Local Dependence and Persistence in Discrete Sliding Window Processes

Ohad N. Feldheim Joint work with Noga Alon

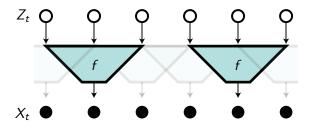
Weizmann Institute of Science

July 2014 Technishe Universitat Darmstadt

Sliding Window Processes

 $\{Z_t\}_{t\in\mathbb{Z}}:=\text{i.i.d.}$ uniform on [0,1]. $f:[0,1]^k \to \{0,\ldots,r-1\}$ measurable.

$${X_t}_{t\in\mathbb{Z}}:=f(Z_t,Z_{t+1},\ldots,Z_{t+k-1}).$$



Such a process is called k-block factor. If r = 2 we call it a binary k-block factor.

Applications

Sliding window processes have many real-life applications, e.g.,

Linguistics, Vocoding:
• Model for voiceless phonemes

Cryptography: • Encryption schemes with parallel decryption

Computer science: • Data processes by stateless machines

Distributive ring computation

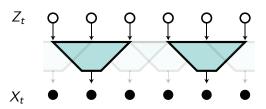
Local dependence

k-dependence for stationary processes

If every E_- which is $\{X_t\}_{t < 0}$ measurable, and every E_+ which is $\{X_t\}_{t \geq k}$ measurable are independent, then $\{X_t\}$ is said to be k-dependent.

Observation

k + 1-block factors are stationary k-dependent.



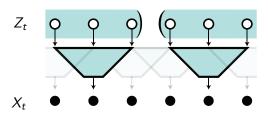
Local dependence

k-dependence for stationary processes

If every E_- which is $\{X_t\}_{t < 0}$ measurable, and every E_+ which is $\{X_t\}_{t \geq k}$ measurable are independent, then $\{X_t\}$ is said to be k-dependent.

Observation

k + 1-block factors are stationary k-dependent.



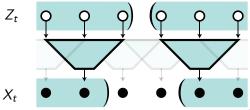
Local dependence

k-dependence for stationary processes

If every E_- which is $\{X_t\}_{t < 0}$ measurable, and every E_+ which is $\{X_t\}_{t \geq k}$ measurable are independent, then $\{X_t\}$ is said to be k-dependent.

Observation

k + 1-block factors are stationary k-dependent.



Some previous results on block factors

2-block factors

Katz, 1971 Computed $\max \mathbb{P}(X_1 = X_2 = 1)$ given $\mathbb{P}(X_1 = 1)$. **De Valk, 1988** Computed $\min \mathbb{P}(X_1 = X_2 = 1)$ given $\mathbb{P}(X_1 = 1)$ and showed uniqueness of the minimal and maximal processes. He did this also for general 1-dependent processes.

Some previous results on block factors

2-block factors

Katz, 1971 Computed $\max \mathbb{P}(X_1 = X_2 = 1)$ given $\mathbb{P}(X_1 = 1)$. **De Valk, 1988** Computed $\min \mathbb{P}(X_1 = X_2 = 1)$ given $\mathbb{P}(X_1 = 1)$ and showed uniqueness of the minimal and maximal processes. He did this also for general 1-dependent processes.

k-block factors

Janson, 1984: Explored several examples of binary k-block factors with at least k-1 zeroes between consecutive ones, and showed convergence of the gaps between consecutive ones for such processes.

Persistence

A natural definition of **persistence** in a frame of size q, for processes with discrete image:

$$P_q^X = \mathbb{P}(X_1 = X_2 = \cdots = X_q)$$

Coincides with the usual definition of persistence, if

$$f(Z_1,\ldots,Z_k)=1\{g(Z_1,\ldots,Z_k)>0\},\$$

for some function g.

Persistence

A natural definition of **persistence** in a frame of size q, for processes with discrete image:

$$P_q^X = \mathbb{P}(X_1 = X_2 = \cdots = X_q)$$

Coincides with the usual definition of persistence, if

$$f(Z_1,\ldots,Z_k)=1\{g(Z_1,\ldots,Z_k)>0\},\$$

for some function g.

