Persistence of integrated stable processes

Christophe Profeta ${ }^{(1)} \quad$ (Joint work with Thomas Simon ${ }^{(2)}$)
${ }^{(1)}$ Laboratoire de Mathématiques et Modélisation d'Evry.
${ }^{(2)}$ Laboratoire Paul Painlevé, Lille.

Workshop "Persistence probabilities and related fields"

July 16th, 2014

Outline

(1) Introduction

- Definitions
- Notations
(2) Main results
- The persistence exponent of integrated stable processes
- Study of $L_{T_{0}}$
(3) Sketch of the proof
- From $L_{T_{0}}$ to T_{0}
- Upper and lower bounds

Outline

（1）Introduction
－Definitions
－Notations
（2）Main results
－The persistence exponent of integrated stable processes
－Study of $L_{T_{0}}$
（3）Sketch of the proof
－From $L_{T_{0}}$ to T_{0}
－Upper and lower bounds

Introduction

Let $X=\left\{X_{t}, t \geq 0\right\}$ be a real-valued process starting at $x<0$ and define

$$
T_{0}=\inf \left\{t>0, X_{t}>0\right\} .
$$

In many interesting cases the survival function of T_{0} has a polynomial decay:

$$
\mathbb{P}_{x}\left(T_{0}>t\right)=t^{-\theta+o(1)}, \quad t \rightarrow+\infty
$$

where θ is a positive constant which is called the persistence exponent and usually does not depend on x.

Examples

(1) If $X=B$ is a Brownian motion, then :

$$
\mathbb{P}_{x}\left(T_{0}>t\right) \underset{t \rightarrow+\infty}{\sim}|x| \sqrt{\frac{2}{\pi t}} \quad(\theta=1 / 2)
$$

Examples

(1) If $X=B$ is a Brownian motion, then :

$$
\mathbb{P}_{x}\left(T_{0}>t\right) \underset{t \rightarrow+\infty}{\sim}|x| \sqrt{\frac{2}{\pi t}} \quad(\theta=1 / 2)
$$

(2) If $X_{t}=x+\int_{0}^{t} B_{u} d u$ with $B_{0}=0$, then:

$$
\mathbb{P}_{x}\left(T_{0}>t\right) \underset{t \rightarrow+\infty}{\sim} c \frac{|x|^{1 / 6}}{t^{1 / 4}} \quad(\theta=1 / 4)
$$

Examples

(1) If $X=B$ is a Brownian motion, then :

$$
\mathbb{P}_{x}\left(T_{0}>t\right) \underset{t \rightarrow+\infty}{\sim}|x| \sqrt{\frac{2}{\pi t}} \quad(\theta=1 / 2) .
$$

(2) If $X_{t}=x+\int_{0}^{t} B_{u} d u$ with $B_{0}=0$, then:

$$
\mathbb{P}_{x}\left(T_{0}>t\right) \underset{t \rightarrow+\infty}{\sim} c \frac{|x|^{1 / 6}}{t^{1 / 4}} \quad(\theta=1 / 4)
$$

Theorem [Aurzada - Dereich]

The exponent remains $1 / 4$ if one replaces B by any centered Lévy process having exponential moments.

Open problems

This result leads to some natural generalizations. What is the persistence exponent of :
© twice integrated Brownian motion?
(r_{2} in Prof. Dembo's talk yesterday, and r_{3}, \ldots)
(2) the integrated fractional Brownian motion?
(Gaussian but no longer Markov)
(3) an integrated α-stable Lévy process?
(Markov but no longer Gaussian, and with infinite variance)

Notations

Let L be a strictly α-stable Lévy process starting from zero, with characteristic exponent :

$$
\mathbb{E}\left[e^{i \lambda L_{1}}\right]=\exp \left(-(i \lambda)^{\alpha} e^{i \pi \alpha \rho \operatorname{sgn}(\lambda)}\right) \quad(\lambda \in \mathbb{R})
$$

where

$$
\left\{\begin{array}{l}
\alpha \in(0,2] \text { denote the self-similarity parameter, and } \\
\rho=\mathbb{P}\left[L_{1} \geq 0\right] \text { the positivity parameter. }
\end{array}\right.
$$

We set

$$
X_{t}=x+\int_{0}^{t} L_{u} d u
$$

and denote by $\mathbb{P}_{(x, y)}$ the law of (X, L) when started from $X_{0}=x$ and $L_{0}=y$.

