> + s<sup>α-1</sup>) (and some unimportant regularity condition)

**Theorem:** For two processes X and Y as above we have

$$\mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}(X)_t \leq 1\right] \asymp_{\log} \mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}(Y)_t \leq 1\right]$$

Here:  $f \asymp_{\log} g$  means that there exists  $c, \delta > 0$  such that for large T

$$(c\log T)^{-\delta}f(T) \leq g(T) \leq (c\log T)^{\delta}f(T)$$

# (1) Universality result: Main example

Fractional integration operator:

$$\mathcal{I}_{\alpha}(X)_t := rac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{lpha-1} X_s \, \mathrm{d}s, \qquad t \geq 0$$

for some  $\alpha > 0$  (recall:  $\mathcal{I}_{\alpha} = (\mathcal{I}_1)^{\alpha}$  for integer  $\alpha$ ).

**Corollary:** For two processes X and Y as above we have

$$\mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}_{\alpha}(X)_{t} \leq 1\right] \asymp_{\log} \mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}_{\alpha}(Y)_{t} \leq 1\right]$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In particular, the asymptotics are equivalent w.r.t.  $\asymp_{log}$  !

## (1) Universality result: Integrated random walk

Usual integration operator:

$$\mathcal{I}_1(X)_t = \int_0^t X_s \,\mathrm{d}s, \qquad t \ge 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

**Corollary:** For any LP X with  $\exists \beta > 0$ :  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$ .

$$\mathbb{P}\left[\sup_{0 \le n \le T} \sum_{i=1}^n X_i \le 1\right] \asymp_{\log} \mathbb{P}\left[\sup_{0 \le t \le T} \int_0^t X_s \, \mathrm{d}s \le 1\right]$$

## (1) Universality result: Integrated random walk

Usual integration operator:

$$\mathcal{I}_1(X)_t = \int_0^t X_s \,\mathrm{d}s, \qquad t \ge 0$$

**Corollary:** For any LP X with  $\exists \beta > 0$ :  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$ .

$$\mathbb{P}\left[\sup_{0 \le n \le T} \sum_{i=1}^{n} X_i \le 1\right] \asymp_{\log} \mathbb{P}\left[\sup_{0 \le t \le T} \int_0^t X_s \, \mathrm{d}s \le 1\right] \asymp_{\log} T^{-1/4}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

# (1) Universality result: More precise formulation

- X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$ .
- Integration operator:

$$\mathcal{I}(X)_t = \int_0^t \mathcal{K}(t-s) X_s \,\mathrm{d}s, \qquad t \ge 0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with K : (0,∞) → [0,∞) such that K(s) ≤ k(s<sup>β-1</sup> + s<sup>α-1</sup>), α ≥ β (and some unimportant regularity condition)

# (1) Universality result: More precise formulation

- X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$ .
- Integration operator:

$$\mathcal{I}(X)_t = \int_0^t \mathcal{K}(t-s) X_s \,\mathrm{d}s, \qquad t \ge 0$$

with K : (0,∞) → [0,∞) such that K(s) ≤ k(s<sup>β-1</sup> + s<sup>α-1</sup>), α ≥ β (and some unimportant regularity condition)

**Theorem:** For a process X as above and a Brownian motion B

$$(c\log T)^{-2(1+\alpha)} \leq \frac{\mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}(X)_t \leq 1\right]}{\mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}(B)_t \leq 1\right]} \leq (c\log T)^{2(1+\alpha)}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# (2) Existence of the survival exponent

- X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$ .
- fractional integration operator ( $\mathcal{I}_0 := Id$ ):

$$\mathcal{I}_{\alpha}(X)_t = rac{1}{\Gamma(\alpha)} \, \int_0^t (t-s)^{lpha-1} X_s \, \mathrm{d}s, \qquad t \geq 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# (2) Existence of the survival exponent

- X: either a LP or RW with  $\exists \beta > 0$  s.th.  $\mathbb{E}e^{\beta |X_1|} < \infty$  and  $\mathbb{E}X_1 = 0$ .
- ▶ fractional integration operator (*I*<sub>0</sub> := Id):

$$\mathcal{I}_{\alpha}(X)_t = rac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{lpha-1} X_s \,\mathrm{d}s, \qquad t \geq 0$$

