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Part 1: Review of some Stochastic Potential Theory



Principal Objects

locally compact statespace (E , E),

Markov process (Xt) with transition semigroup (Pt)

excessive measure on (E , E) for (Pt), i.e. σ-finite and

Pη(Xt ∈ ·) =: ηPt(·) ≤ η(·)

Special cases:

invariant measure: ηPt = η
purely excessive: ηPt(A) ↓ 0 for t → ∞

Examples:

η(dx) = dx for Brownian motion

potential measures ην(A) = Eν [
∫∞
0

1A(Xt) dt] are purely excessive
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Research Directions

Structure of excessive measures
Example: Riesz decomposition of η into invariant and purely
excessive parts: η = ηI + ηP .

Relation of excessive measures and path-behavior (entrance
boundaries)

Martin boundary

...



Trajectories with Birth & Death

Add to E a cemetary state ∂. Set

D =
{

Y : R→ E ∪ {∂} RCLL | Yt ∈ E for t ∈ (α(w), β(w))
}

and call

α(Y ) time of birth of Y ,

β(Y ) time of death of Y ,

ζ(Y ) = β(Y )− α(Y ) life-time of Y .



Processes with Birth & Death - Kuznetsov Measures

Measure Qη on (D,D) is called Kuznetsov measure for

Markov process (Pt)

excessive measure η

if Qη is a Markov process with birth & death and marginals η.

That is, for −∞ < t1 < · · · < tn < +∞

Qη
(
α(Y ) < t1,Yt1 ∈ dx1, · · · ,Ytn ∈ dxn, tn < β(Y )

)
= η(dx1)Pt2−t1(x1, dx2) · · ·Ptn−tn−1(xn−1, dxn).

Theorem (Kuznetsov): Existence and Uniqueness.



Processes with Birth & Death - Quasi Processes

Measure Pη on (D,D) - modulus time translation - is called quasi
process for

Markov process (Pt)

excessive measure η

if

(a) for all shift-invariant stopping times S

(YS+t)t≥0

is Markov with transitions (Pt) under P|S∈R .

(b) η(A) = Pη(
∫ β
α

1A(Ys) ds)

Theorem (Weil, Hunt): Existence and Uniqueness.



Palm Measure Relation of Qη and Pη

Theorem (Fitzsimmons): Fix any finite shift-invariant time S , then

Pη(A) = Qη(A,S ∈ [0, 1])

for all shift-invariant events A.



Riesz Decomposition - Fitzsimmons/Maisonneuve

Theorem: Let η excessive and define

PP(·) := Pη(·, α > −∞), PI (·) := Pη(·, α = −∞).

Then η = ηI + ηP with

ηP(A) = PP

(∫ β

α

1A(Ys) ds
)

ηI (A) = PI

(∫ β

−∞
1A(Ys) ds

)
.

Remark: Analogous theorem for Kuznetsov measures.



Riesz and a “Way of starting stochastic processes”

starting process (Xt) ⇐⇒ purely excessive measure

′′ ⇒′′ occupation measure
′′ ⇐′′ take quasi process and shift to α = 0 (finite measure?)

“take” is abstract, often means “take Kuznetsov, then Palm measure”

starting process (Xt) at time −∞ ⇐⇒ invariant measure

Problem: Only know processes forwards in time, not backwards.

Example: Lévy processes.
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Example: Lévy processes.



Kuznetsov Measures and Duality

Definition: Two Markov processes (Xt) and (X̂t) are in duality with
respect to a measure m if

Pt(x , dy)m(dx) = P̂t(y , dx)m(dy).

Examples:

Brownian motion is self-dual with m(dx) = dx

Lévy process (ξt) is dual to (ξ̂t) = (−ξt) with m(dx) = dx

Mitro’s Theorem: If m is invariant for (Pt) and (P̂t) is a dual process,
then Qm is constructed as follows:

sample m at time 0

run (Pt) in positive time direction

run (P̂t) in negative time direction
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Example: Random Interlacements

Definition: Brownian interlacement is the (infinite) measure ν on (D,D)
- modulus time translation - so that restricted to trajectories hitting balls
B ⊂ Rn, n ≥ 3,

first hitting distribution at B is harmonic measure

forwards in time paths are Brownian motion

backwards in time paths are conditioned Brownian motion

Brownian random interlacement is Poisson random measure (loop soup)
with intensity ν.