Remarks

(1) If $\alpha<1$, then $\rho \in[0,1]$. We shall exclude the cases $\rho=0$ and $\rho=1$ for which $|L|$ is a subordinator.
(2) If $\alpha=1$, then $\rho \in(0,1)$ and L is a Cauchy process with a linear drift.
(3) If $1<\alpha<2$, then $\rho \in[\underbrace{1-1 / \alpha}_{\text {no negative jumps }}, \underbrace{1 / \alpha}_{\text {nositive jumps }}]$

When started from $(0,0)$, for $k>0$:
$\left\{L_{k t}, t \geq 0\right\} \stackrel{\mathcal{L}}{=}\left\{k^{1 / \alpha} L_{t}, t \geq 0\right\}$ and $\left\{X_{k t}, t \geq 0\right\} \stackrel{\mathcal{L}}{=}\left\{k^{1+1 / \alpha} X_{t}, t \geq 0\right\}$

Graphs

Figure: One path of L and X for $\alpha=1.5$ and $\rho=1 / 2$

Graphs

alpha $=0.8$

FIGURE: One path of L and X for $\alpha=0.8$ and $\rho=1 / 2$

Outline

(1) Introduction

- Definitions
- Notations
(2) Main results
- The persistence exponent of integrated stable processes
- Study of $L_{T_{0}}$
(3) Sketch of the proof
- From $L_{T_{0}}$ to T_{0}
- Upper and lower bounds

Main result

Theorem

Assume that $x<0$ or that $x=0$ and $y<0$. There exist two constants $0<\kappa_{1} \leq \kappa_{2}<+\infty$ such that :

$$
\frac{\kappa_{1}}{t^{\theta}} \leq \mathbb{P}_{(x, y)}\left(T_{0}>t\right) \leq \frac{\kappa_{2}}{t^{\theta}} \quad(t \rightarrow+\infty)
$$

with

$$
\theta=\frac{\rho}{1+\alpha(1-\rho)} .
$$

In particular, if L is symmetric, the exponent reads : $\theta=\frac{1}{2+\alpha}$.

Heuristic

Instead of studying directly T_{0}, we shall first focus on $L_{T_{0}}$.

Heuristic

Instead of studying directly T_{0}, we shall first focus on $L_{T_{0}}$.
Indeed, by scaling, if T_{0} and L were independent, then :

$$
L_{T_{0}} \xlongequal[=]{\mathcal{L}} T_{0}^{1 / \alpha} L_{1},
$$

so we may hope that :

$$
\mathbb{P}_{(x, y)}\left(L_{T_{0}}>z\right)=z^{-\alpha \theta+o(1)} \quad(z \rightarrow+\infty)
$$

Study of $L_{T_{0}}$

Theorem

For $x<0$ or $x=0$ and $y<0$, the Mellin transform of $L_{T_{0}}$ is given, for $s \in(0,1)$, by :

$$
\mathbb{E}_{(x, y)}\left[L_{T_{0}}^{s-1}\right]=\frac{\pi \int_{0}^{+\infty} \mathbb{E}_{(x, y)}\left[X_{t}^{\frac{s}{1+\alpha}-1} 1_{\left\{X_{t}>0\right\}}\right] d t}{(1+\alpha)^{\frac{s}{1+\alpha}}\left(\Gamma\left(\frac{s}{1+\alpha}\right)\right)^{2} \Gamma(1-s) \sin (\pi(1-\gamma) s)}
$$

where

$$
\gamma=\frac{\rho \alpha}{1+\alpha} .
$$

Sketch of the proof

By right-continuity, $L_{T_{0}} \geq 0$ a.s.
We first apply the Markov property, for $a \geq 0$:

$$
\mathbb{P}_{(x, y)}\left(X_{t} \in d a\right)=\int_{0}^{\infty} \int_{0}^{t} \mathbb{P}_{(0, z)}\left(X_{t-s} \in d a\right) \mathbb{P}_{(x, y)}\left(T_{0} \in d s, L_{T_{0}} \in d z\right)
$$

