First-passage properties in diffusion with stochastic resetting

Satya N. Majumdar

Laboratoire de Physique Théorique et Modèles Statistiques, CNRS,
Université Paris-Sud, France

Plan

- Motivation: Visual Search problem
- Motivation: Visual Search problem
- Diffusion with Resetting: A simple model
\Rightarrow new Nonequilibrium Steady State
- Motivation: Visual Search problem
- Diffusion with Resetting: A simple model
\Rightarrow new Nonequilibrium Steady State
- Target search by a single random walker with resetting
\Rightarrow optimal resetting rate that minimizes the mean first-passage time to the target
- Motivation: Visual Search problem
- Diffusion with Resetting: A simple model
\Rightarrow new Nonequilibrium Steady State
- Target search by a single random walker with resetting
\Rightarrow optimal resetting rate that minimizes the mean first-passage time to the target
- Various generalizations: space-dependent resetting rate random target position
- Motivation: Visual Search problem
- Diffusion with Resetting: A simple model

$$
\Rightarrow \text { new Nonequilibrium Steady State }
$$

- Target search by a single random walker with resetting
\Rightarrow optimal resetting rate that minimizes the mean first-passage time to the target
- Various generalizations: space-dependent resetting rate random target position
- Target search by multiple searchers with resetting
\Rightarrow power-law decay of the target persistence/survival prob. with nontrivial persistence exponent
- Motivation: Visual Search problem
- Diffusion with Resetting: A simple model

$$
\Rightarrow \text { new Nonequilibrium Steady State }
$$

- Target search by a single random walker with resetting
\Rightarrow optimal resetting rate that minimizes the mean first-passage time to the target
- Various generalizations: space-dependent resetting rate random target position
- Target search by multiple searchers with resetting
\Rightarrow power-law decay of the target persistence/survival prob. with nontrivial persistence exponent
- Summary and Conclusion

Search Problems

Search problems are ubiquitous in nature

- search for Holy Grail
- search for Higgs boson
- data search (Google)
- animals searching for food
- protein searching for a binding site on a DNA
- Visual search: locating a face in the crowd

Search Problems

Search problems are ubiquitous in nature

- search for Holy Grail
- search for Higgs boson
- data search (Google)
- animals searching for food
- protein searching for a binding site on a DNA
- Visual search: locating a face in the crowd

A robust class of models: Intermittent target search strategies combine
(i) phases of slow motion (target detection)
(ii) phases of fast motion (searcher relocates but not reactive)
[O. Bénichou et. al. Rev. Mod. Phys. 83, 81 (2011)]

Visual search: a face in a crowd

Visual search in psychology

| \mathbf{P} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} | \mathbf{P} | \mathbf{B} | \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} |
| \mathbf{P} |

Search via diffusion and resetting

I: The Model and its Steady State

Diffusion with stochastic resetting: The model

Diffusion with stochastic resetting: The model

Dynamics: In a small time interval Δt

$$
\begin{array}{rlrl}
x(t+\Delta t) & =x_{0} & & \text { with prob. } r \Delta t \\
& & \text { (resetting) } \\
& =x(t)+\eta(t) \Delta t & & \text { with prob. } 1-r \Delta t
\end{array} \quad \text { (diffusion) }
$$

Diffusion with stochastic resetting: The model

Dynamics: In a small time interval Δt

$$
\begin{aligned}
x(t+\Delta t) & =x_{0} & & \text { with prob. } r \Delta t \\
& =x(t)+\eta(t) \Delta t & & \text { (resetting) } \\
& \text { with prob. } 1-r \Delta t & & \text { (diffusion) }
\end{aligned}
$$

$\eta(t) \rightarrow$ Gaussian white noise: $\langle\eta(t)\rangle=0$ and $\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=2 D \delta\left(t-t^{\prime}\right)$
[M.R. Evans \& S.M., PRL, 106, 160601 (2011)]

Prob. density $p(x, t)$ with resetting rate $r>0$

$p(x, t) \rightarrow$ prob. density at time t, given $p(x, 0)=\delta\left(x-x_{0}\right)$

$p(x, t) \rightarrow$ prob. density at time t, given $p(x, 0)=\delta\left(x-x_{0}\right)$

- In absence of resetting $(r=0)$:

$$
p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D t\right]
$$

Prob. density $p(x, t)$ with resetting rate $r>0$

$$
\begin{aligned}
p(x, t) \rightarrow & \text { prob. density at time } t \\
& \text { given } p(x, 0)=\delta\left(x-x_{0}\right)
\end{aligned}
$$

- In absence of resetting ($r=0$):

$$
p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D t\right]
$$

- In presence of resetting $(r>0)$:

Fokker-Planck equation:
$p(x, t+\Delta t)=[1-r \Delta t]\langle p(x-\eta(t) \Delta t, t)\rangle+[r \Delta t] \delta\left(x-x_{0}\right)$

Prob. density $p(x, t)$ with resetting rate $r>0$

$p(x, t) \rightarrow$ prob. density at time t, given $p(x, 0)=\delta\left(x-x_{0}\right)$

- In absence of resetting ($r=0$):

$$
p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D t\right]
$$

- In presence of resetting $(r>0)$:

Fokker-Planck equation:

$$
\begin{aligned}
p(x, t+\Delta t) & =[1-r \Delta t]\langle p(x-\eta(t) \Delta t, t)\rangle+[r \Delta t] \delta\left(x-x_{0}\right) \\
& \Rightarrow \partial_{t} p=D \partial_{x}^{2} p-r p(x, t)+r \delta\left(x-x_{0}\right)
\end{aligned}
$$

Steady state solution

- Fokker-Planck Eq: $\partial_{t} p=D \partial_{x}^{2} p-r p(x, t)+r \delta\left(x-x_{0}\right)$

Steady state solution

- Fokker-Planck Eq: $\partial_{t} p=D \partial_{x}^{2} p-r p(x, t)+r \delta\left(x-x_{0}\right)$
- stationary $(t \rightarrow \infty)$ solution: $D \frac{d^{2} p_{s t}(x)}{d x^{2}}-r p_{\mathrm{st}}(x)+r \delta\left(x-x_{0}\right)=0$

Steady state solution

- Fokker-Planck Eq: $\partial_{t} p=D \partial_{x}^{2} p-r p(x, t)+r \delta\left(x-x_{0}\right)$
- stationary $(t \rightarrow \infty)$ solution: $D \frac{d^{2} p_{s t}(x)}{d x^{2}}-r p_{\mathrm{st}}(x)+r \delta\left(x-x_{0}\right)=0$

Exact solution $\rightarrow p_{\text {st }}(x)=\frac{\alpha_{0}}{2} \exp \left[-\alpha_{0}\left|x-x_{0}\right|\right]$ with $\alpha_{0}=\sqrt{r / D}$

Steady state solution

- Fokker-Planck Eq: $\partial_{t} p=D \partial_{x}^{2} p-r p(x, t)+r \delta\left(x-x_{0}\right)$
- stationary $(t \rightarrow \infty)$ solution: $D \frac{d^{2} p_{\mathrm{st}}(x)}{d x^{2}}-r p_{\mathrm{st}}(x)+r \delta\left(x-x_{0}\right)=0$

