Least Energy Functions Accompanying Wiener Process

M.Lifshits (St.Petersburg and Linköping)

Darmstadt, July, 2014

This is a joint work with E. Setterqvist from Linköping university, Sweden, and Z. Kabluchko, Ulm university.

Taut string

$$
\begin{cases}\int_{0}^{T} f^{\prime}(t)^{2} d t \searrow \min & \text { or }(!!) \int_{0}^{T} \varphi\left(f^{\prime}(t)\right) d t \searrow \min \\ f(0)=w(0), \quad f(T)=w(T), & \\ w(t)-r \leq f(t) \leq w(t)+r, & 0 \leq t \leq T .\end{cases}
$$

Formal setting

We consider uniform norms

$$
\|h\|_{T}:=\sup _{0 \leq t \leq T}|h(t)|, \quad h \in \mathbb{C}[0, T],
$$

Formal setting

We consider uniform norms

$$
\|h\|_{T}:=\sup _{0 \leq t \leq T}|h(t)|, \quad h \in \mathbb{C}[0, T]
$$

and Sobolev-type norms

$$
|h|_{T}^{2}:=\int_{0}^{T} h^{\prime}(t)^{2} d t, \quad h \in A C[0, T]
$$

Formal setting

We consider uniform norms

$$
\|h\|_{T}:=\sup _{0 \leq t \leq T}|h(t)|, \quad h \in \mathbb{C}[0, T]
$$

and Sobolev-type norms

$$
|h|_{T}^{2}:=\int_{0}^{T} h^{\prime}(t)^{2} d t, \quad h \in A C[0, T]
$$

Let W be a Wiener process. We are mostly interested in its approximation characteristics

$$
I_{W}(T, r):=\inf \left\{|h|_{T} ; h \in A C[0, T],\|h-W\|_{T} \leq r, h(0)=0\right\}
$$

and
$I_{W}^{0}(T, r):=\inf \left\{|h|_{T} ; h \in A C[0, T],\|h-W\|_{T} \leq r, h(0)=0, h(T)=W(T)\right\}$.

Main results

Theorem
There exists $\mathcal{C} \in(0, \infty)$ such that for any $q>0$ if $\frac{r}{\sqrt{T}} \rightarrow 0$, then

$$
\frac{r}{T^{1 / 2}} I_{W}(T, r) \xrightarrow{L_{q}} \mathcal{C} \quad \text { and } \quad \frac{r}{T^{1 / 2}} I_{w}^{0}(T, r) \xrightarrow{L_{q}} \mathcal{C} .
$$

Main results

Theorem

There exists $\mathcal{C} \in(0, \infty)$ such that for any $q>0$ if $\frac{r}{\sqrt{T}} \rightarrow 0$, then

$$
\frac{r}{T^{1 / 2}} I_{W}(T, r) \xrightarrow{L_{q}} \mathcal{C} \quad \text { and } \quad \frac{r}{T^{1 / 2}} I_{W}^{0}(T, r) \xrightarrow{L_{q}} \mathcal{C} .
$$

We may complete the mean convergence with a.s. convergence to \mathcal{C}.

Main results

Theorem

There exists $\mathcal{C} \in(0, \infty)$ such that for any $q>0$ if $\frac{r}{\sqrt{T}} \rightarrow 0$, then

$$
\frac{r}{T^{1 / 2}} I_{W}(T, r) \xrightarrow{L_{q}} \mathcal{C} \quad \text { and } \quad \frac{r}{T^{1 / 2}} I_{W}^{0}(T, r) \xrightarrow{L_{q}} \mathcal{C} .
$$

We may complete the mean convergence with a.s. convergence to \mathcal{C}.

Theorem

For any fixed $r>0$, when $T \rightarrow \infty$, we have

$$
\begin{aligned}
& \frac{r}{T^{1 / 2}} I_{W}(T, r) \xrightarrow{\text { a.s. }} \mathcal{C} \\
& \frac{r}{T^{1 / 2}} I_{W}^{0}(T, r) \xrightarrow{\text { a.s. }} \mathcal{C} .
\end{aligned}
$$

and

Empirical modelling of \mathcal{C}

$\mathcal{C} \approx 0.63$

Main ideas: concentration and subadditivity

Main ideas: concentration and subadditivity

Consider $I_{W}(T, r)$ as a function of W.

Main ideas: concentration and subadditivity

Consider $I_{W}(T, r)$ as a function of W. We clearly have Lipschitz property:

$$
\left|I_{W}(T, r)-I_{W+h}(T, r)\right| \leq|h|_{T}
$$

Main ideas: concentration and subadditivity

Consider $I_{W}(T, r)$ as a function of W. We clearly have Lipschitz property:

$$
\left|I_{W}(T, r)-I_{W+h}(T, r)\right| \leq|h|_{T}
$$

Notice that Lipschitz constant does not depend on r and T.