We then integrate in time (to make T_{0} disappear) :

$$
\int_{0}^{\infty} \mathbb{P}_{(x, y)}\left(X_{t} \in d a\right) d t=\int_{0}^{\infty}\left(\int_{0}^{\infty} \mathbb{P}_{(0, z)}\left(X_{t} \in d a\right) d t\right) \mathbb{P}_{(x, y)}\left(L_{T_{0}} \in d z\right)
$$

Sketch of the proof

We finally integrate in space with respect to $a^{-\nu}$:
$\int_{0}^{\infty} \mathbb{E}_{(x, y)}\left[X_{t}^{-\nu} 1_{\left\{X_{t}>0\right\}}\right] d t=\int_{0}^{\infty} \mathbb{P}_{(x, y)}\left(L_{T_{0}} \in d z\right)\left(\int_{0}^{\infty} \mathbb{E}_{(0, z)}\left[X_{t}^{-\nu} 1_{\left\{X_{t}>0\right\}}\right] d t\right)$
and the expressions $\mathbb{E}_{(x, y)}\left[X_{t}^{-\nu} 1_{\left\{X_{t}>0\right\}}\right]$ may be (partially) computed thanks to the formula :

$$
\int_{0}^{\infty} \lambda^{\nu-1} \mathbb{E}\left[\sin \left(\lambda X+\frac{\nu \pi}{2}\right)\right] d \lambda=\Gamma(\nu) \sin (\pi \nu) \mathbb{E}\left[X^{-\nu} 1_{\{X>0\}}\right]
$$

Corollary

When $x=0($ and $y<0)$:

$$
\mathbb{E}_{(0, y)}\left[L_{T_{0}}^{s-1}\right]=|y|^{s-1}\left(\frac{\sin (\pi \gamma s)}{\sin (\pi(1-\gamma) s)}\right) .
$$

Therefore under $\mathbb{P}_{(0, y)}$,

$$
L_{T_{0}} \xlongequal[=]{\mathcal{\mathcal { L }}}\left(\mathbf{C}_{\alpha \theta}^{1-\gamma}\right)^{(1)}
$$

where \mathbf{C}_{μ} denote a μ-Cauchy random variable and $X^{(1)}$ the size bias of order 1 of X.

Corollary

When $y=0($ and $x<0)$:

$$
\mathbb{E}_{(x, 0)}\left[L_{T_{0}}^{s-1}\right]=\frac{(1+\alpha)^{\frac{1-s}{1+\alpha}} \Gamma\left(\frac{\alpha+2}{\alpha+1}\right) \Gamma\left(\frac{1-s}{\alpha+1}\right) \sin (\pi \gamma)}{\Gamma\left(\frac{s}{\alpha+1}\right) \Gamma(1-s) \sin (\pi(1-\gamma) s)}|x|^{\frac{s-1}{\alpha+1}} .
$$

In particular,
(1) when $\alpha=1$, we deduce that under $\mathbb{P}_{(x, 0)}$:

$$
L_{T_{0}} \stackrel{\mathcal{L}}{=} \sqrt{2|x|}\left(\mathbf{C}_{(1+\alpha \theta) / 2}^{1-\gamma}\right)^{(1)}
$$

Corollary

When $y=0($ and $x<0)$:

$$
\mathbb{E}_{(x, 0)}\left[L_{T_{0}}^{s-1}\right]=\frac{(1+\alpha)^{\frac{1-s}{1+\alpha}} \Gamma\left(\frac{\alpha+2}{\alpha+1}\right) \Gamma\left(\frac{1-s}{\alpha+1}\right) \sin (\pi \gamma)}{\Gamma\left(\frac{s}{\alpha+1}\right) \Gamma(1-s) \sin (\pi(1-\gamma) s)}|x|^{\frac{s-1}{\alpha+1}} .
$$

In particular,
(2) when $\alpha=2$, we deduce that under $\mathbb{P}_{(x, 0)}$:

$$
L_{T_{0}} \stackrel{\mathcal{L}}{=}|9 x|^{1 / 3}\left(\frac{\boldsymbol{\Gamma}_{5 / 6}}{\mathbf{B}_{1 / 6,1 / 6}}\right)^{1 / 3} .
$$

where $\boldsymbol{\Gamma}_{c}$ and $\mathbf{B}_{a, b}$ denote standard Gamma and Beta r.v.'s.

