Random walk in a Poisson system of moving traps

Alexander Drewitz

(jointly with J. Gärtner, R. Sun, A.F. Ramírez)

July 15, 2014

Contents

Introduction

- Model
- Connections to PAM
- Related models in the literature

2 Sketch of some proofs

- Annealed proof
 - Upper bound
 - Lower bound
- Glimpse on quenched proof

Outlook

• particle moving as SRW X on \mathbb{Z}^d (jump rate κ);

 traps (Y^y_j)_{y∈Z^d,1≤j≤N_y} SRWs (jump rate ρ) in Poisson-equilibrium (i.e., the N_y are i.i.d. Pois(ν));

(# of traps at x at time t);

Definition

For coupling constant $\gamma \in \mathbb{R}$, quenched survival probability of X:

$$Z_{t,\xi}^\gamma := \mathbb{E}_0^X \exp\Big\{-\gamma \int_0^t \xi(s,X(s))\,ds\Big\}.$$

Annealed survival probability of X:

$$\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma} = \mathbb{E}^{\xi} \mathbb{E}_{0}^{X} \exp \Big\{ -\gamma \int_{0}^{t} \xi(s, X(s)) \, ds \Big\}$$

- particle moving as SRW X on \mathbb{Z}^d (jump rate κ);
- traps (Y^y_j)_{y∈Z^d,1≤j≤Ny} SRWs (jump rate ρ) in Poisson-equilibrium (i.e., the N_y are i.i.d. Pois(ν));

$$\xi(t,x) := \sum_{y \in \mathbb{Z}^d, 1 \le j \le N_y} \delta_x(Y_j^y(t))$$

(# of traps at x at time t);

Definition

For coupling constant $\gamma \in \mathbb{R}$, quenched survival probability of X:

$$Z_{t,\xi}^\gamma := \mathbb{E}_0^X \exp\Big\{-\gamma \int_0^t \xi(s,X(s))\,ds\Big\}.$$

Annealed survival probability of X:

$$\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma} = \mathbb{E}^{\xi} \mathbb{E}_{0}^{X} \exp \Big\{ -\gamma \int_{0}^{t} \xi(s, X(s)) \, ds \Big\}$$

- particle moving as SRW X on \mathbb{Z}^d (jump rate κ);
- traps (Y^y_j)_{y∈Z^d,1≤j≤Ny} SRWs (jump rate ρ) in Poisson-equilibrium (i.e., the N_y are i.i.d. Pois(ν));

$$\xi(t,x) := \sum_{y \in \mathbb{Z}^d, 1 \le j \le N_y} \delta_x(Y_j^y(t))$$

(# of traps at x at time t);

Definition

For coupling constant $\gamma \in \mathbb{R}$, quenched survival probability of X:

$$Z_{t,\xi}^\gamma := \mathbb{E}_0^X \exp\Big\{-\gamma \int_0^t \xi(s,X(s))\,ds\Big\}.$$

Annealed survival probability of X:

$$\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma} = \mathbb{E}^{\xi} \mathbb{E}_{0}^{X} \exp \Big\{ -\gamma \int_{0}^{t} \xi(s, X(s)) \, ds \Big\}$$

- particle moving as SRW X on \mathbb{Z}^d (jump rate κ);
- traps (Y^y_j)_{y∈Z^d,1≤j≤Ny} SRWs (jump rate ρ) in Poisson-equilibrium (i.e., the N_y are i.i.d. Pois(ν));

$$\xi(t, x) := \sum_{y \in \mathbb{Z}^d, 1 \leq j \leq N_y} \delta_x(Y_j^y(t))$$

(# of traps at x at time t);

Definition

For coupling constant $\gamma \in \mathbb{R}$, quenched survival probability of X:

$$Z_{t,\xi}^{\gamma} := \mathbb{E}_0^X \exp\Big\{-\gamma \int_0^t \xi(s, X(s)) \, ds\Big\}.$$

Annealed survival probability of X:

$$\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma} = \mathbb{E}^{\xi} \mathbb{E}_{0}^{X} \exp \Big\{ -\gamma \int_{0}^{t} \xi(s, X(s)) \, ds \Big\}.$$