**Theorem:** There is a non-increasing function  $\theta : [0, \infty) \to (0, 1/2]$  such that for any process *X* as above

$$\mathbb{P}\left[\sup_{0\leq t\leq T}\mathcal{I}_{\alpha}(X)_{t}\leq 1\right]=T^{-\theta(\alpha)+o(1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular,  $\theta(0) = 1/2$  and  $\theta(1) = 1/4$ .

$$egin{aligned} \mathcal{I}_{lpha}(B)_t &= rac{1}{\Gamma(lpha)} \, \int_0^t (t-s)^{lpha-1} B_s \, \mathrm{d}s, \qquad t \geq 0 \ && \mathbb{P}\left[ \sup_{0 \leq t \leq T} \mathcal{I}_{lpha}(B)_t \leq 1 
ight] = T^{- heta(lpha)+o(1)}. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$egin{aligned} \mathcal{I}_{lpha}(m{B})_t &= rac{1}{\Gamma(lpha)} \, \int_0^t (t-s)^{lpha-1} m{B}_s \, \mathrm{d}s, \qquad t \geq 0 \ && \mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}_{lpha}(m{B})_t \leq 1
ight] = T^{- heta(lpha)+o(1)}. \end{aligned}$$

**Theorem:** The function  $\theta : [0, \infty) \to (0, 1/2]$  is non-increasing,  $\theta(0) = 1/2, \theta(1) = 1/4$  and

$$b:=\inf_{\alpha\geq 0}\theta(\alpha)>0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$egin{aligned} \mathcal{I}_{lpha}(B)_t &= rac{1}{\Gamma(lpha)} \, \int_0^t (t-s)^{lpha-1} B_s \, \mathrm{d}s, \qquad t \geq 0 \ && \mathbb{P}\left[ \sup_{0 \leq t \leq T} \mathcal{I}_{lpha}(B)_t \leq 1 
ight] = T^{- heta(lpha)+o(1)}. \end{aligned}$$

**Theorem:** The function  $\theta : [0, \infty) \to (0, 1/2]$  is non-increasing,  $\theta(0) = 1/2, \theta(1) = 1/4$  and

$$b := \inf_{\alpha \ge 0} \theta(\alpha) > 0.$$

The constant *b* actually has a relation to the question of random polynomials having no real zeros (studied by Dembo et al. '02):

$$\mathbb{P}\left[\sum_{i=0}^{2n}\xi_i x^i < 0 \ \forall x \in \mathbb{R}\right] = n^{-4b+o(1)}, \qquad n \to \infty$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$egin{aligned} \mathcal{I}_{lpha}(m{B})_t &= rac{1}{\Gamma(lpha)} \, \int_0^t (t-s)^{lpha-1} B_s \, \mathrm{d}s, \qquad t \geq 0 \ && \mathbb{P}\left[\sup_{0 \leq t \leq T} \mathcal{I}_{lpha}(m{B})_t \leq 1
ight] = T^{- heta(lpha)+o(1)}. \end{aligned}$$

**Theorem:** The function  $\theta : [0, \infty) \to (0, 1/2]$  is non-increasing,  $\theta(0) = 1/2, \theta(1) = 1/4$  and

$$b := \inf_{\alpha \ge 0} \theta(\alpha) > 0.$$

Except  $\theta(0) = 1/2$  and  $\theta(1) = 1/4$ , no other values are known. Even  $\theta(2)$  is unknown:

$$\mathbb{P}\left[\sup_{0\leq t\leq T}\int_0^t\int_0^s B_u\,\mathrm{d} u\,\mathrm{d} s\leq 1\right]=T^{-\theta(2)+o(1)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

# (2) Survival exponent: comparison to FBM

Recall that  $\mathcal{I}_{\alpha}(B)$  and FBM  $B^{H}$  with  $H = \alpha + 1/2$ ,  $\alpha \in [0, 1/2]$  are closely related: with an independent, very smooth process  $M^{H}$ ,

$$B^{H} = \mathcal{I}_{\alpha}(B) + M^{H}$$

**Theorem:** [Molchan '99, Aurzada '11] For fractional Brownian motion we have, for some c > 0,

$$(\log T)^{-c} T^{-(1-H)} \leq \mathbb{P}[\sup_{0 \leq t \leq T} B_t^H \leq 1] \leq (\log T)^c T^{-(1-H)},$$

(日) (日) (日) (日) (日) (日) (日)