Exact solution $\rightarrow p_{\mathrm{st}}(x)=\frac{\alpha_{0}}{2} \exp \left[-\alpha_{0}\left|x-x_{0}\right|\right]$ with $\alpha_{0}=\sqrt{r / D}$

\rightarrow nonequilibrium steady state
\Rightarrow current carrying with detailed balance \rightarrow violated

$$
p_{\mathrm{st}}(x)=\alpha_{0} \exp \left[-V_{\mathrm{eff}}(x)\right]
$$

effective potential:

$$
V_{\mathrm{eff}}(x)=\alpha_{0}\left|x-x_{0}\right|
$$

An intuitive derivation:

$\tau \rightarrow$ time since the last resetting during which free diffusion \Rightarrow

If $0<\tau<t$
$p(x, t)=\frac{1}{\sqrt{4 \pi D \tau}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D \tau\right]$
If $\tau>t$ (no resetting in $[0, t]$)
$p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D t\right]$

An intuitive derivation:

$\tau \rightarrow$ time since the last resetting during which free diffusion \Rightarrow

If $0<\tau<t$
$p(x, t)=\frac{1}{\sqrt{4 \pi D \tau}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D \tau\right]$
If $\tau>t$ (no resetting in $[0, t])$ $p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D t\right]$

- Thus τ itself \rightarrow random variable

$$
\begin{aligned}
\text { Prob. }[\tau<t] & =r e^{-r \tau} & & \text { for } 0 \leq \tau<t \\
& =e^{-r t} & & \text { for } \tau>t \text { (no resetting in }[0, t])
\end{aligned}
$$

An intuitive derivation:

$\tau \rightarrow$ time since the last resetting during which free diffusion \Rightarrow

If $0<\tau<t$
$p(x, t)=\frac{1}{\sqrt{4 \pi D \tau}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D \tau\right]$
If $\tau>t$ (no resetting in $[0, t])$
$p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D t\right]$

- Thus τ itself \rightarrow random variable

$$
\begin{aligned}
\text { Prob. }[\tau<t] & =r e^{-r \tau} & & \text { for } 0 \leq \tau<t \\
& =e^{-r t} & & \text { for } \tau>t \text { (no resetting in }[0, t])
\end{aligned}
$$

- Averaging over τ gives $p(x, t)=\int_{0}^{t} d \tau\left(r e^{-r \tau}\right) G(x, \tau)+e^{-r t} G(x, t)$
where $G(x, \tau)=$ diffusion propagator $=\frac{1}{\sqrt{4 \pi D \tau}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D \tau\right]$

An intuitive derivation:

$\tau \rightarrow$ time since the last resetting during which free diffusion \Rightarrow

If $0<\tau<t$
$p(x, t)=\frac{1}{\sqrt{4 \pi D \tau}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D \tau\right]$
If $\tau>t$ (no resetting in $[0, t])$
$p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D t\right]$

- Thus τ itself \rightarrow random variable

$$
\begin{aligned}
\text { Prob. }[\tau<t] & =r e^{-r \tau} & & \text { for } 0 \leq \tau<t \\
& =e^{-r t} & & \text { for } \tau>t \text { (no resetting in }[0, t])
\end{aligned}
$$

- Averaging over τ gives $p(x, t)=\int_{0}^{t} d \tau\left(r e^{-r \tau}\right) G(x, \tau)+e^{-r t} G(x, t)$ where $G(x, \tau)=$ diffusion propagator $=\frac{1}{\sqrt{4 \pi D \tau}} \exp \left[-\left(x-x_{0}\right)^{2} / 4 D \tau\right]$
- as $t \rightarrow \infty, p_{\text {st }}(x)=\frac{\alpha_{0}}{2} \exp \left[-\alpha_{0}\left|x-x_{0}\right|\right]$ with $\alpha_{0}=\sqrt{r / D}$

Generalization to higher dimensions

particle starting at \vec{x}_{0} diffuses in d dim. and resets to \vec{x}_{0} with rate r
$p(\vec{x}, t) \rightarrow$ prob. density. at time t

- Fokker-Planck Eq. : $\partial_{t} p=D \nabla^{2} p(\vec{x}, t)-r p(\vec{x}, t)+r \delta\left(\vec{x}-\vec{x}_{0}\right)$

Generalization to higher dimensions

particle starting at \vec{x}_{0} diffuses in d dim. and resets to \vec{x}_{0} with rate r
$p(\vec{x}, t) \rightarrow$ prob. density. at time t

- Fokker-Planck Eq. : $\partial_{t} p=D \nabla^{2} p(\vec{x}, t)-r p(\vec{x}, t)+r \delta\left(\vec{x}-\vec{x}_{0}\right)$
- stationary solution:

$$
p_{\mathrm{st}}(\vec{x})=\frac{\left(\alpha_{0}\right)^{d}}{(2 \pi)^{d}}\left[\alpha_{0}\left|\vec{x}-\vec{x}_{0}\right|\right]^{\nu} K_{\nu}\left(\alpha_{0}\left|\vec{x}-\vec{x}_{0}\right|\right)
$$

Generalization to higher dimensions

particle starting at \vec{x}_{0} diffuses in d dim. and resets to \vec{x}_{0} with rate r
$p(\vec{x}, t) \rightarrow$ prob. density. at time t

- Fokker-Planck Eq. : $\partial_{t} p=D \nabla^{2} p(\vec{x}, t)-r p(\vec{x}, t)+r \delta\left(\vec{x}-\vec{x}_{0}\right)$
- stationary solution:

$$
p_{\mathrm{st}}(\vec{x})=\frac{\left(\alpha_{0}\right)^{d}}{(2 \pi)^{d}}\left[\alpha_{0}\left|\vec{x}-\vec{x}_{0}\right|\right]^{\nu} K_{\nu}\left(\alpha_{0}\left|\vec{x}-\vec{x}_{0}\right|\right)
$$

where $\alpha_{0}=\sqrt{r / D}, \nu=1-d / 2$ and $K_{\nu}(z) \rightarrow$ modified Bessel function

Generalization to higher dimensions

particle starting at \vec{x}_{0} diffuses in d dim. and resets to \vec{x}_{0} with rate r
$p(\vec{x}, t) \rightarrow$ prob. density. at time t

- Fokker-Planck Eq. : $\partial_{t} p=D \nabla^{2} p(\vec{x}, t)-r p(\vec{x}, t)+r \delta\left(\vec{x}-\vec{x}_{0}\right)$
- stationary solution:

$$
p_{\mathrm{st}}(\vec{x})=\frac{\left(\alpha_{0}\right)^{d}}{(2 \pi)^{d}}\left[\alpha_{0}\left|\vec{x}-\vec{x}_{0}\right|\right]^{\nu} K_{\nu}\left(\alpha_{0}\left|\vec{x}-\vec{x}_{0}\right|\right)
$$

where $\alpha_{0}=\sqrt{r / D}, \nu=1-d / 2$ and $K_{\nu}(z) \rightarrow$ modified Bessel function

- For $d=1$, it reduces to $\rightarrow p_{\mathrm{st}}(x)=\frac{\alpha_{0}}{2} \exp \left[-\alpha_{0}\left|x-x_{0}\right|\right]$

