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Definition

S = {Sn, n ∈ N} a random walk in Zd .

ξ = {ξx , x ∈ Zd} i.i.d. random variables (the random scenery).

The random walk in random scenery:

Zn :=
n∑

k=1

ξSk , n ≥ 1.

P the product law of ξ, S .
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An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

An example

d = 2, ξx ∈ {+1,−1}, S nearest-neighbour.

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

Motivation

Links to other problems and models:

1. Energy function of a polymer in a random medium;

2. Random walks in randomly directed lattices;

3. Anomalous diffusion in layered random media (Matheron- De
Marsily model in hydrology)

Question:
What is the limiting distribution of (Zn)n≥1 ? Or what is its
continuous counterpart?
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Assumptions

Assumptions on the random scenery:

E [ξ0] = 0 and E
[
ξ2

0

]
= 1.

Assumptions on the random walk:

S is the simple random walk in Zd .
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Connection to the self-intersection local time of S

Nn(x) :=
∑n

k=1 1{Sk=x} the local time of S at x up to time n.

Zn =
∑n

k=1 ξSk =
∑

x∈Zd ξxNn(x).

E
[
Z 2
n |S
]

=
∑

x∈Zd N2
n(x) =

∑
1≤i ,j≤n 1{Si=Sj} =: In

In is the self-intersection local time of S up to time n.

Var(Zn) = E [In] ∼


Cn3/2 d = 1,
Cn log n d = 2,
Cn d ≥ 3.
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Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4, {W (x); x ∈ R} a two-sided real Brownian motion.
{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4,

{W (x); x ∈ R} a two-sided real Brownian motion.
{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4, {W (x); x ∈ R} a two-sided real Brownian motion.

{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4, {W (x); x ∈ R} a two-sided real Brownian motion.
{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4, {W (x); x ∈ R} a two-sided real Brownian motion.
{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4, {W (x); x ∈ R} a two-sided real Brownian motion.
{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

Limit theorems

Z[nt]

an
⇒ ∆t under P ?

d = 1 : Kesten-Spitzer ’79, and Borodin ’79.
an = n3/4, {W (x); x ∈ R} a two-sided real Brownian motion.
{Y (t); t ≥ 0} a Brownian motion, independent of W .
{Lt(x), x ∈ R, t ≥ 0} local time of Y .

∆t :=

∫
R
Lt(x)dW (x).

Remark: (∆t)t≥0 is neither Gaussian, nor Markovian.

d = 2 : an =
√
n log n, ∆ Brownian motion (Bolthausen ’89).

d ≥ 3 : an =
√
n , ∆ Brownian motion (Spitzer’s Book ’76).

N. Guillotin Persistence exponent for RP in BS



Outline
Introduction

Sketch of the proofs
Open problems

Definition of the discrete model
Motivation
Historical overview
Our result

What can we say about the persistence exponent of the processes
(Zn)n≥1 and (∆t)t≥0 ?

Redner and Majumdar conjectured (using physical arguments,
simulations and comparison with the FBM) that the persistence
exponent of ∆t should be equal to 1/4.

This was solved in (up to logarithmic factors):
Castell, F.; Guillotin-Plantard, N.; Pène, F.; Schapira, Br.
On the one-sided exit problem for stable processes in random
scenery. Electron. Commun. Probab. 18(33):1–7, 2013.
The proof heavily depends on the increments independence of the
process Y .
Is it possible to compute the persistence exponent without it? for
more general processes Y ?
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W = {W (x); x ∈ R} a standard two-sided real Brownian motion

Y = {Y (t); t ≥ 0} a self-similar process of index γ ∈ (0, 2), with

stationary increments. W and Y are independent.

There exists a jointly continuous version {Lt(x); x ∈ R, t ≥ 0} of
the local time of Y .
The random process in Brownian scenery {∆t ; t ≥ 0}

∆t =

∫
R
Lt(x) dW (x).

The process ∆ is itself a h-self-similar process with stationary
increments, with

h := 1− γ

2
.
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Our result

Let

V1 :=

∫
R
L2

1(x) dx ” = ”

∫ 1

0

∫ 1

0
δ0(Yt − Ys) dsdt

be the self-intersection local time of Y .

(H1) ∃ α > 1,C > 0, c > 0 s.t. for any t ≥ 0,

P[V1 ≥ t] ≤ C exp(−ctα).

(H2) ∃ β > 0,C > 0, c > 0 s.t. for any t > 0,

P[V1 ≤ t] ≤ C exp(−ct−β).

Theorem (F. Castell, N. G-P, F. Watbled, 2014)

Assume (H1) and (H2) hold. ∃c > 0, s.t. for T large enough,

T−γ/2(lnT )−c ≤ P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ T−γ/2(lnT )+c .

N. Guillotin Persistence exponent for RP in BS
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T−γ/2(lnT )−c ≤ P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ T−γ/2(lnT )+c .
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Let

V1 :=

∫
R
L2

1(x) dx ” = ”

∫ 1

0

∫ 1

0
δ0(Yt − Ys) dsdt
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Examples of Processes Y satisfying our assumptions

1. Stable Lévy process with index δ ∈ (1, 2] with γ = 1
δ , α = δ,

and β = δ
2δ−1 .

2. Fractional Brownian motion with Hurst index H ∈ (0, 1) with
γ = H, α = 1/H, and β = 2.

3. Iterated Brownian motion with γ = 1/4, α = β = 4/3.
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Upper bound: The main idea

Aurzada and Molchan’s approach for FBM

Theorem (Molchan, 1999 + Aurzada, 2011)
Let {Xt ; t ≥ 0} be a continuous process, self-similar with index
h > 0, with stationary increments s.t. for every θ > 0,

E
[

exp
(
θ max
t∈[0,1]

|Xt |
)]

< +∞.

Then, there exists c > 0 s.t. for T large enough,

T−(1−h)(lnT )−c ≤ P
[

sup
t∈[0,T ]

Xt ≤ 1
]
.
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Upper bound: The main idea

Given Y , the process {∆t , t ≥ 0} is a centered Gaussian process
with covariance matrix

E[∆s∆t |Y ] =

∫
R
Ls(x)Lt(x)dx ≥ 0.

Moreover, for any 0 < s < t,

E[∆s(∆t −∆s)|Y ] =

∫
R
Ls(x)(Lt(x)− Ls(x))dx ≥ 0.

Use Slepian’s Lemma conditionally to Y and then integrate with
respect to the law of Y .
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• Persistence exponent of the discrete model

Zn =
n∑

k=1

ξSk , n ≥ 1

with ξx ∈ {±1}, {Sn, n ≥ 0} the simple random walk in Z?

Conjecture 1: As n→ +∞,

P[ max
1≤k≤n

Zk ≤ 1] ∼ C n−1/4.

• What can we say if {W (x), x ∈ R} is not a Brownian motion but
a two-sided β-stable Lévy process, with β ∈ (1, 2)?
Conjecture 2: The persistence exponent should be equal to

h =
β − 1

αβ
.
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Thank you for your attention!
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