Reduction of the problem

From a converse mapping theorem for Mellin transforms, we deduce that when $\{x<0$ and $y=0\}$ or $\{x=0$ and $y<0\}$:

$$
\mathbb{P}_{(x, y)}\left(L_{T_{0}}>z\right) \underset{z \rightarrow+\infty}{\sim} c z^{-\alpha \theta}
$$

We shall in the following restrict our attention to these cases.

Proposition

Assume that $x<0$. For every $y \in \mathbb{R}$, there exist $0<\kappa_{1} \leq \kappa_{2}<+\infty$ such that :

$$
\kappa_{1} \mathbb{P}_{(x, 0)}\left(T_{0}>t\right) \leq \mathbb{P}_{(x, y)}\left(T_{0}>t\right) \leq \kappa_{2} \mathbb{P}_{(x, 0)}\left(T_{0}>t\right)
$$

Outline

(1) Introduction

- Definitions
- Notations
(2) Main results
- The persistence exponent of integrated stable processes
- Study of $L_{T_{0}}$
(3) Sketch of the proof
- From $L_{T_{0}}$ to T_{0}
- Upper and lower bounds

From $L_{T_{0}}$ to T_{0}

From the Markov property :

$$
\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{(x, y)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t=\mathbb{E}_{(x, y)}\left[e^{-\lambda T_{0}} \int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t\right]
$$

hence, integrating by parts :

$$
\begin{aligned}
& \mathbb{E}_{(x, y)}\left[\left(1-e^{-\lambda T_{0}}\right) \int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t\right] \\
& =\mathbb{E}_{(x, y)}\left[\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t\right]-\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{(x, y)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t
\end{aligned}
$$

From $L_{T_{0}}$ to T_{0}

From the Markov property :

$$
\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{(x, y)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t=\mathbb{E}_{(x, y)}\left[e^{-\lambda T_{0}} \int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t\right]
$$

hence, integrating by parts :

$$
\begin{aligned}
& \mathbb{E}_{(x, y)}\left[\left(1-e^{-\lambda T_{0}}\right) \int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t\right] \\
& =\mathbb{E}_{(x, y)}\left[\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t\right]-\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}_{(x, y)}\left[\left(X_{t}^{+}\right)^{-\nu}\right] d t \\
& =\lambda \int_{0}^{\infty} e^{-\lambda t} \int_{t}^{\infty}\left(\mathbb{E}_{(x, y)}\left[\left(X_{u}^{+}\right)^{-\nu}\right]-\mathbb{E}_{(x, y)}\left[\mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right]\right]\right) d u d t
\end{aligned}
$$

From $L_{T_{0}}$ to T_{0}

This last relation may be inverted to obtain :

$$
\mathbb{E}_{(x, y)}\left[\int_{0}^{t} 1_{\left\{T_{0}>t-u\right\}} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u\right]=H_{(x, y)}(t)
$$

with

$$
H_{(x, y)}(t)=\int_{t}^{+\infty}\left(\mathbb{E}_{(x, y)}\left[\left(X_{u}^{+}\right)^{-\nu}\right]-\mathbb{E}_{(x, y)}\left[\mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right]\right]\right) d u
$$

From $L_{T_{0}}$ to T_{0}

This last relation may be inverted to obtain :

$$
\mathbb{E}_{(x, y)}\left[\int_{0}^{t} 1_{\left\{T_{0}>t-u\right\}} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u\right]=H_{(x, y)}(t)
$$

with

$$
H_{(x, y)}(t)=\int_{t}^{+\infty}\left(\mathbb{E}_{(x, y)}\left[\left(X_{u}^{+}\right)^{-\nu}\right]-\mathbb{E}_{(x, y)}\left[\mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right]\right]\right) d u
$$

Lemma

For all $\nu \in(\alpha(1-\theta) /(\alpha+1), 1)$ there exists $\kappa>0$ such that

$$
\mathbb{E}_{(x, y)}\left[\int_{0}^{t} 1_{\left\{T_{0}>t-u\right\}} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u\right] \underset{t \rightarrow+\infty}{\sim} \kappa t^{1-(1+1 / \alpha) \nu-\theta} .
$$