II: Persistence and First-passage properties

Search of a fixed target by a purely diffusive searcher in $d=1$ without resetting

$Q(x, t) \rightarrow$ persistence/survival prob. of the target
backward Fokker-Planck equation
$\partial_{t} Q(x, t)=D \partial_{x}^{2} Q(x, t)$ for $x \geq 0$
boundary cond. :
$Q(x=0, t)=0$ and $Q(x \rightarrow \infty, t)=1$
intial cond. :
$Q(x, t=0)=1$ for $x>0$

Search of a fixed target by a purely diffusive searcher in $d=1$ without resetting

$Q(x, t) \rightarrow$ persistence/survival prob. of the target
backward Fokker-Planck equation
$\partial_{t} Q(x, t)=D \partial_{x}^{2} Q(x, t)$ for $x \geq 0$
boundary cond. :
$Q(x=0, t)=0$ and $Q(x \rightarrow \infty, t)=1$
intial cond. :
$Q(x, t=0)=1$ for $x>0$
space \qquad

- exact solution for survival prob. : $Q(x, t)=\operatorname{erf}(|x| / \sqrt{4 D t})$

Search of a fixed target by a purely diffusive searcher in $d=1$ without resetting

$Q(x, t) \rightarrow$ persistence/survival prob. of the target
backward Fokker-Planck equation
$\partial_{t} Q(x, t)=D \partial_{x}^{2} Q(x, t)$ for $x \geq 0$
boundary cond. :
$Q(x=0, t)=0$ and $Q(x \rightarrow \infty, t)=1$
intial cond. :
$Q(x, t=0)=1$ for $x>0$
space \qquad

- exact solution for survival prob. : $Q(x, t)=\operatorname{erf}(|x| / \sqrt{4 D t})$
- first-passage prob.:

$$
F(x, t)=-\partial_{t} Q(x, t)=\frac{x}{\sqrt{4 \pi D t^{3}}} \exp \left[-x^{2} / 4 D t\right] \underset{t \rightarrow \infty}{\longrightarrow} t^{-3 / 2}
$$

Search of a fixed target by a purely diffusive searcher in $d=1$ without resetting

$Q(x, t) \rightarrow$ persistence/survival prob. of the target
backward Fokker-Planck equation
$\partial_{t} Q(x, t)=D \partial_{x}^{2} Q(x, t)$ for $x \geq 0$
boundary cond. :
$Q(x=0, t)=0$ and $Q(x \rightarrow \infty, t)=1$
intial cond. :
$Q(x, t=0)=1$ for $x>0$
space \qquad

- exact solution for survival prob. : $Q(x, t)=\operatorname{erf}(|x| / \sqrt{4 D t})$
- first-passage prob.:

$$
F(x, t)=-\partial_{t} Q(x, t)=\frac{x}{\sqrt{4 \pi D t^{3}}} \exp \left[-x^{2} / 4 D t\right] \underset{t \rightarrow \infty}{\longrightarrow} t^{-3 / 2}
$$

- mean capture time $\rightarrow \bar{T}=\int_{0}^{\infty} t F(x, t) d t=\infty$

Target search via diffusion with resetting

- starting position $x \rightarrow$ 'variable', resetting to x_{0} with rate r

Target search via diffusion with resetting

- starting position $x \rightarrow$ 'variable', resetting to x_{0} with rate r
- $Q(x, t) \rightarrow$ persistence/survival prob. of the target

Target search via diffusion with resetting

- starting position $x \rightarrow$ 'variable', resetting to x_{0} with rate r
- $Q(x, t) \rightarrow$ persistence/survival prob. of the target
- backward Fokker-Planck Eq.:

$$
\partial_{t} Q(x, t)=D \partial_{x}^{2} Q(x, t)-r Q(x, t)+r Q\left(x_{0}, t\right) \text { for } x \geq 0
$$

Target search via diffusion with resetting

space

- starting position $x \rightarrow$ 'variable', resetting to x_{0} with rate r
- $Q(x, t) \rightarrow$ persistence/survival prob. of the target
- backward Fokker-Planck Eq.:

$$
\partial_{t} Q(x, t)=D \partial_{x}^{2} Q(x, t)-r Q(x, t)+r Q\left(x_{0}, t\right) \text { for } x \geq 0
$$

boundary cond. : $Q(x=0, t)=0$ and $Q(x \rightarrow \infty, t) \rightarrow$ finite intial cond. : $Q(x, t=0)=1$ for $x>0$

Solution via Laplace transform

- Laplace transform: $\tilde{Q}(x, s)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t$

Solution via Laplace transform

- Laplace transform: $\tilde{Q}(x, s)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t$
- Exact solution:

$$
\tilde{Q}(x, s)=\frac{1+r \tilde{Q}\left(x_{0}, s\right)}{r+s}[1-\exp (-\sqrt{(r+s) / D} x)]
$$

Solution via Laplace transform

- Laplace transform: $\tilde{Q}(x, s)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t$
- Exact solution:

$$
\tilde{Q}(x, s)=\frac{1+r \tilde{Q}\left(x_{0}, s\right)}{r+s}[1-\exp (-\sqrt{(r+s) / D} x)]
$$

- Setting $x=x_{0}$ (resetting to initial position x_{0})

Solution via Laplace transform

- Laplace transform: $\tilde{Q}(x, s)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t$
- Exact solution:

$$
\tilde{Q}(x, s)=\frac{1+r \tilde{Q}\left(x_{0}, s\right)}{r+s}[1-\exp (-\sqrt{(r+s) / D} x)]
$$

- Setting $x=x_{0}$ (resetting to initial position x_{0})

$$
\tilde{Q}\left(x_{0}, s\right)=\frac{1-\exp \left(-\sqrt{(r+s) / D} x_{0}\right)}{s+r \exp \left(-\sqrt{(r+s) / D} x_{0}\right)}
$$

Solution via Laplace transform

- Laplace transform: $\tilde{Q}(x, s)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t$
- Exact solution:

$$
\tilde{Q}(x, s)=\frac{1+r \tilde{Q}\left(x_{0}, s\right)}{r+s}[1-\exp (-\sqrt{(r+s) / D} x)]
$$

- Setting $x=x_{0}$ (resetting to initial position x_{0})

$$
\tilde{Q}\left(x_{0}, s\right)=\frac{1-\exp \left(-\sqrt{(r+s) / D} x_{0}\right)}{s+r \exp \left(-\sqrt{(r+s) / D} x_{0}\right)}
$$

\Rightarrow As $t \rightarrow \infty, Q\left(x_{0}, t\right) \approx \exp \left[-r t e^{-\sqrt{r / D} x_{0}}\right]$

Solution via Laplace transform

- Laplace transform: $\tilde{Q}(x, s)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t$
- Exact solution:

$$
\tilde{Q}(x, s)=\frac{1+r \tilde{Q}\left(x_{0}, s\right)}{r+s}[1-\exp (-\sqrt{(r+s) / D} x)]
$$

