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Hole probability

Given a point process in the plane X, one measure for its “rigidity”
is the decay of hole probability.
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Hole probability

Given a point process in the plane X, one measure for its “rigidity”
is the decay of hole probability.

I Which is the probability that a disk of radius r contains no
points of X, as r → ∞.

I We will denote this probability by pH (r).
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Hole probability

Given a point process in the plane X, one measure for its “rigidity”
is the decay of hole probability.

I Which is the probability that a disk of radius r contains no
points of X, as r → ∞.

I We will denote this probability by pH (r).

I The center is not important if the process is translation
invariant.

I One can also consider other domains\geometries.
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Poisson point process
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Poisson point process
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Poisson point process

I Number of points in circle of radius r
has Poisson distribution with mean
λπr2.

I The hole probability is

e−λπr2
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Random Matrices - Ginibre Ensemble
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Random Matrices - Ginibre Ensemble

I Finite Ginibre - The eigenvalues of the
N×N random matrix with i.i.d.
standard complex Gaussian
coefficients.

I Ginibre - The limit of this process as
N → ∞.

I Determinantal point process.
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Random Matrices - Ginibre Ensemble

I Set of radii
{
|z1|2 , |z2|2 , . . .

}
is

distributed like independent set
{Γ(1,1) ,Γ(2,1) , . . .}.

I Hole probability:

pH (r) = e−
1
4 r2(1+o(1))
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GEF - Gaussian Entire function
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GEF - Gaussian Entire function

I Zeros of entire function given by the
Gaussian Taylor series

F (z) =
∞

∑
n=0

ξn
zn
√
n!

I ξn i.i.d. standard complex Gaussian.
I Zero set is translation invariant (unique

for Gaussian analytic functions).
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GEF - Gaussian Entire function

I Not a determinantal point process.
I Hole probability?
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Random Taylor series

f (z) =
∞

∑
n=0

ξnanzn
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Random Taylor series

f (z) =
∞

∑
n=0

ξnanzn

I ξn i.i.d. random variables (mostly std. complex Gaussians).
I Eξn = 0, E |ξn|2 = 1

I an non-random sequence (can assume an ≥ 0)

I f is (a.s.) an entire function when limsupa1/n
n = 0.

I Analytic in the unit disk when limsupa1/n
n = 1.
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Random Taylor series

f (z) =
∞

∑
n=0

ξnanzn

I Properties are determined by covariance kernel:

Kf (z ,w) = E
{
f (z) f (w)

}
=

∞

∑
n=0
|an|2 (zw)n

I For the GEF:
KF (z ,w) = ezw

I One can consider similar functions in several variables.
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Zero set

Zf = {z : f (z) = 0}
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Zero set

Zf = {z : f (z) = 0}

I Understood to include multiplicities (multiset).
I Random point set (or point process)

I Simple in the Gaussian case (maybe except non-rand. zeros).
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Zero set

Zf = {z : f (z) = 0}

I Interested in linear statistics.

Lf (h) =
∫
C
hdnf = ∑

α∈Zf

h (α)

I h : C→ R meas. function with compact support

I Formula for complex Gaussian (Edelman-Kostlan)

ELf (h) =
1
4π

∫
C
h ·∆ logK (z ,z) dm (z)

I For the GEF
ELF (h) =

1
π

∫
C
hdm (z)
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Hole probabilities

I Given domain U ⊂ C, interested in the probability of the event
U ∩Zf = /0.

I In general in the asymptotics for ‘large’ domains.
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Hole probabilities

I Given domain U ⊂ C, interested in the probability of the event
U ∩Zf = /0.

I In general in the asymptotics for ‘large’ domains.

I Problem related to large\very large deviations in some cases.
I Also might be related to moderate deviations in other cases.
I One can consider similar questions for linear statistics.
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Hole probabilities

I Given domain U ⊂ C, interested in the probability of the event
U ∩Zf = /0.

I In general in the asymptotics for ‘large’ domains.

I Problem related to large\very large deviations in some cases.
I Also might be related to moderate deviations in other cases.
I One can consider similar questions for linear statistics.

I Physics - The zeros represent a gas of (interacting) particles in
quantum systems.

Alon Nishry

Hole probabilities for Random Taylor series



Hole probabilities (cont.)

I Special case: rD - disk around zero with large radius r .
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Hole probabilities (cont.)

I Special case: rD - disk around zero with large radius r .