Main ideas: concentration and subadditivity

Consider $I_{W}(T, r)$ as a function of W. We clearly have Lipschitz property:

$$
\left|I_{W}(T, r)-I_{W+h}(T, r)\right| \leq|h|_{T}
$$

Notice that Lipschitz constant does not depend on r and T. By Gaussian concentration inequality, it follows that the concentration of distribution of I_{W} is at least Gaussian:

Main ideas: concentration and subadditivity

Consider $I_{W}(T, r)$ as a function of W. We clearly have Lipschitz property:

$$
\left|I_{W}(T, r)-I_{W+h}(T, r)\right| \leq|h|_{T} .
$$

Notice that Lipschitz constant does not depend on r and T. By Gaussian concentration inequality, it follows that the concentration of distribution of I_{W} is at least Gaussian: $\forall \rho>0$

$$
\mathbb{P}\left(\left|I_{W}-\operatorname{med}\left(I_{W}\right)\right|>\rho\right) \leq \mathbb{P}(|N|>\rho)
$$

with N standard normal. Moreover, after normalization concentration range goes to zero. Conclusion: only convergence of averages is needed.

Main ideas: concentration and subadditivity

Consider $I_{W}(T, r)$ as a function of W. We clearly have Lipschitz property:

$$
\left|I_{W}(T, r)-I_{W+h}(T, r)\right| \leq|h|_{T} .
$$

Notice that Lipschitz constant does not depend on r and T. By Gaussian concentration inequality, it follows that the concentration of distribution of I_{W} is at least Gaussian: $\forall \rho>0$

$$
\mathbb{P}\left(\left|I_{W}-\operatorname{med}\left(I_{W}\right)\right|>\rho\right) \leq \mathbb{P}(|N|>\rho)
$$

with N standard normal. Moreover, after normalization concentration range goes to zero. Conclusion: only convergence of averages is needed.
Subadditivity in time:

$$
I_{W}^{0}\left(T_{1}+T_{2}, r\right)^{2} \leq I_{W}^{0}\left(T_{1}, r\right)^{2}+I_{\widehat{W}}^{0}\left(T_{2}, r\right)^{2} .
$$

with independent W and \widetilde{W}.

Lower bound (Talagrand idea)

Assume that $|w(t)-h(t)| \leq 1$ on an interval $[a, b]$ of length L.

Lower bound (Talagrand idea)

Assume that $|w(t)-h(t)| \leq 1$ on an interval $[a, b]$ of length L.

Then

$$
\int_{a}^{b} h^{\prime}(t)^{2} d t \geq \int_{u}^{v} h^{\prime}(t)^{2} d t \geq \frac{|h(u)-h(v)|^{2}}{|u-v|} \geq \frac{(M-m-2)_{+}^{2}}{L}
$$

For Wiener process, $\frac{(M-m-2)^{2}}{L}$ scales to $\left(R-2 L^{-1 / 2}\right)_{+}^{2}$ where R is the range of W on the unit interval.

Lower bound (continued)

By taking $T=n L$ and splitting $[0, T]$ into n intervals of length L we obtain

$$
\frac{|h|_{T}^{2}}{T} \geq \frac{1}{n L} \sum_{j=1}^{n}\left(R^{(j)}-2 L^{-1 / 2}\right)_{+}^{2} \rightarrow L^{-1} \mathbb{E}\left(R-2 L^{-1 / 2}\right)_{+}^{2}
$$

for any function h such that $\|h-W\|_{T} \leq 1$.

Lower bound (continued)

By taking $T=n L$ and splitting $[0, T]$ into n intervals of length L we obtain

$$
\frac{|h|_{T}^{2}}{T} \geq \frac{1}{n L} \sum_{j=1}^{n}\left(R^{(j)}-2 L^{-1 / 2}\right)_{+}^{2} \rightarrow L^{-1} \mathbb{E}\left(R-2 L^{-1 / 2}\right)_{+}^{2}
$$

for any function h such that $\|h-W\|_{T} \leq 1$. Hence,

$$
\mathcal{C}^{2} \geq \sup _{L>0} L^{-1} \mathbb{E}\left(R-2 L^{-1 / 2}\right)_{+}^{2}
$$

Lower bound (continued)

By taking $T=n L$ and splitting $[0, T]$ into n intervals of length L we obtain

$$
\frac{|h|_{T}^{2}}{T} \geq \frac{1}{n L} \sum_{j=1}^{n}\left(R^{(j)}-2 L^{-1 / 2}\right)_{+}^{2} \rightarrow L^{-1} \mathbb{E}\left(R-2 L^{-1 / 2}\right)_{+}^{2}
$$

for any function h such that $\|h-W\|_{T} \leq 1$. Hence,

$$
\mathcal{C}^{2} \geq \sup _{L>0} L^{-1} \mathbb{E}\left(R-2 L^{-1 / 2}\right)_{+}^{2}
$$

For the distribution of R, we have a fast convergent series representation. By calculating expectation and optimizing over L, we choose $L \approx 4$ and obtain ...

Lower bound (continued)

By taking $T=n L$ and splitting $[0, T]$ into n intervals of length L we obtain

$$
\frac{|h|_{T}^{2}}{T} \geq \frac{1}{n L} \sum_{j=1}^{n}\left(R^{(j)}-2 L^{-1 / 2}\right)_{+}^{2} \rightarrow L^{-1} \mathbb{E}\left(R-2 L^{-1 / 2}\right)_{+}^{2}
$$

for any function h such that $\|h-W\|_{T} \leq 1$. Hence,

$$
\mathcal{C}^{2} \geq \sup _{L>0} L^{-1} \mathbb{E}\left(R-2 L^{-1 / 2}\right)_{+}^{2}
$$

For the distribution of R, we have a fast convergent series representation. By calculating expectation and optimizing over L, we choose $L \approx 4$ and obtain ...

$$
\mathcal{C} \geq 0.38
$$

which is in agreement with empirical data.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Then $\forall t$ we have $|h(t)-W(t)| \leq 1$

Upper bound: free-knot approximation

Let $\tau_{n+1}:=\inf \left\{t \geq \tau_{n}| | W(t)-W\left(\tau_{n}\right) \left\lvert\, \geq \frac{1}{2}\right.\right\}$ Let $h(t)$ interpolate between the points $\left(\tau_{n}, W\left(\tau_{n}\right)\right)$.