# (2) Survival exponent: comparison to FBM

Recall that  $\mathcal{I}_{\alpha}(B)$  and FBM  $B^{H}$  with  $H = \alpha + 1/2$ ,  $\alpha \in [0, 1/2]$  are closely related: with an independent, very smooth process  $M^{H}$ ,

$$B^{H} = \mathcal{I}_{\alpha}(B) + M^{H}$$

**Theorem:** [Molchan '99, Aurzada '11] For fractional Brownian motion we have, for some c > 0,

$$(\log T)^{-c} T^{-(1-H)} \leq \mathbb{P}[\sup_{0 \leq t \leq T} B_t^H \leq 1] \leq (\log T)^c T^{-(1-H)}$$

**Corollary:** The survival exponents of  $\alpha$ -times integrated BM  $\mathcal{I}_{\alpha}(B)$  and FBM  $B^{H}$  with  $H = \alpha + 1/2$  do not coincide, at least for  $\alpha > 1/4$ , i.e.  $H \in (3/4, 1]$ .

# (2) Survival exponent: comparison to FBM

**Theorem:** (Molchan '99, Aurzada '11) For fractional Brownian motion we have, for some c > 0,

$$(\log T)^{-c} T^{-(1-H)} \leq \mathbb{P}[\sup_{0 \leq t \leq T} B_t^H \leq 1] \leq (\log T)^c T^{-(1-H)},$$

**Corollary:** The survival exponents of  $\alpha$ -times integrated BM  $\mathcal{I}_{\alpha}(B)$  and FBM  $B^{H}$  with  $H = \alpha + 1/2$  do not coincide, at least for  $\alpha > 1/4$ , i.e.  $H \in (3/4, 1]$ .



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



Statement of the problem and relations to other questions

Known results

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Coupling of the LP/RW with BM via KMT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Coupling of the LP/RW with BM via KMT

 Komlós/Major/Tusnády '75: one can couple a LP/RW X with a BM B such that

$$|X_s - B_s| \le c \log T$$
 for all  $0 \le s \le T$ 

with very high probability.

► Problem: |X<sub>s</sub> - B<sub>s</sub>| ≈ log T may happen at the beginning (for small s), which adds up too much error when integrating:

$$\int_0^t X_s \, ds \le \int_0^t B_s \, ds + ct \log T \le 1 + t \log T$$
$$\mathbb{P}\left[\int_0^t B_s \, ds \le 1, \forall t \le T\right] \le \mathbb{P}\left[\int_0^t X_s \, ds \le 1 + t \log T, \forall t \le T\right]$$

Make the process *X* behave as follows:



- Behaviour of X costs only a logarithmic probability... (one has to use a decoupling argument, FKG-type inequality)
- ► After ≈ (log *T*)<sup>2</sup>, the process can be estimated by *B* using the coupling.

Make the process *X* behave as follows:





Statement of the problem and relations to other questions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

**Known results** 

Main results [Aurzada, D '13]

Idea of the proofs

Pinned bridges [Aurzada, D, Lifshits '14]

# Problem

#### Now:

- $(X_n)_{n \in \mathbb{N}}$  simple random walk
- $(A_n)_{n \in \mathbb{N}}$  given by  $A_n = \mathcal{I}_1(X) = \sum_{k=1}^n X_k$

Question: For  $T \in 4\mathbb{N}$ 

$$\mathbb{P}(\min_{n=1,\ldots,T}A_n\geq 0|X_T=A_T=0)\approx T^{-?}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Origin of the problem: Caravenna and Deuschel '09

**Theorem:** One has for  $T \in 4\mathbb{N}$ 

$$\mathbb{P}(\min_{n=1,...,T} A_n \ge 0 | X_T = A_T = 0) \approx T^{-1/2}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

**Theorem:** One has for  $T \in 4\mathbb{N}$ 

$$\mathbb{P}(\min_{n=1,...,T} A_n \ge 0 | X_T = A_T = 0) \approx T^{-1/2}.$$

Proof based on:

Local central limit theorem for (n<sup>-1/2</sup>X<sub>n</sub>, n<sup>-3/2</sup>A<sub>n</sub>) as n→∞ → functional central limit theorem for pinned bridges

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**Theorem:** One has for  $T \in 4\mathbb{N}$ 

$$\mathbb{P}(\min_{n=1,\ldots,T}A_n\geq 0|X_T=A_T=0)\approx T^{-1/2}.$$

Proof based on:

