Potential Theory, Self-Similarity \& Statistical Mechanics

Leif Döring

ETH Zürich

Outline

1. Review of some Stochastic Potential Theory

- Example: Random Interlacements

2. Self-Similar Markov Processes

- Example: Hausdorff Dimensions of "Self-Similar Sets"

Part 1: Review of some Stochastic Potential Theory

Principal Objects

- locally compact statespace (E, \mathcal{E}),
- Markov process $\left(X_{t}\right)$ with transition semigroup $\left(P_{t}\right)$
- excessive measure on (E, \mathcal{E}) for $\left(P_{t}\right)$, i.e. σ-finite and

$$
P^{\eta}\left(X_{t} \in \cdot\right)=: \eta P_{t}(\cdot) \leq \eta(\cdot)
$$

Special cases:

- invariant measure: $\eta P_{t}=\eta$
- purely excessive: $\eta P_{t}(A) \downarrow 0$ for $t \rightarrow \infty$
- $\eta(d x)=d x$ for Brownian motion
- potential measures $\eta_{\nu}(A)=\mathbb{E}^{\nu}\left[\int_{0}^{\infty} 1_{A}\left(X_{t}\right) d t\right]$ are purely excessive

Principal Objects

- locally compact statespace (E, \mathcal{E}),
- Markov process $\left(X_{t}\right)$ with transition semigroup $\left(P_{t}\right)$
- excessive measure on (E, \mathcal{E}) for $\left(P_{t}\right)$, i.e. σ-finite and

$$
P^{\eta}\left(X_{t} \in \cdot\right)=: \eta P_{t}(\cdot) \leq \eta(\cdot)
$$

Special cases:

- invariant measure: $\eta P_{t}=\eta$
- purely excessive: $\eta P_{t}(A) \downarrow 0$ for $t \rightarrow \infty$

Examples:

- $\eta(d x)=d x$ for Brownian motion
- potential measures $\eta_{\nu}(A)=\mathbb{E}^{\nu}\left[\int_{0}^{\infty} 1_{A}\left(X_{t}\right) d t\right]$ are purely excessive

Research Directions

- Structure of excessive measures

Example: Riesz decomposition of η into invariant and purely excessive parts: $\eta=\eta_{I}+\eta_{P}$.

- Relation of excessive measures and path-behavior (entrance boundaries)
- Martin boundary
- ...

Trajectories with Birth \& Death

Add to E a cemetary state ∂. Set

$$
D=\left\{Y: \mathbb{R} \rightarrow E \cup\{\partial\} \operatorname{RCLL} \mid Y_{t} \in E \text { for } t \in(\alpha(w), \beta(w))\right\}
$$

and call

- $\alpha(Y)$ time of birth of Y,
- $\beta(Y)$ time of death of Y,
- $\zeta(Y)=\beta(Y)-\alpha(Y)$ life-time of Y.

Processes with Birth \& Death - Kuznetsov Measures

Measure \mathcal{Q}_{η} on (D, \mathcal{D}) is called Kuznetsov measure for

- Markov process $\left(P_{t}\right)$
- excessive measure η
if \mathcal{Q}_{η} is a Markov process with birth \& death and marginals η.
That is, for $-\infty<t_{1}<\cdots<t_{n}<+\infty$

$$
\begin{aligned}
& \mathcal{Q}_{\eta}\left(\alpha(Y)<t_{1}, Y_{t_{1}} \in d x_{1}, \cdots, Y_{t_{n}} \in d x_{n}, t_{n}<\beta(Y)\right) \\
= & \eta\left(d x_{1}\right) P_{t_{2}-t_{1}}\left(x_{1}, d x_{2}\right) \cdots P_{t_{n}-t_{n-1}}\left(x_{n-1}, d x_{n}\right) .
\end{aligned}
$$

Theorem (Kuznetsov): Existence and Uniqueness.

Processes with Birth \& Death - Quasi Processes

Measure \mathcal{P}_{η} on (D, \mathcal{D}) - modulus time translation - is called quasi process for

- Markov process $\left(P_{t}\right)$
- excessive measure η
if
(a) for all shift-invariant stopping times S

$$
\left(Y_{S+t}\right)_{t \geq 0}
$$

is Markov with transitions $\left(P_{t}\right)$ under $\mathcal{P}_{\mid s \in \mathbb{R}}$.
(b) $\eta(A)=\mathcal{P}_{\eta}\left(\int_{\alpha}^{\beta} 1_{A}\left(Y_{s}\right) d s\right)$

Theorem (Weil, Hunt): Existence and Uniqueness.