Then $\forall t$ we have $|h(t)-W(t)| \leq 1$ and

$$
\int_{\tau_{n}}^{\tau_{n+1}} h^{\prime}(t)^{2} d t=\frac{\left(h\left(\tau_{n+1}\right)-h\left(\tau_{n}\right)\right)^{2}}{\tau_{n+1}-\tau_{n}}=\frac{1}{4\left(\tau_{n+1}-\tau_{n}\right)}
$$

are i.i.d. random variables.

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$.

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$. By the Law of Large Numbers,

$$
\mathcal{C}^{2} \leq \lim _{T \rightarrow \infty} \frac{|h|_{T}^{2}}{T}=\frac{\mathbb{E}\left(\frac{1}{\tau_{1}}\right)}{4 \mathbb{E} \tau_{1}} .
$$

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$. By the Law of Large Numbers,

$$
\mathcal{C}^{2} \leq \lim _{T \rightarrow \infty} \frac{|h|_{T}^{2}}{T}=\frac{\mathbb{E}\left(\frac{1}{\tau_{1}}\right)}{4 \mathbb{E} \tau_{1}} .
$$

We are able to calculate both expectations.

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$. By the Law of Large Numbers,

$$
\mathcal{C}^{2} \leq \lim _{T \rightarrow \infty} \frac{|h|_{T}^{2}}{T}=\frac{\mathbb{E}\left(\frac{1}{\tau_{1}}\right)}{4 \mathbb{E} \tau_{1}} .
$$

We are able to calculate both expectations. First, by Wald identity,

$$
\mathbb{E} \tau_{1}=\mathbb{E} W\left(\tau_{1}\right)^{2}=1 / 4
$$

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$. By the Law of Large Numbers,

$$
\mathcal{C}^{2} \leq \lim _{T \rightarrow \infty} \frac{|h|_{T}^{2}}{T}=\frac{\mathbb{E}\left(\frac{1}{\tau_{1}}\right)}{4 \mathbb{E} \tau_{1}} .
$$

We are able to calculate both expectations. First, by Wald identity,

$$
\mathbb{E} \tau_{1}=\mathbb{E} W\left(\tau_{1}\right)^{2}=1 / 4
$$

Second, it is easy to see that $\frac{1}{\tau_{1}}$ is equidistributed with $4 \sup _{0 \leq t \leq 1}|W(t)|^{2}$.

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$. By the Law of Large Numbers,

$$
\mathcal{C}^{2} \leq \lim _{T \rightarrow \infty} \frac{|h|_{T}^{2}}{T}=\frac{\mathbb{E}\left(\frac{1}{\tau_{1}}\right)}{4 \mathbb{E} \tau_{1}} .
$$

We are able to calculate both expectations. First, by Wald identity,

$$
\mathbb{E} \tau_{1}=\mathbb{E} W\left(\tau_{1}\right)^{2}=1 / 4
$$

Second, it is easy to see that $\frac{1}{\tau_{1}}$ is equidistributed with $4 \sup _{0 \leq t \leq 1}|W(t)|^{2}$. It remains to evaluate $\mathbb{E} \sup _{0 \leq t \leq 1}|W(t)|^{2}$.

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$. By the Law of Large Numbers,

$$
\mathcal{C}^{2} \leq \lim _{T \rightarrow \infty} \frac{|h|_{T}^{2}}{T}=\frac{\mathbb{E}\left(\frac{1}{\tau_{1}}\right)}{4 \mathbb{E} \tau_{1}} .
$$

We are able to calculate both expectations. First, by Wald identity,

$$
\mathbb{E} \tau_{1}=\mathbb{E} W\left(\tau_{1}\right)^{2}=1 / 4
$$

Second, it is easy to see that $\frac{1}{\tau_{1}}$ is equidistributed with $4 \sup _{0 \leq t \leq 1}|W(t)|^{2}$. It remains to evaluate $\mathbb{E} \sup _{0 \leq t \leq 1}|W(t)|^{2}$. For exponential moment θ independent of W we have

$$
\mathbb{E} \sup _{0 \leq t \leq 1}|W(t)|^{2}=\mathbb{E} \sup _{0 \leq t \leq \theta}|W(t)|^{2}=\int_{0}^{\infty} \frac{x d x}{\cosh (x)} \approx 1.832
$$

Free-knot approximation - numbers

On the long interval $[0, T]$ we have approximately $\frac{T}{\mathbb{E} \tau_{1}}$ cycles, and the average energy of h on a cycle is $\mathbb{E} \frac{1}{4 \tau_{1}}$. By the Law of Large Numbers,

$$
\mathcal{C}^{2} \leq \lim _{T \rightarrow \infty} \frac{|h|_{T}^{2}}{T}=\frac{\mathbb{E}\left(\frac{1}{\tau_{1}}\right)}{4 \mathbb{E} \tau_{1}} .
$$

