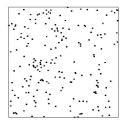
Rigidity Phenomena in random point sets and Applications

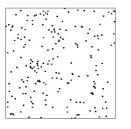
Subhro Ghosh Princeton University

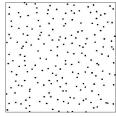
Background



Poisson Process

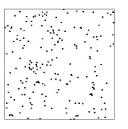
Background

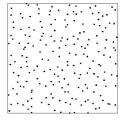


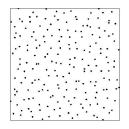


Poisson Process Ginibre Ensemble

Background







Poisson Process Ginibre Ensemble Gaussian Zeroes

Ginibre Ensemble

• Finite n: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})

Ginibre Ensemble

- Finite \underline{n} : μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \leq i,j \leq n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})
- $\underline{n = \infty}$: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)

Ginibre Ensemble

- Finite \underline{n} : μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \leq i,j \leq n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})
- $\underline{n = \infty}$: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)
- Translation Invariant (in fact Ergodic)

• Finite n:
$$f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{n!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$$

 $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$

- Finite n: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{n!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$ $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- $\underline{n=\infty}$:
 - $\nu = \lim_{n \to \infty} \nu_n$
 - Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$

- Finite n: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{n!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$ $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- $\underline{n=\infty}$:
 - $\nu = \lim_{n \to \infty} \nu_n$
 - Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$
- ν is Translation Invariant (and Ergodic)

- Finite n: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$ $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- $\underline{n=\infty}$:
 - $\nu = \lim_{n \to \infty} \nu_n$
 - Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$
- ν is Translation Invariant (and Ergodic)

Theorem (Sodin rigidity)

f(z) is the unique (up to a deterministic multiplier) Gaussian entire function with a translation invariant zero process of intensity 1.

Preliminaries

• We consider the conditional distribution $\rho_{\omega}(\zeta)$ of the points (denoted by ζ) inside a disk $\mathbb D$ given the points outside $\mathbb D$ (denoted by ω)

Preliminaries

- We consider the conditional distribution $\rho_{\omega}(\zeta)$ of the points (denoted by ζ) inside a disk $\mathbb D$ given the points outside $\mathbb D$ (denoted by ω)
- \bullet In Poisson point process, the points inside and outside $\mathbb D$ are independent of each other

Theorem (G.,Peres)

In the Ginibre ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $\mathsf{N}(\omega)$ of the points ζ inside $\mathbb D$

Theorem (G.,Peres)

In the Ginibre ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $\mathsf{N}(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more"

Theorem (G.,Peres)

- (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more"
- (ii)A.e. ω ,
- (a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$,

Theorem (G.,Peres)

- (i) The points ω outside $\mathbb D$ determine exactly the Number $\mathsf N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more"
- (ii)A.e. ω ,
- (a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

Theorem (G.,Peres)

- (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more"
- (ii)A.e. ω ,
- (a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$
 - $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$

Theorem (G.,Peres)

- (i)The points ω outside $\mathbb D$ determine exactly the Number $\mathsf N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more"
- (ii)A.e. ω ,
- (a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$
 - $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$
 - (c) $m(\omega)|\Delta(\zeta)|^2 \le f_{\omega}(\zeta) \le M(\omega)|\Delta(\zeta)|^2$

Theorem (G.,Peres)

- (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more"
- (ii)A.e. ω ,
- (a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$
 - $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$
 - (c) $m(\omega)|\Delta(\zeta)|^2 \le f_{\omega}(\zeta) \le M(\omega)|\Delta(\zeta)|^2$
- $M(\omega)$ and $m(\omega)$ positive constants $\Delta(\zeta) = \prod_{i < j} (\zeta_i \zeta_j)$ (Vandermonde)

• Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in $\mathbb D$ with probability 1.

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in $\mathbb D$ with probability 1.
- E.g. :
 - Ginibre ensemble

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in $\mathbb D$ with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in $\mathbb D$ with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in $\mathbb D$ with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in $\mathbb D$ with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take n points in a disk of area n. Finite, rigid.

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in $\mathbb D$ with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take n points in a disk of area n. Finite, rigid. Limit as $n \to \infty$ is Poisson : Not Rigid !