- Setting $x=x_{0}$ (resetting to initial position x_{0})

$$
\tilde{Q}\left(x_{0}, s\right)=\frac{1-\exp \left(-\sqrt{(r+s) / D} x_{0}\right)}{s+r \exp \left(-\sqrt{(r+s) / D} x_{0}\right)}
$$

\Rightarrow As $t \rightarrow \infty, Q\left(x_{0}, t\right) \approx \exp \left[-r t e^{-\sqrt{r / D} x_{0}}\right]$

$$
\begin{aligned}
& \text { For } r>0, Q\left(x_{0}, t\right) \approx \exp \left[-t / t^{*}\right] \\
& \text { where } t^{*} \approx(1 / r) e^{\sqrt{r / D} x_{0}}
\end{aligned}
$$

Survival Probability \Longleftrightarrow Extreme Value Statistics

ROTATE \& SHIFT

- $M(t) \rightarrow$ maximum of the process up to time t

Survival Probability \Longleftrightarrow Extreme Value Statistics

ROTATE \& SHIFT

- $M(t) \rightarrow$ maximum of the process up to time t
- Survival prob. $Q\left(x_{0}, t\right) \equiv \operatorname{Prob} .\left[M(t) \leq x_{0}\right]$

Survival Probability \Longleftrightarrow Extreme Value Statistics

ROTATE \& SHIFT

- $M(t) \rightarrow$ maximum of the process up to time t
- Survival prob. $Q\left(x_{0}, t\right) \equiv \operatorname{Prob} .\left[M(t) \leq x_{0}\right]$
- Correlation time $\tau=1 / r$

Survival Probability \Longleftrightarrow Extreme Value Statistics

ROTATE \& SHIFT

- $M(t) \rightarrow$ maximum of the process up to time t
- Survival prob. $Q\left(x_{0}, t\right) \equiv \operatorname{Prob} .\left[M(t) \leq x_{0}\right]$
- Correlation time $\tau=1 / r \rightarrow N_{\text {eff }}=t / \tau=r t$ effectively independent blocks in the time interval $[0, t]$

Survival Probability \Longleftrightarrow Extreme Value Statistics

ROTATE \& SHIFT

- $M(t) \rightarrow$ maximum of the process up to time t
- Survival prob. $Q\left(x_{0}, t\right) \equiv \operatorname{Prob} .\left[M(t) \leq x_{0}\right]$
- Correlation time $\tau=1 / r \rightarrow N_{\text {eff }}=t / \tau=r t$ effectively independent blocks in the time interval $[0, t]$
- $Q\left(x_{0}, t\right) \approx \exp \left[-r t e^{-\sqrt{r / D} x_{0}}\right]$

Survival Probability \Longleftrightarrow Extreme Value Statistics

ROTATE \& SHIFT

- $M(t) \rightarrow$ maximum of the process up to time t
- Survival prob. $Q\left(x_{0}, t\right) \equiv \operatorname{Prob} .\left[M(t) \leq x_{0}\right]$
- Correlation time $\tau=1 / r \rightarrow N_{\text {eff }}=t / \tau=r t$ effectively independent blocks in the time interval $[0, t]$
- $Q\left(x_{0}, t\right) \approx \exp \left[-r t e^{-\sqrt{r / D} x_{0}}\right] \approx \exp \left[-N_{\text {eff }} e^{-\sqrt{r / D} x_{0}}\right]$
\Rightarrow classical Gumbel distribution for the maximum of a set of $N_{\text {eff }}$ exponentially distributed independent random variables

Mean capture/search time

mean capture time: $\bar{T}=\int_{0}^{\infty} t\left[-\partial_{t} Q\left(x_{0}, t\right)\right] d t=\tilde{Q}\left(x_{0}, s=0\right)$

Mean capture/search time

mean capture time: $\bar{T}=\int_{0}^{\infty} t\left[-\partial_{t} Q\left(x_{0}, t\right)\right] d t=\tilde{Q}\left(x_{0}, s=0\right)$

$$
\bar{T}\left(r, x_{0}\right)=\frac{1}{r}\left[\exp \left(\sqrt{r / D} x_{0}\right)-1\right]
$$

Mean capture/search time

mean capture time: $\bar{T}=\int_{0}^{\infty} t\left[-\partial_{t} Q\left(x_{0}, t\right)\right] d t=\tilde{Q}\left(x_{0}, s=0\right)$

$$
\bar{T}\left(r, x_{0}\right)=\frac{1}{r}\left[\exp \left(\sqrt{r / D} x_{0}\right)-1\right]
$$

\Rightarrow mean capture time is ∞ for $r=0$, but finite when $r>0$

Optimal resetting rate

$$
\bar{T}\left(r, x_{0}\right)=\frac{1}{r}\left[\exp \left(\sqrt{r / D} x_{0}\right)-1\right]
$$

Optimal resetting rate

$$
\bar{T}\left(r, x_{0}\right)=\frac{1}{r}\left[\exp \left(\sqrt{r / D} x_{0}\right)-1\right]
$$

- For fixed x_{0} and D, the mean capture time $\bar{T}\left(r, x_{0}\right)$ diverges as $r \rightarrow 0$ and also as $r \rightarrow \infty$

- For fixed x_{0} and D, the mean capture time $\bar{T}\left(r, x_{0}\right)$ diverges as $r \rightarrow 0$ and also as $r \rightarrow \infty$
- As a function of $r, \bar{T}\left(r, x_{0}\right)$ has a minimum at $r=r^{*}$

$$
\bar{T}\left(r, x_{0}\right)=\frac{1}{r}\left[\exp \left(\sqrt{r / D} x_{0}\right)-1\right]
$$

- For fixed x_{0} and D, the mean capture time $\bar{T}\left(r, x_{0}\right)$ diverges as $r \rightarrow 0$ and also as $r \rightarrow \infty$
- As a function of $r, \bar{T}\left(r, x_{0}\right)$ has a minimum at $r=r^{*}$ optimal resetting rate r^{*} is given by:

$$
r^{*}=\gamma^{2} \frac{D}{x_{0}^{2}} \text { where } \gamma-2\left(1-e^{-\gamma}\right)=0 \Rightarrow \gamma=1.59362 \ldots
$$

Target search via diffusion with resetting in $d>1$

stationary target of radius a at 0 in $d>2$
searcher starts at $R_{0}>a$, diffuses, and resets with rate r

Target search via diffusion with resetting in $d>1$

stationary target of radius a at 0 in $d>2$
searcher starts at $R_{0}>a$, diffuses, and resets with rate r

- $Q\left(R_{0}, t\right) \rightarrow$ survival prob. of the target starting at a radial distance R_{0}

Target search via diffusion with resetting in $d>1$

stationary target of radius a at 0 in $d>2$
searcher starts at $R_{0}>a$, diffuses, and resets with rate r

- $Q\left(R_{0}, t\right) \rightarrow$ survival prob. of the target starting at a radial distance R_{0}
- Laplace trasform $\tilde{Q}\left(R_{0}, s\right)=\int_{0}^{\infty} Q\left(R_{0}, t\right) e^{-s t} d t$ is obtained by solving the d-dim. backward Fokker-Planck Eq.