We are able to calculate both expectations. First, by Wald identity,

$$
\mathbb{E} \tau_{1}=\mathbb{E} W\left(\tau_{1}\right)^{2}=1 / 4
$$

Second, it is easy to see that $\frac{1}{\tau_{1}}$ is equidistributed with $4 \sup _{0 \leq t \leq 1}|W(t)|^{2}$. It remains to evaluate $\mathbb{E} \sup _{0 \leq t \leq 1}|W(t)|^{2}$. For exponential moment θ independent of W we have

$$
\mathbb{E} \sup _{0 \leq t \leq 1}|W(t)|^{2}=\mathbb{E} \sup _{0 \leq t \leq \theta}|W(t)|^{2}=\int_{0}^{\infty} \frac{x d x}{\cosh (x)} \approx 1.832
$$

Thus $\mathcal{C} \leq 2 \sqrt{1.832} \approx 2.7$.

Isoperimetric upper bound (Griffin-Kuelbs idea)

Isoperimetric upper bound (Griffin-Kuelbs idea)

For any $c>0, \varepsilon>0$ we have

$$
\mathbb{P}\left(\varepsilon I_{W}(1, \varepsilon \geq c)\right)=\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right)
$$

where $U:=\left\{x:\|x\|_{1} \leq 1\right\}$ and $K:=\left\{h:|h|_{1} \leq 1\right\}$.

Isoperimetric upper bound (Griffin-Kuelbs idea)

For any $c>0, \varepsilon>0$ we have

$$
\mathbb{P}\left(\varepsilon I_{W}(1, \varepsilon \geq c)\right)=\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right)
$$

where $U:=\left\{x:\|x\|_{1} \leq 1\right\}$ and $K:=\left\{h:|h|_{1} \leq 1\right\}$. By Gaussian isoperimetric inequality,

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \leq \widehat{\Phi}\left(c \varepsilon^{-1}+\Phi^{-1}(\mathbb{P}(W \in \varepsilon U))\right.
$$

Isoperimetric upper bound (Griffin-Kuelbs idea)

For any $c>0, \varepsilon>0$ we have

$$
\mathbb{P}\left(\varepsilon I_{W}(1, \varepsilon \geq c)\right)=\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right)
$$

where $U:=\left\{x:\|x\|_{1} \leq 1\right\}$ and $K:=\left\{h:|h|_{1} \leq 1\right\}$. By Gaussian isoperimetric inequality,

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \leq \widehat{\Phi}\left(c \varepsilon^{-1}+\Phi^{-1}(\mathbb{P}(W \in \varepsilon U))\right.
$$

Since $\Phi^{-1}(p) \sim-\sqrt{2|\ln p|}$,

Isoperimetric upper bound (Griffin-Kuelbs idea)

For any $c>0, \varepsilon>0$ we have

$$
\mathbb{P}\left(\varepsilon I_{W}(1, \varepsilon \geq c)\right)=\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right)
$$

where $U:=\left\{x:\|x\|_{1} \leq 1\right\}$ and $K:=\left\{h:|h|_{1} \leq 1\right\}$. By Gaussian isoperimetric inequality,

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \leq \widehat{\Phi}\left(c \varepsilon^{-1}+\Phi^{-1}(\mathbb{P}(W \in \varepsilon U))\right.
$$

Since $\Phi^{-1}(p) \sim-\sqrt{2|\ln p|}$, and by small ball asymptotics

$$
\ln \mathbb{P}(W \in \varepsilon U) \sim-\frac{\pi^{2}}{8 \varepsilon^{2}},
$$

Isoperimetric upper bound (Griffin-Kuelbs idea)

For any $c>0, \varepsilon>0$ we have

$$
\mathbb{P}\left(\varepsilon I_{W}(1, \varepsilon \geq c)\right)=\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right)
$$

where $U:=\left\{x:\|x\|_{1} \leq 1\right\}$ and $K:=\left\{h:|h|_{1} \leq 1\right\}$. By Gaussian isoperimetric inequality,

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \leq \widehat{\Phi}\left(c \varepsilon^{-1}+\Phi^{-1}(\mathbb{P}(W \in \varepsilon U))\right.
$$

Since $\Phi^{-1}(p) \sim-\sqrt{2|\ln p|}$, and by small ball asymptotics

$$
\ln \mathbb{P}(W \in \varepsilon U) \sim-\frac{\pi^{2}}{8 \varepsilon^{2}}
$$

we see that

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

whenever $c>\frac{\pi}{2}$.

Isoperimetric upper bound (Griffin-Kuelbs idea)

For any $c>0, \varepsilon>0$ we have

$$
\mathbb{P}\left(\varepsilon I_{W}(1, \varepsilon \geq c)\right)=\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right)
$$

where $U:=\left\{x:\|x\|_{1} \leq 1\right\}$ and $K:=\left\{h:|h|_{1} \leq 1\right\}$. By Gaussian isoperimetric inequality,

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \leq \widehat{\Phi}\left(c \varepsilon^{-1}+\Phi^{-1}(\mathbb{P}(W \in \varepsilon U))\right.
$$

Since $\Phi^{-1}(p) \sim-\sqrt{2|\ln p|}$, and by small ball asymptotics

$$
\ln \mathbb{P}(W \in \varepsilon U) \sim-\frac{\pi^{2}}{8 \varepsilon^{2}}
$$

we see that

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

whenever $\mathcal{C}>\frac{\pi}{2}$. It follows that $\mathcal{C} \leq \frac{\pi}{2}$.

