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Taut string


∫ T

0 f ′(t)2dt ↘ min or(!!)
∫ T

0 ϕ(f ′(t))dt ↘ min

f (0) = w(0), f (T ) = w(T ),

w(t)− r ≤ f (t) ≤ w(t) + r , 0≤t≤T .
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Formal setting

We consider uniform norms

||h||T := sup
0≤t≤T

|h(t)|, h ∈ C[0, T ],

and Sobolev-type norms

|h|2T :=

∫ T

0
h′(t)2dt , h ∈ AC[0, T ].

Let W be a Wiener process. We are mostly interested in its
approximation characteristics

IW (T , r) := inf{|h|T ; h ∈ AC[0, T ], ||h −W ||T ≤ r , h(0) = 0}

and

I0
W (T , r) := inf{|h|T ; h ∈ AC[0, T ], ||h−W ||T ≤ r , h(0) = 0, h(T ) = W (T )}.
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Main results

Theorem
There exists C ∈ (0,∞) such that for any q > 0 if r√

T
→ 0, then

r
T 1/2

IW (T , r)
Lq−→ C and

r
T 1/2

I0
W (T , r)

Lq−→ C.

We may complete the mean convergence with a.s. convergence to C.

Theorem
For any fixed r > 0, when T →∞, we have

r
T 1/2

IW (T , r) a.s.−→ C

and r
T 1/2

I0
W (T , r) a.s.−→ C.
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Empirical modelling of C
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Main ideas: concentration and subadditivity

Consider IW (T , r) as a function of W . We clearly have Lipschitz
property:

|IW (T , r)− IW+h(T , r)| ≤ |h|T .

Notice that Lipschitz constant does not depend on r and T . By
Gaussian concentration inequality, it follows that the concentration of
distribution of IW is at least Gaussian: ∀ρ > 0

P (|IW −med(IW )| > ρ) ≤ P (|N| > ρ)

with N standard normal. Moreover, after normalization concentration
range goes to zero. Conclusion: only convergence of averages is
needed.
Subadditivity in time:

I0
W (T1 + T2, r)2 ≤ I0

W (T1, r)2 + I0
W̃

(T2, r)2.

with independent W and W̃ .
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Lower bound (Talagrand idea)

Assume that |w(t)− h(t)| ≤ 1 on an interval [a, b] of length L.

r
r

�
�

�
�

r
r

a bu v
-� L

M

M−1

m+1

m

h

w

Then∫ b

a
h′(t)2dt ≥

∫ v

u
h′(t)2dt ≥ |h(u)− h(v)|2

|u − v |
≥

(M −m − 2)2
+

L
.

For Wiener process, (M−m−2)2
+

L scales to (R − 2L−1/2)2
+ where R is the

range of W on the unit interval.
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Lower bound (continued)

By taking T = nL and splitting [0, T ] into n intervals of length L we
obtain

|h|2T
T

≥ 1
nL

n∑
j=1

(R(j) − 2L−1/2)2
+ → L−1 E(R − 2L−1/2)2

+.

for any function h such that ||h −W ||T ≤ 1 .

Hence,

C2 ≥ sup
L>0

L−1 E(R − 2L−1/2)2
+

For the distribution of R, we have a fast convergent series
representation. By calculating expectation and optimizing over L, we
choose L ≈ 4 and obtain ...

C ≥ 0.38

which is in agreement with empirical data.
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M.Lifshits (St.Petersburg and Linköping) Taut Strings Darmstadt, July, 2014 8 / 21



Lower bound (continued)

By taking T = nL and splitting [0, T ] into n intervals of length L we
obtain

|h|2T
T

≥ 1
nL

n∑
j=1

(R(j) − 2L−1/2)2
+ → L−1 E(R − 2L−1/2)2

+.

for any function h such that ||h −W ||T ≤ 1 . Hence,

C2 ≥ sup
L>0

L−1 E(R − 2L−1/2)2
+

For the distribution of R, we have a fast convergent series
representation. By calculating expectation and optimizing over L, we
choose L ≈ 4 and obtain ...