Upper bound

Fix $A>0$ and $\nu \in(\alpha /(\alpha+1), 1)$. By continuity and positivity there exists $\varepsilon>0$ such that for all $z \in[0, A]$,

$$
\int_{0}^{1} \mathbb{E}_{(0, z)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u \geq \varepsilon .
$$

For all $t>0$,

$$
\begin{aligned}
t^{(1+1 / \alpha) \nu-1} H_{(x, y)}(t) & \geq t^{(1+1 / \alpha) \nu-1} \mathbb{E}_{(x, y)}\left[1_{\left\{T_{0}>t\right\}} \int_{0}^{t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u\right] \\
& =\mathbb{E}_{(x, y)}\left[1_{\left\{T_{0}>t\right\}} \int_{0}^{1} \mathbb{E}_{\left(0, \frac{1}{, 1 / \alpha} L L_{0}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u\right]
\end{aligned}
$$

Upper bound

Fix $A>0$ and $\nu \in(\alpha /(\alpha+1), 1)$. By continuity and positivity there exists $\varepsilon>0$ such that for all $z \in[0, A]$,

$$
\int_{0}^{1} \mathbb{E}_{(0, z)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u \geq \varepsilon
$$

For all $t>0$,

$$
\begin{aligned}
t^{(1+1 / \alpha) \nu-1} H_{(x, y)}(t) & \geq t^{(1+1 / \alpha) \nu-1} \mathbb{E}_{(x, y)}\left[1_{\left\{T_{0}>t\right\}} \int_{0}^{t} \mathbb{E}_{\left(0, L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u\right] \\
& =\mathbb{E}_{(x, y)}\left[1_{\left\{T_{0}>t\right\}} \int_{0}^{1} \mathbb{E}_{\left(0, \frac{1}{t^{1 / \alpha}} L_{T_{0}}\right)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] d u\right] \\
& \geq \varepsilon \mathbb{P}_{(x, y)}\left(T_{0}>t, L_{T_{0}} \leq A t^{1 / \alpha}\right) \\
& \geq \varepsilon\left(\mathbb{P}_{(x, y)}\left(T_{0}>t\right)-\mathbb{P}_{(x, y)}\left(T_{0}>t, L_{T_{0}} \geq A t^{1 / \alpha}\right)\right)
\end{aligned}
$$

Upper bound

$$
t^{(1+1 / \alpha) \nu-1} H_{(x, y)}(t)+\varepsilon \mathbb{P}_{(x, y)}\left(T_{0}>t, L_{T_{0}} \geq A t^{1 / \alpha}\right) \geq \varepsilon \mathbb{P}_{(x, y)}\left(T_{0}>t\right)
$$

Upper bound

$$
t^{(1+1 / \alpha) \nu-1} H_{(x, y)}(t)+\varepsilon \mathbb{P}_{(x, y)}\left(T_{0}>t, L_{T_{0}} \geq A t^{1 / \alpha}\right) \geq \varepsilon \mathbb{P}_{(x, y)}\left(T_{0}>t\right)
$$

Recall that :

$$
t^{(1+1 / \alpha) \nu-1} H_{(x, y)}(t) \underset{t \rightarrow+\infty}{\sim} \frac{\kappa}{t^{\theta}}
$$

and

$$
\mathbb{P}_{(x, y)}\left(T_{0}>t, L_{T_{0}} \geq A t^{1 / \alpha}\right) \leq \mathbb{P}_{(x, y)}\left(L_{T_{0}} \geq A t^{1 / \alpha}\right) \underset{t \rightarrow+\infty}{\sim} \frac{c}{t^{\theta}} .
$$

Therefore, there exists $\kappa_{2}>0$ such that :

$$
\mathbb{P}_{(x, y)}\left(T_{0}>t\right) \leq \frac{\kappa_{2}}{t^{\theta}} \quad \text { as } t \rightarrow+\infty .
$$

Lower bound

Fix $\nu \in(\alpha(1-\theta) /(1+\alpha), \alpha /(1+\alpha))$ and observe that:

$$
\mathbb{E}_{(0, y)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] \leq K u^{-\nu(1+1 / \alpha)}
$$