Target search via diffusion with resetting in $d>1$

stationary target of radius a at 0 in $d>2$
searcher starts at $R_{0}>a$, diffuses, and resets with rate r

- $Q\left(R_{0}, t\right) \rightarrow$ survival prob. of the target starting at a radial distance R_{0}
- Laplace trasform $\tilde{Q}\left(R_{0}, s\right)=\int_{0}^{\infty} Q\left(R_{0}, t\right) e^{-s t} d t$ is obtained by solving the d-dim. backward Fokker-Planck Eq.
- mean capture time: $\bar{T}=\tilde{Q}\left(R_{0}, s=0\right)$

Target search via diffusion with resetting in $d>1$

stationary target of radius a at 0 in $d>2$
searcher starts at $R_{0}>a$, diffuses, and resets with rate r

- $Q\left(R_{0}, t\right) \rightarrow$ survival prob. of the target starting at a radial distance R_{0}
- Laplace trasform $\tilde{Q}\left(R_{0}, s\right)=\int_{0}^{\infty} Q\left(R_{0}, t\right) e^{-s t} d t$ is obtained by solving the d-dim. backward Fokker-Planck Eq.
- mean capture time: $\bar{T}=\tilde{Q}\left(R_{0}, s=0\right)$

$$
\bar{T}\left(r, R_{0}\right)=\frac{1}{r}\left[\left(\frac{a}{R_{0}}\right)^{\nu} \frac{K_{\nu}(a \sqrt{r / D})}{K_{\nu}\left(R_{0} \sqrt{r / D}\right)}-1\right] \text { where } \nu=1-d / 2
$$

Target search via diffusion with resetting in $d>1$

stationary target of radius a at 0 in $d>2$
searcher starts at $R_{0}>a$, diffuses, and resets with rate r

- $Q\left(R_{0}, t\right) \rightarrow$ survival prob. of the target starting at a radial distance R_{0}
- Laplace trasform $\tilde{Q}\left(R_{0}, s\right)=\int_{0}^{\infty} Q\left(R_{0}, t\right) e^{-s t} d t$ is obtained by solving the d-dim. backward Fokker-Planck Eq.
- mean capture time: $\bar{T}=\tilde{Q}\left(R_{0}, s=0\right)$

$$
\bar{T}\left(r, R_{0}\right)=\frac{1}{r}\left[\left(\frac{a}{R_{0}}\right)^{\nu} \frac{K_{\nu}(a \sqrt{r / D})}{K_{\nu}\left(R_{0} \sqrt{r / D}\right)}-1\right] \quad \text { where } \nu=1-d / 2
$$

- Once again, there is an optimal r^{*} that minimizes $\bar{T}\left(r, R_{0}\right)$ in all d [M.R. Evans and S.M., J. Phys. A: Math. Theo. 47, 285001 (2014)]

Various Generalisations

stationary target at 0 , searcher diffuses and resets to x_{0} with rate r only if it goes outside the box $\left[x_{0}-a, x_{0}+a\right]$ \longrightarrow otherwise no resetting

- space-dependent resetting rate $r(x)$: What is the optimization strategy?

Various Generalisations

stationary target at 0 , searcher diffuses and resets to x_{0} with rate r only if it goes outside the box $\left[x_{0}-a, x_{0}+a\right]$ \longrightarrow otherwise no resetting

- space-dependent resetting rate $r(x)$: What is the optimization strategy?
- When the target position is drawn randomly from $P_{\text {target }}(x)$, where should the particle reset?

Various Generalisations

stationary target at 0 , searcher diffuses and resets to x_{0} with rate r only if it goes outside the box $\left[x_{0}-a, x_{0}+a\right]$ \longrightarrow otherwise no resetting

- space-dependent resetting rate $r(x)$: What is the optimization strategy?
- When the target position is drawn randomly from $P_{\text {target }}(x)$, where should the particle reset?
- If the reset position is chosen randomly from a distribution $P_{\text {reset }}(x)$, what is the optimal $P_{\text {reset }}(x)$ for a given target distribution $P_{\text {target }}(x)$?
[M.R. Evans \& S.M., J. Phys. A: Math. Theo. 44, 435001 (2011)]

Various Generalisations

stationary target at 0 , searcher diffuses and resets to x_{0} with rate r only if it goes outside the box $\left[x_{0}-a, x_{0}+a\right]$ \longrightarrow otherwise no resetting

- space-dependent resetting rate $r(x)$: What is the optimization strategy?
- When the target position is drawn randomly from $P_{\text {target }}(x)$, where should the particle reset?
- If the reset position is chosen randomly from a distribution $P_{\text {reset }}(x)$, what is the optimal $P_{\text {reset }}(x)$ for a given target distribution $P_{\text {target }}(x)$? [M.R. Evans \& S.M., J. Phys. A: Math. Theo. 44, 435001 (2011)]
- Nonequilibrium reset dynamics vs. equilibrium dynamics
" Nonequilibrium beats equilibrium "
[M.R. Evans, S.M. \& K. Mallick, J. Phys. A: Math. Theor. 46, 185001 (2013)]

III: Multiparticle Problem

Target search by multiple searchers $d=1$

stationary target at 0 surrounded by a sea of independent searchers (traps), initially distributed with uniform density ρ

Target search by multiple searchers $d=1$

stationary target at 0 surrounded by a sea of independent searchers (traps), initially distributed with uniform density ρ

- target survival probability: $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
$Q\left(x_{i}, t\right) \rightarrow$ prob. that the i-th searcher starting initially at x_{i} does not hit the origin up to time t

Target search by multiple searchers $d=1$

stationary target at 0 surrounded by a sea of independent searchers (traps), initially distributed with uniform density ρ

- target survival probability: $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
$Q\left(x_{i}, t\right) \rightarrow$ prob. that the i-th searcher starting initially at x_{i} does not hit the origin up to time t
- Average surv. prob. of the target: $\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle$
$\left\rangle \rightarrow\right.$ average over x_{i} 's each drawn independently and uniformly from a box $[-L / 2, L / 2]$

Target search by multiple searchers $d=1$

stationary target at 0 surrounded by a sea of independent searchers (traps), initially distributed with uniform density ρ

- target survival probability: $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
$Q\left(x_{i}, t\right) \rightarrow$ prob. that the i-th searcher starting initially at x_{i} does not hit the origin up to time t
- Average surv. prob. of the target: $\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle$
$\left\rangle \rightarrow\right.$ average over x_{i} 's each drawn independently and uniformly from a box $[-L / 2, L / 2]$
- Eventually $N \rightarrow \infty$ and $L \rightarrow \infty$ with their ratio $N / L=\rho$ fixed

Average target survival probability

- $\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle$

Average target survival probability

- $\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle=\prod_{i=1}^{N}\left[1-\left\langle\left(1-Q\left(x_{i}, t\right)\right)\right\rangle\right]$

Average target survival probability

- $\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle=\prod_{i=1}^{N}\left[1-\left\langle\left(1-Q\left(x_{i}, t\right)\right)\right\rangle\right]$

$$
=\left[1-\frac{1}{L} \int_{-L / 2}^{L / 2}(1-Q(x, t)) d x\right]^{N}
$$

Average target survival probability

$$
\text { - } \begin{aligned}
\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle & =\prod_{i=1}^{N}\left[1-\left\langle\left(1-Q\left(x_{i}, t\right)\right)\right\rangle\right] \\
& =\left[1-\frac{1}{L} \int_{-L / 2}^{L / 2}(1-Q(x, t)) d x\right]^{N}
\end{aligned}
$$

$$
\Rightarrow\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t)) d x\right]
$$