C ≥ 0.38

which is in agreement with empirical data.
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Upper bound: free-knot approximation

Let τn+1 := inf
{

t ≥ τn
∣∣ |W (t)−W (τn)| ≥ 1

2

}
Let h(t) interpolate

between the points (τn, W (τn)).
3
2

1

1
2

0

−1
2

6

r r
τ1

r
τ2

r
τ3

r
τ4

W

!!!!!��������H
HHH������H h

Then ∀t we have |h(t)−W (t)| ≤ 1 and∫ τn+1

τn

h′(t)2dt =
(h(τn+1)− h(τn))

2

τn+1 − τn
=

1
4(τn+1 − τn)

are i.i.d. random variables.
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M.Lifshits (St.Petersburg and Linköping) Taut Strings Darmstadt, July, 2014 9 / 21



Upper bound: free-knot approximation

Let τn+1 := inf
{

t ≥ τn
∣∣ |W (t)−W (τn)| ≥ 1

2

}
Let h(t) interpolate

between the points (τn, W (τn)).
3
2

1

1
2

0

−1
2

6

r r
τ1

r
τ2

r
τ3

r
τ4

W

!!!!!��������H
HHH������H h

Then ∀t we have |h(t)−W (t)| ≤ 1 and∫ τn+1

τn

h′(t)2dt =
(h(τn+1)− h(τn))

2

τn+1 − τn
=

1
4(τn+1 − τn)

are i.i.d. random variables.
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M.Lifshits (St.Petersburg and Linköping) Taut Strings Darmstadt, July, 2014 9 / 21



Upper bound: free-knot approximation

Let τn+1 := inf
{

t ≥ τn
∣∣ |W (t)−W (τn)| ≥ 1

2

}
Let h(t) interpolate

between the points (τn, W (τn)).
3
2

1

1
2

0

−1
2

6

r r
τ1

r
τ2

r
τ3

r
τ4

W

!!!!!��������H
HHH������H h

Then ∀t we have |h(t)−W (t)| ≤ 1 and∫ τn+1

τn

h′(t)2dt =
(h(τn+1)− h(τn))

2

τn+1 − τn
=

1
4(τn+1 − τn)

are i.i.d. random variables.
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Free-knot approximation - numbers

On the long interval [0, T ] we have approximately T
Eτ1

cycles, and the

average energy of h on a cycle is E 1
4τ1

.

By the Law of Large Numbers,

C2 ≤ lim
T→∞

|h|2T
T

=
E( 1

τ1
)

4Eτ1
.

We are able to calculate both expectations. First, by Wald identity,

Eτ1 = EW (τ1)
2 = 1/4.

Second, it is easy to see that 1
τ1

is equidistributed with

4 sup0≤t≤1 |W (t)|2. It remains to evaluate E sup0≤t≤1 |W (t)|2. For
exponential moment θ independent of W we have

E sup
0≤t≤1

|W (t)|2 = E sup
0≤t≤θ

|W (t)|2 =

∫ ∞

0

x dx
cosh(x)

≈ 1.832.

Thus C ≤ 2
√

1.832 ≈ 2.7.
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Isoperimetric upper bound (Griffin–Kuelbs idea)

For any c > 0, ε > 0 we have

P(εIW (1, ε ≥ c)) = P(W 6∈ εU + cε−1K ),

where U := {x : ||x ||1 ≤ 1} and K := {h : |h|1 ≤ 1}.
By Gaussian isoperimetric inequality,

P(W 6∈ εU + cε−1K ) ≤ Φ̂(cε−1 + Φ−1(P(W ∈ εU))

Since Φ−1(p) ∼ −
√

2| ln p|, and by small ball asymptotics

ln P(W ∈ εU) ∼ − π2

8ε2 ,

we see that

P(W 6∈ εU + cε−1K ) → 0 asε → 0,

whenever c > π
2 . It follows that C ≤ π

2 . This is the best known upper
bound but it is totally non-constructive.
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Markov pursuit: problem setting

How to keep the Brownian dog on a leash in the energy saving mode?