Palm Measure Relation of \mathcal{Q}_{η} and \mathcal{P}_{η}

Theorem (Fitzsimmons): Fix any finite shift-invariant time S, then

$$
\mathcal{P}_{\eta}(A)=\mathcal{Q}_{\eta}(A, S \in[0,1])
$$

for all shift-invariant events A.

Riesz Decomposition - Fitzsimmons/Maisonneuve

Theorem: Let η excessive and define

$$
\mathcal{P}_{P}(\cdot):=\mathcal{P}_{\eta}(\cdot, \alpha>-\infty), \quad \mathcal{P}_{l}(\cdot):=\mathcal{P}_{\eta}(\cdot, \alpha=-\infty) .
$$

Then $\eta=\eta_{I}+\eta_{P}$ with

$$
\eta_{P}(A)=\mathcal{P}_{P}\left(\int_{\alpha}^{\beta} 1_{A}\left(Y_{s}\right) d s\right) \quad \eta_{l}(A)=\mathcal{P}_{l}\left(\int_{-\infty}^{\beta} 1_{A}\left(Y_{s}\right) d s\right) .
$$

Remark: Analogous theorem for Kuznetsov measures.

Riesz and a "Way of starting stochastic processes"

starting process $\left(X_{t}\right) \quad \Longleftrightarrow$ purely excessive measure " $\Rightarrow{ }^{\prime \prime}$ occupation measure
$" \Leftarrow "$ take quasi process and shift to $\alpha=0$ (finite measure?)
"take" is abstract, often means "take Kuznetsov, then Palm measure"
starting process $\left(X_{t}\right)$ at time $-\infty \quad \Longleftrightarrow$ invariant measure Problem: Only know processes forwards in time, not backwards.

Example: Lévy processes.

Riesz and a "Way of starting stochastic processes"

starting process $\left(X_{t}\right) \Longleftrightarrow$ purely excessive measure " \Rightarrow " occupation measure
$" \Leftarrow "$ take quasi process and shift to $\alpha=0$ (finite measure?)
"take" is abstract, often means "take Kuznetsov, then Palm measure"
starting process $\left(X_{t}\right)$ at time $-\infty \quad \Longleftrightarrow$ invariant measure
Problem: Only know processes forwards in time, not backwards.
Example: Lévy processes.

Riesz and a "Way of starting stochastic processes"

starting process $\left(X_{t}\right) \Longleftrightarrow$ purely excessive measure " \Rightarrow " occupation measure
$" \Leftarrow "$ take quasi process and shift to $\alpha=0$ (finite measure?)
"take" is abstract, often means "take Kuznetsov, then Palm measure"
starting process $\left(X_{t}\right)$ at time $-\infty \quad \Longleftrightarrow$ invariant measure
Problem: Only know processes forwards in time, not backwards.
Example: Lévy processes.

Kuznetsov Measures and Duality

Definition: Two Markov processes $\left(X_{t}\right)$ and $\left(\hat{X}_{t}\right)$ are in duality with respect to a measure m if

$$
P_{t}(x, d y) m(d x)=\hat{P}_{t}(y, d x) m(d y)
$$

Examples:

- Brownian motion is self-dual with $m(d x)=d x$
- Lévy process $\left(\xi_{t}\right)$ is dual to $\left(\hat{\xi}_{t}\right)=\left(-\xi_{t}\right)$ with $m(d x)=d x$

Mitro's Theorem: If m is invariant for $\left(P_{t}\right)$ and $\left(\hat{P}_{t}\right)$ is a dual process, then \mathcal{Q}_{m} is constructed as follows:

- sample m at time 0
- run $\left(P_{t}\right)$ in positive time direction
- run $\left(\hat{P}_{t}\right)$ in negative time direction

Kuznetsov Measures and Duality

Definition: Two Markov processes $\left(X_{t}\right)$ and $\left(\hat{X}_{t}\right)$ are in duality with respect to a measure m if

$$
P_{t}(x, d y) m(d x)=\hat{P}_{t}(y, d x) m(d y)
$$

Examples:

- Brownian motion is self-dual with $m(d x)=d x$
- Lévy process $\left(\xi_{t}\right)$ is dual to $\left(\hat{\xi}_{t}\right)=\left(-\xi_{t}\right)$ with $m(d x)=d x$

Mitro's Theorem: If m is invariant for $\left(P_{t}\right)$ and $\left(\hat{P}_{t}\right)$ is a dual process, then \mathcal{Q}_{m} is constructed as follows:

- sample m at time 0
- run $\left(P_{t}\right)$ in positive time direction
- run $\left(\hat{P}_{t}\right)$ in negative time direction

