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Definition

S = {Sn, n ∈ N} a random walk in Zd .

ξ = {ξx , x ∈ Zd} i.i.d. random variables (the random scenery).

The random walk in random scenery:

Zn :=
n∑

k=1

ξSk , n ≥ 1.

P the product law of ξ, S .
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An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.
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Motivation

Links to other problems and models:

1. Energy function of a polymer in a random medium;

2. Random walks in randomly directed lattices;

3. Anomalous diffusion in layered random media (Matheron- De
Marsily model in hydrology)

Question:
What is the limiting distribution of (Zn)n≥1 ? Or what is its
continuous counterpart?
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Assumptions

Assumptions on the random scenery:

E [ξ0] = 0 and E
[
ξ2

0

]
= 1.

Assumptions on the random walk:

S is the simple random walk in Zd .
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Connection to the self-intersection local time of S

Nn(x) :=
∑n

k=1 1{Sk=x} the local time of S at x up to time n.

Zn =
∑n

k=1 ξSk =
∑

x∈Zd ξxNn(x).

E
[
Z 2
n |S
]

=
∑

x∈Zd N2
n(x) =

∑
1≤i ,j≤n 1{Si=Sj} =: In

In is the self-intersection local time of S up to time n.

Var(Zn) = E [In] ∼


Cn3/2 d = 1,
Cn log n d = 2,
Cn d ≥ 3.
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Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4, {W (x); x ∈ R} a two-sided real Brownian motion.
{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).
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What can we say about the persistence exponent of the processes
(Zn)n≥1 and (∆t)t≥0 ?

Redner and Majumdar conjectured (using physical arguments,
simulations and comparison with the FBM) that the persistence
exponent of ∆t should be equal to 1/4.

This was solved in (up to logarithmic factors):
Castell, F.; Guillotin-Plantard, N.; Pène, F.; Schapira, Br.
On the one-sided exit problem for stable processes in random
scenery. Electron. Commun. Probab. 18(33):1–7, 2013.
The proof heavily depends on the increments independence of the
process Y .
Is it possible to compute the persistence exponent without it? for
more general processes Y ?
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W = {W (x); x ∈ R} a standard two-sided real Brownian motion

Y = {Y (t); t ≥ 0} a self-similar process of index γ ∈ (0, 2), with

stationary increments. W and Y are independent.

There exists a jointly continuous version {Lt(x); x ∈ R, t ≥ 0} of
the local time of Y .
The random process in Brownian scenery {∆t ; t ≥ 0}

∆t =

∫
R
Lt(x) dW (x).

The process ∆ is itself a h-self-similar process with stationary
increments, with

h := 1− γ

2
.
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Our result

Let

V1 :=

∫
R
L2

1(x) dx ” = ”

∫ 1

0

∫ 1

0
δ0(Yt − Ys) dsdt

be the self-intersection local time of Y .

(H1) ∃ α > 1,C > 0, c > 0 s.t. for any t ≥ 0,

P[V1 ≥ t] ≤ C exp(−ctα).

(H2) ∃ β > 0,C > 0, c > 0 s.t. for any t > 0,

P[V1 ≤ t] ≤ C exp(−ct−β).

Theorem (F. Castell, N. G-P, F. Watbled, 2014)

Assume (H1) and (H2) hold. ∃c > 0, s.t. for T large enough,

T−γ/2(lnT )−c ≤ P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ T−γ/2(lnT )+c .

N. Guillotin Persistence exponent for RP in BS
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P[V1 ≤ t] ≤ C exp(−ct−β).

Theorem (F. Castell, N. G-P, F. Watbled, 2014)

Assume (H1) and (H2) hold. ∃c > 0, s.t. for T large enough,

T−γ/2(lnT )−c ≤ P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ T−γ/2(lnT )+c .
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Examples of Processes Y satisfying our assumptions

1. Stable Lévy process with index δ ∈ (1, 2] with γ = 1
δ , α = δ,

and β = δ
2δ−1 .

2. Fractional Brownian motion with Hurst index H ∈ (0, 1) with
γ = H, α = 1/H, and β = 2.

3. Iterated Brownian motion with γ = 1/4, α = β = 4/3.
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Lower bound
Upper bound: The main idea

Aurzada and Molchan’s approach for FBM

Theorem (Molchan, 1999 + Aurzada, 2011)
Let {Xt ; t ≥ 0} be a continuous process, self-similar with index
h > 0, with stationary increments s.t. for every θ > 0,

E
[

exp
(
θ max
t∈[0,1]

|Xt |
)]

< +∞.

Then, there exists c > 0 s.t. for T large enough,

T−(1−h)(lnT )−c ≤ P
[

sup
t∈[0,T ]

Xt ≤ 1
]
.
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Upper bound: The main idea

Given Y , the process {∆t , t ≥ 0} is a centered Gaussian process
with covariance matrix

E[∆s∆t |Y ] =

∫
R
Ls(x)Lt(x)dx ≥ 0.

Moreover, for any 0 < s < t,

E[∆s(∆t −∆s)|Y ] =

∫
R
Ls(x)(Lt(x)− Ls(x))dx ≥ 0.

Use Slepian’s Lemma conditionally to Y and then integrate with
respect to the law of Y .
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• Persistence exponent of the discrete model

Zn =
n∑

k=1

ξSk , n ≥ 1

with ξx ∈ {±1}, {Sn, n ≥ 0} the simple random walk in Z?

Conjecture 1: As n→ +∞,

P[ max
1≤k≤n

Zk ≤ 1] ∼ C n−1/4.

• What can we say if {W (x), x ∈ R} is not a Brownian motion but
a two-sided β-stable Lévy process, with β ∈ (1, 2)?
Conjecture 2: The persistence exponent should be equal to

h =
β − 1

αβ
.
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a two-sided β-stable Lévy process, with β ∈ (1, 2)?
Conjecture 2: The persistence exponent should be equal to

h =
β − 1

αβ
.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Open problems

• Persistence exponent of the discrete model

Zn =
n∑

k=1

ξSk , n ≥ 1

with ξx ∈ {±1}, {Sn, n ≥ 0} the simple random walk in Z?
Conjecture 1: As n→ +∞,

P[ max
1≤k≤n

Zk ≤ 1] ∼ C n−1/4.

• What can we say if {W (x), x ∈ R} is not a Brownian motion but
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Thank you for your attention!
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