

A solution selection problem with small stable perturbations

Michael Högele (U Potsdam)

joint work with

Franco Flandoli (U Pisa)

Darmstadt, Jul 17, 2014

Well-posed ordinary differential equations in \mathbb{R}^d ... perturbed by small noise

 $\mathbf{dX}^{\varepsilon} = \mathbf{b}(\mathbf{X}^{\varepsilon})\mathbf{dt} + \varepsilon\mathbf{dW}, \qquad \mathbf{X}(\mathbf{0}) = \mathbf{x} \in \mathbb{R}^{\mathbf{d}}, \qquad \varepsilon > \mathbf{0}$

Huge literature on related topics:

- First exit problems, Freidlin-Wentsell theory, Persistence probabilities
- Invariant measures, Hitting probabilities, Metastability etc.

But in general:

$$\mathcal{L}(\mathbf{X}^{\varepsilon}) \xrightarrow{\mathbf{w}} \delta_{\mathbf{X}^{\mathbf{0}}}, \qquad \varepsilon \to \mathbf{0} + .$$

III-posed ordinary differential equations in \mathbb{R}^d ...

 $\dot{\mathbf{X}} = \mathbf{b}(\mathbf{X}), \qquad \mathbf{X}(\mathbf{0}) = \mathbf{x} \in \mathbb{R}^d$

- e.g. Characteristics of the transport equation
- Mild ill-posedness: Non-uniqueness of the solution
- \bullet Dimension 1 as a test case

III-posed ordinary differential equations in \mathbb{R}^d ...

$$\dot{\mathbf{X}} = \mathbf{b}(\mathbf{X}), \qquad \mathbf{X}(\mathbf{0}) = \mathbf{x}_{\mathbf{0}} \in \mathbb{R}^{\mathbf{d}}$$

Peano phenomenon:¹ Let $\mathbf{b} : \mathbb{R} \to \mathbb{R}$ continuous.

- 1. $\mathbf{b}(\mathbf{x_0}) \neq \mathbf{0},$ there is a unique local solution around $\mathbf{x_0}$
- 2. $\mathbf{b}(\mathbf{x_0}) = 0$, $\mathbf{x_0}$ isolated zero of \mathbf{b} . Then there exists a non-constant local solution around $\mathbf{x_0}$ if and only if one of the two cases is satisfied

(a) $\mathbf{b}(\mathbf{y}) > \mathbf{0}$ for $\mathbf{y} > \mathbf{x_0}$ and

$$\int_{x_0}^{x_0+r} \frac{1}{b(y)} dy < \infty$$

(b) $\mathbf{b}(\mathbf{y}) < \mathbf{0}$ for $\mathbf{y} < \mathbf{x}_0$ and

$$\int_{x_0}^{x_0-r}\frac{1}{b(y)}dy<\infty.$$

¹Petrov: Ordinary differential equations, Prentice-Hall, 1966

Paradigmatic Example:

$$\mathbf{b}(\mathbf{x}) = \mathbf{B}^+ |\mathbf{x}|^{\beta^+} \mathbf{1} \{\mathbf{x} \ge \mathbf{0}\} - \mathbf{B}^- |\mathbf{x}|^{\beta^-} \mathbf{1} \{\mathbf{x} \ge \mathbf{0}\}$$

for $\mathbf{B}^+, \mathbf{B}^- > \mathbf{0}$ and $\beta^+, \beta^- \in (\mathbf{0}, \mathbf{1})$.

The set of solutions of $\dot{\mathbf{u}}=\mathbf{b}(\mathbf{u})$ is known to be $\mathbf{t}\geqslant\mathbf{t}'\geqslant\mathbf{0}$

$$\mathbf{u}(\mathbf{t};\mathbf{t}',\mathbf{x}) = \begin{cases} \left(\mathbf{B}^{+}(\mathbf{1}-\beta^{+})(\mathbf{t}-\mathbf{t}')+\mathbf{x}^{\mathbf{1}-\beta^{+}}\right)^{\frac{1}{\mathbf{1}-\beta^{+}}} & \mathbf{x} \geqslant \mathbf{0} \\ (\mathbf{B}^{+}(\mathbf{1}-\beta^{+}))^{\frac{1}{\mathbf{1}-\beta^{+}}}(\mathbf{t}-\mathbf{t}'-\mathbf{s})^{\frac{1}{\mathbf{1}-\beta^{+}}} & \mathbf{x} = \mathbf{0}, \mathbf{s} \geqslant \mathbf{0} \\ (\mathbf{B}^{-}(\mathbf{1}-\beta^{-}))^{\frac{1}{\mathbf{1}-\beta^{+}}}(\mathbf{t}-\mathbf{t}'-\mathbf{s})^{\frac{1}{\mathbf{1}-\beta^{-}}} & \mathbf{x} = \mathbf{0}, \mathbf{s} \geqslant \mathbf{0} \\ \left(-\mathbf{B}^{-}(\mathbf{1}-\beta^{-})(\mathbf{t}-\mathbf{t}')+\mathbf{x}^{\mathbf{1}-\beta^{-}}\right)^{\frac{1}{\mathbf{1}-\beta^{-}}} & \mathbf{x} \leqslant \mathbf{0}' \end{cases}$$