Kuznetsov Measures and Duality

Definition: Two Markov processes $\left(X_{t}\right)$ and $\left(\hat{X}_{t}\right)$ are in duality with respect to a measure m if

$$
P_{t}(x, d y) m(d x)=\hat{P}_{t}(y, d x) m(d y)
$$

Examples:

- Brownian motion is self-dual with $m(d x)=d x$
- Lévy process $\left(\xi_{t}\right)$ is dual to $\left(\hat{\xi}_{t}\right)=\left(-\xi_{t}\right)$ with $m(d x)=d x$

Mitro's Theorem: If m is invariant for $\left(P_{t}\right)$ and $\left(\hat{P}_{t}\right)$ is a dual process, then \mathcal{Q}_{m} is constructed as follows:

- sample m at time 0
- run $\left(P_{t}\right)$ in positive time direction
- run $\left(\hat{P}_{t}\right)$ in negative time direction

Example: Random Interlacements

Definition: Brownian interlacement is the (infinite) measure ν on (D, \mathcal{D}) - modulus time translation - so that restricted to trajectories hitting balls $B \subset \mathbb{R}^{n}, n \geq 3$,

- first hitting distribution at B is harmonic measure
- forwards in time paths are Brownian motion
- backwards in time paths are conditioned Brownian motion Brownian random interlacement is Poisson random measure (loop soup) with intensity ν.

Theorem (D., Dereich '14, Rosen '14):
Interlacement is quasi process of BM with invariant measure $m(d x)=d x$.
Corollary:
Interlacement is two-sided BM started in Lebesgue measure restricted to be closest to the origin at time $S \in[0,1]$ modulus time translations.

Example: Random Interlacements

Definition: Brownian interlacement is the (infinite) measure ν on (D, \mathcal{D}) - modulus time translation - so that restricted to trajectories hitting balls $B \subset \mathbb{R}^{n}, n \geq 3$,

- first hitting distribution at B is harmonic measure
- forwards in time paths are Brownian motion
- backwards in time paths are conditioned Brownian motion

Brownian random interlacement is Poisson random measure (loop soup) with intensity ν.

Theorem (D., Dereich '14, Rosen '14):
Interlacement is quasi process of BM with invariant measure $m(d x)=d x$.
Corollary:
Interlacement is two-sided BM started in Lebesgue measure restricted to be closest to the origin at time $S \in[0,1]$ modulus time translations.

Example: Random Interlacements

Definition: Brownian interlacement is the (infinite) measure ν on (D, \mathcal{D}) - modulus time translation - so that restricted to trajectories hitting balls $B \subset \mathbb{R}^{n}, n \geq 3$,

- first hitting distribution at B is harmonic measure
- forwards in time paths are Brownian motion
- backwards in time paths are conditioned Brownian motion

Brownian random interlacement is Poisson random measure (loop soup) with intensity ν.

Theorem (D., Dereich '14, Rosen '14):
Interlacement is quasi process of BM with invariant measure $m(d x)=d x$.
Corollary:
Interlacement is two-sided BM started in Lebesgue measure restricted to be closest to the origin at time $S \in[0,1]$ modulus time translations.

Part 2: Self-Similar Markov Processes

Self-Similarity

A real-valued Markov process is called self-similar if it scales in time and space:
the law of $\left(c X_{c-1 / \gamma_{t}}\right)_{t \geq 0}$ under \mathbb{P}_{z} is $\mathbb{P}_{c z}$
γ is called the index of self-similarity.

Goals

(1) Understand the general form of a self-similar process.
(2) Deduce non-trivial consequences. Seeking magic arguments of type

- know self-similarity for a model
- know "something additional" for the model
to deduce from general theory all kind of things.

Goals

(1) Understand the general form of a self-similar process.
(2) Deduce non-trivial consequences.

Seeking magic arguments of type

- know self-similarity for a model
- know "something additional" for the model
to deduce from general theory all kind of things.

For simplicity now restrict ourselves to positive processes.

This is NOT needed, but enough for application in the end!

