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Ordinary random walk:
definition of the main objects

Let (ξk)k∈N be independent copies of a real-valued random variable ξ.

A random sequence (Sn)n∈N0
defined by

S0 := 0, Sn := ξ1 + . . .+ ξn, n ∈ N

is called zero-delayed (ordinary) random walk.

Main objects

the first passage time into (x,∞)

τ(x) := inf{n ∈ N0 : Sn > x}, x ≥ 0;

the number of visits to the interval (−∞, x]

N(x) : = #{n ∈ N : Sn ≤ x}

=
∑
n≥1

1{Sn≤x}, x ≥ 0;

the last exit time from (−∞, x]

ρ(x) = sup{n ∈ N0 : Sn ≤ x}, x ≥ 0.
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Ordinary random walk:
Simple cases and previously known results

When P{ξ ≥ 0} = 1 and P{ξ = 0} < 1,

τ(x)− 1 = N(x) = ρ(x), x ≥ 0.

Proposition (Beljaev & Maksimov (1963))
Assume that P{ξ ≥ 0} = 1 and let β := P{ξ = 0} ∈ [0, 1). Then for
a > 0 the following conditions are equivalent:

Eeaτ(x) <∞ for some (hence every) x ≥ 0;

a < − log β

where − log β :=∞ if β = 0. The same holds for N(x) and ρ(x).
Proof: If a < − log β, pick r > 0 s.t. eaEe−rξ < 1∑

k≥0

eakP{τ(x) > k} =
∑
k≥0

eakP{Sk ≤ x}

≤ erx
∑
k≥0

(eaEe−rξ)k <∞

If a ≥ − log β,∑
k≥0

eakP{Sk ≤ x} ≥
∑
k≥0

eakP{Sk = 0}

=
∑
k≥0

eakβk =∞.
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Ordinary random walk:
Simple cases and previously known results

General case: P{ξ < 0} ≥ 0.
FINITENESS:

Borovkov (1962): if

a < R := − log inf
t≥0

Ee−tξ,

then Eeaτ(0) <∞;
if a > R, then Eeaτ(0) =∞.

Heyde (1964): assuming that Eξ ∈ (0,∞),

Eeaτ(x) <∞ for some a > 0 iff

Eebξ
−
<∞ for some b > 0.

Doney (1989); Bertoin & Doney (1996) – other relevant
results.

ASYMPTOTICS:

Heyde (1966): whenever Eξ ∈ (0,∞) and Eeaτ(0) <∞,

Eeaτ(x) ∼ const e(a/Eξ)x, x→∞.
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Ordinary random walk:
Criteria for the finiteness of exponential moments

Theorem (I. & Meiners (2010))
Let a > 0 and P{ξ < 0} > 0. Then the following conditions are
equivalent:

Eeaτ(x) <∞ for some (hence every) x ≥ 0;

EeaN(x) <∞ for some (every) x ≥ 0;∑
n≥1

ean

n
P{Sn ≤ x} < ∞ for some (every) x ≥ 0;

a ≤ R := − log inf
t≥0

Ee−tξ.

The bold segments indicate the sets of values of e−a for which both Eeaτ(x) and

EeaN(x) are finite.

Alexander Iksanov Moments of first passage times and related quantities for ordinary and perturbed random walks July 16, 2014 8/29



Overview

Ordinary random walk

Definition of the main objects

Simple cases and previously known
results

Criteria for the finiteness of
exponential moments

Illustrating example

Asymptotics of the exponential
moments

Exponential moments vs power
moments

Perturbed random walk

Ordinary random walk:
Criteria for the finiteness of exponential moments

Theorem (I. & Meiners (2010))
Let a > 0 and P{ξ < 0} > 0. Then the following conditions are
equivalent:

Eeaτ(x) <∞ for some (hence every) x ≥ 0;

EeaN(x) <∞ for some (every) x ≥ 0;∑
n≥1

ean

n
P{Sn ≤ x} < ∞ for some (every) x ≥ 0;

a ≤ R := − log inf
t≥0

Ee−tξ.

The bold segments indicate the sets of values of e−a for which both Eeaτ(x) and

EeaN(x) are finite.