Ill-posed ordinary differential equations in \mathbb{R}^d ... perturbed by noise

 $\mathbf{d}\mathbf{X}^{\varepsilon} = \mathbf{b}(\mathbf{X}^{\varepsilon})\mathbf{d}\mathbf{t} + \varepsilon\mathbf{d}\mathbf{W}, \qquad \mathbf{X}(\mathbf{0}) = \mathbf{x} \in \mathbb{R}^{\mathbf{d}}$

- \bullet There exists a unique strong solution for any Wiener Process ${\rm W}$
- It has the strong Markov property
- \bullet Remains true for W replaced by an $\alpha\text{-stable process }L$ with absolutely continuous laws

Bafico and Baldi: A solution selection problem²,

Theorem:

Denote by $\mathbf{P}^{\mathbf{0}}_{\varepsilon}$ the law of \mathbf{X}^{ε}

$$\mathbf{d}\mathbf{X}^{\varepsilon} = \mathbf{b}(\mathbf{X}^{\varepsilon})\mathbf{d}\mathbf{t} + \varepsilon\mathbf{d}\mathbf{W}, \qquad \mathbf{X}(\mathbf{0}) = \mathbf{0} \in \mathbb{R}^{\mathbf{d}}, \varepsilon > \mathbf{0}$$

and
$$\tau_{\mathbf{r}}^{\varepsilon} = \inf\{\mathbf{t} > \mathbf{0} \mid \mathbf{X}_{\mathbf{t}}^{\varepsilon} \notin [-\mathbf{r}, \mathbf{r}]\}$$
 for $\mathbf{r} > \mathbf{0}$.
Then

$$\mathbf{P}^{\mathbf{0}}_{\varepsilon} \xrightarrow{\mathbf{w}} \mathbf{p}^{+} \delta_{\mathbf{x}^{+}} + \mathbf{p}^{-} \delta_{\mathbf{x}^{-}}, \qquad \text{ as } \varepsilon \to \mathbf{0},$$

for the extremal solutions

$$\mathbf{x}^{\pm}(\mathbf{t}) = \pm \mathbf{C}^{\pm} \mathbf{t}^{\frac{1}{1-\beta^{\pm}}}, \qquad \mathbf{t} \ge \mathbf{0}$$

$$\mathbf{p}^{+} = \begin{cases} \mathbf{1} & \text{if } \beta^{+} < \beta^{-} \\ \frac{(\mathbf{B}^{-})^{-\frac{1}{1+\beta}}}{(\mathbf{B}^{+})^{-\frac{1}{1+\beta}} + (\mathbf{B}^{-})^{-\frac{1}{1+\beta}}} & \text{if } \beta^{+} = \beta^{-} =: \beta \\ \mathbf{0} & \text{if } \beta^{+} > \beta^{-}. \end{cases}$$

²Small Random perturbations of Peano Phenomena, Stochastics, (6), 279–292

Proof of Bafico and Baldi ³,

• $\phi_{\varepsilon}(\mathbf{x}) := \mathbb{P}(\omega \in \mathcal{C}([\mathbf{0}, \infty), \mathbb{R}) \text{ with } \tau(\omega) < \infty \text{ and } \omega(\tau) = \mathbf{r})$ solves

$$rac{arepsilon^2}{2}\phi_arepsilon''(\mathbf{x})+\mathbf{b}(\mathbf{x})\phi_arepsilon'(\mathbf{x})=-\mathbf{1},\qquad \phi_arepsilon(-\mathbf{r})=\mathbf{0},\quad \phi_arepsilon(\mathbf{r})=\mathbf{1}.$$

• Explicit solution and explicit calculation

$$egin{aligned} \phi_arepsilon(\mathbf{x}) &= rac{-\mathbf{A}_arepsilon(-\mathbf{r})}{\mathbf{A}_arepsilon(\mathbf{r}) - \mathbf{A}_arepsilon(-\mathbf{r})} \ \mathbf{A}_arepsilon(\mathbf{x}) &= \int_{\mathbf{0}}^{\mathbf{x}} \expig(-rac{2}{arepsilon^2} \int_{\mathbf{0}}^{\mathbf{t}} \mathbf{b}(\mathbf{s}) \mathbf{ds}ig) \mathbf{dt}. \end{aligned}$$

³Small Random perturbations of Peano Phenomena, Stochastics, (6), 279–292

Flandoli, Delarue: Reproof based on self-similarity ⁴

Proposition 1: Let $\mathbf{B} = \mathbf{B}^+ = \mathbf{B}^-$ and $\beta = \beta^+ = \beta^-$. There are functions $(\mathbf{t}_{\varepsilon}, \Theta_{\varepsilon}) \searrow \mathbf{0}$ + such that

$$\lim_{\varepsilon \to 0} \mathbf{P}^{\mathbf{0}}_{\varepsilon}(\tau_{\Theta_{\varepsilon}} > \mathbf{t}_{\varepsilon}) = \mathbb{P}(|\mathbf{W}_{1}| \leq 2) < 1.$$

and as a consequence for any $\mathbf{\tilde{t}}_{\varepsilon}/\mathbf{t}_{\varepsilon}\to\infty$ as $\varepsilon\to\mathbf{0}$

$$\lim_{\varepsilon\to 0}\mathbf{P}^{\mathbf{0}}_{\varepsilon}(\tau_{\Theta_{\varepsilon}}>\mathbf{\tilde{t}}_{\varepsilon})=\mathbf{0}.$$

⁴The transition point in the zero noise limit for a 1 D Peano example, *Discrete Contin. Dyn. Syst.*, **34** (2014), n.10, 4071-4083.