6/3

Annealed asymptotics

Theorem (Asymptotic annealed survival probability) Let $\gamma \in (0, \infty]$, $\kappa \ge 0$, $\rho > 0$, $\nu > 0$. Then

$$\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma} = \begin{cases} \exp\left\{-\nu \sqrt{\frac{8\rho t}{\pi}}(1+o(1))\right\}, & d = 1, \\ \exp\left\{-\nu \pi \rho \frac{t}{\log t}(1+o(1))\right\}, & d = 2, \\ \exp\left\{-\lambda_{d,\gamma,\kappa,\rho,\nu} t(1+o(1))\right\}, & d \ge 3, \end{cases}$$

some $\lambda_{d,\gamma,\kappa,\rho,\nu}$ (annealed Lyapunov exponent). Furthermore, $\lambda_{d,\gamma,\kappa,\rho,\nu} \ge \lambda_{d,\gamma,0,\rho,\nu} = \nu\gamma/(1 + \frac{\gamma G_d(0)}{\rho})$, where $G_d(0) := \int_0^\infty p_t(0) dt$ is the Green function of a jump rate 1 SRW.

Quenched asymptotics

Theorem (Asymptotic quenched survival probability)

With same parameters as before, there exists deterministic $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu}$ (quenched Lyapunov exponent) such that \mathbb{P}^{ξ} -a.s.,

$$Z^\gamma_{t,\xi} = \expig\{- ilde{\lambda}_{d,\gamma,\kappa,
ho,
u}\,t(1+o(1))ig\} \quad ext{as }t o\inftyig\}$$

Furthermore, $0 < \tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu} \leq \gamma \nu + \kappa$ for all $d \geq 1, \gamma > 0, \kappa \geq 0, \rho > 0$ and $\nu > 0$.

Remark

Quenched survival probability always decays exponentially, annealed one only for $d \ge 3$;

Connections to PAM

Parabolic Anderson model

$$egin{aligned} & rac{\partial u}{\partial t}(t,x) = \kappa \Delta u(t,x) - \gamma \xi(t,x) u(t,x), & (t,x) \in \mathbb{R}_+ imes \mathbb{Z}^d, \ & u(0,x) = 1, & orall x \in \mathbb{Z}^d, \end{aligned}$$

 $\kappa \geq$ 0 diffusion constant, Δ the discrete Laplace operator, γ and ξ as before.

Feynman-Kac formula yields

$$u(t,0) = \mathbb{E}_0^X \exp\left\{-\gamma \int_0^t \xi(t-s,X(s)) \, ds\right\},\,$$

where as before X is SRW with jump rate κ .

Observe: only difference between u(t, 0) and survival probability $\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma}$ is time reversal $\xi(t - s, X(s))$ instead of $\xi(s, X(s))$; initial condition for the Y traps reversible $\rightarrow u(t, 0)$ has same anneale asymptotics as $\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma}$ for $t \rightarrow \infty$.

Connections to PAM

Parabolic Anderson model

$$egin{aligned} & rac{\partial u}{\partial t}(t,x) = \kappa \Delta u(t,x) - \gamma \xi(t,x) u(t,x), & (t,x) \in \mathbb{R}_+ imes \mathbb{Z}^d, \ & u(0,x) = 1, & orall x \in \mathbb{Z}^d, \end{aligned}$$

 $\kappa \geq$ 0 diffusion constant, Δ the discrete Laplace operator, γ and ξ as before.

Feynman-Kac formula yields

$$u(t,0) = \mathbb{E}_0^X \exp\left\{-\gamma \int_0^t \xi(t-s,X(s)) \, ds\right\},\,$$

where as before X is SRW with jump rate κ .

Observe: only difference between u(t, 0) and survival probability $\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma}$ is time reversal $\xi(t - s, X(s)$ instead of $\xi(s, X(s))$; initial condition for the Y traps reversible $\rightsquigarrow u(t, 0)$ has same annealed asymptotics as $\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma}$ for $t \to \infty$.