Observation

X is non-constant k-dependent $o \exists c>0$ s. t. $P_a^X < e^{-cq}$

Persistence

A natural definition of **persistence** in a frame of size q, for processes with discrete image:

$$P_q^X = \mathbb{P}(X_1 = X_2 = \cdots = X_q)$$

Coincides with the usual definition of persistence, if

$$f(Z_1,\ldots,Z_k)=1\{g(Z_1,\ldots,Z_k)>0\},\$$

for some function g.

Observation

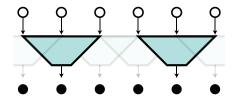
X is non-constant k-dependent $o \exists c>0$ s. t. $P_q^X < e^{-cq}$

But what about a lower bound?

Lower bound if $Z_t \in \{0, \dots, \ell - 1\}$

Observation

If we had $Z_t \in \{0, \dots, \ell-1\}$ it would imply $\ell^{-(q+k-1)} < P_q^X$.



Usually: low correlation \rightarrow lower bound on persistence.

Usually: low correlation \rightarrow lower bound on persistence.

Lower bound on block-factor persistence \longleftrightarrow

There is a universal constant $p_{k,q}$ such that every symmetric real sliding window process $\{X_t\}_{t\in\mathbb{Z}}$ with a given window size k must have:

$$\mathbb{P}(X_1,\ldots,X_q\in[0,\infty))>p_{k,q}$$

Usually: low correlation \rightarrow lower bound on persistence.

Lower bound on block-factor persistence \longleftrightarrow

There is a universal constant $p_{k,q}$ such that every symmetric real sliding window process $\{X_t\}_{t\in\mathbb{Z}}$ with a given window size k must have:

$$\mathbb{P}(X_1,\ldots,X_q\in[0,\infty))>p_{k,q}$$

There is a block factor with $P_q=0$ for some $q\longleftrightarrow$

Usually: low correlation \rightarrow lower bound on persistence.

Lower bound on block-factor persistence \longleftrightarrow

There is a universal constant $p_{k,q}$ such that every symmetric real sliding window process $\{X_t\}_{t\in\mathbb{Z}}$ with a given window size k must have:

$$\mathbb{P}(X_1,\ldots,X_q\in[0,\infty))>p_{k,q}$$

There is a block factor with $P_a = 0$ for some $q \longleftrightarrow$

Each of N players, standing in a row is assigned a random number uniform in [0,1]. By looking only on the numbers in their q neighborhood, using a symmetric algorithm, the players can divide themselves to consecutive pairs and triplets.

Our results

Let
$$k,q\in\mathbb{N}$$
. For $f:\mathbb{R}^k\to\{0,1\}$ write $X_t^f=f(Z_t,\ldots,Z_{t+k-1})$ where Z_t are i.i.d, and write $p_q^{\min}=\inf_f\{\mathbb{P}\big(X_1^f=X_2^f=\cdots=X_q^f\big)\}$

Theorem (Alon, F.)

$$\frac{1}{\left(T_{k-2}(q^2)\right)^{k+q-1}} < p_q^{\mathsf{min}} < \frac{1}{T_{k-2}(\frac{q}{100})},$$

where

$$T_{\ell}(x) := \underbrace{2^{2^2}}_{\ell \text{ times}}$$

Our results

Let
$$k,q\in\mathbb{N}$$
. For $f:\mathbb{R}^k\to\{0,1\}$ write $X_t^f=f(Z_t,\ldots,Z_{t+k-1})$ where Z_t are i.i.d, and write $p_q^{\min}=\inf_f\{\mathbb{P}\big(X_1^f=X_2^f=\cdots=X_q^f\big)\}$

Theorem (Alon, F.)

$$\frac{1}{\left(T_{k-2}(q^2)\right)^{k+q-1}} < p_q^{\mathsf{min}} < \frac{1}{T_{k-2}(\frac{q}{100})},$$

where

$$T_{\ell}(x) := \underbrace{2^{2^2}}_{\ell \text{ times}}$$

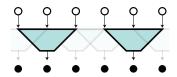
Heavily involves Ramsey theory.

For upper bound on p_q^X we used only k-dependence. Can we do the same for the lower bound?