Flandoli and Delarue: A proof based on self-similarity ⁵

Proof: Assume there are $(\mathbf{t}_{\varepsilon}, \boldsymbol{\Theta}_{\varepsilon})$ as above.

•
$$\tau_{\Theta_{\varepsilon}} > t_{\varepsilon}$$
 implies $|\mathbf{X}_{t}^{\varepsilon}| \leqslant \Theta_{\varepsilon}$ for all $\mathbf{t} \leqslant \mathbf{t}_{\varepsilon}$
 $\varepsilon |\mathbf{W}_{t}| \leqslant |\mathbf{X}_{t}^{\varepsilon}| + \int_{0}^{t} |\mathbf{b}(\mathbf{X}_{x}^{\varepsilon})| d\mathbf{t} \leqslant \Theta_{\varepsilon} + \mathbf{B} t_{\varepsilon} \Theta_{\varepsilon}^{\beta}$

• Assume $\mathbf{Bt}_{\varepsilon} \mathbf{\Theta}_{\varepsilon}^{\beta} = \mathbf{\Theta}_{\varepsilon}$. Then

$$arepsilon |\mathbf{W}_{\mathbf{t}}| \leqslant 2 \Theta_{arepsilon} \qquad orall \, \mathbf{t} \leqslant \mathbf{t}_{arepsilon},$$

in particular $\varepsilon |\mathbf{W}_{\mathbf{t}_{\varepsilon}}| \leq 2\Theta_{\varepsilon}$.

• Hence

$$\mathbf{P}_{\varepsilon}^{\mathbf{0}}(\tau_{\boldsymbol{\Theta}_{\varepsilon}} > \mathbf{t}_{\varepsilon}) \leqslant \mathbf{P}_{\varepsilon}^{\mathbf{0}}(\varepsilon | \mathbf{W}_{\mathbf{t}_{\varepsilon}} | \leqslant \mathbf{2}\boldsymbol{\Theta}_{\varepsilon}) = \mathbf{P}_{\varepsilon}^{\mathbf{0}}(|\mathbf{t}_{\varepsilon}^{-\frac{1}{2}}\mathbf{W}_{\mathbf{t}_{\varepsilon}}| \leqslant \mathbf{2}\frac{\boldsymbol{\Theta}_{\varepsilon}}{\varepsilon \mathbf{t}_{\varepsilon}^{\frac{1}{2}}})$$

• Assume further $\Theta_{\varepsilon} = \varepsilon \mathbf{t}_{\varepsilon}^{\frac{1}{2}}$ then

$$\mathbf{P}_{\varepsilon}^{\mathbf{0}}(\tau_{\boldsymbol{\Theta}_{\varepsilon}} > \mathbf{t}_{\varepsilon}) = \mathbb{P}(|\mathbf{W}_{\mathbf{1}}| \leqslant \mathbf{2}) < \mathbf{1}$$

⁵The transition point in the zero noise limit for a 1 D Peano example, *Discrete Contin. Dyn. Syst.*, **34** (2014), n.10, 4071-4083.

Solving

$$\begin{aligned} \mathbf{B}\mathbf{t}_{\varepsilon}\mathbf{\Theta}_{\varepsilon}^{\beta} &= \mathbf{\Theta}_{\varepsilon}\\ \mathbf{\Theta}_{\varepsilon} &= \varepsilon\mathbf{t}_{\varepsilon}^{\frac{1}{2}} \end{aligned}$$

yields

$$\mathbf{t}_{\varepsilon} = \frac{\varepsilon^{2\frac{1-\beta}{1+\beta}}}{\mathbf{B}^{1+\beta}} = \frac{\varepsilon^{2\frac{1-\beta}{2+\beta-1}}}{\mathbf{B}^{1+\beta}}, \qquad \Theta_{\varepsilon} = \frac{\varepsilon^{\frac{2}{1+\beta}}}{\mathbf{B}^{1+\beta}} = \frac{\varepsilon^{\frac{2}{2+\beta-1}}}{\mathbf{B}^{\frac{1+\beta}{2}}} = \frac{\varepsilon^{\frac{2(1-\beta)}{2+\beta-1+\beta(2+\beta-1)}}}{\mathbf{B}^{\frac{1+\beta}{2}}}.$$

Note that

$$\Theta_{\varepsilon} = \mathbf{x}_{\mathbf{t}_{\varepsilon}}^+.$$

– $(t_{\varepsilon}, \Theta_{\varepsilon})$ defines a scale of space-time points, close to which the strenght of the noise matches the drift.

Flandoli, Delarue: larger values ⁶

Proposition 2: For $\mathbf{B} = \mathbf{B}^+ = \mathbf{B}^-$ and $\beta = \beta^+ = \beta^-$, $\gamma \in (0, 1)$ and any $\tilde{\Theta}_{\varepsilon} / \Theta_{\varepsilon} \to \infty$ we have

$$\lim_{\varepsilon \to \mathbf{0}} \inf_{\mathbf{x} \ge \tilde{\mathbf{\Theta}}_{\varepsilon}} \mathbb{P}(\mathbf{X}_{\mathbf{t}}^{\mathbf{x},\varepsilon} \ge (\mathbf{1} - \gamma)\mathbf{x}_{\mathbf{t}}^{+} \quad \forall \mathbf{t} \ge \mathbf{0}) = \mathbf{1}.$$

- Indirect argument using the continuity of the paths of \mathbf{X}^{ε} .
- Proposition 1, the strong Markov property and Proposition 2 together prove the desired result, in this case

$$\mathbf{P}^{\mathbf{0}}_{\varepsilon} \rightarrow \frac{1}{2} \delta_{\mathbf{x}^{+}} + \frac{1}{2} \delta_{\mathbf{x}^{-}}, \quad \text{ for } \varepsilon \rightarrow \mathbf{0}$$

⁶The transition point in the zero noise limit for a 1 D Peano example, *Discrete Contin. Dyn. Syst.*, **34** (2014), n.10, 4071-4083.

