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Introduction

Let X = {X,, t > 0} be a real-valued process starting at x < 0 and
define
Tp = inf{r > 0, X, > 0}.

In many interesting cases the survival function of 7, has a polynomial
decay :
Pu(To >1) = t79W 15 o0,

where 6 is a positive constant which is called the persistence
exponent and usually does not depend on x.
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Examples

@ If X = B is a Brownian motion, then :

2
P(To>1) ~ |x]y/= 0=1/2).
t—~4o00 Tt
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Examples

@ If X = B is a Brownian motion, then :
Pu(Ty > ¢ KhE B =1/2)
x( 0 > )t—>+(x> X 717 = .

t
Q IfX,:x—i—/BuduwithB():O,then:
0

Bk

PX(T() > t) z—;:-ooc W

(0 = 1/4).
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Examples

@ If X = B is a Brownian motion, then :
Pu(Ty > ¢ KhE B =1/2)
x( v )t—>+<x> o 71'7t B ’

t
Q IfX,:x—i—/BuduwithB():O,then:
0

Bk

PX(T() > t) z—;:-ooc W

(0 = 1/4).

Theorem [Aurzada - Dereich]

The exponent remains 1/4 if one replaces B by any centered Lévy
process having exponential moments.
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Open problems

This result leads to some natural generalizations. What is the
persistence exponent of :

@ twice integrated Brownian motion ?
(r in Prof. Dembo’s talk yesterday, and r3, ...)

@ the integrated fractional Brownian motion ?
(Gaussian but no longer Markov)

@ an integrated a—stable Lévy process ?
(Markov but no longer Gaussian, and with infinite variance)
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Notations

Let L be a strictly a—stable Lévy process starting from zero, with
characteristic exponent :

E [ei)‘L‘] = exp <f(i)\)°‘e"m”sgn(”) (A eR)

where

a € (0,2] denote the self-similarity parameter, and
p =P[L; > 0] the positivity parameter.

We set

t
X,:er/ L,du
0

and denote by P, ,y the law of (X, L) when started from X, = x and
LO =Y.
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Remarks

@ If a < 1, then p € [0, 1]. We shall exclude the cases p = 0 and
p = 1for which |L| is a subordinator.

@ Ifa=1,then p e (0,1) and L is a Cauchy process with a linear
drift.

Qlfl<a<2thenpe| 1-1/a , /oo ]
~—— ~~

no negative jumps no positive jumps

When started from (0,0), for k > 0 :

{Li, t>0} £ {k/°L,t>0} and {Xq, t>0} £ {k"FV/°X, >0}
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Graphs

alpha =15

FIGURE: One pathof Land X fora=1.5and p =1/2
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Graphs

alpha = 0.8

FIGURE:

One path of Land X fora =0.8and p = 1/2
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Main result

Theorem

Assume that x < 0 or that x = 0 and y < 0. There exist two constants
0 < k1 < Ky < +0o0 such that :

K1

S <Pay(Mo>n< 2 (1= +00)

19

with
p

g— — P
1+ a(l—p)

1
24+

In particular, if L is symmetric, the exponent reads : 6 =
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Heuristic

Instead of studying directly Tj, we shall first focus on Ly, .
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Heuristic

Instead of studying directly Tj, we shall first focus on Ly, .

Indeed, by scaling, if Ty and L were independent, then :

so we may hope that :

P(x’y) (LT0 > Z) = Z—ae-‘ro(l) (Z N —‘rOO)
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Study of Ly,

Theorem

Forx < 0 orx=0andy < 0, the Mellin transform of L, is given, for
€ (0,1), by :

s

=1
™o B (X7 Loy ]

; 2
(14 a)™= (F(IJ‘:Q)) (1 —s)sin(mw(1 — 7)s)

Egy L5 '] =

where
pa

14+a

’y:
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Sketch of the proof

By right-continuity, Ly, > 0 a.s.

