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Sliding Window Processes

{Zt}t∈Z := i.i.d. uniform on [0, 1].
f : [0, 1]k → {0, . . . , r − 1} measurable.

{Xt}t∈Z := f (Zt ,Zt+1, . . . ,Zt+k−1).

Xt

Zt

f f

Such a process is called k-block factor. If r = 2 we call it a
binary k-block factor.
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Applications

Sliding window processes have many real-life applications, e.g.,

Linguistics, Vocoding: • Model for voiceless phonemes

Cryptography: • Encryption schemes
with parallel decryption

Computer science: • Data processes by stateless machines
• Distributive ring computation
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Local dependence

k-dependence for stationary processes

If every E− which is {Xt}t<0 measurable,
and every E+ which is {Xt}t≥k measurable are independent,
then {Xt} is said to be k-dependent.

Observation

k + 1-block factors are stationary k-dependent.

)

) )

)Zt

Xt
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Some previous results on block factors

2-block factors

Katz, 1971 Computed maxP(X1 = X2 = 1) given P(X1 = 1).
De Valk, 1988 Computed minP(X1 = X2 = 1) given P(X1 = 1)
and showed uniqueness of the minimal and maximal processes.
He did this also for general 1-dependent processes.
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Some previous results on block factors

2-block factors

Katz, 1971 Computed maxP(X1 = X2 = 1) given P(X1 = 1).
De Valk, 1988 Computed minP(X1 = X2 = 1) given P(X1 = 1)
and showed uniqueness of the minimal and maximal processes.
He did this also for general 1-dependent processes.

k-block factors

Janson, 1984: Explored several examples of binary k-block factors
with at least k − 1 zeroes between consecutive ones, and showed
convergence of the gaps between consecutive ones for such
processes.
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Persistence

A natural definition of persistence in a frame of size q, for
processes with discrete image:

PX
q = P

(
X1 = X2 = · · · = Xq

)

Coincides with the usual definition of persistence, if

f (Z1, . . . ,Zk) = 1I{g(Z1, . . . ,Zk) > 0},

for some function g .
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Persistence

A natural definition of persistence in a frame of size q, for
processes with discrete image:

PX
q = P

(
X1 = X2 = · · · = Xq

)

Coincides with the usual definition of persistence, if

f (Z1, . . . ,Zk) = 1I{g(Z1, . . . ,Zk) > 0},

for some function g .

Observation

X is non-constant k-dependent → ∃c > 0 s. t. PX
q < e−cq
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Persistence

A natural definition of persistence in a frame of size q, for
processes with discrete image:

PX
q = P

(
X1 = X2 = · · · = Xq

)

Coincides with the usual definition of persistence, if

f (Z1, . . . ,Zk) = 1I{g(Z1, . . . ,Zk) > 0},

for some function g .

Observation

X is non-constant k-dependent → ∃c > 0 s. t. PX
q < e−cq

But what about a lower bound?

Ohad N. Feldheim Persistence in Sliding Window Processes



Notions of Local Dependence
Persistence

(k + 1)-block factor vs. k-dependence
Proof of the lower bound

Previous results
Persistence in block factors

Lower bound if Zt ∈ {0, . . . , ℓ− 1}

Observation

If we had Zt ∈ {0, . . . , ℓ− 1} it would imply ℓ−(q+k−1) < PX
q .

)

) )

)
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Ohad N. Feldheim Persistence in Sliding Window Processes



Notions of Local Dependence
Persistence

(k + 1)-block factor vs. k-dependence
Proof of the lower bound

Previous results
Persistence in block factors

Somewhat unusual question

Usually: low correlation 6→ lower bound on persistence.

Lower bound on block-factor persistence ←→

There is a universal constant pk,q such that every symmetric real
sliding window process {Xt}t∈Z with a given window size k must
have:

P
(
X1, . . . ,Xq ∈ [0,∞)

)
> pk,q
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Somewhat unusual question

Usually: low correlation 6→ lower bound on persistence.