Isoperimetric upper bound (Griffin-Kuelbs idea)

For any $c>0, \varepsilon>0$ we have

$$
\mathbb{P}\left(\varepsilon I_{W}(1, \varepsilon \geq c)\right)=\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right)
$$

where $U:=\left\{x:\|x\|_{1} \leq 1\right\}$ and $K:=\left\{h:|h|_{1} \leq 1\right\}$. By Gaussian isoperimetric inequality,

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \leq \widehat{\Phi}\left(c \varepsilon^{-1}+\Phi^{-1}(\mathbb{P}(W \in \varepsilon U))\right.
$$

Since $\Phi^{-1}(p) \sim-\sqrt{2|\ln p|}$, and by small ball asymptotics

$$
\ln \mathbb{P}(W \in \varepsilon U) \sim-\frac{\pi^{2}}{8 \varepsilon^{2}}
$$

we see that

$$
\mathbb{P}\left(W \notin \varepsilon U+c \varepsilon^{-1} K\right) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

whenever $c>\frac{\pi}{2}$. It follows that $\mathcal{C} \leq \frac{\pi}{2}$. This is the best known upper bound but it is totally non-constructive.

Markov pursuit: problem setting

How to keep the Brownian dog on a leash in the energy saving mode?

Markov pursuit: problem setting

How to keep the Brownian dog on a leash in the energy saving mode?
Let the dog walk in \mathbb{R} according to a Brownian motion W.

Markov pursuit: problem setting

How to keep the Brownian dog on a leash in the energy saving mode?
Let the dog walk in \mathbb{R} according to a Brownian motion W.
You must follow it by moving with a finite speed and always stay not more than 1 away from the dog.

Markov pursuit: problem setting

How to keep the Brownian dog on a leash in the energy saving mode?
Let the dog walk in \mathbb{R} according to a Brownian motion W.
You must follow it by moving with a finite speed and always stay not more than 1 away from the dog.
If $x(t)$ is your trajectory, then the goal is to follow the dog by expending minimal energy per unit of time

$$
\frac{1}{T} \int_{0}^{T} x^{\prime}(t)^{2} d t
$$

in a long run, $T \rightarrow \infty$.

Markov pursuit vs taut string

The trajectory of pursuit $x(t)$ goes in the same corridor as the taut string.

Markov pursuit vs taut string

The trajectory of pursuit $x(t)$ goes in the same corridor as the taut string.

Therefore, its reduced energy provides an upper bound for reduced energy of the taut string:

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x^{\prime}(t)^{2} d t \geq \mathcal{C}^{2}
$$

Markov pursuit vs taut string

The trajectory of pursuit $x(t)$ goes in the same corridor as the taut string.

Therefore, its reduced energy provides an upper bound for reduced energy of the taut string:

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x^{\prime}(t)^{2} d t \geq \mathcal{C}^{2}
$$

The difference between the construction of pursuit and the taut string is huge: the former is built "online" based on the past and present trajectory of W while the latter requires the knowledge of entire trajectory of W.

Diffusion strategy for Markov pursuit

Let $X(t):=x(t)-W(t)$ be the signed distance to the dog.

Diffusion strategy for Markov pursuit

Let $X(t):=x(t)-W(t)$ be the signed distance to the dog.
A reasonable strategy is to determine the speed $x^{\prime}(t)$ as a function of $X(t)$ by accelerating when $X(t)$ approaches the boundary ± 1.

Diffusion strategy for Markov pursuit

Let $X(t):=x(t)-W(t)$ be the signed distance to the dog.
A reasonable strategy is to determine the speed $x^{\prime}(t)$ as a function of $X(t)$ by accelerating when $X(t)$ approaches the boundary ± 1. So let $x^{\prime}(t):=b(X(t))$

Diffusion strategy for Markov pursuit

Let $X(t):=x(t)-W(t)$ be the signed distance to the dog.
A reasonable strategy is to determine the speed $x^{\prime}(t)$ as a function of $X(t)$ by accelerating when $X(t)$ approaches the boundary ± 1. So let $x^{\prime}(t):=b(X(t))$
Then X becomes a stationary diffusion satisfying

$$
d X=b(X) d t-d W
$$

Diffusion strategy for Markov pursuit

Let $X(t):=x(t)-W(t)$ be the signed distance to the dog.
A reasonable strategy is to determine the speed $x^{\prime}(t)$ as a function of $X(t)$ by accelerating when $X(t)$ approaches the boundary ± 1. So let $x^{\prime}(t):=b(X(t))$
Then X becomes a stationary diffusion satisfying

$$
d X=b(X) d t-d W
$$

One-dimensional diffusions are well understood.