Connections to PAM

Parabolic Anderson model

$$egin{aligned} & rac{\partial u}{\partial t}(t,x) = \kappa \Delta u(t,x) - \gamma \xi(t,x) u(t,x), & (t,x) \in \mathbb{R}_+ imes \mathbb{Z}^d, \ & u(0,x) = 1, & orall x \in \mathbb{Z}^d, \end{aligned}$$

 $\kappa \geq$ 0 diffusion constant, Δ the discrete Laplace operator, γ and ξ as before.

Feynman-Kac formula yields

$$u(t,0) = \mathbb{E}_0^X \exp\left\{-\gamma \int_0^t \xi(t-s,X(s)) \, ds\right\},\,$$

where as before X is SRW with jump rate κ .

Observe: only difference between u(t, 0) and survival probability $\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma}$ is time reversal $\xi(t - s, X(s) \text{ instead of } \xi(s, X(s));$ initial condition for the Y traps reversible $\rightsquigarrow u(t, 0)$ has same annealed asymptotics as $\mathbb{E}^{\xi} Z_{t,\xi}^{\gamma}$ for $t \to \infty$.

Quenched Lyapunov exponent for PAM

Theorem

Let $d \geq 1$, $\gamma > 0$, $\kappa \geq 0$, $\rho > 0$, $\nu > 0$ and $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu} > 0$ as before. Then \mathbb{P}^{ξ} -a.s.,

$$u(t,0) = \expig\{- ilde{\lambda}_{d,\gamma,\kappa,
ho,
u}\,t(1+o(1))ig\} \quad ext{as }t o\infty.$$

Remark

- As mentioned before, distributions of u(t, 0) and $Z_{t,\xi}^{\gamma}$ coincide, hence convergence in distribution for $\frac{1}{t} \log u(t, 0)$ follows for free from \mathbb{P}^{ξ} -a.s. convergence of $\frac{1}{t} \log Z_{t,\xi}^{\gamma}$ (above result). Then deduce existence of $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu}$ via bounding variances of $\frac{1}{t} \log u(t, 0)$.
- In a different context, this result has recently been extended to $\gamma <$ 0 (catalytic case) by Erhard, den Hollander, Maillard.

Quenched Lyapunov exponent for PAM

Theorem

Let $d \geq 1$, $\gamma > 0$, $\kappa \geq 0$, $\rho > 0$, $\nu > 0$ and $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu} > 0$ as before. Then \mathbb{P}^{ξ} -a.s.,

$$u(t,0) = \expig\{- ilde{\lambda}_{d,\gamma,\kappa,
ho,
u} t(1+o(1))ig\} \ \ \, ext{as } t o\infty.$$

Remark

- As mentioned before, distributions of u(t,0) and $Z_{t,\xi}^{\gamma}$ coincide, hence convergence in distribution for $\frac{1}{t} \log u(t,0)$ follows for free from \mathbb{P}^{ξ} -a.s. convergence of $\frac{1}{t} \log Z_{t,\xi}^{\gamma}$ (above result). Then deduce existence of $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu}$ via bounding variances of $\frac{1}{t} \log u(t,0)$.
- In a different context, this result has recently been extended to $\gamma < 0$ (catalytic case) by Erhard, den Hollander, Maillard.

Literature: Immobile traps

Continuum version is BM among Poissonian obstacles:

Asymptotics of survival probabilities

- $\exp\{-C_{d,\gamma}t^{\frac{d}{d+2}}(1+o(1))\}$ (annealed, [DV75] via LDP for the volume of the Wiener sausage),
- $\exp\{-\bar{C}_{d,\gamma}\frac{t}{(\log t)^{2/d}}(1+o(1))\}$ (quenched, [Szn98] via renormalization scheme *Enlargement of obstacles*, also obtained information about path behavior).

Related results for SRW among Bernoulli traps [DV79, Bol94, Ant95];

Literature: Immobile traps

Continuum version is BM among Poissonian obstacles:

Asymptotics of survival probabilities

- $\exp\{-C_{d,\gamma}t^{\frac{d}{d+2}}(1+o(1))\}$ (annealed, [DV75] via LDP for the volume of the Wiener sausage),
- $\exp\{-\bar{C}_{d,\gamma}\frac{t}{(\log t)^{2/d}}(1+o(1))\}$ (quenched, [Szn98] via renormalization scheme *Enlargement of obstacles*, also obtained information about path behavior).