Lamperti's Representation

Behavior up to hitting zero governed by Lévy processes:

Theorem (Lamperti '72)

If $\left(X_{t}\right)$ is positive self-similar there is a Lévy process $\left(\xi_{t}\right)$ s.t. for $z>0$

$$
X_{t}^{(z)}:=z \exp \left(\xi_{A\left(t z^{-\gamma}\right)}\right), \quad t \leq T_{0}
$$

where

$$
A(t):=\left(\int_{0}^{t} \exp \left(\gamma \xi_{s}\right) d s\right)^{-1}
$$

Lamperti's Dichotomy

(1) ξ drifts to $-\infty$ if and only if

$$
\mathbb{P}_{z}\left(T_{0}<\infty\right)=1
$$

\rightarrow "recurrent case"
(2) ξ does not drift to $-\infty$ if and only if

$$
\mathbb{P}_{z}\left(T_{0}=\infty\right)=1
$$

\rightarrow "transient case"

Example

Squared-Bessel processes of dimension $\delta \in \mathbb{R}$

$$
d X_{t}=2 \sqrt{X_{t}} d B_{t}+\delta d t, \quad t \leq T_{0}
$$

self-similar of index 1 with corresponding Lévy process

$$
\xi_{t}=2 B_{t}+(\delta-2) t
$$

Lamperti's dichotomy:

- $\delta<2 \Rightarrow$ squared-Bessel processes hit zero
- $\delta \geq 2 \Rightarrow$ squared-Bessel processes do not hit zero

Two Natural Tasks

(R) Recurrent case: describe (if exists) the positive self-similar process after T_{0}.
(T) Transient case: construct (if $\lim _{z \rightarrow 0} \mathbb{P}_{z}=\mathbb{P}_{0}$ exists) the limit \mathbb{P}_{0} !

Recurrent case via potential theory by Rivero '06, Fitzsimmons '05. Lamperti SDE approach in Barczy/D. '13.

Transient case gradually by Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, Yor ('02-13')

Extensions for real processes in D. '13, Dereich, D., Kyprianou '14+

Now: Transient case + application

Two Natural Tasks

(R) Recurrent case: describe (if exists) the positive self-similar process after T_{0}.
(T) Transient case: construct (if $\lim _{z \rightarrow 0} \mathbb{P}_{z}=\mathbb{P}_{0}$ exists) the limit \mathbb{P}_{0} !

Recurrent case via potential theory by Rivero '06, Fitzsimmons '05. Lamperti SDE approach in Barczy/D. '13.

Transient case gradually by Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, Yor ('02-13')

Extensions for real processes in D. '13, Dereich, D., Kyprianou '14+

Now: Transient case + application

Two Natural Tasks

(R) Recurrent case: describe (if exists) the positive self-similar process after T_{0}.
(T) Transient case: construct (if $\lim _{z \rightarrow 0} \mathbb{P}_{z}=\mathbb{P}_{0}$ exists) the limit \mathbb{P}_{0} !

Recurrent case via potential theory by Rivero '06, Fitzsimmons '05. Lamperti SDE approach in Barczy/D. '13.

Transient case gradually by Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, Yor ('02-13')

Extensions for real processes in D. '13, Dereich, D., Kyprianou '14+

Two Natural Tasks

(R) Recurrent case: describe (if exists) the positive self-similar process after T_{0}.
(T) Transient case: construct (if $\lim _{z \rightarrow 0} \mathbb{P}_{z}=\mathbb{P}_{0}$ exists) the limit \mathbb{P}_{0} !

Recurrent case via potential theory by Rivero '06, Fitzsimmons '05. Lamperti SDE approach in Barczy/D. '13.

Transient case gradually by Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, Yor ('02-13')

Extensions for real processes in D. '13, Dereich, D., Kyprianou '14+

Two Natural Tasks

(R) Recurrent case: describe (if exists) the positive self-similar process after T_{0}.
(T) Transient case: construct (if $\lim _{z \rightarrow 0} \mathbb{P}_{z}=\mathbb{P}_{0}$ exists) the limit \mathbb{P}_{0} !

Recurrent case via potential theory by Rivero '06, Fitzsimmons '05. Lamperti SDE approach in Barczy/D. '13.

Transient case gradually by Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero, Savov, Yor ('02-13')

Extensions for real processes in D. '13, Dereich, D., Kyprianou '14+

Now: Transient case + application

Definition: We say ξ has stationary overshoots if

$$
O:=\lim _{x \rightarrow \infty}\left(\xi_{T_{x}}-x\right) \quad \text { exists non-trivially. }
$$

Remark: If $\xi \uparrow+\infty$, equivalent to $\mathbb{E}\left[\left|\xi_{1}\right|\right]<\infty$.