Let the dog walk in R according to a Brownian motion W .

You must follow it by moving with a finite speed and always stay not
more than 1 away from the dog.

If x(t) is your trajectory, then the goal is to follow the dog by expending
minimal energy per unit of time

1
T

∫ T

0
x ′(t)2 dt

in a long run, T →∞.
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Markov pursuit vs taut string

The trajectory of pursuit x(t) goes in the same corridor as the taut
string.

Therefore, its reduced energy provides an upper bound for reduced
energy of the taut string:

lim
T→∞

1
T

∫ T

0
x ′(t)2 dt ≥ C2.

The difference between the construction of pursuit and the taut string
is huge: the former is built ”online” based on the past and present
trajectory of W while the latter requires the knowledge of entire
trajectory of W .
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Diffusion strategy for Markov pursuit

Let X (t) := x(t)−W (t) be the signed distance to the dog.

A reasonable strategy is to determine the speed x ′(t) as a function of
X (t) by accelerating when X (t) approaches the boundary ±1. So let
x ′(t) := b(X (t))
Then X becomes a stationary diffusion satisfying

dX = b(X )dt − dW .

One-dimensional diffusions are well understood. The density of the
invariant measure is

p(x) = C eB(x), whereB(x) := 2
∫ x

b(y)dy .

By ergodic theorem, in the stationary regime

1
T

∫ T

0
x ′(t)2 dt → 1

4

∫ 1

−1
b(x)2 p(x) dx =

1
4

∫ 1

−1

p′(x)2

p(x)2 p(x) dx :=
1
4

I(p).

We have to minimize Fisher information I(p) !
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Solution: optimal strategy for Markov pursuit

Minimizing Fisher information on the interval is a classical problem
arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit,
Shevlyakov, etc).

By simple variational calculus we obtain the optimal density

p(x) = cos2(πx/2), x ∈ [−1, 1],

and the optimal speed strategy

b(x) = −π tan(πx/2)

exploding at the boundary.
This leads to the asymptotic minimal reduced energy

1
T

∫ T

0
x ′(t)2 dt → 1

4
I(p) =

π2

4
.

We get

0.63 ≈ C ≤ I(p)1/2

2
=

π

2
≈ 1.51.

This is a price to pay for not knowing the future.
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M.Lifshits (St.Petersburg and Linköping) Taut Strings Darmstadt, July, 2014 15 / 21



Solution: optimal strategy for Markov pursuit

Minimizing Fisher information on the interval is a classical problem
arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit,
Shevlyakov, etc).
By simple variational calculus we obtain the optimal density

p(x) = cos2(πx/2), x ∈ [−1, 1],

and the optimal speed strategy

b(x) = −π tan(πx/2)

exploding at the boundary.
This leads to the asymptotic minimal reduced energy

1
T

∫ T

0
x ′(t)2 dt → 1

4
I(p) =

π2

4
.

We get

0.63 ≈ C ≤ I(p)1/2

2
=

π

2
≈ 1.51.

This is a price to pay for not knowing the future.
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Bounded time interval

Now we consider the optimal pursuit strategy on the finite time interval
[0, t ].

The optimal pursuit speed depends now not only of the distance
to the dog but also of the remaining time:

x ′(s) = b(x(s)−W (s), t − s).

Introduce the minimal average pursuit energy

F (y , t) := E
∫ t

0
x ′(s)2ds = E

∫ t

0
b(x(s)−W (s), t − s)2ds

assuming the pursuit speed b is chosen optimally and x(0) = y . We
have a PDE (a sort of Burgers equation)

F ′t = −1
4

(F ′y )2 +
1
2

F ′′yy .

Hopf-Cole transform F (y , t) := −2 ln V (y , t) leads to the heat equation
for V .
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Relation to small deviation probabilities

... Hopf-Cole transform F (y , t) := −2 ln V (y , t) leads to the heat
equation for V ...