Related results for SRW among Bernoulli traps [DV79, Bol94, Ant95];

Literature: Mobile traps

- [Red94] established exponentially decaying upper bound for annealed survival probability for ξ generated by a reversible Markov process;
- Annihilating two-type random walks [BL91];
- Random walk among moving catalysts (i.e., the case γ < 0 in our notation) [KS03], [GdH06];

Some ideas of the proofs

Integrating out Poisson initial distribution ("Campbell's formula") yields

$$\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi} = \mathbb{E}_{0}^{X} \exp\left\{\nu \sum_{y \in \mathbb{Z}^{d}} \left(\underbrace{\mathbb{E}_{y}^{Y} \exp\left\{-\gamma \int_{0}^{t} \delta_{0}(Y(s) - X(t-s)) \, ds\right\}}_{=:\nu_{X}(t,y)} - 1\right)\right\}$$

where we also used reversibility of Y.

Next observe that $v_X(t, y)$ is the Feynman-Kac representation of the solution to

$$\frac{\partial v_X}{\partial t}(t, y) = \rho \Delta v_X(t, y) - \gamma \delta_{X(t)}(y) v_X(t, y),$$

$$v_X(0, \cdot) \equiv 1.$$

Summing above over y and setting $X \equiv 0$ (i.e, considering the case $\kappa = 0$) one can use Tauberian theorems to obtain strong logarithmic asymptotics for $\mathbb{E}^{\xi} Z_{l,\gamma}^{\xi}$.

Some ideas of the proofs

Integrating out Poisson initial distribution ("Campbell's formula") yields

$$\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi} = \mathbb{E}_{0}^{X} \exp\left\{\nu \sum_{y \in \mathbb{Z}^{d}} \left(\underbrace{\mathbb{E}_{y}^{Y} \exp\left\{-\gamma \int_{0}^{t} \delta_{0}(Y(s) - X(t-s)) \, ds\right\}}_{=:\nu_{X}(t,y)} - 1\right)\right\}$$

where we also used reversibility of Y.

Next observe that $v_X(t, y)$ is the Feynman-Kac representation of the solution to

$$\frac{\partial v_X}{\partial t}(t, y) = \rho \Delta v_X(t, y) - \gamma \delta_{X(t)}(y) v_X(t, y),$$

$$v_X(0, \cdot) \equiv 1.$$

Summing above over *y* and setting $X \equiv 0$ (i.e, considering the case $\kappa = 0$) one can use Tauberian theorems to obtain strong logarithmic asymptotics for $\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi}$.

Some ideas of the proofs

Integrating out Poisson initial distribution ("Campbell's formula") yields

$$\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi} = \mathbb{E}_{0}^{X} \exp\left\{\nu \sum_{y \in \mathbb{Z}^{d}} \left(\underbrace{\mathbb{E}_{y}^{Y} \exp\left\{-\gamma \int_{0}^{t} \delta_{0}(Y(s) - X(t-s)) \, ds\right\}}_{=:\nu_{X}(t,y)} - 1\right)\right\}$$

where we also used reversibility of Y.

Next observe that $v_X(t, y)$ is the Feynman-Kac representation of the solution to

$$\frac{\partial v_X}{\partial t}(t, y) = \rho \Delta v_X(t, y) - \gamma \delta_{X(t)}(y) v_X(t, y),$$

$$v_X(0, \cdot) \equiv 1.$$

Summing above over *y* and setting $X \equiv 0$ (i.e, considering the case $\kappa = 0$) one can use Tauberian theorems to obtain strong logarithmic asymptotics for $\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi}$.