Lower bound on block-factor persistence ←→

There is a universal constant pk,q such that every symmetric real
sliding window process {Xt}t∈Z with a given window size k must
have:

P
(
X1, . . . ,Xq ∈ [0,∞)

)
> pk,q

There is a block factor with Pq = 0 for some q ←→

Each of N players, standing in a row is assigned a random number
uniform in [0, 1]. By looking only on the numbers in their q
neighborhood, using a symmetric algorithm, the players can divide
themselves to consecutive pairs and triplets.
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Our results

Let k , q ∈ N. For f : Rk → {0, 1}
write X f

t = f (Zt , . . . ,Zt+k−1) where Zt are i.i.d, and write

pmin
q = inf

f
{P

(
X f
1 = X f

2 = · · · = X f
q

)
}

Theorem (Alon, F.)

1

(Tk−2(q2))
k+q−1

< pmin
q <

1

Tk−2(
q

100 )
,

where

Tℓ(x) := 22
2
.

.

.

2x

︸ ︷︷ ︸

ℓ times
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Our results
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write X f

t = f (Zt , . . . ,Zt+k−1) where Zt are i.i.d, and write

pmin
q = inf

f
{P

(
X f
1 = X f

2 = · · · = X f
q

)
}

Theorem (Alon, F.)

1

(Tk−2(q2))
k+q−1

< pmin
q <

1

Tk−2(
q

100 )
,

where

Tℓ(x) := 22
2
.

.

.

2x

︸ ︷︷ ︸

ℓ times

Heavily involves Ramsey theory.
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Is it possible to extend to k-dependent processes?

For upper bound on pXq we used only k-dependence. Can we do
the same for the lower bound?
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Are the two properties equivalent

Does k-dependence imply being a k + 1-block factor?

k + 1-block factor

For Zt ∼ U[0, 1] i.i.d.
∃f : R→ L such that

{Xt}
law
= {f (Zt ,Zt , . . . ,Zt+k)}

) )

k-dependent

If E− is {Xt}t<0 measurable and
E+ is {Xt}t≥k measurable, then

P(E−)P(E+) = P(E− ∩ E+)
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History of this question
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True for Gaussian processes.
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True for Gaussian processes.

In ’84 it was still conjectured to be true.

Although Ibragimov and Linnik stated in ’71 that a counter
example should exist.
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History of this question

Does k-dependence imply being a k + 1-block factor?
(Ibragimov and Linnik ’71)

True for Gaussian processes.

In ’84 it was still conjectured to be true.

Although Ibragimov and Linnik stated in ’71 that a counter
example should exist.

In ’87 Aaronson and Gilat came up with a counter example,
showing a 1-dependent process which is not a 2-block factor.
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(Ibragimov and Linnik ’71)

True for Gaussian processes.

In ’84 it was still conjectured to be true.

Although Ibragimov and Linnik stated in ’71 that a counter
example should exist.

In ’87 Aaronson and Gilat came up with a counter example,
showing a 1-dependent process which is not a 2-block factor.

In ’93 Burton, Goulet and Meester found a 1-dependent
process which is not a k-factor for any k .
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History of this question

Does k-dependence imply being a k + 1-block factor?
(Ibragimov and Linnik ’71)

True for Gaussian processes.

In ’84 it was still conjectured to be true.

Although Ibragimov and Linnik stated in ’71 that a counter
example should exist.

In ’87 Aaronson and Gilat came up with a counter example,
showing a 1-dependent process which is not a 2-block factor.

In ’93 Burton, Goulet and Meester found a 1-dependent
process which is not a k-factor for any k .

In that year Tsirelson showed a quantum mechanical example
of 1-dependent non-2-block factor process.
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Is it possible to extend to k-dependent processes?

For upper bound on pXq we used only k-dependence. Can we do
the same for the lower bound?

Does k-dependence imply being a k + 1-block factor?
- No.

Can we extend our results to k-dependent processes?
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Finitely dependent coloring

Theorem (Holroyd and Liggett 2014)

There exists a 1-dependent stationary random proper coloring of Z
with 4 colors.

Writing 0 whenever a color comes before a color of lower value and
1 otherwise, we get a 2-dependent process, with pX4 = 0.

< < < < < < <

0 0 0 01 1 1
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Finitely dependent coloring

Theorem (Holroyd and Liggett 2014)

There exists a 1-dependent stationary random proper coloring of Z
with 4 colors.

Writing 0 whenever a color comes before a color of lower value and
1 otherwise, we get a 2-dependent process, with pX4 = 0.