I GEF: Sodin and Tsirelson (2005)

−c1r4 ≤ logpH (r)≤−c2r4.

I Ideas were used in many different settings.
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Hole probabilities (cont.)

I Special case: rD - disk around zero with large radius r .

I GEF: Sodin and Tsirelson (2005)

−c1r4 ≤ logpH (r)≤−c2r4.

I Ideas were used in many different settings.

I GEF: N. (2010)

logpH (r) =−e2

4
· r4 +o

(
r4
)
.

I In fact error term is O
(
r2 log r

)
.
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How to guess the right constant

I Idea for the lower bound.
I Works surprisingly well for different cases.

I Unit disk, higher dimensions, etc.
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How to guess the right constant

I Generate an event where there are no zeros of F inside rD:
I ξ0 is large
I ξ1, ..., ξN are small (N will depend on r)
I ξN+1, . . . are ‘typical’ (not too large).

I Then for |z | ≤ r :

|f (z)| ≥ |ξ0|−
N

∑
n=1
|ξn|

rn√
n!
− ‘tail’> 0.

I Use independence:

P(|ξ1| ≤ t1, . . . , |ξN | ≤ tN) =
N

∏
n=1

P(|ξn| ≤ tn) .
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The ‘general’ case (entire functions)

I We need the following function

S(r) = 2 ·
∞

∑
n=0

log+ (anrn)
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The ‘general’ case (entire functions)

I We need the following function

S(r) = 2 ·
∞

∑
n=0

log+ (anrn)

I A measurable set E ⊂ [1,∞) has finite logarithmic length if∫
E

1
t
dt < ∞.

I Remark: We have to assume that a0 6= 0
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The ‘general’ case (entire functions)

I We need the following function

S(r) = 2 ·
∞

∑
n=0

log+ (anrn)

Theorem
(N. 2012) For ε ∈

(
0, 1

2

)
, exists set E ⊂ [1,∞) of finite log. length,

such that

logpH (r) =−S (r) +O
(
S (r)1/2+ε

)
, r → ∞, r /∈ E .

Remark: Log. length of E depends on ε and on the sequence {an}.
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Other random variables?

Difficult to say something for ‘general’ random variables. Make the
following assumptions:

I Let K ⊂ C be a compact set and 0 /∈ K .
I Suppose that ξk ∈ K for each n, and that an = 1√

n!
.
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Other random variables?

Difficult to say something for ‘general’ random variables. Make the
following assumptions:

I Let K ⊂ C be a compact set and 0 /∈ K .
I Suppose that ξk ∈ K for each n, and that an = 1√

n!
.

Theorem
There exists r0 = r0(K ) < ∞ so that f (z) must vanish somewhere in
the disk {|z | ≤ r0}.

I This result depends on the (specific) nature of the
deterministic coefficients an.
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Gist of the proof (upper bound)

I (a0 = 1) Assume f 6= 0 inside rD, so log |f | harmonic there and
for ρ < r

1
2π

∫
log
∣∣∣f (ρeθ

)∣∣∣ dθ = log |f (0)|= log |ξ0|
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Gist of the proof (upper bound)

I (a0 = 1) Assume f 6= 0 inside rD, so log |f | harmonic there and
for ρ < r

1
2π

∫
log
∣∣∣f (ρeθ

)∣∣∣ dθ = log |f (0)|= log |ξ0|

I Notice that P(log |ξ0| ≥ A) = exp(−exp(2A)) (very small
probability)
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Gist of the proof (upper bound)

I (a0 = 1) Assume f 6= 0 inside rD, so log |f | harmonic there and
for ρ < r

1
2π

∫
log
∣∣∣f (ρeθ

)∣∣∣ dθ = log |f (0)|= log |ξ0|

I Notice that P(log |ξ0| ≥ A) = exp(−exp(2A)) (very small
probability)

I Discretize the integral, for a set of N point zj with |zj |= ρ , we
have

1
N

N

∑
j=1

log |f (zj)| ≤ A′
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Gist of the proof (upper bound)

I Notice that P(log |ξ0| ≥ A) = exp(−exp(2A)) (very small
probability)

I Discretize the integral, for a set of N point zj with |zj |= ρ , we
have

1
N

N

∑
j=1

log |f (zj)| ≤ A′

I The vector (f (z1) , . . . , f (zN)) has multivariate complex
Gaussian distribution.
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Gist of the proof (cont.)