Upper bound

Lemma (Pascal's principle)

For all trajectories $X : [0, t] \rightarrow \mathbb{Z}^d$ well-behaved (i.e. piecewise constant, finite number of discontinuities)

$$\sum_{y\in\mathbb{Z}^d} 1 - \mathbb{E}_y^Y \exp\Big\{-\gamma \int_0^t \delta_0(Y(s) - X(s)) \, ds\Big\}$$

 $\geq \sum_{y\in\mathbb{Z}^d} 1 - \mathbb{E}_y^Y \exp\Big\{-\gamma \int_0^t \delta_0(Y(s)) \, ds\Big\}.$

 \rightarrow best strategy for X is to stay put in origin;

 \rightsquigarrow precise asymptotics for survival probability in case $X\equiv$ 0 ($\kappa=$ 0) outlined before gives upper bound on survival probability.

Upper bound

Lemma (Pascal's principle)

For all trajectories $X : [0, t] \rightarrow \mathbb{Z}^d$ well-behaved (i.e. piecewise constant, finite number of discontinuities)

$$\sum_{y\in\mathbb{Z}^d} 1 - \mathbb{E}_y^Y \exp\Big\{-\gamma \int_0^t \delta_0(Y(s) - X(s)) \, ds\Big\} \ \ge \sum_{y\in\mathbb{Z}^d} 1 - \mathbb{E}_y^Y \exp\Big\{-\gamma \int_0^t \delta_0(Y(s)) \, ds\Big\}.$$

\rightsquigarrow best strategy for X is to stay put in origin;

→ precise asymptotics for survival probability in case $X \equiv 0$ ($\kappa = 0$) outlined before gives upper bound on survival probability.

Upper bound

Lemma (Pascal's principle)

For all trajectories $X : [0, t] \rightarrow \mathbb{Z}^d$ well-behaved (i.e. piecewise constant, finite number of discontinuities)

$$\sum_{y\in\mathbb{Z}^d} 1 - \mathbb{E}_y^Y \exp\Big\{-\gamma \int_0^t \delta_0(Y(s) - X(s)) \, ds\Big\}$$

 $\geq \sum_{y\in\mathbb{Z}^d} 1 - \mathbb{E}_y^Y \exp\Big\{-\gamma \int_0^t \delta_0(Y(s)) \, ds\Big\}.$

 \rightsquigarrow best strategy for X is to stay put in origin;

→ precise asymptotics for survival probability in case $X \equiv 0$ ($\kappa = 0$) outlined before gives upper bound on survival probability.

Idea of proof of Pascal's principle

Pascal's principle had been known in the physics literature (without proof).

Proof.

Intuitive in discrete time for t = 1 and ρ small (i.e. *Y* remains at its current site with high probability);

more formally: induction argument, afterwards discretization of continuous time case.

Lower bound in d = 1, 2

Strategy (for fixed *t*) the same as for immobile traps: Enforce

•
$$\xi(s, x) = 0$$
 for all times $s \in [0, t]$ and x in ball B_{R_t}

②
$$X(s) ∈ B_{R_t}$$
 for all $s ∈ [0, t]$ (:= G_t)

First requirement is equivalent to:

- $N_y = 0$ for all $y \in B_{R_t}$ (:= E_t) and
- none of the Y_j^y , $y \notin B_{R_t}$, $1 \le j \le N_y$, enters B_{R_t} up to time t (:= F_t).

independence ~>>

$$\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi} \geq \mathbb{P}(E_t) \mathbb{P}(F_t) \mathbb{P}(G_t)$$

Optimize R_t such that RHS is maximized — possible choices: $R_t = \sqrt{t/\log t}$ in d = 1 and $R_t = \ln t$ in d = 2.

In d = 1, 2 above computations for upper and lower bound on annealed survival probability even give same constant in the exponential term \sim annealed Lyapunov exponent exists.

Lower bound in d = 1, 2

Strategy (for fixed *t*) the same as for immobile traps: Enforce

•
$$\xi(s, x) = 0$$
 for all times $s \in [0, t]$ and x in ball B_{R_t}

②
$$X(s) ∈ B_{R_t}$$
 for all $s ∈ [0, t]$ (:= G_t)

First requirement is equivalent to:

- $N_y = 0$ for all $y \in B_{R_t}$ (:= E_t) and
- none of the Y_j^y , $y \notin B_{R_t}$, $1 \le j \le N_y$, enters B_{R_t} up to time t (:= F_t).

independence ~>>

$$\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi} \geq \mathbb{P}(E_t)\mathbb{P}(F_t)\mathbb{P}(G_t)$$

Optimize R_t such that RHS is maximized — possible choices: $R_t = \sqrt{t/\log t}$ in d = 1 and $R_t = \ln t$ in d = 2.