Theorem (G., Peres)

In the GAF Zero ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $\mathsf{N}(\omega)$

Theorem (G., Peres)

In the GAF Zero ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and $Sum\ S(\omega)$ of points ζ inside $\mathbb D$,

Theorem (G., Peres)

In the GAF Zero ensemble,

(i)The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and $Sum\ S(\omega)$ of points ζ inside $\mathbb D$, (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb D^{N(\omega)}$),

Theorem (G., Peres)

In the GAF Zero ensemble,

(i)The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and $Sum\ S(\omega)$ of points ζ inside $\mathbb D$, (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb D^{N(\omega)}$), "and nothing more"

Theorem (G., Peres)

- (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside $\mathbb D$, (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb D^{N(\omega)}$), "and nothing more"
- (ii)A.e. ω ,
- (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$,

Theorem (G., Peres)

- (i)The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and $Sum\ S(\omega)$ of points ζ inside $\mathbb D$, (so $\zeta \in constant\ sum$ hypersurface $\Sigma_{S(\omega)} \subset \mathbb D^{N(\omega)}$), "and nothing more" (ii)A.e. ω ,
- (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

Theorem (G., Peres)

- (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and $Sum\ S(\omega)$ of points ζ inside $\mathbb D$, (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb D^{N(\omega)}$), "and nothing more" (ii) A.e. ω ,
- (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on
- $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$

Theorem (G., Peres)

- (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and $Sum\ S(\omega)$ of points ζ inside $\mathbb D$, (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb D^{N(\omega)}$), "and nothing more" (ii) A.e. ω ,
- (a) $ho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on
- $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$
 - $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$
 - (c) $m(\omega)|\Delta(\zeta)|^2 \le f_{\omega}(\zeta) \le M(\omega)|\Delta(\zeta)|^2$ a.e.

Theorem (G., Peres)

In the GAF Zero ensemble,

- (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and $Sum\ S(\omega)$ of points ζ inside $\mathbb D$, (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb D^{N(\omega)}$), "and nothing more" (ii) A.e. ω ,
- (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on
- $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$
 - $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$
 - (c) $m(\omega)|\Delta(\zeta)|^2 \le f_{\omega}(\zeta) \le M(\omega)|\Delta(\zeta)|^2$ a.e.

$$\Sigma_{S(\omega)}$$
: constant sum hypersurface $\sum_{i=1}^{N(\omega)} \zeta_i = S(\omega)$ inside $\mathbb{D}^{N(\omega)}$

 $M(\omega)$, $m(\omega)$ and $\Delta(\zeta)$ are as before.

Given: outside zeroes of GAF
 Want: number of inside zeroes

- Given: outside zeroes of GAF
 Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$

- Given: outside zeroes of GAF
 Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$

- Given: outside zeroes of GAF
 Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in \mathcal{C}^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) $var[\int \varphi_L d\nu] = O(\frac{1}{L^2})$

- Given: outside zeroes of GAF
 Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in \mathcal{C}^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) $var[\int \varphi_L d\nu] = O(\frac{1}{L^2})$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)

- Given: outside zeroes of GAF
 Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in \mathcal{C}^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) $var[\int \varphi_L d\nu] = O(\frac{1}{L^2})$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$

- Given: outside zeroes of GAF
 Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in \mathcal{C}^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) $var[\int \varphi_L d\nu] = O(\frac{1}{L^2})$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu$

- Given: outside zeroes of GAF
 Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) $var[\int \varphi_L d\nu] = O(\frac{1}{L^2})$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu$
- Know outside zeroes \Rightarrow Know $\int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu \Rightarrow$ Compute $n(\mathbb{D})$ approximately, now let $L \to \infty$

• Put a disk of deterministic radius r around each point of a point process π .

- Put a disk of deterministic radius r around each point of a point process π .
- Two points are neighbours \iff their disks intersect.

- Put a disk of deterministic radius r around each point of a point process π .
- Two points are neighbours \iff their disks intersect.
- For Poisson point process, it is known that:
- \exists 0 < $r_{\rm crit}$ < ∞ such that for r < $r_{\rm crit}$, there is no infinite cluster a.s., and for r > $r_{\rm crit}$, there is an infinite cluster a.s.