Extension to α **-stable perturbations**

- Let L be a strictly α -stable process, for $\alpha \in (0, 2)$.
- Selfsimiliarity: Then there exists $\gamma_0 \in \mathbb{R}$ such that for any a > 0.

$$(\mathbf{X}_{\mathbf{at}})_{\mathbf{t} \ge \mathbf{0}} \stackrel{\mathrm{d}}{=} (\mathbf{a}^{\frac{1}{\alpha}} \mathbf{X}_{\mathbf{t}})_{\mathbf{t} \ge \mathbf{0}}.$$

• Consider

$$\mathbf{d}\mathbf{X}^{\varepsilon} = \mathbf{b}(\mathbf{X}^{\varepsilon})\mathbf{d}\mathbf{t} + \varepsilon\mathbf{d}\mathbf{L}, \qquad \mathbf{X}^{\varepsilon}(\mathbf{0}) = \mathbf{0}.$$

with
$$\mathbf{b}(\mathbf{x}) = \mathbf{B}^+ |\mathbf{x}|^{\beta^+} \mathbf{1}\{\mathbf{x} \ge \mathbf{0}\} - \mathbf{B}^- |\mathbf{x}|^{\beta^-} \mathbf{1}\{\mathbf{x} \ge \mathbf{0}\}$$

for $\mathbf{B}^+, \mathbf{B}^- > \mathbf{0}, \beta^+, \beta^- \in (\mathbf{0}, \mathbf{1}).$

Extension to α -stable perturbations

Question:

$$\mathbf{P}^{\mathbf{0}}_{\varepsilon} \rightarrow \mathbf{p}^{+} \delta_{\mathbf{x}^{+}} + \mathbf{p}^{-} \delta_{\mathbf{x}^{-}}$$

Difficulties:

- Integral/ inegro-differential equation to solve
- L, has arbitrarily large jumps, for any $\varepsilon > 0$, $|\mathbf{X}^{\varepsilon} \mathbf{x}^{+}|_{\infty}$ will be very large.
- Asymmetries of $\mathbf{B}^+, \mathbf{B}^- > \mathbf{0}, \beta^+, \beta^- \in (\mathbf{0}, \mathbf{1}) \in \mathbb{R}$

A proof based on self-similarity ⁷

Proposition 1: Under the previous assumptions and

 $\alpha > \mathbf{1} - (\beta^+ \wedge \beta^-)$

there are functions $(t_{\varepsilon}, \Theta_{\varepsilon}^+, \Theta_{\varepsilon}^-) \searrow 0+$ such that

$$\lim_{\varepsilon \to \mathbf{0}} \mathbb{P}\left(\tau_{-\mathbf{\Theta}_{\varepsilon}^{-},\mathbf{\Theta}_{\varepsilon}^{+}} > \mathbf{t}_{\varepsilon}\right) < \mathbf{1}$$

and as a consequence for any ${\bf \tilde t}_\varepsilon/{\bf t}_\varepsilon\to\infty$ as $\varepsilon\to 0$ we have

$$\lim_{\varepsilon \to \mathbf{0}} \mathbf{P}^{\mathbf{0}}_{\varepsilon}(\tau_{-\boldsymbol{\Theta}^{-}_{\varepsilon},\boldsymbol{\Theta}^{+}_{\varepsilon}} > \mathbf{\tilde{t}}_{\varepsilon}) = \mathbf{0}.$$

⁷Flandoli, Högele: A solution selection problem for small stable perturbations, http://arxiv.org/abs/1407.3469

A proof based on self-similarity ⁸

Proof: Assume there are $(\mathbf{t}_{\varepsilon}, \Theta_{\varepsilon}^+, \Theta_{\varepsilon}^-)$ as above.

•
$$au_{-\Theta_{\varepsilon}^{-},\Theta_{\varepsilon}^{+}} > t_{\varepsilon} \text{ implies } -\Theta_{\varepsilon}^{-} \leqslant X_{t}^{\varepsilon} \leqslant \Theta_{\varepsilon}^{+} \text{ for all } t \leqslant t_{\varepsilon}$$

 $\varepsilon \mathbf{L}_{t} \leqslant \mathbf{X}_{t}^{\varepsilon} + \int_{0}^{t} \mathbf{B}^{-} (\mathbf{X}_{s}^{\varepsilon})^{\beta^{-}} \mathbf{ds} \leqslant \Theta_{\varepsilon}^{+} + \mathbf{B}^{-} \mathbf{t}_{\varepsilon} (\Theta_{\varepsilon}^{-})^{\beta^{-}}$