Theorem:

$\lim _{>\rightarrow 0} \mathbb{P}_{\boldsymbol{r}}=: \mathbb{P}_{0}$ exists if and only if ξ has stationary overshoots.
Proof (Necessity): For $a<b$

$$
\begin{align*}
& \lim _{z \rightarrow 0} \mathbb{P}_{z}\left(X_{T_{s}} \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(z \exp \left(\xi_{T_{\log (a / z)}}\right) \leq b\right) \tag{1}\\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}} \leq \log (b / z)\right) \\
= & \lim _{z \rightarrow 0} P\left(\xi_{\operatorname{Tog}(a / z)}-\log (a / z) \leq \log (b / a)\right)
\end{align*}
$$

Proof (Sufficiency): Needs a construction of \mathbb{P}_{0}, harder.

Definition: We say ξ has stationary overshoots if

$$
O:=\lim _{x \rightarrow \infty}\left(\xi_{T_{x}}-x\right) \quad \text { exists non-trivially. }
$$

Remark: If $\xi \uparrow+\infty$, equivalent to $\mathbb{E}\left[\left|\xi_{1}\right|\right]<\infty$.

Theorem:

$\lim _{z \rightarrow 0} \mathbb{P}_{\boldsymbol{y}}=: \mathbb{P}_{0}$ exists if and only if ξ has stationary overshoots.
Proof (Necessity): For $a<b$

$$
\begin{align*}
& \lim _{z \rightarrow 0} \mathbb{P}_{z}\left(X_{T_{a}} \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(z \exp \left(\xi_{T_{\log (a / z)}}\right) \leq b\right) \tag{1}\\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}} \leq \log (b / z)\right) \\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}}-\log (a / z) \leq \log (b / a)\right)
\end{align*}
$$

Proof (Sufficiency): Needs a construction of \mathbb{P}_{0}, harder.

Definition: We say ξ has stationary overshoots if

$$
O:=\lim _{x \rightarrow \infty}\left(\xi_{T_{x}}-x\right) \quad \text { exists non-trivially. }
$$

Remark: If $\xi \uparrow+\infty$, equivalent to $\mathbb{E}\left[\left|\xi_{1}\right|\right]<\infty$.

Theorem:
$\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}$ exists if and only if ξ has stationary overshoots.
Proof (Necessity): For $a<b$

$$
\begin{aligned}
& \lim _{z \rightarrow 0} \mathbb{P}_{z}\left(X_{T_{a}} \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(z \exp \left(\xi_{\left.T_{\log (a / z)}\right)}\right) \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}} \leq \log (b / z)\right) \\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}}-\log (a / z) \leq \log (b / a)\right)
\end{aligned}
$$

Definition: We say ξ has stationary overshoots if

$$
O:=\lim _{x \rightarrow \infty}\left(\xi_{T_{x}}-x\right) \quad \text { exists non-trivially. }
$$

Remark: If $\xi \uparrow+\infty$, equivalent to $\mathbb{E}\left[\left|\xi_{1}\right|\right]<\infty$.

Theorem:

$\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}$ exists if and only if ξ has stationary overshoots.
Proof (Necessity): For $a<b$

$$
\begin{align*}
& \lim _{z \rightarrow 0} \mathbb{P}_{z}\left(X_{T_{a}} \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(z \exp \left(\xi_{\left.T_{\log (a / z)}\right)}\right) \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}} \leq \log (b / z)\right) \tag{1}\\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}}-\log (a / z) \leq \log (b / a)\right)
\end{align*}
$$

Proof (Sufficiency): Needs a construction of \mathbb{P}_{0}, harder.

Definition: We say ξ has stationary overshoots if

$$
O:=\lim _{x \rightarrow \infty}\left(\xi_{T_{x}}-x\right) \quad \text { exists non-trivially. }
$$

Remark: If $\xi \uparrow+\infty$, equivalent to $\mathbb{E}\left[\left|\xi_{1}\right|\right]<\infty$.

Theorem:

$\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}$ exists if and only if ξ has stationary overshoots.
Proof (Necessity): For $a<b$

$$
\begin{align*}
& \lim _{z \rightarrow 0} \mathbb{P}_{z}\left(X_{T_{a}} \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(z \exp \left(\xi_{T_{\log (a / z)}}\right) \leq b\right) \\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}} \leq \log (b / z)\right) \tag{1}\\
= & \lim _{z \rightarrow 0} P\left(\xi_{T_{\log (a / z)}}-\log (a / z) \leq \log (b / a)\right)
\end{align*}
$$

Proof (Sufficiency): Needs a construction of \mathbb{P}_{0}, harder.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14+)

Idea: Take "the good" purely excessive measure η_{0} and set

$$
\mathbb{P}_{0}=\frac{\mathcal{P}_{\eta_{0}}}{P_{\eta_{0}}(\mathcal{D})}
$$

shifted to $\alpha=0$. Need $\mathcal{P}_{\eta_{0}}(\mathcal{D})<\infty$ and left-limits 0 !
Question: Which excessive measure η_{0} ?
Examples: $\eta_{\beta}(d x)=x^{1 / \gamma-1+\beta} d x$ are purely excessive for many $\beta \geq 0$.
Answer: $\eta_{0}(d x)=x^{1 / \gamma-1} d x$ is the good one.
Problem: No idea how to prove this directly! No duality \rightarrow left limits?