Diffusion strategy for Markov pursuit

Let $X(t):=x(t)-W(t)$ be the signed distance to the dog.
A reasonable strategy is to determine the speed $x^{\prime}(t)$ as a function of $X(t)$ by accelerating when $X(t)$ approaches the boundary ± 1. So let $x^{\prime}(t):=b(X(t))$
Then X becomes a stationary diffusion satisfying

$$
d X=b(X) d t-d W
$$

One-dimensional diffusions are well understood. The density of the invariant measure is

$$
p(x)=C e^{B(x)}, \quad \text { where } B(x):=2 \int^{x} b(y) d y
$$

Diffusion strategy for Markov pursuit

Let $X(t):=x(t)-W(t)$ be the signed distance to the dog.
A reasonable strategy is to determine the speed $x^{\prime}(t)$ as a function of $X(t)$ by accelerating when $X(t)$ approaches the boundary ± 1. So let $x^{\prime}(t):=b(X(t))$
Then X becomes a stationary diffusion satisfying

$$
d X=b(X) d t-d W
$$

One-dimensional diffusions are well understood. The density of the invariant measure is

$$
p(x)=C e^{B(x)}, \quad \text { where } B(x):=2 \int^{x} b(y) d y
$$

By ergodic theorem, in the stationary regime

$$
\frac{1}{T} \int_{0}^{T} x^{\prime}(t)^{2} d t \rightarrow \frac{1}{4} \int_{-1}^{1} b(x)^{2} p(x) d x=\frac{1}{4} \int_{-1}^{1} \frac{p^{\prime}(x)^{2}}{p(x)^{2}} p(x) d x:=\frac{1}{4} I(p)
$$

We have to minimize Fisher information $I(p)$!

Solution: optimal strategy for Markov pursuit

Minimizing Fisher information on the interval is a classical problem arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit, Shevlyakov, etc).

Solution: optimal strategy for Markov pursuit

Minimizing Fisher information on the interval is a classical problem arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit, Shevlyakov, etc).
By simple variational calculus we obtain the optimal density

$$
p(x)=\cos ^{2}(\pi x / 2), \quad x \in[-1,1]
$$

Solution: optimal strategy for Markov pursuit

Minimizing Fisher information on the interval is a classical problem arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit, Shevlyakov, etc).
By simple variational calculus we obtain the optimal density

$$
p(x)=\cos ^{2}(\pi x / 2), \quad x \in[-1,1]
$$

and the optimal speed strategy

$$
b(x)=-\pi \tan (\pi x / 2)
$$

exploding at the boundary.

Solution: optimal strategy for Markov pursuit

Minimizing Fisher information on the interval is a classical problem arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit, Shevlyakov, etc).
By simple variational calculus we obtain the optimal density

$$
p(x)=\cos ^{2}(\pi x / 2), \quad x \in[-1,1]
$$

and the optimal speed strategy

$$
b(x)=-\pi \tan (\pi x / 2)
$$

exploding at the boundary.
This leads to the asymptotic minimal reduced energy

$$
\frac{1}{T} \int_{0}^{T} x^{\prime}(t)^{2} d t \rightarrow \frac{1}{4} I(p)=\frac{\pi^{2}}{4}
$$

Solution: optimal strategy for Markov pursuit

Minimizing Fisher information on the interval is a classical problem arising in Statistics, Data Analysis, etc (Zipkin, Huber, Levit,
Shevlyakov, etc).
By simple variational calculus we obtain the optimal density

$$
p(x)=\cos ^{2}(\pi x / 2), \quad x \in[-1,1]
$$

and the optimal speed strategy

$$
b(x)=-\pi \tan (\pi x / 2)
$$

exploding at the boundary.
This leads to the asymptotic minimal reduced energy

$$
\frac{1}{T} \int_{0}^{T} x^{\prime}(t)^{2} d t \rightarrow \frac{1}{4} I(p)=\frac{\pi^{2}}{4}
$$

We get

$$
0.63 \approx \mathcal{C} \leq \frac{I(p)^{1 / 2}}{2}=\frac{\pi}{2} \approx 1.51
$$

This is a price to pay for not knowing the future.

Bounded time interval

Now we consider the optimal pursuit strategy on the finite time interval $[0, t]$.

Bounded time interval

Now we consider the optimal pursuit strategy on the finite time interval $[0, t]$. The optimal pursuit speed depends now not only of the distance to the dog but also of the remaining time:

$$
x^{\prime}(s)=b(x(s)-W(s), t-s)
$$

Bounded time interval

Now we consider the optimal pursuit strategy on the finite time interval $[0, t]$. The optimal pursuit speed depends now not only of the distance to the dog but also of the remaining time:

$$
x^{\prime}(s)=b(x(s)-W(s), t-s)
$$

Introduce the minimal average pursuit energy

$$
F(y, t):=\mathbb{E} \int_{0}^{t} x^{\prime}(s)^{2} d s=\mathbb{E} \int_{0}^{t} b(x(s)-W(s), t-s)^{2} d s
$$

assuming the pursuit speed b is chosen optimally and $x(0)=y$.