Average target survival probability

$$
\text { - } \begin{aligned}
\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle & =\prod_{i=1}^{N}\left[1-\left\langle\left(1-Q\left(x_{i}, t\right)\right)\right\rangle\right] \\
& =\left[1-\frac{1}{L} \int_{-L / 2}^{L / 2}(1-Q(x, t)) d x\right]^{N}
\end{aligned}
$$

$$
\Rightarrow\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t)) d x\right]
$$

\rightarrow a rather general result

Average target survival probability

$$
\text { - } \begin{aligned}
\left\langle P_{s}(t)\right\rangle=\left\langle\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right\rangle & =\prod_{i=1}^{N}\left[1-\left\langle\left(1-Q\left(x_{i}, t\right)\right)\right\rangle\right] \\
& =\left[1-\frac{1}{L} \int_{-L / 2}^{L / 2}(1-Q(x, t)) d x\right]^{N}
\end{aligned}
$$

$$
\Rightarrow\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t)) d x\right]
$$

\rightarrow a rather general result

- For diffusive searchers without resetting: $Q(x, t)=\operatorname{erf}(|x| / \sqrt{4 D t})$

$$
\left\langle P_{s}(t)\right\rangle=\exp [-4 \rho \sqrt{D t / \pi}] \rightarrow \text { stretched exponential decay }
$$

(Zumofen, Klafter, Blumen '83, Tachiya '83, Burlatsky \& Ovchinnikov '87)

Link to Extreme Value Statistics

- $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t)) d x\right]=\exp [-2 \rho E[M(t)]]$

Link to Extreme Value Statistics

- $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t)) d x\right]=\exp [-2 \rho E[M(t)]]$
- $E[M(t)]=\int_{0}^{\infty}(1-Q(x, t)) d x \rightarrow$ expected maximum $M(t)$ of the trap process starting at the origin
\Rightarrow general result valid for any trap process
(J. Franke and S.M., JSTAT, P05024 (2012))

Link to Extreme Value Statistics

- $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t)) d x\right]=\exp [-2 \rho E[M(t)]]$
- $E[M(t)]=\int_{0}^{\infty}(1-Q(x, t)) d x \rightarrow$ expected maximum $M(t)$ of the trap process starting at the origin
\Rightarrow general result valid for any trap process
(J. Franke and S.M., JSTAT, P05024 (2012))
$Q(x, t)=$ surv. prob. of the trap starting at $x \equiv \operatorname{Prob} .[M(t) \leq x]$ ROTATE \& SHIFT

Link to Extreme Value Statistics

- $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t)) d x\right]=\exp [-2 \rho E[M(t)]]$
- $E[M(t)]=\int_{0}^{\infty}(1-Q(x, t)) d x \rightarrow$ expected maximum $M(t)$ of the trap process starting at the origin
\Rightarrow general result valid for any trap process
(J. Franke and S.M., JSTAT, P05024 (2012))
$Q(x, t)=$ surv. prob. of the trap starting at $x \equiv \operatorname{Prob} .[M(t) \leq x]$ ROTATE \& SHIFT

- Several exact results for $E[M(t)]$ for subdiffusive and superdiffusive (Lévy flights) processes (J. Franke and S.M., 2012)

Average vs. Typical

- average of a random variable may be different from typical

Average vs. Typical

- average of a random variable may be different from typical

$P(Z) \rightarrow$ highly peaked at $Z_{\text {typ }}$ but has a long tail such that

$$
\langle Z\rangle \gg Z_{\mathrm{typ}}
$$

Average vs. Typical

- average of a random variable may be different from typical

- how to extract $Z_{\text {typ }}$ from $P(Z)$?

Average vs. Typical

- average of a random variable may be different from typical

$$
P(Z) \rightarrow \text { highly peaked at } Z_{\text {typ }}
$$ but has a long tail such that

$$
\langle Z\rangle \gg Z_{\mathrm{typ}}
$$

- how to extract $Z_{\text {typ }}$ from $P(Z)$?
- One simple prescription: compute $\left.\langle\ln Z\rangle=\int \ln Z P(Z)\right) d x$

Average vs. Typical

- average of a random variable may be different from typical

$$
P(Z) \rightarrow \text { highly peaked at } Z_{\text {typ }}
$$ but has a long tail such that

$$
\langle Z\rangle \gg Z_{\mathrm{typ}}
$$

- how to extract $Z_{\text {typ }}$ from $P(Z)$?
- One simple prescription: compute $\left.\langle\ln Z\rangle=\int \ln Z P(Z)\right) d x \approx \ln Z_{\text {typ }}$

$$
\Rightarrow Z_{\text {typ }} \approx \exp [\langle\ln Z\rangle]
$$

- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]$
- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]=\exp \left[\sum_{i=1}^{N}\left\langle\ln Q\left(x_{i}, t\right)\right\rangle\right]$
- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]=\exp \left[\sum_{i=1}^{N}\left\langle\ln Q\left(x_{i}, t\right)\right\rangle\right]$

$$
=\exp \left[\frac{N}{L} \int_{-L / 2}^{L / 2} \ln Q(x, t) d x\right]
$$

- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]=\exp \left[\sum_{i=1}^{N}\left\langle\ln Q\left(x_{i}, t\right)\right\rangle\right]$
$=\exp \left[\frac{N}{L} \int_{-L / 2}^{L / 2} \ln Q(x, t) d x\right]$

$$
\Rightarrow P_{s}^{\text {typ }}(t)=\exp \left[2 \rho \int_{0}^{\infty} \ln Q(x, t) d x\right]
$$

- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]=\exp \left[\sum_{i=1}^{N}\left\langle\ln Q\left(x_{i}, t\right)\right\rangle\right]$

$$
=\exp \left[\frac{N}{L} \int_{-L / 2}^{L / 2} \ln Q(x, t) d x\right]
$$

$$
\Rightarrow P_{s}^{\text {typ }}(t)=\exp \left[2 \rho \int_{0}^{\infty} \ln Q(x, t) d x\right]
$$

- to be compared to $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t))\right]$
- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]=\exp \left[\sum_{i=1}^{N}\left\langle\ln Q\left(x_{i}, t\right)\right\rangle\right]$

$$
=\exp \left[\frac{N}{L} \int_{-L / 2}^{L / 2} \ln Q(x, t) d x\right]
$$

$$
\Rightarrow P_{s}^{\text {typ }}(t)=\exp \left[2 \rho \int_{0}^{\infty} \ln Q(x, t) d x\right]
$$

- to be compared to $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t))\right]$
- For diffusive searchers: $Q(x, t)=\operatorname{erf}(|x| / \sqrt{4 D t})$
- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]=\exp \left[\sum_{i=1}^{N}\left\langle\ln Q\left(x_{i}, t\right)\right\rangle\right]$

$$
=\exp \left[\frac{N}{L} \int_{-L / 2}^{L / 2} \ln Q(x, t) d x\right]
$$

$$
\Rightarrow P_{s}^{\text {typ }}(t)=\exp \left[2 \rho \int_{0}^{\infty} \ln Q(x, t) d x\right]
$$