• Assume
$$\mathbf{B}^- \mathbf{t}_{\varepsilon} (\Theta_{\varepsilon}^-)^{\beta^-} = \Theta_{\varepsilon}^+$$
. Then
 $\varepsilon \mathbf{L}_t \leqslant 2\Theta_{\varepsilon} \quad \forall \ \mathbf{t} \leqslant \mathbf{t}_{\varepsilon}.$
• Assume $\mathbf{B}^+ \mathbf{t}_{\varepsilon} (\Theta_{\varepsilon}^+)^{\beta^+} = \Theta_{\varepsilon}^+$. Then by symmetry
 $\varepsilon \mathbf{L}_t \geqslant -2\Theta_{\varepsilon}^- \quad \forall \ \mathbf{t} \leqslant \mathbf{t}_{\varepsilon}.$

• In particular

$$-2\Theta_arepsilon^-\leqslantarepsilon {
m L}_{{
m t}_arepsilon}\leqslant2\Theta_arepsilon^+$$

⁸A solution selection problem for small stable perturbations,

• In particular

$$-2\Theta_arepsilon^-\leqslantarepsilon{
m L}_{{f t}_arepsilon}\leqslant2\Theta_arepsilon^+$$
 .

• Hence

$$\mathbf{P}_{\varepsilon}^{\mathbf{0}}(\tau_{\Theta_{\varepsilon}} > \mathbf{t}_{\varepsilon}) \leqslant \mathbb{P}(-2\Theta_{\varepsilon}^{-} \leqslant \varepsilon \mathbf{L}_{\mathbf{t}_{\varepsilon}} \leqslant 2\Theta_{\varepsilon}^{+}) = \mathbb{P}(-2\frac{\Theta_{\varepsilon}^{-}}{\varepsilon \mathbf{t}_{\varepsilon}^{\frac{1}{\alpha}}} \leqslant \mathbf{t}_{\varepsilon}^{-\frac{1}{\alpha}} \mathbf{L}_{\mathbf{t}_{\varepsilon}} \leqslant 2\frac{\Theta_{\varepsilon}^{+}}{\varepsilon \mathbf{t}_{\varepsilon}^{\frac{1}{\alpha}}})$$

• Assume in addition $\Theta_{\varepsilon}^+ \wedge \Theta_{\varepsilon}^- = \varepsilon \mathbf{t}_{\varepsilon}^{\frac{1}{\alpha}}$, w.l.o.g. $\Theta_{\varepsilon}^+ = \Theta_{\varepsilon}^+ \wedge \Theta_{\varepsilon}^-$. Then

$$\lim_{\varepsilon \to 0} \mathbf{P}^{\mathbf{0}}_{\varepsilon}(\tau_{\Theta_{\varepsilon}} > \mathbf{t}_{\varepsilon}) \leqslant \mathbb{P}(\mathbf{L}_{1} \leqslant \mathbf{2}) < \mathbf{1}.$$

Solving

$$\begin{split} \mathbf{B}^{-}\mathbf{t}_{\varepsilon}(\mathbf{\Theta}_{\varepsilon}^{-})^{\beta^{-}} &= \mathbf{\Theta}_{\varepsilon}^{+} \\ \mathbf{B}^{+}\mathbf{t}_{\varepsilon}(\mathbf{\Theta}_{\varepsilon}^{+})^{\beta^{+}} &= \mathbf{\Theta}_{\varepsilon}^{+} \\ \mathbf{\Theta}_{\varepsilon}^{+} \wedge \mathbf{\Theta}_{\varepsilon}^{-} &= \varepsilon \mathbf{t}_{\varepsilon}^{\frac{1}{\alpha}} \end{split}$$

yields

$$\mathbf{t}_{\varepsilon} = \frac{\varepsilon^{\alpha(1-\beta^{*}\beta^{\circ})}}{(\mathbf{B}^{\circ})^{\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1)}} (\mathbf{B}^{*})^{\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1)}},$$

$$\boldsymbol{\Theta}_{\varepsilon}^{+} = \frac{(\mathbf{B}^{-})^{\frac{1}{1-\beta^{\circ}\beta^{*}}} (\mathbf{B}^{+})^{\frac{\beta^{-}}{1-\beta^{\circ}\beta^{*}}}}{(\mathbf{B}^{\circ})^{\frac{\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1)}{(\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1))}} (\mathbf{B}^{*})^{\frac{\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1)}{(\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1))}} \varepsilon^{\frac{\alpha(1+\beta^{-})}{\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1)}},$$

$$\boldsymbol{\Theta}_{\varepsilon}^{-} = \frac{(\mathbf{B}^{+})^{\frac{1}{1-\beta^{\circ}\beta^{*}}} (\mathbf{B}^{-})^{\frac{\beta^{+}}{1-\beta^{\circ}\beta^{*}}}}{(\mathbf{B}^{\circ})^{\frac{\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1)}{(\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1))}} \varepsilon^{\frac{\alpha(1+\beta^{+})}{(\alpha+\beta^{*}-1+\beta^{*}(\alpha+\beta^{\circ}-1))}},$$
or $\mathcal{O}_{\varepsilon}^{*} = \mathcal{O}_{\varepsilon}^{+} \lor \mathcal{O}_{\varepsilon}^{-} \text{ and } \mathcal{O}_{\varepsilon}^{\circ} = \mathcal{O}_{\varepsilon}^{+} \land \mathcal{O}_{\varepsilon}^{-}$

where $\beta^* = \beta^+ \vee \beta^-$ and $\beta^\circ = \beta^+ \wedge \beta^-$