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14+)

Idea: Take "the good" purely excessive measure η_{0} and set

$$
\mathbb{P}_{0}=\frac{\mathcal{P}_{\eta_{0}}}{P_{\eta_{0}}(\mathcal{D})}
$$

shifted to $\alpha=0$. Need $\mathcal{P}_{\eta_{0}}(\mathcal{D})<\infty$ and left-limits 0 !
Question: Which excessive measure η_{0} ?
Examples: $\eta_{\beta}(d x)=x^{1 / \gamma-1+\beta} d x$ are purely excessive for many $\beta \geq 0$.
Answer: $\eta_{0}(d x)=x^{1 / \gamma-1} d x$ is the good one.
Problem: No idea how to prove this directly! No duality \rightarrow left limits?

A Theorem of Kaspi

Setting:

- Markov processes with $\tilde{X}_{t}=X_{A_{t}^{-1}}$ with $A_{t}=\int_{0}^{t} f\left(X_{s}\right) d s$.
- Kuznetsov measure \mathcal{Q}_{m} for X with invariant measure m
- $B_{t}:=\int_{-\infty}^{t} f\left(Y_{s}\right) d s<\infty$ under \mathcal{Q}_{m}.

Theorem (Kaspi): There is a purely excessive measure $\tilde{\eta}$ for \tilde{X} so that the quasi process $\tilde{\mathcal{P}}_{\tilde{\eta}}$ shifted to $\alpha=0$ is obtained from $\mathcal{Q}_{m}\left(\cdot, B_{0}^{-1} \in[0,1]\right)$ as $\tilde{Y}_{t}=Y_{B_{t}^{-1}}$.

Important: Know left limits for $\mathcal{Q}_{m} \Rightarrow$ know left limits for $\tilde{\mathcal{P} q}$.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14)

Construction of $\mathbb{P}_{0}($ for $\xi \uparrow+\infty)$:

- Set $m(d x)=d x$ for ξ and take Kuznetsov measure \mathcal{Q}_{m} - Mitro's two-sided construction implies left limits $\lim _{t \downarrow-\infty} Y_{t}=-\infty$.
- Define $B_{t}=\int_{-\infty}^{t} \exp \left(\gamma Y_{s}\right) d s$ and show $B_{t}<\infty$.
- Use Kaspi's theorem, left limits remain $-\infty$.
- Take exponential, left limits are 0.
- Normalize to probability law \mathbb{P}_{0}.

Convergence $\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}:$
Consequence of Prokhorov metric for Skorokhod topology and the Kuznetsov measure construction.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14)

Construction of \mathbb{P}_{0} (for $\xi \uparrow+\infty$):

- Set $m(d x)=d x$ for ξ and take Kuznetsov measure \mathcal{Q}_{m} - Mitro's two-sided construction implies left limits $\lim _{t \downarrow-\infty} Y_{t}=-\infty$.
- Define $B_{t}=\int_{-\infty}^{t} \exp \left(\gamma Y_{s}\right) d s$ and show $B_{t}<\infty$.
- Use Kaspi's theorem, left limits remain $-\infty$
- Take exponential, left limits are 0.
- Normalize to probability law \mathbb{P}_{0}.

Convergence $\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}:$
Consequence of Prokhorov metric for Skorokhod topology and the Kuznetsov measure construction.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14)

Construction of $\mathbb{P}_{0}($ for $\xi \uparrow+\infty)$:

- Set $m(d x)=d x$ for ξ and take Kuznetsov measure \mathcal{Q}_{m} - Mitro's two-sided construction implies left limits $\lim _{t \downarrow-\infty} Y_{t}=-\infty$.
- Define $B_{t}=\int_{-\infty}^{t} \exp \left(\gamma Y_{s}\right) d s$ and show $B_{t}<\infty$.
- Use Kaspi's theorem, left limits remain $-\infty$.
- Take exponential, left limits are 0.
- Normalize to probability law \mathbb{P}_{0}.