< < < < < < <

0 0 0 01 1 1

→ There is no lower bound on persistence for 2-dependent
processes.
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Translation to the discrete realm
Application of Ramsey type results

Formula for persistence

We would like to calculate: P (X1 = · · · = Xq)
Writing w := q + k − 1 we have,

=

∫ 1

0
dx1 · · ·

∫ 1

0
dxw 1I {f (x1, . . . , xk) = · · · = f (xq , . . . , xw )}
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Probabilistic reformulation

Let {Zt}t ∈ Z be i.i.d. uniform random variables.

Observation

(Z1, . . . ,Zw )
law
= (Zσ(1), . . . ,Zσ(w))

where σ ∈ SM for some M > w .

Thus,
∫

x̄∈[0,1]w
1I{f (x1,...,xk)=···=f (xq,...,xw )}

=

∫

ȳ∈[0,1]M

(M−w)!
M!

∑

1≤j1<···<jw≤M

1I{f (yj1 ,...,yjk )=···=f (yjq ,...,yjw )}.
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Probabilistic reformulation

Let {Zt}t ∈ Z be i.i.d. uniform random variables.

Observation

(Z1, . . . ,Zw )
law
= (Zσ(1), . . . ,Zσ(w))

where σ ∈ SM for some M > w .

Thus,
∫

x̄∈[0,1]w
1I{f (x1,...,xk)=···=f (xq,...,xw )}

=

∫

ȳ∈[0,1]M

(M−w)!
M!

∑

1≤j1<···<jw≤M

1I{f (yj1 ,...,yjk )=···=f (yjq ,...,yjw )}.

We must therefore bound this sum

combinatorially from below.
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(M−w)!
M!
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1≤j1<···<jw≤M

1I{f (yj1 ,...,yjk )=···=f (yjq ,...,yjw )}.

))

=
?

w = 8

yj1 yj2 yj3 yj4 yj5 yj6 yj7 yj8

Ohad N. Feldheim Persistence in Sliding Window Processes



Notions of Local Dependence
Persistence

(k + 1)-block factor vs. k-dependence
Proof of the lower bound

Translation to the discrete realm
Application of Ramsey type results

Probabilistic reformulation

Let {Zt}t ∈ Z be i.i.d. uniform random variables.

Observation
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~
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Translation to the discrete realm
Application of Ramsey type results

Combinatorial reformulation

Let k , q ∈ N. We define a graph Dw
M whose vertices are increasing

sequences of elements in {1 . . .M} of length w , and

x̄ ∼ ȳ ←→ ∀i∈{2,...,w}

(
xi = yi−1

)
.
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Let k , q ∈ N. We define a graph Dw
M whose vertices are increasing

sequences of elements in {1 . . .M} of length w , and

x̄ ∼ ȳ ←→ ∀i∈{2,...,w}

(
xi = yi−1

)
.

This is called a De-Bruijn graph. We ask if it can be properly
colored.
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Translation to the discrete realm
Application of Ramsey type results

Combinatorial reformulation

Let k , q ∈ N. We define a graph Dw
M whose vertices are increasing

sequences of elements in {1 . . .M} of length w , and

x̄ ∼ ȳ ←→ ∀i∈{2,...,w}

(
xi = yi−1

)
.

This is called a De-Bruijn graph. We ask if it can be properly
colored.

Reduced problem

Must show: There exists M = Mk,q s.t. there is no proper coloring
of Dw−1

M with 2q colors.

Ohad N. Feldheim Persistence in Sliding Window Processes



Notions of Local Dependence
Persistence

(k + 1)-block factor vs. k-dependence
Proof of the lower bound

Translation to the discrete realm
Application of Ramsey type results

Ramsey Theory

Theorem (implied by Chvátal)

For every k , d , if M is big enough, then there is no proper coloring
of Dk

M with d colors.
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Translation to the discrete realm
Application of Ramsey type results

Ramsey Theory

Theorem (implied by Chvátal)

For every k , d , if M is big enough, then there is no proper coloring
of Dk

M with d colors.

Time does not permit giving exact details...
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Translation to the discrete realm
Application of Ramsey type results

Ramsey Theory

Theorem (implied by Chvátal)

For every k , d , if M is big enough, then there is no proper coloring
of Dk

M with d colors.

Time does not permit giving exact details...
Similar to the classical Ramsey results

Theorem (Ramsey)

For every d , there exists M such that KM cannot be properly
colored by d colors.
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