- Local central limit theorem for (n<sup>-1/2</sup>X<sub>n</sub>, n<sup>-3/2</sup>A<sub>n</sub>) as n→∞ → functional central limit theorem for pinned bridges
- The conditioned process has the same fluctuations as the unconditional one:

(ロ) (同) (三) (三) (三) (三) (○) (○)

• 
$$\mathbb{E}[|X_n||\min_{k=1,\ldots,n}A_k \ge 0] \le \operatorname{const} n^{1/2}$$

$$\mathbf{E}\left[A_n \middle| \min_{k=1,\ldots,n} A_k \ge 0\right] \le \operatorname{const} n^{3/2}$$

**Theorem:** One has for  $T \in 4\mathbb{N}$ 

$$\mathbb{P}(\min_{n=1,...,T} A_n \ge 0 | X_T = A_T = 0) \approx T^{-1/2}.$$

Proof based on:

- Local central limit theorem for (n<sup>-1/2</sup>X<sub>n</sub>, n<sup>-3/2</sup>A<sub>n</sub>) as n→∞ → functional central limit theorem for pinned bridges
- The conditioned process has the same fluctuations as the unconditional one:

• 
$$\mathbb{E}[|X_n||\min_{k=1,\ldots,n}A_k \ge 0] \le \operatorname{const} n^{1/2}$$

$$\mathbf{E}\left[A_n \middle| \min_{k=1,\ldots,n} A_k \ge 0\right] \le \operatorname{const} n^{3/2}$$

The conditional process escapes with sufficiently large probability from the origin: for ∀c<sub>1</sub>, c<sub>2</sub> > 0∃κ > 0 s.th. for large n

$$\mathbb{P}(X_n \ge c_1 n^{1/2}, A_n \ge c_2 n^{3/2} | \min_{k=1,...,n} A_k \ge 0) \ge \kappa$$

(ロ) (同) (三) (三) (三) (三) (○) (○)



• 
$$\mathbb{P}(\min_{k=1,...,T/4} A_k \ge 0, X_{T/4} \in [c_1 T^{1/2}, c_2 T^{1/2}],$$
  
 $A_{T/4} \in [c_1 T^{3/2}, c_2 T^{3/2}]) \approx T^{-1/4}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



• 
$$\mathbb{P}(\min_{k=1,...,T/4} A_k \ge 0, X_{T/4} \in [c_1 T^{1/2}, c_2 T^{1/2}],$$
  
 $A_{T/4} \in [c_1 T^{3/2}, c_2 T^{3/2}]) \approx T^{-1/4}$ 

•  $\mathbb{P}(\text{same property for reversed process}) \approx T^{-1/4}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



• 
$$\mathbb{P}(\min_{k=1,...,T/4} A_k \ge 0, X_{T/4} \in [c_1 T^{1/2}, c_2 T^{1/2}],$$
  
 $A_{T/4} \in [c_1 T^{3/2}, c_2 T^{3/2}]) \approx T^{-1/4}$ 

- $\mathbb{P}(\text{same property for reversed process}) \approx T^{-1/4}$
- $\inf_{bdy} \mathbb{P}^{bdy}(bridge stays pos. and ends in rbdy) \geq \kappa T^{-2}$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・



• 
$$\mathbb{P}(\min_{k=1,...,T/4} A_k \ge 0, X_{T/4} \in [c_1 T^{1/2}, c_2 T^{1/2}]$$
  
 $A_{T/4} \in [c_1 T^{3/2}, c_2 T^{3/2}]) \approx T^{-1/4}$ 

- $\mathbb{P}(\text{same property for reversed process}) \approx T^{-1/4}$
- $\inf_{bdy} \mathbb{P}^{bdy}(bridge stays pos. and ends in rbdy) \geq \kappa T^{-2}$

• 
$$\mathbb{P}((X_T, A_T) = (0, 0)) \approx T^{-2}$$

Thank you for your attention!

References:

Aurzada, D. Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincar (B) 49, No. 1, 236-251 (2013).

Aurzada, D, Lifshits. Persistence probabilities for an integrated random walk bridge. Probab. Math. Statist. 34, No. 1, 1-22 (2014)

(ロ) (同) (三) (三) (三) (三) (○) (○)