Alexander Iksanov Moments of first passage times and related quantities for ordinary and perturbed random walks July 16, 2014 8/29



Overview

Ordinary random walk

Definition of the main objects

Simple cases and previously known
results

Criteria for the finiteness of
exponential moments

Illustrating example

Asymptotics of the exponential
moments

Exponential moments vs power
moments

Perturbed random walk

Ordinary random walk:
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Theorem (I. & Meiners (2010))
Let a > 0 and P{ξ < 0} > 0. Then the following conditions are
equivalent:

Eeaρ(x) <∞ for some (hence every) x ≥ 0;∑
n≥0

eanP{Sn ≤ x} <∞ for some (every) x ≥ 0;

either a < R = − log inf
t≥0

Ee−tξ, or

a = R and Eξe−γ0ξ > 0,

where γ0 is the unique positive number such that Ee−γ0ξ = e−R.

The bold segments indicate the sets of values of e−a for which Eeaρ(x) are finite.
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Ordinary random walk:
Illustrating example

Example (simple random walk)
Let p ∈ (1/2, 1) and

P{ξ = 1} = p = 1− P{ξ = −1} =: 1− q.

Then
Ee−tξ = pe

−t
+ qe

t and

R = − log inf
t≥0

Ee−tξ = − log(2
√
pq).

One can check that

P{τ(0) = 2n− 1} =
1

2q

(
2n
n

)
22n(2n− 1)

(2
√
pq)

2n

=
1

2q

(
2n
n

)
22n(2n− 1)

e
−2nR

, n ∈ N;

P{ρ(0) = 2n} = (p− q)
(
2n

n

)
(pq)

n

= (p− q)

(
2n
n

)
22n

e
−2nR

, n ∈ N0.

Stirling’s formula yields (
2n
n

)
22n

∼
1
√
πn

, n→∞,

which implies that

EeRτ(0) <∞ and EeRρ(0) =∞.
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Ordinary random walk:
Asymptotics of the exponential moments

Nonnegative case

Theorem (I. & Meiners (2010))
Let a > 0,

P{ξ ≥ 0} = 1 and P{ξ = 0} < 1.

Assume that Eeaτ(x) <∞ for some (hence every) x ≥ 0. Then, as x→∞,

Eeaτ(x) ∼ const e
γx

where
const =


1−e−a

γEξe−γξ
, if L(ξ) is non-lattice,

λ(1−e−a)

(1−e−λγ )Eξe−γξ
, if L(ξ) is λ-lattice

γ is the unique positive number such that

Ee−γξ = e
−a
,

and in the λ-lattice case the limit is taken over x ∈ λN.
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Ordinary random walk:
Asymptotics of the exponential moments

General case

Theorem (I. & Meiners(2010))

Let a > 0 and P{ξ < 0} > 0. Assume that Eeaρ(x) <∞ for some (hence every)
x ≥ 0. Then, as x→∞,

Eeaρ(x) ∼ const e
γx

where

const =


e−a(1−Ee−γM

+
)

γEξe−γξ
, if L(ξ) is non-lattice,

λe−a(1−Ee−γM
+

)

(1−e−λγ )Eξe−γξ
, if L(ξ) is λ-lattice

M := infn≥1 Sn; γ is a minimal positive number such that

Ee−γξ = e
−a
.

In the λ-lattice case the limit is taken over x ∈ λN.
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Asymptotics of the exponential moments

General case

Theorem (I. & Meiners(2010))

Let a > 0 and P{ξ < 0} > 0. Assume that Eeaρ(x) <∞ for some (hence every)
x ≥ 0. Then, as x→∞,

Eeaρ(x) ∼ const e
γx

where
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
e−a(1−Ee−γM

+
)

γEξe−γξ
, if L(ξ) is non-lattice,

λe−a(1−Ee−γM
+

)

(1−e−λγ )Eξe−γξ
, if L(ξ) is λ-lattice

M := infn≥1 Sn; γ is a minimal positive number such that

Ee−γξ = e
−a
.

In the λ-lattice case the limit is taken over x ∈ λN.
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Exponential moments vs power moments

Finiteness

(Kesten & Maller (1996)) For p > 0

E(τ(x))p+1 <∞ ⇔ E(N(x))p <∞ ⇔

E(ρ(x))p <∞.

(!) It may happen that there exists q > 0

lim
x→∞

xqP{τ > x} = 0 and lim inf
x→∞

xqP{N > x} > 0.