In d = 1, 2 above computations for upper and lower bound on annealed survival probability even give same constant in the exponential term \rightarrow annealed Lyapunov exponent exists.

Lower bound in d = 1, 2

Strategy (for fixed *t*) the same as for immobile traps: Enforce

•
$$\xi(s, x) = 0$$
 for all times $s \in [0, t]$ and x in ball B_{R_t}

②
$$X(s) ∈ B_{R_t}$$
 for all $s ∈ [0, t]$ (:= G_t)

First requirement is equivalent to:

- $N_y = 0$ for all $y \in B_{R_t}$ (:= E_t) and
- none of the Y_j^y , $y \notin B_{R_t}$, $1 \le j \le N_y$, enters B_{R_t} up to time t (:= F_t).

independence ~~>

$$\mathbb{E}^{\xi} Z_{t,\gamma}^{\xi} \geq \mathbb{P}(E_t)\mathbb{P}(F_t)\mathbb{P}(G_t)$$

Optimize R_t such that RHS is maximized — possible choices: $R_t = \sqrt{t/\log t}$ in d = 1 and $R_t = \ln t$ in d = 2.

In d = 1, 2 above computations for upper and lower bound on annealed survival probability even give same constant in the exponential term \rightsquigarrow annealed Lyapunov exponent exists.

Annealed Lyapunov exponent for general dimensions

In higher dimensions: Use subadditivity argument and subadditive ergodic theorem to deduce existence of Lyapunov exponent.

Short glimpse on quenched proof Set

$$a(s,t,x,y,\xi) := -\log \mathbb{E}_{x,s}^{X} \exp\left\{-\gamma \int_{s}^{t} \xi(u,X(u)) \, du\right\} \mathbf{1}_{X(t)=y}.$$

Main step (works for any bd. ergodic ξ):

Theorem (Shape theorem)

 $\exists \alpha : \mathbb{R}^d \to [0, \infty)$ deterministic, convex (*shape function*) s.t. \mathbb{P}^{ξ} -a.s., for any $K \subset \mathbb{R}^d$ compact:

$$\lim_{t\to\infty}\sup_{y\in tK\cap\mathbb{Z}^d}|t^{-1}a(0,t,0,y,\xi)-\alpha(y/t)|=0.$$

Combining this with the fact that for any M, $\exists K \subset \mathbb{R}^d$ compact s.t.

$$\limsup_{t\to\infty}\frac{1}{t}\log\mathbb{E}_0^X\exp\Big\{-\gamma\int_0^t\xi(s,X(s))\,ds\cdot 1_{X(t)\notin tK}\Big\}\leq -M$$

 \rightsquigarrow existence of $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu}$ follows with $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu} = \alpha(0)$.

Short glimpse on quenched proof Set

$$a(s,t,x,y,\xi) := -\log \mathbb{E}_{x,s}^{X} \exp\left\{-\gamma \int_{s}^{t} \xi(u,X(u)) \, du\right\} \mathbf{1}_{X(t)=y}.$$

Main step (works for any bd. ergodic ξ):

Theorem (Shape theorem)

 $\exists \alpha : \mathbb{R}^d \to [0, \infty)$ deterministic, convex (*shape function*) s.t. \mathbb{P}^{ξ} -a.s., for any $K \subset \mathbb{R}^d$ compact:

$$\lim_{t\to\infty}\sup_{y\in tK\cap\mathbb{Z}^d}|t^{-1}a(0,t,0,y,\xi)-\alpha(y/t)|=0.$$

Combining this with the fact that for any M, $\exists K \subset \mathbb{R}^d$ compact s.t.

$$\limsup_{t\to\infty}\frac{1}{t}\log\mathbb{E}_0^X\exp\Big\{-\gamma\int_0^t\xi(s,X(s))\,ds\cdot\mathbf{1}_{X(t)\notin t\!K}\Big\}\leq -M.$$

 \rightsquigarrow existence of $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu}$ follows with $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu} = \alpha(\mathbf{0})$.