- to be compared to $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t))\right]$
- For diffusive searchers: $Q(x, t)=\operatorname{erf}(|x| / \sqrt{4 D t})$

$$
\begin{aligned}
\Rightarrow \quad\left\langle P_{s}(t)\right\rangle & =\exp [-4 \rho \sqrt{D t / \pi}] \\
P_{s}^{\operatorname{typ}}(t) & =\exp [-4 \rho b \sqrt{D t}]
\end{aligned}
$$

$$
\text { where } b=-\int_{0}^{\infty} \ln \operatorname{erf}(z) d z=1.03442 \ldots
$$

- $P_{s}(t)=\prod_{i=1}^{N} Q\left(x_{i}, t\right)$
- $P_{s}^{\text {typ }}(t)=\exp \left[\left\langle\ln \left(\prod_{i=1}^{N} Q\left(x_{i}, t\right)\right)\right\rangle\right]=\exp \left[\sum_{i=1}^{N}\left\langle\ln Q\left(x_{i}, t\right)\right\rangle\right]$

$$
=\exp \left[\frac{N}{L} \int_{-L / 2}^{L / 2} \ln Q(x, t) d x\right]
$$

$$
\Rightarrow P_{s}^{\operatorname{typ}}(t)=\exp \left[2 \rho \int_{0}^{\infty} \ln Q(x, t) d x\right]
$$

- to be compared to $\left\langle P_{s}(t)\right\rangle=\exp \left[-2 \rho \int_{0}^{\infty}(1-Q(x, t))\right]$
- For diffusive searchers: $Q(x, t)=\operatorname{erf}(|x| / \sqrt{4 D t})$

$$
\begin{aligned}
\Rightarrow \quad\left\langle P_{s}(t)\right\rangle & =\exp [-4 \rho \sqrt{D t / \pi}] \\
P_{s}^{\operatorname{typ}}(t) & =\exp [-4 \rho b \sqrt{D t}]
\end{aligned}
$$

$$
\text { where } b=-\int_{0}^{\infty} \ln \operatorname{erf}(z) d z=1.03442 \ldots
$$

$\Rightarrow\left\langle P_{s}(t)\right\rangle \sim P_{s}^{\text {typ }}(t)$ and both decay stretched-exponentially

Target search by multiple searchers with resetting

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

Target search by multiple searchers with resetting

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

- Avg. survival prob. of the target:

$$
\left\langle P_{s}(t)\right\rangle=\exp [-2 \rho E[M(t)]] \text { where } E[M(t)]=\int_{0}^{\infty}(1-Q(x, t)) d x
$$

Target search by multiple searchers with resetting

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

- Avg. survival prob. of the target:

$$
\left\langle P_{s}(t)\right\rangle=\exp [-2 \rho E[M(t)]] \text { where } E[M(t)]=\int_{0}^{\infty}(1-Q(x, t)) d x
$$

- Using $\tilde{Q}\left(x_{0}, s\right)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t=\frac{1-\exp \left(-\sqrt{(r+s) / D} x_{0}\right)}{s+r \exp \left(-\sqrt{(r+s) / D} x_{0}\right)}$
$\Rightarrow E[M(t)] \sim \sqrt{D / r} \ln t$ for large t

Target search by multiple searchers with resetting

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

- Avg. survival prob. of the target:

$$
\left\langle P_{s}(t)\right\rangle=\exp [-2 \rho E[M(t)]] \text { where } E[M(t)]=\int_{0}^{\infty}(1-Q(x, t)) d x
$$

- Using $\tilde{Q}\left(x_{0}, s\right)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t=\frac{1-\exp \left(-\sqrt{(r+s) / D} x_{0}\right)}{s+r \exp \left(-\sqrt{(r+s) / D} x_{0}\right)}$
$\Rightarrow E[M(t)] \sim \sqrt{D / r} \ln t$ for large t
- \Rightarrow power-law decay for avg. survival prob.

$$
\left\langle P_{s}(t)\right\rangle \sim t^{-2 \rho \sqrt{D / r}} \text { as } t \rightarrow \infty
$$

Target search by multiple searchers with resetting

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

- Avg. survival prob. of the target:

$$
\left\langle P_{s}(t)\right\rangle=\exp [-2 \rho E[M(t)]] \text { where } E[M(t)]=\int_{0}^{\infty}(1-Q(x, t)) d x
$$

- Using $\tilde{Q}\left(x_{0}, s\right)=\int_{0}^{\infty} Q(x, t) e^{-s t} d t=\frac{1-\exp \left(-\sqrt{(r+s) / D} x_{0}\right)}{s+r \exp \left(-\sqrt{(r+s) / D} x_{0}\right)}$
$\Rightarrow E[M(t)] \sim \sqrt{D / r} \ln t$ for large t
- \Rightarrow power-law decay for avg. survival prob.

$$
\left\langle P_{s}(t)\right\rangle \sim t^{-2 \rho \sqrt{D / r}} \text { as } t \rightarrow \infty \quad \quad \text { (Evans and S.M., 2011) }
$$

- As $r \rightarrow 0$, one gets back: $\left\langle P_{s}(t)\right\rangle \sim \exp [-4 \rho \sqrt{D t / \pi}]$

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

Average vs. typical survival prob.

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

- Avg. surv. prob. decays as: $\left\langle P_{s}(t)\right\rangle \sim t^{-2 \rho \sqrt{D / r}}$ as $t \rightarrow \infty$

Average vs. typical survival prob.

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

- Avg. surv. prob. decays as: $\left\langle P_{s}(t)\right\rangle \sim t^{-2 \rho \sqrt{D / r}}$ as $t \rightarrow \infty$
- In contrast, Typical surv. prob.: $P_{s}^{\operatorname{typ}}(t)=\exp \left[2 \rho \int_{0}^{\infty} \ln Q(x, t) d x\right]$ decays as: $P_{s}^{\operatorname{typ}}(t) \sim \exp [-8(1-\ln 2) \sqrt{r D} \rho t]$ as $t \rightarrow \infty$

Average vs. typical survival prob.

stationary target at 0 surrounded by a sea of independent diffusive searchers or traps (each with reset rate r), initially distributed with uniform density ρ

- Avg. surv. prob. decays as: $\left\langle P_{s}(t)\right\rangle \sim t^{-2 \rho \sqrt{D / r}}$ as $t \rightarrow \infty$
- In contrast, Typical surv. prob.: $P_{s}^{\operatorname{typ}}(t)=\exp \left[2 \rho \int_{0}^{\infty} \ln Q(x, t) d x\right]$ decays as: $P_{s}^{\operatorname{typ}}(t) \sim \exp [-8(1-\ln 2) \sqrt{r D} \rho t]$ as $t \rightarrow \infty$
- In presence of resetting $(r>0)$: $P_{s}^{\text {typ }}(t) \ll\left\langle P_{s}(t)\right\rangle$