(I. & Meiners (2010)) Provided that

R = − log inf
t≥0

Ee−tξ > 0,

it holds that

Eeaτ(x) <∞, EeaN(x) <∞ iff a ≤ R, and

Eeaρ(x) <∞ if a < R,

whereas EeRρ(x) is finite in some cases and infinite in others.
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Exponential moments vs power moments

Asymptotics

Let T (x) denote any of the rvs τ(x), N(x) or ρ(x).

(Kesten & Maller (1996)) If E(T (0))p <∞ then

E(T (x))p �
(

x

Emin(ξ+, x)

)p
, x→∞.

(I. & Meiners (2010)) If EeaT (0) <∞ then

EeaT (x) � eγx, x→∞.
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Criteria for the finiteness of
moments of the number of visits

Random processes with
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Perturbed random walk:
Definition and large-time asymptotics

Let (ξk, ηk)k∈N be independent copies of a random vector (ξ, η) with
arbitrary dependence between ξ and η.

By a perturbed random walk is meant a random sequence (Tn)n∈N
defined by

Tn := Sn−1 + ηn = ξ1 + . . .+ ξn−1 + ηn, n ∈ N.

The so defined PRW is related to

perpetuities

shot noise processes

the Bernoulli sieve

GI/G/∞ queues
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arbitrary dependence between ξ and η.

By a perturbed random walk is meant a random sequence (Tn)n∈N
defined by

Tn := Sn−1 + ηn = ξ1 + . . .+ ξn−1 + ηn, n ∈ N.

The so defined PRW is related to

perpetuities ∑
n≥1

eTn

shot noise processes
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Perturbed random walk:
Definition and large-time asymptotics

Tn = Sn−1 + ηn, n ∈ N.

Proposition (Goldie & Maller (2000))
Either
limn→∞ Tn = +∞ a.s. (drift to +∞), or
limn→∞ Tn = −∞ a.s. (drift to −∞), or
−∞ = lim infn→∞ Tn < lim supn→∞ Tn = +∞ a.s. (oscillation).

(!) It may happen that the perturbed random walk Tn oscillates when

the corresponding ordinary random walk Sn drifts to ±∞.
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Perturbed random walk:
Criteria for the finiteness of moments of the last exit time

Tn = Sn−1 + ηn, n ∈ N.
For x ∈ R, the last exit time from (−∞, x] is

ρ∗(x) =


sup{n ∈ N : Tn ≤ x}, if inf

k≥1
Tk ≤ x,

0, if inf
k≥1

Tk > x

Power moments.

Theorem (Alsmeyer, I. & Meiners (2014))
Let (Tn) be positively divergent and p > 0. The following assertions
are equivalent:

E(ρ∗(x))p <∞ for some (hence every) x ∈ R;

E(ρ(y))p <∞ for some (hence every) y ≥ 0 and

EJp+1(η−) <∞,
where J(z) := z

E(ξ+∧z) , z > 0, and

ρ(y) = sup{n ∈ N0 : Sn ≤ y}, y ≥ 0.
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Perturbed random walk:
Criteria for the finiteness of moments of the last exit time

Tn = Sn−1 + ηn, n ∈ N.
For x ∈ R, the last exit time from (−∞, x] is

ρ∗(x) =


sup{n ∈ N : Tn ≤ x}, if inf

k≥1
Tk ≤ x,

0, if inf
k≥1

Tk > x

Exponential moments.

Theorem (Alsmeyer, I. & Meiners (2014))
Let (Tn) be positively divergent, P{ξ < 0} > 0 and a > 0. The
following assertions are equivalent:

E exp(aρ∗(x)) <∞ for some (hence every) x ∈ R;

E exp(aρ(y)) <∞ for some (hence every) y ≥ 0 and

Ee−γη <∞,
where γ is the minimal positive number satisfying Ee−γξ = e−a, and

ρ(y) = sup{n ∈ N0 : Sn ≤ y}, y ≥ 0.
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Perturbed random walk:
A curious observation

Alsmeyer, I. & Meiners (2014): for a > 0

Eeaρ
∗(x) < ∞ for some (hence every)x ∈ R ⇔∑

n≥1

eanP{Tn ≤ x} < ∞ for some/all x ∈ R.

Kesten & Maller (1996): for p > 0

Eρ(x)p < ∞ for some (hence every) x ≥ 0 ⇔∑
n≥1

np−1P{Sn ≤ x} < ∞ for some/all x ≥ 0.

