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Model
particle moving as SRW X on Z

d (jump rate κ);

traps (Y
y
j )y∈Zd ,1≤j≤Ny

SRWs (jump rate ρ) in Poisson-equilibrium

(i.e., the Ny are i.i.d. Pois(ν));

ξ(t , x) :=
∑

y∈Zd ,1≤j≤Ny

δx (Y
y
j (t))

(# of traps at x at time t);

Definition

For coupling constant γ ∈ R, quenched survival probability of X :

Z
γ
t,ξ := E

X
0 exp

{

− γ

∫ t

0

ξ(s,X (s))ds
}

.

Annealed survival probability of X :

E
ξ Z

γ
t,ξ = E

ξ
E

X
0 exp

{

− γ

∫ t

0

ξ(s,X (s))ds
}

.
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Annealed asymptotics

Theorem (Asymptotic annealed survival probability)

Let γ ∈ (0,∞], κ ≥ 0, ρ > 0, ν > 0. Then

E
ξ Z

γ
t,ξ =







exp
{

− ν

√

8ρt

π
(1 + o(1))

}

, d = 1,

exp
{

− νπρ
t

log t
(1 + o(1))

}

, d = 2,

exp
{

− λd ,γ,κ,ρ,ν t(1 + o(1))
}

, d ≥ 3,

some λd ,γ,κ,ρ,ν (annealed Lyapunov exponent). Furthermore,

λd ,γ,κ,ρ,ν ≥ λd ,γ,0,ρ,ν = νγ/(1 + γGd (0)
ρ ), where Gd(0) :=

∫∞

0
pt(0)dt is

the Green function of a jump rate 1 SRW.
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Quenched asymptotics

Theorem (Asymptotic quenched survival probability)

With same parameters as before, there exists deterministic λ̃d ,γ,κ,ρ,ν

(quenched Lyapunov exponent) such that Pξ-a.s.,

Z
γ
t,ξ = exp

{
− λ̃d ,γ,κ,ρ,ν t(1 + o(1))

}
as t → ∞.

Furthermore, 0 < λ̃d ,γ,κ,ρ,ν ≤ γν + κ for all d ≥ 1, γ > 0, κ ≥ 0, ρ > 0

and ν > 0.

Remark

Quenched survival probability always decays exponentially, annealed

one only for d ≥ 3;
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Connections to PAM
Parabolic Anderson model

∂u

∂t
(t , x) = κ∆u(t , x)− γξ(t , x)u(t , x), (t , x) ∈ R+ × Z

d ,

u(0, x) = 1, ∀x ∈ Z
d ,

κ ≥ 0 diffusion constant, ∆ the discrete Laplace operator, γ and ξ as

before.

Feynman-Kac formula yields

u(t ,0) = E
X
0 exp

{

−γ

∫ t

0

ξ(t − s,X (s))ds

}

,

where as before X is SRW with jump rate κ.

Observe: only difference between u(t ,0) and survival probability

E
ξ Z

γ
t,ξ is time reversal ξ(t − s,X (s) instead of ξ(s,X (s));

initial condition for the Y traps reversible u(t ,0) has same annealed

asymptotics as E
ξ Z

γ
t,ξ for t → ∞.
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Quenched Lyapunov exponent for PAM

Theorem

Let d ≥ 1, γ > 0, κ ≥ 0, ρ > 0, ν > 0 and λ̃d ,γ,κ,ρ,ν > 0 as before. Then

P
ξ-a.s.,

u(t ,0) = exp
{
− λ̃d ,γ,κ,ρ,ν t(1 + o(1))

}
as t → ∞.

Remark

As mentioned before, distributions of u(t ,0) and Z
γ
t,ξ coincide,

hence convergence in distribution for 1
t

log u(t ,0) follows for free

from P
ξ-a.s. convergence of 1

t log Z
γ
t,ξ (above result). Then deduce

existence of λ̃d ,γ,κ,ρ,ν via bounding variances of 1
t log u(t ,0).

In a different context, this result has recently been extended to

γ < 0 (catalytic case) by Erhard, den Hollander, Maillard.
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Literature: Immobile traps

Continuum version is BM among Poissonian obstacles:

Asymptotics of survival probabilities

exp{−Cd ,γ t
d

d+2 (1 + o(1))} (annealed, [DV75] via LDP for the

volume of the Wiener sausage),

exp{−C̄d ,γ
t

(log t)2/d (1 + o(1))} (quenched, [Szn98] via

renormalization scheme Enlargement of obstacles, also obtained

information about path behavior).