Rare trajectories dominate the average

Multiple searchers with reset in $d>1$

stationary target of radius a at 0 in $d>2$
searchers diffuse and reset with rate r independently

Multiple searchers with reset in $d>1$

stationary target of radius a at 0 in $d>2$
searchers diffuse and reset with rate r independently

- Average survival prob. of the target for large t :

Multiple searchers with reset in $d>1$

stationary target of radius a at 0 in $d>2$
searchers diffuse and reset with rate r independently

- Average survival prob. of the target for large t :

$$
\left\langle P_{s}(t)\right\rangle \sim A \exp \left[-c \rho(\ln t)^{d}\right] \text { where } c=(\pi D / r)^{d / 2} / \Gamma(1+d / 2)
$$

Multiple searchers with reset in $d>1$

stationary target of radius a at 0 in $d>2$
searchers diffuse and reset with rate r independently

- Average survival prob. of the target for large t :

$$
\left\langle P_{s}(t)\right\rangle \sim A \exp \left[-c \rho(\ln t)^{d}\right] \text { where } c=(\pi D / r)^{d / 2} / \Gamma(1+d / 2)
$$

- Typical survival prob. of the target for large t :

Multiple searchers with reset in $d>1$

stationary target of radius a at 0 in $d>2$
searchers diffuse and reset with rate r independently

- Average survival prob. of the target for large t :

$$
\left\langle P_{s}(t)\right\rangle \sim A \exp \left[-c \rho(\ln t)^{d}\right] \text { where } c=(\pi D / r)^{d / 2} / \Gamma(1+d / 2)
$$

- Typical survival prob. of the target for large t :
$P_{s}^{\text {typ }}(t) \sim \exp \left[-\lambda_{d} \rho t\right]$ where $\lambda_{d} \rightarrow$ non-universal constant

Multiple searchers with reset in $d>1$

stationary target of radius a at 0 in $d>2$
searchers diffuse and reset with rate r independently

- Average survival prob. of the target for large t :

$$
\left.\left\langle P_{s}(t)\right\rangle \sim A \exp \left[-c \rho(\ln t)^{d}\right]\right] \text { where } c=(\pi D / r)^{d / 2} / \Gamma(1+d / 2)
$$

- Typical survival prob. of the target for large t :

$$
P_{s}^{\text {typ }}(t) \sim \exp \left[-\lambda_{d} \rho t\right] \text { where } \lambda_{d} \rightarrow \text { non-universal constant }
$$

- As in one dimension: $P_{s}^{\text {typ }}(t) \ll\left\langle P_{s}(t)\right\rangle$

Rare trajectories dominate the average
[M.R. Evans and S.M., J. Phys. A: Math. Theo. 47, 285001 (2014)]

Summary and Conclusion

- Diffusion with stochastic resetting \rightarrow new nonequilibrium steady state in all dimensions

Summary and Conclusion

- Diffusion with stochastic resetting \rightarrow new nonequilibrium steady state in all dimensions
- Search of a stationary target via diffusion+resetting \rightarrow efficient mean search time $\bar{T}(r)$ has a minimum at an optimal resetting rate r^{*}

Summary and Conclusion

- Diffusion with stochastic resetting \rightarrow new nonequilibrium steady state in all dimensions
- Search of a stationary target via diffusion+resetting \rightarrow efficient mean search time $\bar{T}(r)$ has a minimum at an optimal resetting rate r^{*}
- In presence of multiple searchers each resetting to their initial positions $\left\langle P_{s}(t)\right\rangle \gg P_{s}^{\text {typ }}(t) \Rightarrow$ rare trajectories dominate the average

Summary and Conclusion

- Diffusion with stochastic resetting \rightarrow new nonequilibrium steady state in all dimensions
- Search of a stationary target via diffusion+resetting \rightarrow efficient mean search time $\bar{T}(r)$ has a minimum at an optimal resetting rate r^{*}
- In presence of multiple searchers each resetting to their initial positions $\left\langle P_{s}(t)\right\rangle \gg P_{s}^{\text {typ }}(t) \Rightarrow$ rare trajectories dominate the average

For example, in $d=1$, for large time t,

$$
\left\langle P_{s}(t)\right\rangle \sim t^{-2 \rho \sqrt{D / r}}
$$

$$
P_{s}^{\mathrm{typ}}(t) \sim \exp [-8(1-\ln 2) \sqrt{r D} \rho t]
$$

Outlook and generalisations

Various generalisations:

- Lévy flights with resetting
[L. Kusmierz, S.M., S. Sabhapandit, G. Schehr (2014)]

Outlook and generalisations

Various generalisations:

- Lévy flights with resetting

> [L. Kusmierz, S.M., S. Sabhapandit, G. Schehr (2014)]

- Resetting dynamics of spatially extended system
\rightarrow fluctuating interfaces
[S. Gupta, S.M. \& G. Schehr, PRL, 112, 220601 (2014)]

Outlook and generalisations

Various generalisations:

- Lévy flights with resetting
[L. Kusmierz, S.M., S. Sabhapandit, G. Schehr (2014)]
- Resetting dynamics of spatially extended system
\rightarrow fluctuating interfaces
[S. Gupta, S.M. \& G. Schehr, PRL, 112, 220601 (2014)]
- space-dependent resetting rate, random target and reset positions, Eq. vs. Non-eq. dynamics ...

Outlook and generalisations

Various generalisations:

- Lévy flights with resetting
[L. Kusmierz, S.M., S. Sabhapandit, G. Schehr (2014)]
- Resetting dynamics of spatially extended system
\rightarrow fluctuating interfaces
[S. Gupta, S.M. \& G. Schehr, PRL, 112, 220601 (2014)]
- space-dependent resetting rate, random target and reset positions, Eq. vs. Non-eq. dynamics ...

Resetting \rightarrow rich and interesting static and dynamic phenomena

Collaborators and References

Collaborators:

- M. R. Evans (Edinburgh University, UK)
- S. Gupta (LPTMS, Orsay, France)
- L. Kusmierz (Inst. of Phys., Krakow, Poland)
- K. Mallick (Saclay, France)
- S. Sabhapandit (RRI, Bangalore, India)
- G. Schehr (LPTMS, Orsay, France)
- J. Whitehouse (Edinburgh University, UK)

References:

- M.R. Evans and S.N. Majumdar, Phys. Rev. Lett. 106, 160601 (2011).
- M.R. Evans and S.N. Majumdar, J. Phys. A: Math. Theor. 44, 435001 (2011).
- M. R. Evans, S.N. Majumdar, K. Mallick, J. Phys. A: Math. Theor. 46, 185001 (2013).
- J. Whitehouse, M. R. Evans, and S. N. Majumdar, Phys. Rev. E 87, 022118 (2013).
- S. Gupta, S.N. Majumdar, G. Schehr, Phys. Rev. Lett. 112, 220601 (2014).
- M.R. Evans and S. N. Majumdar J. Phys. A: Math. Theor. 47, 285001 (2014).

For a recent extensive survey on persistence from physics perspectives, see:
"Persistence and First-Passage Properties in Non-equilibrium Systems" A.J. Bray, S.N. Majumdar and G. Schehr, Adv. in Phys. 62, 225-361 (2013)
also available at arXiv: 1304.1195