• Does k-dependence imply being a k + 1-block factor?

Are the two properties equivalent

Does k-dependence imply being a k + 1-block factor?



k + 1-block factor

For $Z_t \sim \textit{U}[0,1]$ i.i.d.

 $\exists f: \mathbb{R} \to L \text{ such that}$

$$\{X_t\} \stackrel{\mathsf{law}}{=} \{f(Z_t, Z_t, \dots, Z_{t+k})\}$$

k-dependent

If E_{-} is $\{X_{t}\}_{t < 0}$ measurable and E_{+} is $\{X_{t}\}_{t > k}$ measurable, then

$$\mathbb{P}(E_{-})\mathbb{P}(E_{+}) = \mathbb{P}(E_{-} \cap E_{+})$$

Does k-dependence imply being a k+1-block factor? (Ibragimov and Linnik '71)

True for Gaussian processes.

- True for Gaussian processes.
- In '84 it was still conjectured to be true.

The Annals of Probability 1984, Vol. 12, No. 3, 805–818

RUNS IN m-DEPENDENT SEQUENCES

By Svante Janson

 $Uppsala\ University$

To obtain complete results we will impose one further condition.

(*) There exists a sequence $\{\xi_i\}$ of i.i.d. random variables and a measurable function α such that $I_i = \alpha(\xi_{i-m}, \dots, \xi_i)$.

Obviously, any sequence $\{I_i\}$ satisfying (*) is m-dependent. It seems to be unknown whether the converse holds, i.e. whether every m-dependent stationary sequence may be thus represented. Hence it is conceivable that this condition is redundant.

- True for Gaussian processes.
- In '84 it was still conjectured to be true.
- Although Ibragimov and Linnik stated in '71 that a counter example should exist.

- True for Gaussian processes.
- In '84 it was still conjectured to be true.
- Although Ibragimov and Linnik stated in '71 that a counter example should exist.
- In '87 Aaronson and Gilat came up with a counter example, showing a 1-dependent process which is not a 2-block factor.

- True for Gaussian processes.
- In '84 it was still conjectured to be true.
- Although Ibragimov and Linnik stated in '71 that a counter example should exist.
- In '87 Aaronson and Gilat came up with a counter example, showing a 1-dependent process which is not a 2-block factor.
- In '93 Burton, Goulet and Meester found a 1-dependent process which is not a k-factor for any k.

- True for Gaussian processes.
- In '84 it was still conjectured to be true.
- Although Ibragimov and Linnik stated in '71 that a counter example should exist.
- In '87 Aaronson and Gilat came up with a counter example, showing a 1-dependent process which is not a 2-block factor.
- In '93 Burton, Goulet and Meester found a 1-dependent process which is not a k-factor for any k.
- In that year Tsirelson showed a quantum mechanical example of 1-dependent non-2-block factor process.

- Does k-dependence imply being a k + 1-block factor?
 - No.

- Does k-dependence imply being a k+1-block factor?
 - No.
- Can we extend our results to k-dependent processes?

- Does k-dependence imply being a k+1-block factor?
 - No.
- Can we extend our results to k-dependent processes?
 - No.

Finitely dependent coloring

Theorem (Holroyd and Liggett 2014)

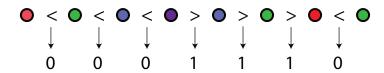
There exists a 1-dependent stationary random proper coloring of $\mathbb Z$ with 4 colors.

Finitely dependent coloring

Theorem (Holroyd and Liggett 2014)

There exists a 1-dependent stationary random proper coloring of $\mathbb Z$ with 4 colors.

Writing 0 whenever a color comes before a color of lower value and 1 otherwise, we get a 2-dependent process, with $p_4^X = 0$.

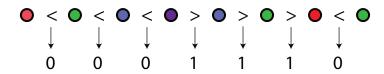


Finitely dependent coloring

Theorem (Holroyd and Liggett 2014)

There exists a 1-dependent stationary random proper coloring of $\mathbb Z$ with 4 colors.

Writing 0 whenever a color comes before a color of lower value and 1 otherwise, we get a 2-dependent process, with $p_4^X = 0$.



ightarrow There is no lower bound on persistence for 2-dependent processes.