Convergence $\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}:$
Consequence of Prokhorov metric for Skorokhod topology and the Kuznetsov measure construction.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14)

Construction of \mathbb{P}_{0} (for $\xi \uparrow+\infty$):

- Set $m(d x)=d x$ for ξ and take Kuznetsov measure \mathcal{Q}_{m} - Mitro's two-sided construction implies left limits $\lim _{t \downarrow-\infty} Y_{t}=-\infty$.
- Define $B_{t}=\int_{-\infty}^{t} \exp \left(\gamma Y_{s}\right) d s$ and show $B_{t}<\infty$.
- Use Kaspi's theorem, left limits remain $-\infty$.
- Take exponential, left limits are 0.
- Normalize to probability law \mathbb{P}_{0}.

Convergence $\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}:$
Consequence of Prokhorov metric for Skorokhod topology and the Kuznetsov measure construction.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14)

Construction of \mathbb{P}_{0} (for $\xi \uparrow+\infty$):

- Set $m(d x)=d x$ for ξ and take Kuznetsov measure \mathcal{Q}_{m} - Mitro's two-sided construction implies left limits $\lim _{t \downarrow-\infty} Y_{t}=-\infty$.
- Define $B_{t}=\int_{-\infty}^{t} \exp \left(\gamma Y_{s}\right) d s$ and show $B_{t}<\infty$.
- Use Kaspi's theorem, left limits remain $-\infty$.
- Take exponential, left limits are 0.
- Normalize to probability law \mathbb{P}_{0}.

Convergence $\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}$:
Consequence of Prokhorov metric for Skorokhod topology and the Kuznetsov measure construction.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14)

Construction of \mathbb{P}_{0} (for $\xi \uparrow+\infty$):

- Set $m(d x)=d x$ for ξ and take Kuznetsov measure \mathcal{Q}_{m} - Mitro's two-sided construction implies left limits $\lim _{t \downarrow-\infty} Y_{t}=-\infty$.
- Define $B_{t}=\int_{-\infty}^{t} \exp \left(\gamma Y_{s}\right) d s$ and show $B_{t}<\infty$.
- Use Kaspi's theorem, left limits remain $-\infty$.
- Take exponential, left limits are 0.
- Normalize to probability law \mathbb{P}_{0}.

Convergence $\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}:$
Consequence of Prokhorov metric for Skorokhod topology and the Kuznetsov measure construction.

\mathbb{P}_{0} through Kuznetsov Measures (Dereich, D., Kyprianou '14)

Construction of $\mathbb{P}_{0}($ for $\xi \uparrow+\infty)$:

- Set $m(d x)=d x$ for ξ and take Kuznetsov measure \mathcal{Q}_{m} - Mitro's two-sided construction implies left limits $\lim _{t \downarrow-\infty} Y_{t}=-\infty$.
- Define $B_{t}=\int_{-\infty}^{t} \exp \left(\gamma Y_{s}\right) d s$ and show $B_{t}<\infty$.
- Use Kaspi's theorem, left limits remain $-\infty$.
- Take exponential, left limits are 0.
- Normalize to probability law \mathbb{P}_{0}.

Convergence $\lim _{z \rightarrow 0} \mathbb{P}_{z}=: \mathbb{P}_{0}$:
Consequence of Prokhorov metric for Skorokhod topology and the Kuznetsov measure construction.

An Application to Random Sets

Proposition: Suppose $M \subset[0, \infty)$ is a random set with
(a) M is the range of some increasing self-similar Markov process issued from 0 .
(b) For some $\kappa \in(4,8)$ and all $a<b$

$$
\mathbb{P}(M \cap[a, b] \neq \emptyset)=C \int_{0}^{\frac{b-a}{a}} \frac{1}{u^{2-8 / \kappa}(1-u)^{4 / \kappa}} d u
$$

Then

$$
\operatorname{dim}_{H}(M)=2-\frac{8}{\kappa}
$$

almost surely.
Example: If γ is $\operatorname{SLE}(\kappa)$ and $M=\gamma \cap[0, \infty)$, then (b) holds.
Schramm/Zhou '08 and Alberts/Sheffield '08 proved $\operatorname{dim}_{H}(M)=2-\frac{8}{\kappa}$.
Remark: If (a) hold's for SLE, then our approach gives much more than only Hausdorff dimension.

Proposition: Suppose $M \subset[0, \infty)$ is a random set with
(a) M is the range of some increasing self-similar Markov process issued from 0 .
(b) For some $\kappa \in(4,8)$ and all $a<b$

$$
\mathbb{P}(M \cap[a, b] \neq \emptyset)=C \int_{0}^{\frac{b-a}{a}} \frac{1}{u^{2-8 / \kappa}(1-u)^{4 / \kappa}} d u
$$

Then

$$
\operatorname{dim}_{H}(M)=2-\frac{8}{\kappa}
$$

almost surely.
Example: If γ is $\operatorname{SLE}(\kappa)$ and $M=\gamma \cap[0, \infty)$, then (b) holds. Schramm/Zhou '08 and Alberts/Sheffield '08 proved $\operatorname{dim}_{H}(M)=2-\frac{8}{\kappa}$.