• We see $\alpha > 1 - \beta^{\circ}$ is necessary for $\mathbf{t}_{\varepsilon} \to \mathbf{0}!$

Exit probabilities from very small neighborhoods of 0^{-9}

Proposition 2: Under the previous assumptions and

 $\alpha > \mathbf{1} - (\beta^+ \wedge \beta^-)$

and functions $(\mathbf{t}_{\varepsilon}, \Theta_{\varepsilon}^+, \Theta_{\varepsilon}^-) \searrow \mathbf{0}+$ as in Proposition 1 and $\chi = \tau_{-\Theta_{\varepsilon}^-, \Theta_{\varepsilon}^+}$ we have

$$\begin{split} \lim_{\varepsilon \to \mathbf{0}} \mathbb{P}(\mathbf{X}_{\boldsymbol{\chi}}^{\varepsilon} \geqslant \boldsymbol{\Theta}_{\varepsilon}^{+}) &= \lim_{\varepsilon \to \mathbf{0}} \mathbb{P}(\varepsilon \mathbf{L}_{\boldsymbol{\chi}}^{\varepsilon} \mathbf{L} \geqslant \boldsymbol{\Theta}_{\varepsilon}^{+}) \\ &= \lim_{\varepsilon \to \mathbf{0}} \frac{\boldsymbol{\Theta}_{\varepsilon}^{-}}{\boldsymbol{\Theta}_{\varepsilon}^{+} + \boldsymbol{\Theta}_{\varepsilon}^{-}} = \begin{cases} \mathbf{1} & \text{if } \beta^{+} < \beta^{-} \\ \left(\mathbf{1} + \left(\frac{\mathbf{B}^{+}}{\mathbf{B}^{-}}\right)^{-\frac{1}{1+\beta}}\right)^{-1} & \text{if } \beta = \beta^{+} = \beta^{-} \\ \mathbf{0} & \text{if } \beta^{+} < \beta^{-}. \end{cases} \end{split}$$

• Standard arguments for hitting probabilities for εL analogous to Brownian motion.

⁹A solution selection problem for small stable perturbations

Small perturbations ¹⁰

Proposition 3:

Under the previous assumptions there is $\theta^* > 0$ and $\delta_{\varepsilon} \searrow 0$ such that for any $\Delta_{\varepsilon} / \delta_{\varepsilon} \to \infty$ with $\Delta_{\varepsilon} \searrow 0$ that

$$\lim_{\varepsilon \to \mathbf{0}} \sup_{\mathbf{3}\delta_{\varepsilon} < \mathbf{x} < \mathbf{\Delta}_{\varepsilon}} \mathbb{P}(\sup_{\mathbf{t} \in [\mathbf{0}, \varepsilon^{-\theta^*}]} |\mathbf{X}_{\mathbf{t}}^{\varepsilon, \mathbf{x}} - \mathbf{x}_{\mathbf{t}}^+| > \mathbf{\Delta}_{\varepsilon}^{\beta^*}) = \mathbf{0}.$$

Sketch of proof:

• For
$$\rho \in (0, 1)$$
 let
 $\mathbf{T}_1 := \inf\{\mathbf{t} > \mathbf{0} \mid |\Delta \mathbf{L}_{\mathbf{t}}| > \varepsilon^{-\rho}\}$
 $\mathbf{T}_1 \sim \mathbf{EXP}(\lambda_{\varepsilon}), \quad \lambda_{\varepsilon} = \nu(\mathbb{R} \setminus [-\varepsilon^{-\rho}, \varepsilon^{-\rho}]) \sim \varepsilon^{\rho\alpha}$
• Let η^{ε} be the CPP of all jumps $|\Delta \mathbf{L}_{\mathbf{t}}| > \varepsilon^{-\rho}$, and $\xi^{\varepsilon} = \mathbf{L} - \eta^{\varepsilon}$
 $\mathbf{dY}^{\varepsilon} = \mathbf{b}(\mathbf{Y}^{\varepsilon})\mathbf{dt} + \varepsilon\xi^{\varepsilon}, \qquad \mathbf{Y}^{\varepsilon} = \mathbf{x}.$

¹⁰Flandoli, H.: A solution selection problem for small stable perturbations, http://arxiv.org/abs/1407.3469

• Elementary comparison argument: On $\{\sup_{t \in [0,T_1]} | \varepsilon \xi_t^{\varepsilon} | \leq \delta_{\varepsilon} \}$

$$\mathbf{Y}_{\mathbf{t}}^{\mathbf{x},\varepsilon} \geqslant \mathbf{u}(\mathbf{t};\mathbf{x}-\delta_{\varepsilon}) - \delta_{\varepsilon}$$