... and this equation (with initial conditions) is the same as for small
deviation probabilities

P(y , t) = P (|W (s) + y | ≤ 1, 0 ≤ s ≤ t) .

We conclude that
F (y , t) := −2 lnP(y , t).

Of course, on the asymptotical level (t →∞), the previously found
asymptotic energy at infinite time horizon coincides with the known
asymptotics of small deviations. For the optimal speed we have

b(y , t) =
P ′y (y , t)

P(y , t)
.
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Related discrete applied problem

- Entrance
information
flow

-

S

r - Transmission
Channel

-

C

�
���

Buffer
of size B

H
Hj

@
@

@R Loss

We have discrete time: j = 1, 2, 3, . . .
(Sj) – entrance flow;
(Cj) – channel capacity;
(Lj) – loss size (under our control);
(Bj) – buffer stock; must be 0 ≤ Bj ≤ B.
Given ϕ : [0, 1] 7→ R+ – increasing convex penalty function, define the
penalty functional

F :=
n∑

j=1

ϕ
(

Lj
Sj

)
Sj ↘ min .
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M.Lifshits (St.Petersburg and Linköping) Taut Strings Darmstadt, July, 2014 18 / 21



Related discrete applied problem

- Entrance
information
flow

-

S

r - Transmission
Channel

-

C

�
���

Buffer
of size B

H
Hj

@
@

@R Loss

We have discrete time: j = 1, 2, 3, . . .
(Sj) – entrance flow;

(Cj) – channel capacity;
(Lj) – loss size (under our control);
(Bj) – buffer stock; must be 0 ≤ Bj ≤ B.
Given ϕ : [0, 1] 7→ R+ – increasing convex penalty function, define the
penalty functional

F :=
n∑

j=1

ϕ
(

Lj
Sj

)
Sj ↘ min .
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Buffer balance

We clearly have
Bj = Bj−1 +

(
Sj − Cj − Lj

)
.

Therefore,

Bk =
k∑

j=1

(
Sj − Cj

)
−

k∑
j=1

Lj .

Now buffer bounds 0 ≤ Bk ≤ B mean that

k∑
j=1

(
Sj − Cj

)
− B ≤

k∑
j=1

Lj ≤
k∑

j=1

(
Sj − Cj

)
.

That is
∑k

j=1 Lj must go within a (random) band of fixed width B.
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Buffer balance: graph
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Accumulated information excess
∑

(Sj − Cj )

FIFO strategy (full buffer)

Accumulated loss
∑

Lj

Accumulated entrance flow
∑

Sj
S1 S2 S3 S4 S5

-� -� -� -� -�

6

?
B

6
?

Bj

F = F (L) =
n∑

j=1

ϕ
(

Lj
Sj

)
Sj =

∫ S

0
ϕ(L′)ds ↘ min

is attained on the taut string.
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is attained on the taut string.
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Relation to Strassen law

Strassen’s functional law of the iterated logarithm:

lim sup
T→∞

inf
|h|1≤1

∥∥∥∥ W (·T )√
2T ln ln T

− h

∥∥∥∥
1

= 0 a.s.

Convergence rate: Grill, Talagrand ∃c1, c2 such that

c1 < lim sup
T→∞

(ln ln T )2/3 inf
|h|1≤1

∥∥∥∥ W (·T )√
2T ln ln T

− h

∥∥∥∥
1

< c2 a.s.

Liminf result (Grill, Griffin and Kuelbs) ∃c3, c4 such that

c3 < lim inf
T→∞

(ln ln T ) inf
|h|1≤1

∥∥∥∥ W (·T )√
2T ln ln T

− h

∥∥∥∥
1

< c4 a.s.

In terms of the tout string energy IW (·, ·) we have

lim sup
T→∞

IW (T , c1(2T )1/2(ln ln T )−1/6)

(2 ln ln T )1/2
> 1,

etc. Here the tube is much wider and the string energy is much lower
than in our case.
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