Remark: If (a) holds for SLE, then our approach gives much more than only Hausdorff dimension.

Proof of Proposition

From self-similarity: Recall the construction of \mathbb{P}_{0}. Only need to know Hausdorff dimension of Range(ξ).

From subordinator theory:

$$
\operatorname{dim}_{H}(\operatorname{Range}(\xi))=\sup \left\{\gamma \leq 1: \lim _{b \downarrow 0} b^{\gamma-1} \int_{0}^{b} \Pi(r, \infty) d r=+\infty\right\}
$$

From fluctuation theory: Get Π from overshoot distributions as

$$
\begin{equation*}
C \int_{0}^{b} \Pi(r, \infty) d r=\lim _{x \uparrow+\infty} P\left(\xi_{T_{x}}-x \leq b\right) \tag{2}
\end{equation*}
$$

Proof of Proposition

Lemma: $\int_{0}^{b} \Pi(r, \infty) d r \sim C b^{8 / \kappa-1}$ as $b \downarrow 0$.
Proof:

$$
\begin{aligned}
\int_{0}^{\frac{b-a}{a}} \frac{1}{u^{2-8 / \kappa}(1-u)^{4 / \kappa}} d u & =\mathbb{P}(M \cap[a, b] \neq \emptyset) \\
& =\mathbb{P}_{0}\left(X_{T_{a}} \leq b\right) \\
& =\lim _{z \downarrow 0} \mathbb{P}_{z}\left(X_{T_{a}} \leq b\right) \\
& \stackrel{\text { above }}{=} \lim _{z \rightarrow 0} P\left(\xi_{\left.T_{\log (a / z)}-\log (a / z) \leq \log (b / a)\right)}\right. \\
& \stackrel{\text { above }}{=} C \int_{0}^{\log (b / a)} \Pi(r, \infty) d r
\end{aligned}
$$

This gives $\Pi(r, \infty)$. Only need $a=1$ to get

$$
C \int_{0}^{b} \Pi(r, \infty) d r=\int_{0}^{e^{b}-1} \frac{1}{u^{2-8 / \kappa}(1-u)^{4 / \kappa}} d u \sim C b^{8 / \kappa-1}
$$

Proof of Proposition

Lemma: $\operatorname{dim}_{H}(\operatorname{Range}(\xi))=2-\frac{8}{\kappa}$ almost surely.
Proof:

$$
\begin{aligned}
\operatorname{dim}_{H}(M) & \stackrel{\text { above }}{=} \operatorname{dim}_{H}(\operatorname{Range}(\xi)) \\
& =\sup \left\{\gamma \leq 1: \lim _{b \downarrow 0} b^{\gamma-1} \int_{0}^{b} \Pi(r, \infty) d r=+\infty\right\} \\
& \stackrel{\text { above }}{=} \sup \left\{\gamma \leq 1: \lim _{b \downarrow 0} b^{\gamma-1} b^{8 / \kappa-1}=+\infty\right\} \\
& =2-\frac{8}{\kappa} .
\end{aligned}
$$

Remark: The calculations above also show that

Proof of Proposition

Lemma: $\operatorname{dim}_{H}(\operatorname{Range}(\xi))=2-\frac{8}{\kappa}$ almost surely.
Proof:

$$
\begin{aligned}
\operatorname{dim}_{H}(M) & \stackrel{\text { above }}{=} \operatorname{dim}_{H}(\operatorname{Range}(\xi)) \\
& =\sup \left\{\gamma \leq 1: \lim _{b \downarrow 0} b^{\gamma-1} \int_{0}^{b} \Pi(r, \infty) d r=+\infty\right\} \\
& \stackrel{\text { above }}{=} \sup \left\{\gamma \leq 1: \lim _{b \downarrow 0} b^{\gamma-1} b^{8 / \kappa-1}=+\infty\right\} \\
& =2-\frac{8}{\kappa}
\end{aligned}
$$

Remark: The calculations above also show that

$$
\Pi(r, \infty)=C\left(1-e^{-r}\right)^{8 / \kappa-2} e^{(1-4 / \kappa) r}
$$

Hence, any result for subordinators that involves the Lévy measure only gives a result for M.