Bounded time interval

Now we consider the optimal pursuit strategy on the finite time interval $[0, t]$. The optimal pursuit speed depends now not only of the distance to the dog but also of the remaining time:

$$
x^{\prime}(s)=b(x(s)-W(s), t-s)
$$

Introduce the minimal average pursuit energy

$$
F(y, t):=\mathbb{E} \int_{0}^{t} x^{\prime}(s)^{2} d s=\mathbb{E} \int_{0}^{t} b(x(s)-W(s), t-s)^{2} d s
$$

assuming the pursuit speed b is chosen optimally and $x(0)=y$. We have a PDE (a sort of Burgers equation)

$$
F_{t}^{\prime}=-\frac{1}{4}\left(F_{y}^{\prime}\right)^{2}+\frac{1}{2} F_{y y}^{\prime \prime}
$$

Bounded time interval

Now we consider the optimal pursuit strategy on the finite time interval $[0, t]$. The optimal pursuit speed depends now not only of the distance to the dog but also of the remaining time:

$$
x^{\prime}(s)=b(x(s)-W(s), t-s)
$$

Introduce the minimal average pursuit energy

$$
F(y, t):=\mathbb{E} \int_{0}^{t} x^{\prime}(s)^{2} d s=\mathbb{E} \int_{0}^{t} b(x(s)-W(s), t-s)^{2} d s
$$

assuming the pursuit speed b is chosen optimally and $x(0)=y$. We have a PDE (a sort of Burgers equation)

$$
F_{t}^{\prime}=-\frac{1}{4}\left(F_{y}^{\prime}\right)^{2}+\frac{1}{2} F_{y y}^{\prime \prime}
$$

Hopf-Cole transform $F(y, t):=-2 \ln V(y, t)$ leads to the heat equation for V.

Relation to small deviation probabilities

... Hopf-Cole transform $F(y, t):=-2 \ln V(y, t)$ leads to the heat equation for V...

Relation to small deviation probabilities

... Hopf-Cole transform $F(y, t):=-2 \ln V(y, t)$ leads to the heat equation for V...
... and this equation (with initial conditions) is the same as for small deviation probabilities

$$
\mathcal{P}(y, t)=\mathbb{P}(|W(s)+y| \leq 1,0 \leq s \leq t)
$$

Relation to small deviation probabilities

... Hopf-Cole transform $F(y, t):=-2 \ln V(y, t)$ leads to the heat equation for V...
... and this equation (with initial conditions) is the same as for small deviation probabilities

$$
\mathcal{P}(y, t)=\mathbb{P}(|W(s)+y| \leq 1,0 \leq s \leq t)
$$

We conclude that

$$
F(y, t):=-2 \ln \mathcal{P}(y, t) .
$$

Relation to small deviation probabilities

... Hopf-Cole transform $F(y, t):=-2 \ln V(y, t)$ leads to the heat equation for V...
... and this equation (with initial conditions) is the same as for small deviation probabilities

$$
\mathcal{P}(y, t)=\mathbb{P}(|W(s)+y| \leq 1,0 \leq s \leq t)
$$

We conclude that

$$
F(y, t):=-2 \ln \mathcal{P}(y, t) .
$$

Of course, on the asymptotical level $(t \rightarrow \infty)$, the previously found asymptotic energy at infinite time horizon coincides with the known asymptotics of small deviations.

Relation to small deviation probabilities

... Hopf-Cole transform $F(y, t):=-2 \ln V(y, t)$ leads to the heat equation for V...
... and this equation (with initial conditions) is the same as for small deviation probabilities

$$
\mathcal{P}(y, t)=\mathbb{P}(|W(s)+y| \leq 1,0 \leq s \leq t)
$$

We conclude that

$$
F(y, t):=-2 \ln \mathcal{P}(y, t) .
$$

Of course, on the asymptotical level $(t \rightarrow \infty)$, the previously found asymptotic energy at infinite time horizon coincides with the known asymptotics of small deviations. For the optimal speed we have

$$
b(y, t)=\frac{\mathcal{P}_{y}^{\prime}(y, t)}{\mathcal{P}(y, t)} .
$$

Related discrete applied problem

We have discrete time: $j=1,2,3, \ldots$

Related discrete applied problem

We have discrete time: $j=1,2,3, \ldots$ $\left(S_{j}\right)$ - entrance flow;

Related discrete applied problem

We have discrete time: $j=1,2,3, \ldots$
$\left(S_{j}\right)$ - entrance flow;
$\left(C_{j}\right)$ - channel capacity;

Related discrete applied problem

We have discrete time: $j=1,2,3, \ldots$
$\left(S_{j}\right)$ - entrance flow;
$\left(C_{j}\right)$ - channel capacity;
$\left(L_{j}\right)$ - loss size (under our control);

Related discrete applied problem

We have discrete time: $j=1,2,3, \ldots$
$\left(S_{j}\right)$ - entrance flow;
$\left(C_{j}\right)$ - channel capacity;
$\left(L_{j}\right)$ - loss size (under our control);
$\left(B_{j}\right)$ - buffer stock; must be $0 \leq B_{j} \leq B$.

Related discrete applied problem

We have discrete time: $j=1,2,3, \ldots$
$\left(S_{j}\right)$ - entrance flow;
$\left(C_{j}\right)$ - channel capacity;
$\left(L_{j}\right)$ - loss size (under our control);
$\left(B_{j}\right)$ - buffer stock; must be $0 \leq B_{j} \leq B$.
Given $\varphi:[0,1] \mapsto \mathbb{R}_{+}$- increasing convex penalty function,

Related discrete applied problem

We have discrete time: $j=1,2,3, \ldots$
$\left(S_{j}\right)$ - entrance flow;
$\left(C_{j}\right)$ - channel capacity;
$\left(L_{j}\right)$ - loss size (under our control);
$\left(B_{j}\right)$ - buffer stock; must be $0 \leq B_{j} \leq B$.
Given $\varphi:[0,1] \mapsto \mathbb{R}_{+}$- increasing convex penalty function, define the penalty functional

$$
F:=\sum_{j=1}^{n} \varphi\left(\frac{L_{j}}{S_{j}}\right) S_{j} \searrow \min
$$