- Put a disk of deterministic radius r around each point of a point process π .
- Two points are neighbours

 their disks intersect.
- For Poisson point process, it is known that:
- \exists 0 < $r_{\rm crit}$ < ∞ such that for r < $r_{\rm crit}$, there is no infinite cluster a.s., and for r > $r_{\rm crit}$, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.

- Put a disk of deterministic radius r around each point of a point process π .
- Two points are neighbours

 their disks intersect.
- For Poisson point process, it is known that:
- \exists 0 < $r_{\rm crit}$ < ∞ such that for r < $r_{\rm crit}$, there is no infinite cluster a.s., and for r > $r_{\rm crit}$, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way: what about correlated point processes?

- Put a disk of deterministic radius r around each point of a point process π .
- Two points are neighbours

 their disks intersect.
- For Poisson point process, it is known that:
- \exists 0 < $r_{\rm crit}$ < ∞ such that for r < $r_{\rm crit}$, there is no infinite cluster a.s., and for r > $r_{\rm crit}$, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way: what about correlated point processes? No "finite energy" either!

- Put a disk of deterministic radius r around each point of a point process π .
- For Poisson point process, it is known that:
- \exists 0 < $r_{\rm crit}$ < ∞ such that for r < $r_{\rm crit}$, there is no infinite cluster a.s., and for r > $r_{\rm crit}$, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way: what about correlated point processes? No "finite energy" either!

Theorem (G., Krishnapur, Peres)

For Gaussian zeroes and Ginibre eigenvalues, we establish both phase transition and uniqueness.

- Put a disk of deterministic radius r around each point of a point process π .
- For Poisson point process, it is known that:
- \exists 0 < $r_{\rm crit}$ < ∞ such that for r < $r_{\rm crit}$, there is no infinite cluster a.s., and for r > $r_{\rm crit}$, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way: what about correlated point processes? No "finite energy" either!

Theorem (G., Krishnapur, Peres)

For Gaussian zeroes and Ginibre eigenvalues, we establish both phase transition and uniqueness.

Uniqueness involves understanding of rigidity and tolerance.

Some Interesting Results en route

Theorem (Reconstruction of Gaussian Analytic Function, G.-Peres)

The zeroes of the GAF determine the function a.s. (up to a multiplicative factor of modulus 1). In other words, if ν denotes the zeroes of the GAF f, then \exists an analytic function $g(z) = \sum_{k=0}^{\infty} a_k(\nu) z^k$ such that $f(z) = \gamma . g(z)$ Here γ follows Unif(S^1) and is independent of ν .

Some Interesting Results en route

Theorem (Reconstruction of Gaussian Analytic Function, G.-Peres)

The zeroes of the GAF determine the function a.s. (up to a multiplicative factor of modulus 1). In other words, if ν denotes the zeroes of the GAF f, then \exists an analytic function $g(z) = \sum_{k=0}^{\infty} a_k(\nu) z^k$ such that $f(z) = \gamma . g(z)$ Here γ follows Unif(S^1) and is independent of ν .

Theorem (Stability of Inverse Sums, G.-Peres)

Let z denote the points of Ginibre ensemble. Then the random series $\sum_{|z|\uparrow} \frac{1}{z}$ converges almost surely, and in fact, has finite first moment.

Other Applications

Other Applications

- Sampling theory and rigidity
- A conjecture of Lyons-Steif

Other Applications

- Sampling theory and rigidity
- A conjecture of Lyons-Steif
- Studying mixtures of point processes

• For a discrete point set $\Lambda \subset \mathbb{R}$, consider the space of exponential functions $\mathcal{E}_{\Lambda} := \{e_{\lambda}(x) = e^{i\lambda x} : \lambda \in \Lambda\}$

- For a discrete point set $\Lambda \subset \mathbb{R}$, consider the space of exponential functions $\mathcal{E}_{\Lambda} := \{e_{\lambda}(x) = e^{i\lambda x} : \lambda \in \Lambda\}$
- $Span(\mathcal{E}_{\Lambda}) \subset L_2(-\pi,\pi)$.

- For a discrete point set $\Lambda \subset \mathbb{R}$, consider the space of exponential functions $\mathcal{E}_{\Lambda} := \{e_{\lambda}(x) = e^{i\lambda x} : \lambda \in \Lambda\}$
- $Span(\mathcal{E}_{\Lambda}) \subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?