• Hence

$$\begin{split} \sup_{\mathbf{x} \geq \mathbf{3}\delta_{\varepsilon}} & \mathbb{P}(\sup_{\mathbf{t} \in [\mathbf{0}, \mathbf{T}_{1}]} (\mathbf{Y}_{\mathbf{t}}^{\mathbf{x}, \varepsilon} - \mathbf{x}_{\mathbf{t}}^{+}) < \mathbf{0}) \\ \leqslant \sup_{\mathbf{x} \geq \mathbf{3}\delta_{\varepsilon}} & \mathbb{P}(\sup_{\mathbf{t} \in [\mathbf{0}, \mathbf{T}_{1}]} (\mathbf{Y}_{\mathbf{t}}^{\mathbf{x}, \varepsilon} - (\mathbf{u}(\mathbf{t}; \mathbf{x} - \delta_{\varepsilon}) - \delta_{\varepsilon})) < \mathbf{0}) \\ \leqslant & \mathbb{P}(\sup_{\mathbf{t} \in [\mathbf{0}, \mathbf{T}_{1}]} |\varepsilon \xi^{\varepsilon}| > \delta_{\varepsilon}) \\ & \varepsilon = \mathbb{P}(\sup_{\mathbf{t} \in [\mathbf{0}, \mathbf{R}^{\varepsilon}]} |\varepsilon \xi^{\varepsilon}_{\mathbf{t}}| > \delta_{\varepsilon}) + \mathbb{P}(\mathbf{T}_{1} > \mathbf{R}^{\varepsilon}) \\ \leqslant & \exp(-\frac{\delta_{\varepsilon}}{\varepsilon^{1-\rho}\mathbf{R}^{\varepsilon}}) + \exp(-\varepsilon^{\alpha\rho}\mathbf{R}^{\varepsilon}). \end{split}$$

• Need

$$\varepsilon^{\alpha\rho}\mathbf{R}^{\varepsilon} \to \infty \quad \text{and} \quad \frac{\delta_{\varepsilon}}{\varepsilon^{1-\rho}\mathbf{R}^{\varepsilon}} \to \infty.$$

• Need

$$\varepsilon^{\alpha\rho}\mathbf{R}^{\varepsilon} \to \infty$$
 and $\frac{\delta_{\varepsilon}}{\varepsilon^{1-\rho}\mathbf{R}^{\varepsilon}} \to \infty.$

$$\mathbf{R}^{\varepsilon} := \frac{|\mathbf{m}(\varepsilon)|}{\varepsilon^{\alpha \rho}}$$
$$\delta_{\varepsilon} := \varepsilon^{\mathbf{1} - \rho(\mathbf{1} + \alpha)} |\ln(\varepsilon)|^{\mathbf{2}}$$
$$\rho < \frac{\mathbf{1}}{\alpha + \mathbf{1}}.$$

• Using the subadditivity we get for $\mathbf{r}^{\varepsilon} = \delta_{\varepsilon}^{-\frac{\beta}{2}}$ and any $\Delta_{\varepsilon}/\delta_{\varepsilon} \to \infty$ and $\Delta_{\varepsilon} \to 0$ that

$$\sup_{\mathbf{3}\delta_{\varepsilon}<\mathbf{x}<\mathbf{\Delta}_{\varepsilon}} \mathbb{P}(\sup_{\mathbf{t}\in[\mathbf{0},\mathbf{r}^{\varepsilon}]}\mathbf{X}_{\mathbf{t}}^{\varepsilon}-\mathbf{x}_{\mathbf{t}}^{+}>\mathbf{\Delta}_{\varepsilon}^{\mathbf{1}-\beta}) \leqslant \mathbb{P}(\mathbf{T}_{1}>\mathbf{1}) + \mathbb{P}(\sup_{\mathbf{t}\in[\mathbf{0},\mathbf{R}^{\varepsilon}]}|\varepsilon\xi_{\mathbf{t}}^{\varepsilon}|>\delta_{\varepsilon}) \to \mathbf{0}.$$

Bridging the initial values $\Theta^+ < \mathbf{x} < 4\delta_arepsilon^+$

Proposition 4:

For $\varepsilon > 0$ and $x \in [\Theta_{\varepsilon}^+, 4\delta_{\varepsilon}]$ denote

$$\upsilon^{\mathbf{x},\varepsilon} := \inf\{\mathbf{t} > \mathbf{0} \mid \mathbf{X}_{\mathbf{t}}^{\varepsilon,\mathbf{x}} \ge \mathbf{4}\delta_{\varepsilon}\}.$$

There is an increasing, continuous function $s_{\cdot} : (0, 1) \to (0, 1)$ with $s_{\varepsilon} \to 0$ as $\varepsilon \to 0$, such that

$$\lim_{\varepsilon \to \mathbf{0}} \sup_{\mathbf{\Theta}_{\varepsilon}^{+} \leqslant \mathbf{x} \leqslant 4\delta_{\varepsilon}} \mathbb{P}(\upsilon^{\mathbf{x},\varepsilon} > \mathbf{s}_{\varepsilon}) = \mathbf{0}.$$

Bridging the initial values $\Theta^+ < \mathbf{x} < 4\delta_arepsilon^+$

• For an appropriate choice of a parameter $\pi \in \mathbb{R}$ we denote the time

$$\tilde{\mathbf{T}}_{\pi} = \tilde{\mathbf{T}}_{\pi}(\varepsilon) := \inf\{\mathbf{t} > \mathbf{0} \mid |\mathbf{\Delta}_{\mathbf{t}}\mathbf{L}| > \varepsilon^{-\pi}\}.$$