Set $\eta=\nu(1+1 / \alpha) \in(0,1)$ and fix $\varepsilon \in(0,1)$. We decompose
$t^{\eta-1} H_{(x, y)}(t) \leq K t^{\eta-1}\left(\int_{0}^{t(1-\varepsilon)} \frac{\mathbb{P}_{(x, y)}\left(T_{0}>u\right)}{(t-u)^{\eta}} d u+\int_{t(1-\varepsilon)}^{t} \frac{\mathbb{P}_{(x, y)}\left(T_{0}>u\right)}{(t-u)^{\eta}} d u\right)$

Lower bound

Fix $\nu \in(\alpha(1-\theta) /(1+\alpha), \alpha /(1+\alpha))$ and observe that:

$$
\mathbb{E}_{(0, y)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] \leq K u^{-\nu(1+1 / \alpha)}
$$

Set $\eta=\nu(1+1 / \alpha) \in(0,1)$ and fix $\varepsilon \in(0,1)$. We decompose

$$
\begin{aligned}
t^{\eta-1} H_{(x, y)}(t) & \leq K t^{\eta-1}\left(\int_{0}^{t(1-\varepsilon)} \frac{\mathbb{P}_{(x, y)}\left(T_{0}>u\right)}{(t-u)^{\eta}} d u+\int_{t(1-\varepsilon)}^{t} \frac{\mathbb{P}_{(x, y)}\left(T_{0}>u\right)}{(t-u)^{\eta}} d u\right) \\
& \leq K \frac{\varepsilon^{-\eta}}{t} \int_{0}^{t} \mathbb{P}_{(x, y)}\left(T_{0}>u\right) d u+\frac{K \varepsilon^{1-\eta}}{1-\eta} \mathbb{P}_{(x, y)}\left(T_{0}>t(1-\varepsilon)\right)
\end{aligned}
$$

Lower bound

Fix $\nu \in(\alpha(1-\theta) /(1+\alpha), \alpha /(1+\alpha))$ and observe that:

$$
\mathbb{E}_{(0, y)}\left[\left(X_{u}^{+}\right)^{-\nu}\right] \leq K u^{-\nu(1+1 / \alpha)}
$$

Set $\eta=\nu(1+1 / \alpha) \in(0,1)$ and fix $\varepsilon \in(0,1)$. We decompose

$$
\begin{aligned}
t^{\eta-1} H_{(x, y)}(t) & \leq K t^{\eta-1}\left(\int_{0}^{t(1-\varepsilon)} \frac{\mathbb{P}_{(x, y)}\left(T_{0}>u\right)}{(t-u)^{\eta}} d u+\int_{t(1-\varepsilon)}^{t} \frac{\mathbb{P}_{(x, y)}\left(T_{0}>u\right)}{(t-u)^{\eta}} d u\right) \\
& \leq K \frac{\varepsilon^{-\eta}}{t} \int_{0}^{t} \mathbb{P}_{(x, y)}\left(T_{0}>u\right) d u+\frac{K \varepsilon^{1-\eta}}{1-\eta} \mathbb{P}_{(x, y)}\left(T_{0}>t(1-\varepsilon)\right) \\
& \leq K \frac{\varepsilon^{-\eta}}{t} \int_{0}^{t} \mathbb{P}_{(x, y)}\left(T_{0}>u\right) d u+\frac{K \varepsilon^{1-\eta}}{(1-\eta)(1-\varepsilon)^{\theta}} \frac{\kappa_{2}}{t^{\theta}} .
\end{aligned}
$$

Lower bound

$$
t^{\eta-1} H_{(x, y)}(t)-\frac{K \varepsilon^{1-\eta}}{(1-\eta)(1-\varepsilon)^{\theta}} \frac{\kappa_{2}}{t^{\theta}} \leq K \frac{\varepsilon^{-\eta}}{t} \int_{0}^{t} \mathbb{P}_{(x, y)}\left(T_{0}>u\right) d u
$$

Taking ε small enough, we deduce that there exists $\kappa_{1}>0$ such that :

$$
\frac{1}{t} \int_{0}^{t} \mathbb{P}_{(x, y)}\left(T_{0}>u\right) d u \geq \frac{\kappa_{1}}{t^{\theta}} \quad \text { as } t \rightarrow+\infty
$$

and the result follows from the mean value theorem.

Thank you for your attention.