Short glimpse on quenched proof Set

$$a(s,t,x,y,\xi) := -\log \mathbb{E}_{x,s}^{X} \exp\left\{-\gamma \int_{s}^{t} \xi(u,X(u)) \, du\right\} \mathbf{1}_{X(t)=y}.$$

Main step (works for any bd. ergodic ξ):

Theorem (Shape theorem)

 $\exists \alpha : \mathbb{R}^d \to [0, \infty)$ deterministic, convex (*shape function*) s.t. \mathbb{P}^{ξ} -a.s., for any $K \subset \mathbb{R}^d$ compact:

$$\lim_{t\to\infty}\sup_{y\in tK\cap\mathbb{Z}^d}|t^{-1}a(0,t,0,y,\xi)-\alpha(y/t)|=0.$$

Combining this with the fact that for any M, $\exists K \subset \mathbb{R}^d$ compact s.t.

$$\limsup_{t\to\infty}\frac{1}{t}\log\mathbb{E}_0^X\exp\Big\{-\gamma\int_0^t\xi(s,X(s))\,ds\cdot\mathbf{1}_{X(t)\notin tK}\Big\}\leq -M.$$

 \rightsquigarrow existence of $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu}$ follows with $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu} = \alpha(0)$.

Short glimpse on quenched proof

Still to show: positivity of $\tilde{\lambda}_{d,\gamma,\kappa,\rho,\nu}$.

No details, proof goes via complicated so-called *renormalization scheme* using *good* space-time boxes where at least a close to normal number of traps occur.

Corollary to Pascal's principle

Corollary

The expected cardinality of the range of a continuous time symmetric random walk increases under perturbation by a deterministic path: Y symmetric irreducible RW on \mathbb{Z}^d , $X : [0, t] \to \mathbb{Z}^d$ piecewise constant with finite number of discontinuities. Then $\forall t \ge 0$:

$$\mathbb{E}_0^{\boldsymbol{Y}} |\boldsymbol{R}_t(\boldsymbol{Y} - \boldsymbol{X})| \geq \mathbb{E}_0^{\boldsymbol{Y}} |\boldsymbol{R}_t(\boldsymbol{Y})|,$$

with $R_t := \{y \in \mathbb{Z}^d : \exists s \in [0, t] \text{ with } Y(s) = y\}.$

Understand path behavior of X with respect to the induced Gibbs-measure.

So far: Can show that X behaves subdiffusively in d = 1 for $\gamma = \infty$.

Peter Antal.

Enlargement of obstacles for the simple random walk. *Ann. Probab.*, 23(3):1061–1101, 1995.

Maury Bramson and Joel L. Lebowitz.

Asymptotic behavior of densities for two-particle annihilating random walks.

J. Statist. Phys., 62(1-2):297-372, 1991.

Erwin Bolthausen.

Localization of a two-dimensional random walk with an attractive path interaction.

Ann. Probab., 22(2):875–918, 1994.

- M. D. Donsker and S. R. S. Varadhan.
 Asymptotics for the Wiener sausage.
 Comm. Pure Appl. Math., 28(4):525–565, 1975.
- M. D. Donsker and S. R. S. Varadhan. On the number of distinct sites visited by a random walk. *Comm. Pure Appl. Math.*, 32(6):721–747, 1979.

J. Gärtner and F. den Hollander. Intermittency in a catalytic random medium. *Ann. Probab.*, 34(6):2219–2287, 2006.

Harry Kesten and Vladas Sidoravicius. Branching random walk with catalysts. *Electron. J. Probab.*, 8:no. 5, 51 pp. (electronic), 2003.

F. Redig.

An exponential upper bound for the survival probability in a dynamic random trap model.

J. Statist. Phys., 74(3-4):815–827, 1994.

Alain-Sol Sznitman.

Brownian motion, obstacles and random media. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.