I Have to find an upper bound for the following expression:

I =
1

πN detΣ

∫
A

exp
(
−ζ
∗Σ−1

ζ
)

dζ

I A =
{

ζ ∈ CN : |ζj | ≤ B and ∏ |ζj | ≤ N ·A′
}

I Σjk = E
{

f (zj) f (zk)
}

I Choice of {zj} is important for getting a good lower bound for
detΣ.

I Upper bound for the integral is volCN(A )
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Gist of the proof (cont.)

I Outline of estimate for the GEF:
I We choose N (dep. on r), equidistributed points.

I Then write Σ = VV ∗ with

V =


1 z1√

1!
. . .

zN
1√
N!

. . .
...

...
...

... . . .

1 zN√
1!

. . .
zN
N√
N!

. . .
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Gist of the proof (cont.)

I Then write Σ = VV ∗ with

V =


1 z1√

1!
. . .

zN
1√
N!

. . .
...

...
...

... . . .

1 zN√
1!

. . .
zN
N√
N!

. . .


I Collecting common terms and projecting on the largest N

columns we get:

detΣ≥
N

∏
n=1

|zn|2

n!
· ∏
1≤j<k≤N

|zj − zk |2
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Further questions\Future

I Another approach (for the upper bound): Large deviation
principle for empirical measure of zeros of random polynomials.

I [Joint w. Ghosh, following Zeitouni and Zelditch (2010)] Set
N =

⌈
αL2⌉, where α ≥ e and consider the polynomial

PN (z) =
N

∑
n=1

ξn
(Lz)n
√
n!

I dµN
ξ
∈M (C) - empirical measure of the polynomial PN .

I This is a scaling of the original problem to the unit disk (r is
replaced by L).
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Further questions\Future (cont.)

I Roughly: For Borel set A⊂M (C)

lim
N→∞

1
N2 logP

(
dµ

N
ξ
∈ A
)

=− inf
σ∈A

I (σ)

I Here the rate function is:

I (σ) = sup
z∈C

{
2 ·Uσ (z)− |w |

2

α

}
−Σσ +Cα
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Further questions\Future (cont.)

I Roughly: For Borel set A⊂M (C)

lim
N→∞

1
N2 logP

(
dµ

N
ξ
∈ A
)

=− inf
σ∈A

I (σ)

I Here the rate function is:

I (σ) = sup
z∈C

{
2 ·Uσ (z)− |w |

2

α

}
−Σσ +Cα

I Uσ (z) =
∫
C log |z−w | dσ (w)

I Σσ =
∫∫

C2 log |z−w | dσ (z)dσ (w)
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Further questions\Future (cont.)

I Roughly: For Borel set A⊂M (C)

lim
N→∞

1
N2 logP

(
dµ

N
ξ
∈ A
)

=− inf
σ∈A

I (σ)

I Here the rate function is:

I (σ) = sup
z∈C

{
2 ·Uσ (z)− |w |

2

α

}
−Σσ +Cα

I For the hole probability we consider the set of measures A, for
which the mass of the disk of radius 1 is 0.

I Minimizing measure might shed light on the conditional
distribution of zeros.
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Further questions\Future (cont.)

I Roughly: For Borel set A⊂M (C)

lim
N→∞

1
N2 logP

(
dµ

N
ξ
∈ A
)

=− inf
σ∈A

I (σ)

I Here the rate function is:

I (σ) = sup
z∈C

{
2 ·Uσ (z)− |w |

2

α

}
−Σσ +Cα

I For the hole probability we consider the set of measures A, for
which the mass of the disk of radius 1 is 0.

I Minimizing measure might shed light on the conditional
distribution of zeros.

I Let n (r) be the number of zeros of PN inside the disk of
radius 1. Can consider P

(∣∣n (r)−L2
∣∣> δL2).
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Thank you for listening

‘Gravitational’ allocation of the
plane to the zeros of the GEF.
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Proof for compact coefficients

I (Simple) proof is by contradiction.
I There is a sequence of entire function fk(z) that does not

vanish in rkD, with rk → ∞.
I Using compactness, Hurwitz’s theorem and the fact that

0 /∈ K , we find a limiting function that does not vanish in the
complex plane, and have coefficients from the set K .

I Since the function is of order 2 we know that it is of the form

g(z) = exp
(
αz2 + βz + γ

)
, α,β ,γ ∈ C.

I Calculate the asymptotics of the Taylor coefficients of g(z).
I Arrive at a contradiction, since ξn · 1√

n!
has a different

asymptotics.
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