- For a discrete point set $\Lambda \subset \mathbb{R}$, consider the space of exponential functions $\mathcal{E}_{\Lambda} := \{e_{\lambda}(x) = e^{i\lambda x} : \lambda \in \Lambda\}$
- $Span(\mathcal{E}_{\Lambda}) \subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)

- For a discrete point set $\Lambda \subset \mathbb{R}$, consider the space of exponential functions $\mathcal{E}_{\Lambda} := \{e_{\lambda}(x) = e^{i\lambda x} : \lambda \in \Lambda\}$
- $Span(\mathcal{E}_{\Lambda}) \subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)
- Classical results are parametrized by some sort of asymptotic density of Λ; complete if supercritical, incomplete if subcritical.

- For a discrete point set $\Lambda \subset \mathbb{R}$, consider the space of exponential functions $\mathcal{E}_{\Lambda} := \{e_{\lambda}(x) = e^{i\lambda x} : \lambda \in \Lambda\}$
- $Span(\mathcal{E}_{\Lambda}) \subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)
- Classical results are parametrized by some sort of asymptotic density of Λ; complete if supercritical, incomplete if subcritical.
- Tricky situation at criticality (density 1).

- For a discrete point set $\Lambda \subset \mathbb{R}$, consider the space of exponential functions $\mathcal{E}_{\Lambda} := \{e_{\lambda}(x) = e^{i\lambda x} : \lambda \in \Lambda\}$
- $Span(\mathcal{E}_{\Lambda}) \subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)
- Classical results are parametrized by some sort of asymptotic density of Λ; complete if supercritical, incomplete if subcritical.
- Tricky situation at criticality (density 1).
- What if pathological configurations are eliminated by choosing a "generic" point configuration - i.e., a point process?

Theorem (G.)

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x,\cdot) : x \in \Pi\} \subset \mathcal{H}$.

Theorem (G.)

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x,\cdot) : x \in \Pi\} \subset \mathcal{H}$. If Π is rigid, then we have $Span(\mathcal{E}_{\Pi}) = \mathcal{H}$ with probability 1.

Theorem (G.)

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x,\cdot) : x \in \Pi\} \subset \mathcal{H}$. If Π is rigid, then we have $Span(\mathcal{E}_{\Pi}) = \mathcal{H}$ with probability 1.

 Theorem + Fourier transform gives positive answer to the completeness question for Λ sampled from the sine kernel process.

Theorem (G.)

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x,\cdot) : x \in \Pi\} \subset \mathcal{H}$. If Π is rigid, then we have $Span(\mathcal{E}_{\Pi}) = \mathcal{H}$ with probability 1.

- Theorem + Fourier transform gives positive answer to the completeness question for Λ sampled from the sine kernel process.
- Theorem implies positive answer to analogous completeness question in 2-d for random exponentials (sampled from the Ginibre ensemble) inside the Fock Bargmann space.

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0,1,\dots,(k-1)$ moments of the points in $\mathbb D$

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0,1,\ldots,(k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb D^{N(\omega)}$ defined by $0,1,\ldots,(k-1)$ moments being conserved.

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0,1,\ldots,(k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb D^{N(\omega)}$ defined by $0,1,\ldots,(k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0,1,\dots,(k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb D^{N(\omega)}$ defined by $0,1,\ldots,(k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0,1,\dots,(k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb D^{N(\omega)}$ defined by $0,1,\ldots,(k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0,1,\ldots,(k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb D^{N(\omega)}$ defined by $0,1,\ldots,(k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)
- Natural point processes for Levels $k \ge 3$??

Latest work: in progress with Krishnapur

 k rigidity There is a family of analytic functions with Gaussian coefficients such that the points outside a disk determine the first k moments of the points inside, and "nothing more".

Latest work: in progress with Krishnapur

- k rigidity There is a family of analytic functions with Gaussian coefficients such that the points outside a disk determine the first k moments of the points inside, and "nothing more".
- Rigidity for dpp If a determinantal point process has a kernel which is a proper contraction, then it must be insertion and deletion tolerant.

Thank you !!