• Then on the events $\{\tilde{\mathbf{T}}_{\pi} > \mathbf{s}_{\varepsilon}\}$ and $\{\sup_{\mathbf{t} \in [\mathbf{0}, \mathbf{s}_{\varepsilon}]} |\varepsilon \mathbf{L}_{\mathbf{t}}| \leqslant \frac{\mathbf{B}}{2} \Theta_{\varepsilon}^{\beta} \mathbf{s}_{\varepsilon}\}$ we have for $\mathbf{t} \in [\mathbf{0}, \mathbf{s}_{\varepsilon}]$

$$\begin{split} \mathbf{X}^{\varepsilon,\mathbf{x}}_{\mathbf{t}} &= \mathbf{x} + \int_{\mathbf{0}}^{\mathbf{t}} \mathbf{b}(\mathbf{X}^{\varepsilon,\mathbf{x}}_{\mathbf{s}}) \mathbf{ds} + \varepsilon \mathbf{L}_{\mathbf{t}} \\ &\geqslant \mathbf{\Theta}_{\varepsilon} + \mathbf{B} \int_{\mathbf{0}}^{\mathbf{t}} \Big[\mathbf{\Theta}^{\beta}_{\varepsilon} + (\mathbf{X}^{\varepsilon,\mathbf{x}}_{\mathbf{s}} - \mathbf{\Theta}_{\varepsilon}) \frac{(4\delta_{\varepsilon})^{\beta} - \mathbf{\Theta}^{\beta}_{\varepsilon}}{4\delta_{\varepsilon} - \mathbf{\Theta}_{\varepsilon}} \Big] \mathbf{ds} + \varepsilon \mathbf{L}_{\mathbf{t}}. \end{split}$$

$$\begin{split} \text{Hence setting } \mathbf{s}_{\varepsilon} &= \frac{4}{B} \delta_{\varepsilon}^{\frac{1-\beta}{2}} \ln(\frac{4}{B} \Theta_{\varepsilon}^{-\beta} \delta_{\varepsilon}^{-2(1-\beta)}) \text{ yields} \\ \mathbf{X}_{\mathbf{s}_{\varepsilon}}^{\varepsilon, \mathbf{x}} &\geqslant \Theta_{\varepsilon} + \frac{B}{2} \Theta_{\varepsilon}^{\beta} \mathbf{s}_{\varepsilon} + \frac{8}{B} \Theta_{\varepsilon}^{\beta} \delta_{\varepsilon}^{2(1-\beta)} \\ & \exp\left(\frac{B}{4} \frac{\mathbf{s}_{\varepsilon}}{\delta_{\varepsilon}^{1-\beta}}\right) \underbrace{\left(1 - (1 + (\frac{B}{4} \frac{\mathbf{s}_{\varepsilon}}{\delta_{\varepsilon}^{1-\beta}})) \exp\left(-\frac{B}{4} \frac{1}{\delta_{\varepsilon}^{1-\beta}} \mathbf{s}_{\varepsilon}\right)\right)}_{\nearrow} \\ & \gtrsim_{\varepsilon} \Theta_{\varepsilon} + \frac{B}{2} \Theta_{\varepsilon}^{\beta} \mathbf{s}_{\varepsilon} + \frac{4}{B} \Theta_{\varepsilon}^{\beta} \delta_{\varepsilon}^{2(1-\beta)} \exp\left(\frac{B}{4} \frac{\mathbf{s}_{\varepsilon}}{\delta_{\varepsilon}^{1-\beta}}\right) \\ & \geqslant \frac{1}{2} \exp\left(\left(\frac{1}{\delta_{\varepsilon}}\right)^{\frac{1-\beta}{2}}\right) \gtrsim_{\varepsilon} 4\delta_{\varepsilon} \text{ as } \varepsilon \to \mathbf{0}. \end{split}$$

Flandoli and H.: A solution selection problem for small stable perturbations ¹¹,

Theorem:

Let L be strictly α -stable. Denote by $\mathbf{P}^{\mathbf{0}}_{\varepsilon}(\theta)$ the law of $\mathbf{X}^{\varepsilon}|_{\mathbf{t}\in[\mathbf{0},\varepsilon^{-\theta}]}$

$$\mathbf{d}\mathbf{X}^{\varepsilon} = \mathbf{b}(\mathbf{X}^{\varepsilon})\mathbf{d}\mathbf{t} + \varepsilon\mathbf{d}\mathbf{L}, \qquad \mathbf{X}(\mathbf{0}) = \mathbf{0} \in \mathbb{R}, \varepsilon > \mathbf{0}$$

If $\alpha > 1 - \beta^+ \wedge \beta^-$ then there exists $\theta^* > 0$ such that $\mathbf{P}^{\mathbf{0}}_{\varepsilon}(\theta^*) \xrightarrow{\mathbf{w}} \mathbf{p}^+ \delta_{\mathbf{x}^+} + \mathbf{p}^- \delta_{\mathbf{x}^-}, \quad \text{as } \varepsilon \to \mathbf{0},$

for the extremal solutions

$$\mathbf{x}^{\pm}(\mathbf{t}) = \pm \mathbf{C}^{\pm} \mathbf{t}^{\frac{1}{1-eta^{\pm}}}, \qquad \mathbf{t} \geqslant \mathbf{0}$$

$$\mathbf{p}^{+} = \begin{cases} \mathbf{1} & \text{if } \beta^{+} < \beta^{-} \\ \frac{(\mathbf{B}^{-})^{-\frac{1}{1+\beta}}}{(\mathbf{B}^{+})^{-\frac{1}{1+\beta}} + (\mathbf{B}^{-})^{-\frac{1}{1+\beta}}} & \text{if } \beta^{+} = \beta^{-} =: \beta \\ \mathbf{0} & \text{if } \beta^{+} > \beta^{-}. \end{cases}$$

¹¹Flandoli, H.: A solution selection problem for small stable perturbations, http://arxiv.org/abs/1407.3469

Thank you very much!