Buffer balance

We clearly have

$$
B_{j}=B_{j-1}+\left(S_{j}-C_{j}-L_{j}\right)
$$

Buffer balance

We clearly have

$$
B_{j}=B_{j-1}+\left(S_{j}-C_{j}-L_{j}\right)
$$

Therefore,

$$
B_{k}=\sum_{j=1}^{k}\left(S_{j}-C_{j}\right)-\sum_{j=1}^{k} L_{j} .
$$

Buffer balance

We clearly have

$$
B_{j}=B_{j-1}+\left(S_{j}-C_{j}-L_{j}\right)
$$

Therefore,

$$
B_{k}=\sum_{j=1}^{k}\left(S_{j}-C_{j}\right)-\sum_{j=1}^{k} L_{j}
$$

Now buffer bounds $0 \leq B_{k} \leq B$ mean that

$$
\sum_{j=1}^{k}\left(S_{j}-C_{j}\right)-B \leq \sum_{j=1}^{k} L_{j} \leq \sum_{j=1}^{k}\left(S_{j}-C_{j}\right)
$$

That is $\sum_{j=1}^{k} L_{j}$ must go within a (random) band of fixed width B.

Buffer balance: graph

$$
\text { Accumulated information excess } \sum\left(S_{j}-C_{j}\right)
$$

Buffer balance: graph

Buffer balance: graph

is attained on the taut string.

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

$$
\limsup _{T \rightarrow \infty} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}=0 \quad \text { a.s. }
$$

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

$$
\limsup _{T \rightarrow \infty} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}=0 \quad \text { a.s. }
$$

Convergence rate: Grill, Talagrand

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

$$
\limsup _{T \rightarrow \infty} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}=0 \quad \text { a.s. }
$$

Convergence rate: Grill, Talagrand $\exists c_{1}, c_{2}$ such that

$$
c_{1}<\limsup _{T \rightarrow \infty}(\ln \ln T)^{2 / 3} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{2}
$$

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

$$
\limsup _{T \rightarrow \infty} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}=0 \quad \text { a.s. }
$$

Convergence rate: Grill, Talagrand $\exists c_{1}, c_{2}$ such that

$$
c_{1}<\limsup _{T \rightarrow \infty}(\ln \ln T)^{2 / 3} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{2} \quad \text { a.s. }
$$

Liminf result (Grill, Griffin and Kuelbs)

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

$$
\limsup _{T \rightarrow \infty} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}=0 \quad \text { a.s. }
$$

Convergence rate: Grill, Talagrand $\exists c_{1}, c_{2}$ such that

$$
c_{1}<\limsup _{T \rightarrow \infty}(\ln \ln T)^{2 / 3} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{2} \quad \text { a.s. }
$$

Liminf result (Grill, Griffin and Kuelbs) $\exists c_{3}, c_{4}$ such that

$$
c_{3}<\liminf _{T \rightarrow \infty}(\ln \ln T) \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{4}
$$

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

$$
\limsup _{T \rightarrow \infty} \inf _{\mid h n_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}=0 \quad \text { a.s. }
$$

Convergence rate: Grill, Talagrand $\exists c_{1}, c_{2}$ such that

$$
c_{1}<\limsup _{T \rightarrow \infty}(\ln \ln T)^{2 / 3} \inf _{\mid h n_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{2} \quad \text { a.s. }
$$

Liminf result (Grill, Griffin and Kuelbs) $\exists c_{3}, c_{4}$ such that

$$
c_{3}<\liminf _{T \rightarrow \infty}(\ln \ln T) \inf _{|h|_{1 \leq 1}}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{4} \quad \text { a.s. }
$$

In terms of the tout string energy $I_{W}(\cdot, \cdot)$ we have

$$
\limsup _{T \rightarrow \infty} \frac{I_{W}\left(T, c_{1}(2 T)^{1 / 2}(\ln \ln T)^{-1 / 6}\right)}{(2 \ln \ln T)^{1 / 2}}>1,
$$

etc.

Relation to Strassen law

Strassen's functional law of the iterated logarithm:

$$
\limsup _{T \rightarrow \infty} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}=0 \quad \text { a.s. }
$$

Convergence rate: Grill, Talagrand $\exists c_{1}, c_{2}$ such that

$$
c_{1}<\limsup _{T \rightarrow \infty}(\ln \ln T)^{2 / 3} \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{2} \quad \text { a.s. }
$$

Liminf result (Grill, Griffin and Kuelbs) $\exists c_{3}, c_{4}$ such that

$$
c_{3}<\liminf _{T \rightarrow \infty}(\ln \ln T) \inf _{|h|_{1} \leq 1}\left\|\frac{W(\cdot T)}{\sqrt{2 T \ln \ln T}}-h\right\|_{1}<c_{4} \quad \text { a.s. }
$$

In terms of the tout string energy $I_{W}(\cdot, \cdot)$ we have

$$
\limsup _{T \rightarrow \infty} \frac{I_{W}\left(T, c_{1}(2 T)^{1 / 2}(\ln \ln T)^{-1 / 6}\right)}{(2 \ln \ln T)^{1 / 2}}>1
$$

etc. Here the tube is much wider and the string energy is much lower than in our case.