However

Eρ∗(x)p <∞ <
∑
n≥1

np−1P{Tn ≤ x} <∞!!!
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Perturbed random walk:
A curious observation

However

Eρ∗(x)p <∞ <
∑
n≥1

np−1P{Tn ≤ x} <∞!!!

Indeed,∑
n≥1

np−1P{Tn ≤ x} <∞ ⇔ Eρ(x)p <∞ and EJ(η−)p <∞,

whereas

Eρ∗(x)p <∞ ⇔ Eρ(x)p <∞ and EJ(η−)p+1 <∞.
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Perturbed random walk:
Criteria for the finiteness of moments of the number of visits

Tn = Sn−1 + ηn, n ∈ N.

For x ∈ R, the number of visits to (−∞, x] is

N∗(x) = #{n ∈ N : Tn ≤ x}

Power moments.

Theorem (Alsmeyer, I. & Meiners (2014))
Let (Tn) be positively divergent and p > 0. The following assertions
are equivalent:

E(N∗(x))p <∞ for some (hence every) x ∈ R;

E(N(y))p <∞ for some (hence every) y ≥ 0.

Here
N(y) = #{n ∈ N0 : Sn ≤ y}, y ≥ 0.
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Criteria for the finiteness of moments of the number of visits

Tn = Sn−1 + ηn, n ∈ N.

For x ∈ R, the number of visits to (−∞, x] is

N∗(x) = #{n ∈ N : Tn ≤ x}

Exponential moments.

Theorem (Alsmeyer, I. & Meiners (2014))
Let (Tn) be positively divergent.

(a) If P{ξ < 0} > 0, then the following assertions are equivalent:

E exp(aN∗(x)) <∞ for some (hence every) x ∈ R,
E exp(aN(y)) <∞ for some (hence every)y ≥ 0.

Here
N(y) = #{n ∈ N0 : Sn ≤ y}, y ≥ 0.
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Perturbed random walk:
Criteria for the finiteness of moments of the number of visits

Tn = Sn−1 + ηn, n ∈ N.

For x ∈ R, the number of visits to (−∞, x] is

N∗(x) = #{n ∈ N : Tn ≤ x}

Exponential moments.

Theorem (Alsmeyer, I. & Meiners (2014))
Let (Tn) be positively divergent.

(b) If ξ ≥ 0 a.s., then the assertions

E exp(aN∗(x)) <∞,
ea P{ξ = 0, η ≤ x}+ P{ξ = 0, η > x} < 1

are equivalent for each a > 0 and x ∈ R.
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Perturbed random walk:
Random processes with immigration

Definition:

X = (X(t))t∈R is a random process with paths in the
Skorokhod space D(R);

ξ is a random variable;

(Xk, ξk)k∈N are independent copies of the pair (X, ξ);

(Sn)n∈N0
is the zero-delayed random walk with jumps ξk, i.e.,

S0 := 0, Sn := ξ1 + ξ2 + . . .+ ξn, n ∈ N.

Random process with immigration
The process Y := (Y (t))t∈R defined by

Y (t) :=
∑
k≥0

Xk+1(t− Sk), t ∈ R

will be called random process with immigration at the epochs of a
renewal process.
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Perturbed random walk:
Random processes with immigration

Interpretation in the case when ξ > 0 a.s. and X(t) = 0, t < 0.

-3

-2

-1

0

1

2

3

4

5

S1 S2 S3 S4 S5 S6 S7 S8

At time S0 = 0 the immigrant 1 arrives at the system and runs a
random process X1.

· · · · · · · · ·

At time Sk the immigrant k + 1 arrives at the system and runs a
random process Xk+1 which evolves along with already existing
processes X1, . . . , Xk.
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At time Sk the immigrant k + 1 arrives at the system and runs a
random process Xk+1 which evolves along with already existing
processes X1, . . . , Xk.
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Y (t) is then the sum of all processes run by the immigrants up to and
including time t, i.e.,

Y (t) =
∑
k≥0

Xk+1(t− Sk).
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N∗(t) = #{k ∈ N : Tk ≤ t}
=

∑
k≥0

1{ηk+1≤t−Sk}

=
∑
k≥0

Xk+1(t− Sk) = Y (t), t ∈ R.

Therefore (N∗(t))t∈R is a random process with
immigration with Xk(t) = 1{ηk≤t}, k ∈ N.
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