Theorem (D., Dereich ‘14, Rosen ‘14):

Interlacement is quasi process of BM with invariant measure m(dx) = dx .

Corollary:

Interlacement is two-sided BM started in Lebesgue measure restricted to
be closest to the origin at time S ∈ [0, 1] modulus time translations.
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Part 2: Self-Similar Markov Processes



Self-Similarity

A real-valued Markov process is called self-similar if it scales in time and
space:

the law of (cXc−1/γ t)t≥0 under Pz is Pcz

γ is called the index of self-similarity.



Goals

(1) Understand the general form of a self-similar process.

(2) Deduce non-trivial consequences.

Seeking magic arguments of type

know self-similarity for a model

know “something additional” for the model

to deduce from general theory all kind of things.
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For simplicity now restrict ourselves to positive processes.

This is NOT needed, but enough for application in the end!



Lamperti’s Representation

Behavior up to hitting zero governed by Lévy processes:

Theorem (Lamperti ’72)

If (Xt) is positive self-similar there is a Lévy process (ξt) s.t. for z > 0

X
(z)
t := z exp

(
ξA(tz−γ)

)
, t ≤ T0,

where

A(t) :=

(∫ t

0

exp (γξs) ds

)−1
.



Lamperti’s Dichotomy

1 ξ drifts to −∞ if and only if

Pz(T0 <∞) = 1

→ “recurrent case”

2 ξ does not drift to −∞ if and only if

Pz(T0 =∞) = 1

→ “transient case”



Example

Squared-Bessel processes of dimension δ ∈ R

dXt = 2
√

XtdBt + δdt, t ≤ T0,

self-similar of index 1 with corresponding Lévy process

ξt = 2Bt + (δ − 2)t.

Lamperti’s dichotomy:

δ < 2 ⇒ squared-Bessel processes hit zero

δ ≥ 2 ⇒ squared-Bessel processes do not hit zero



Two Natural Tasks

(R) Recurrent case: describe (if exists) the positive self-similar process
after T0.

(T) Transient case: construct (if limz→0 Pz = P0 exists) the limit P0!

Recurrent case via potential theory by Rivero ‘06, Fitzsimmons ‘05.
Lamperti SDE approach in Barczy/D. ‘13.

Transient case gradually by Bertoin, Caballero, Chaumont, Kyprianou,
Pardo, Rivero, Savov, Yor (‘02-13’)

Extensions for real processes in D. ‘13, Dereich, D., Kyprianou ‘14+

Now: Transient case + application
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Definition: We say ξ has stationary overshoots if

O := lim
x→∞

(ξTx − x) exists non-trivially.

Remark: If ξ ↑ +∞, equivalent to E[|ξ1|] <∞.

Theorem:

limz→0 Pz =: P0 exists if and only if ξ has stationary overshoots.

Proof (Necessity): For a < b

lim
z→0

Pz(XTa ≤ b)

= lim
z→0

P(z exp(ξTlog(a/z)
) ≤ b)

= lim
z→0

P(ξTlog(a/z)
≤ log(b/z))

= lim
z→0

P(ξTlog(a/z)
− log(a/z) ≤ log(b/a))

(1)

Proof (Sufficiency): Needs a construction of P0, harder.
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P0 through Kuznetsov Measures (Dereich, D., Kyprianou ‘14+)

Idea: Take “the good” purely excessive measure η0 and set

P0 =
Pη0

Pη0(D)

shifted to α = 0. Need Pη0(D) <∞ and left-limits 0!

Question: Which excessive measure η0?

Examples: ηβ(dx) = x1/γ−1+β dx are purely excessive for many β ≥ 0.