Proof Idea

Formula for persistence

We would like to calculate: $\mathbb{P}(X_1 = \cdots = X_q)$ Writing w := q + k - 1 we have,

$$= \int_0^1 dx_1 \cdots \int_0^1 dx_w \, 1 \{ f(x_1, \ldots, x_k) = \cdots = f(x_q, \ldots, x_w) \}$$

Let $\{Z_t\}_t \in \mathbb{Z}$ be i.i.d. uniform random variables.

Observation

$$(Z_1,\ldots,Z_w)\stackrel{\mathsf{law}}{=} (Z_{\sigma(1)},\ldots,Z_{\sigma(w)})$$

where $\sigma \in S_M$ for some M > w.

Thus,

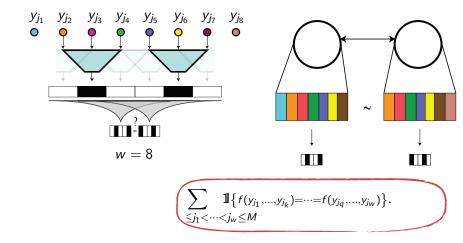
$$\int_{\bar{x} \in [0,1]^{W}} \mathbb{1} \{ f(x_{1},...,x_{k}) = \cdots = f(x_{q},...,x_{w}) \}
= \int_{\bar{y} \in [0,1]^{M}} \frac{(M-w)!}{M!} \sum_{1 < i_{1} < \cdots < i_{w} < M} \mathbb{1} \{ f(y_{j_{1}},...,y_{j_{k}}) = \cdots = f(y_{j_{q}},...,y_{j_{w}}) \}.$$

We must therefore bound this sum combinatorially from below.

$$\sum_{\leq j_1 < \dots < j_w \leq M} \mathbb{1} \{ f(y_{j_1}, \dots, y_{j_k}) = \dots = f(y_{j_q}, \dots, y_{j_w}) \}.$$



$$\sum_{\leq j_1 < \dots < j_w \leq M} \mathbb{1} \{ f(y_{j_1}, \dots, y_{j_k}) = \dots = f(y_{j_q}, \dots, y_{j_w}) \}.$$



Combinatorial reformulation

Let $k, q \in \mathbb{N}$. We define a graph D_M^w whose vertices are increasing sequences of elements in $\{1...M\}$ of length w, and

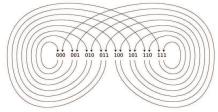
$$\bar{x} \sim \bar{y} \iff \forall_{i \in \{2,\dots,w\}} (x_i = y_{i-1}).$$

Combinatorial reformulation

Let $k, q \in \mathbb{N}$. We define a graph D_M^w whose vertices are increasing sequences of elements in $\{1 \dots M\}$ of length w, and

$$\bar{x} \sim \bar{y} \iff \forall_{i \in \{2,\dots,w\}} (x_i = y_{i-1}).$$

This is called a De-Bruijn graph. We ask if it can be properly colored.



Combinatorial reformulation

Let $k, q \in \mathbb{N}$. We define a graph D_M^w whose vertices are increasing sequences of elements in $\{1...M\}$ of length w, and

$$\bar{x} \sim \bar{y} \iff \forall_{i \in \{2,\dots,w\}} (x_i = y_{i-1}).$$

This is called a De-Bruijn graph. We ask if it can be properly colored.

Reduced problem

Must show: There exists $M=M_{k,q}$ s.t. there is no proper coloring of D_M^{w-1} with 2^q colors.

Ramsey Theory

Theorem (implied by Chvátal)

For every k, d, if M is big enough, then there is no proper coloring of D_M^k with d colors.

Ramsey Theory

Theorem (implied by Chvátal)

For every k, d, if M is big enough, then there is no proper coloring of D_M^k with d colors.

Time does not permit giving exact details...

Ramsey Theory

Theorem (implied by Chvátal)

For every k, d, if M is big enough, then there is no proper coloring of D_M^k with d colors.

Time does not permit giving exact details...

Similar to the classical Ramsey results

Theorem (Ramsey)

For every d, there exists M such that K_M cannot be properly colored by d colors.