Related results for SRW among Bernoulli traps [DV79, Bol94, Ant95];
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Literature: Mobile traps

[Red94] established exponentially decaying upper bound for

annealed survival probability for ξ generated by a reversible

Markov process;

Annihilating two-type random walks [BL91];

Random walk among moving catalysts (i.e., the case γ < 0 in our

notation) [KS03], [GdH06];
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Some ideas of the proofs
Integrating out Poisson initial distribution (“Campbell’s formula”) yields

E
ξ Z

ξ
t,γ = E

X
0 exp

{

ν
∑

y∈Zd

(

E
Y
y exp

{

− γ

∫ t

0

δ0(Y (s)− X (t − s))ds
}

︸ ︷︷ ︸

=:vX (t,y)

−1
)}

,

where we also used reversibility of Y .

Next observe that vX (t , y) is the Feynman-Kac representation of the

solution to

∂vX

∂t
(t , y) = ρ∆vX (t , y) − γδX(t)(y)vX (t , y),

vX (0, ·) ≡ 1.

Summing above over y and setting X ≡ 0 (i.e, considering the case

κ = 0) one can use Tauberian theorems to obtain strong logarithmic

asymptotics for Eξ Z
ξ
t,γ .
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Upper bound

Lemma (Pascal’s principle)

For all trajectories X : [0, t] → Z
d well-behaved (i.e. piecewise

constant, finite number of discontinuities)

∑

y∈Zd

1 − E
Y
y exp

{

− γ

∫ t

0

δ0(Y (s)− X (s))ds
}

≥
∑

y∈Zd

1 − E
Y
y exp

{

− γ

∫ t

0

δ0(Y (s))ds
}

.

 best strategy for X is to stay put in origin;

 precise asymptotics for survival probability in case X ≡ 0 (κ = 0)

outlined before gives upper bound on survival probability.
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Idea of proof of Pascal’s principle

Pascal’s principle had been known in the physics literature (without

proof).

Proof.

Intuitive in discrete time for t = 1 and ρ small (i.e. Y remains at its

current site with high probability);

more formally: induction argument, afterwards discretization of

continuous time case.
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Lower bound in d = 1, 2
Strategy (for fixed t) the same as for immobile traps: Enforce

1 ξ(s, x) = 0 for all times s ∈ [0, t] and x in ball BRt

2 X (s) ∈ BRt
for all s ∈ [0, t] (:= Gt )

First requirement is equivalent to:

Ny = 0 for all y ∈ BRt
(:= Et ) and

none of the Y
y
j , y /∈ BRt

, 1 ≤ j ≤ Ny , enters BRt
up to time t

(:= Ft ).

independence 

E
ξ Z

ξ
t,γ ≥ P(Et)P(Ft)P(Gt)

Optimize Rt such that RHS is maximized — possible choices:

Rt =
√

t/ log t in d = 1 and Rt = ln t in d = 2.

In d = 1,2 above computations for upper and lower bound on

annealed survival probability even give same constant in the

exponential term annealed Lyapunov exponent exists.
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Annealed Lyapunov exponent for general dimensions

In higher dimensions: Use subadditivity argument and subadditive

ergodic theorem to deduce existence of Lyapunov exponent.
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Short glimpse on quenched proof
Set

a(s, t , x , y , ξ) := − logE
X
x,s exp

{

− γ

∫ t

s

ξ(u,X (u))du
}

1X(t)=y .

Main step (works for any bd. ergodic ξ):

Theorem (Shape theorem)

∃ α : Rd → [0,∞) deterministic, convex (shape function) s.t. Pξ-a.s.,

for any K ⊂ R
d compact:

lim
t→∞

sup
y∈tK∩Zd

|t−1a(0, t ,0, y , ξ) − α(y/t)| = 0.

Combining this with the fact that for any M, ∃K ⊂ R
d compact s.t.

lim sup
t→∞

1

t
logE

X
0 exp

{

− γ

∫ t

0

ξ(s,X (s))ds · 1X(t)/∈tK

}

≤ −M.

 existence of λ̃d ,γ,κ,ρ,ν follows with λ̃d ,γ,κ,ρ,ν = α(0).
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Short glimpse on quenched proof

Still to show: positivity of λ̃d ,γ,κ,ρ,ν.

No details, proof goes via complicated so-called renormalization

scheme using good space-time boxes where at least a close to normal

number of traps occur.
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Corollary to Pascal’s principle

Corollary

The expected cardinality of the range of a continuous time symmetric

random walk increases under perturbation by a deterministic path:

Y symmetric irreducible RW on Z
d , X : [0, t] → Z

d piecewise constant

with finite number of discontinuities. Then ∀t ≥ 0 :

E
Y
0 |Rt(Y − X )| ≥ E

Y
0 |Rt(Y )|,

with Rt := {y ∈ Z
d : ∃s ∈ [0, t] with Y (s) = y}.
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Future goal

Understand path behavior of X with respect to the induced

Gibbs-measure.

So far: Can show that X behaves subdiffusively in d = 1 for γ = ∞.
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