Answer: η0(dx) = x1/γ−1dx is the good one.

Problem: No idea how to prove this directly! No duality → left limits?
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A Theorem of Kaspi

Setting:

Markov processes with X̃t = XA−1
t

with At =
∫ t

0
f (Xs) ds.

Kuznetsov measure Qm for X with invariant measure m

Bt :=
∫ t

−∞ f (Ys) ds <∞ under Qm.

Theorem (Kaspi): There is a purely excessive measure η̃ for X̃ so that the

quasi process P̃η̃ shifted to α = 0 is obtained from Qm(·,B−10 ∈ [0, 1]) as

Ỹt = YB−1
t

.

Important: Know left limits for Qm ⇒ know left limits for P̃η̃.



P0 through Kuznetsov Measures (Dereich, D., Kyprianou ‘14)

Construction of P0 (for ξ ↑ +∞):

Set m(dx) = dx for ξ and take Kuznetsov measure Qm - Mitro’s
two-sided construction implies left limits limt↓−∞ Yt = −∞.

Define Bt =
∫ t

−∞ exp(γYs) ds and show Bt <∞.

Use Kaspi’s theorem, left limits remain −∞.

Take exponential, left limits are 0.

Normalize to probability law P0.

Convergence limz→0 Pz =: P0:

Consequence of Prokhorov metric for Skorokhod topology and the
Kuznetsov measure construction.
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An Application to Random Sets



Proposition: Suppose M ⊂ [0,∞) is a random set with

(a) M is the range of some increasing self-similar Markov process issued
from 0.

(b) For some κ ∈ (4, 8) and all a < b

P(M ∩ [a, b] 6= ∅) = C

∫ b−a
a

0

1

u2−8/κ(1− u)4/κ
du.

Then

dimH(M) = 2− 8

κ

almost surely.

Example: If γ is SLE (κ) and M = γ ∩ [0,∞), then (b) holds.
Schramm/Zhou ‘08 and Alberts/Sheffield ‘08 proved dimH(M) = 2− 8

κ .

Remark: If (a) holds for SLE, then our approach gives much more than
only Hausdorff dimension.
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Proof of Proposition

From self-similarity: Recall the construction of P0. Only need to know
Hausdorff dimension of Range(ξ).

From subordinator theory:

dimH(Range(ξ)) = sup
{
γ ≤ 1 : lim

b↓0
bγ−1

∫ b

0

Π(r ,∞) dr = +∞
}
.

From fluctuation theory: Get Π from overshoot distributions as

C

∫ b

0

Π(r ,∞) dr = lim
x↑+∞

P(ξTx − x ≤ b) (2)



Proof of Proposition

Lemma:
∫ b

0
Π(r ,∞) dr ∼ Cb8/κ−1 as b ↓ 0.

Proof:∫ b−a
a

0

1

u2−8/κ(1− u)4/κ
du = P(M ∩ [a, b] 6= ∅)

= P0(XTa ≤ b)

= lim
z↓0

Pz(XTa ≤ b)

above
= lim

z→0
P(ξTlog(a/z)

− log(a/z) ≤ log(b/a))

above
= C

∫ log(b/a)

0

Π(r ,∞) dr

This gives Π(r ,∞). Only need a = 1 to get

C

∫ b

0

Π(r ,∞) dr =

∫ eb−1

0

1

u2−8/κ(1− u)4/κ
du ∼ Cb8/κ−1.



Proof of Proposition

Lemma: dimH(Range(ξ)) = 2− 8
κ almost surely.

Proof:

dimH(M)
above

= dimH(Range(ξ))

= sup
{
γ ≤ 1 : lim

b↓0
bγ−1

∫ b

0

Π(r ,∞) dr = +∞
}

above
= sup

{
γ ≤ 1 : lim
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Remark: The calculations above also show that

Π(r ,∞) = C (1− e−r )8/κ−2e(1−4/κ)r .

Hence, any result for subordinators that involves the Lévy measure only
gives a result for M.
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