We first apply the Markov property, fora > 0 :
oo t
P(x,y) (X, € da) = /O A ]P’(()@ (ths € da) ]P)(x,y)(To € ds, Ly, € dZ)

We then integrate in time (to make T, disappear) :

/ IP(XJ) (X, S da) dt = / </ P(O,z) (Xl S da) dl‘) P(x,y) (LTO S dZ)
0 0 0
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Sketch of the proof

We finally integrate in space with respectto a™" :

/0 E(ey X" 1ix, >0y ]dt :/o Py (Lr, € dz) (/o E, [X,”l{X,>0}]dt)
and the expressions E, ,)[X; " 1x,-01] may be (partially) computed

thanks to the formula :

/OOO NTE [sin (A + 25 )| dA = T(@) sin(mv) EIX 1 xs0)]
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Corollary

Whenx =0 (andy < 0) :

Eqylly | = bI™ (s%)

Therefore under P ,),

(1)
LTo é (CL;’Y>

where C, denote a u—Cauchy random variable and X(!) the size bias
of order 1 of X.
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Corollary

Wheny =0 (and x < 0) :

Eeo [157] = et

In particular,
@ when o = 1, we deduce that under Poy

(&)
c fl=
Ly, = V2l (C(ljaﬁ)/Z)
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Corollary

Wheny =0 (and x < 0) :

B [L5"] = o et

In particular,
@ when o = 2, we deduce that under Poy

r 1/3
Lz, £ |9x|l/3 (5/6) .
Bi/s,1/6

where T'. and B, ;, denote standard Gamma and Beta r.v.’s.
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Reduction of the problem

From a converse mapping theorem for Mellin transforms, we deduce
that when {x <Oandy=0}or{x=0andy <0} :

Peey)(Lry >2) v ez

z—+o00
We shall in the following restrict our attention to these cases.

Proposition

Assume that x < 0. For every y € R, there exist 0 < k| < Kk < +00
such that :

K1 IP(X’O)<T() > l) < P(x’y)(To > l‘) < Ky P(x,o)(TO > I).
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From LTO to 7Ty

From the Markov property :

o oo
[ B [0 = By [ [ e B (051 a

hence, integrating by parts :
oo
E(JC,}’) |:(l - e_ATU)/O e_/\lE(O,LTO) [(X;’_)_V] d[:|

= E(x,y) |;/O ef/\’E(()’LTO) [(Xf)iy] dl:| 7/0 ei)\tE(xJ) [(X;r)iu] dt
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From LTO to 7Ty

From the Markov property :

o oo
[ B [0 = By [ [ e B (051 a

hence, integrating by parts :
oo
E(JC,}’) |:(l - e_ATU)/O e_/\lE(O,LTO) [(X;’_)_V] d[:|

= E(x,y) |;/O ef/\’E(()’LTO) [(Xf)iy] dl:| 7/0 ei)\tE(xJ) [(X;r)iu] dt

=2 e [ (B (6]~ By B0y [(61)™]]) duar
0 t
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From LTO to 7Ty

This last relation may be inverted to obtain :
t
L U Ly B [(65)7 ]d“] = Hey) (1)
with

Hiy (1) = [ - (B (6 ™] = B Bty [(6)™]] )
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From LTO to 7Ty

This last relation may be inverted to obtain :
t
Exy) U Vs -y B,y (XG5~ ]d“] = H(x,)(1)
with

Hiy (1) = [ - (B (6 ™] = B Bty [(6)™]] )

Lemma

Forall v € (a(1 — 0)/(a + 1), 1) there exists x > 0 such that

t
IE:(x,y) |:/0 1{To>t—u} ]E(O,LTO) [(X;_)_V] du:| ~ "itl_(l—H/a)V_e

t—+oo




Sketch of the proof
©0000

Upper bound

FixA>0andv € (a/(a+ 1),1). By continuity and positivity there
exists € > 0 such that for all z € [0, A],

1
AEmmﬁTﬂwza

Forallz > 0,

v

t
A/ o (1) > (UH R [I{To>t}/o Eo,1r) [(X)7"] d”}

1
= E(xy) ll{To>t}/ E, = L) (6™ d“]
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Upper bound

FixA>0andv € (a/(a+ 1),1). By continuity and positivity there
exists € > 0 such that for all z € [0, A],

1
AEmmﬁTﬂwza

Forallz > 0,
1
A/ o (1) > (UH R [I{To>t}/o Eo,1r) [(X)7"] d”}

1
= E(xy) ll{To>t}/ E, = L) (6™ d“]

EP(X,),)(T() >, LTO < Al‘l/a)

v

\%

© (P<X’>'>(T° > 1) = Py (To > 1, Ly, > A"/ “))
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Upper bound

t(1+l/a)y_1H(x7y)(t) 4 S]P)(x,y)(TO >t,Ly, > Atl/a) > E]P(x,y)(TO > t) J
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Upper bound

[(1+1/a)l[71H(x7y)(t) = S]ID(X,),)(TO >t Ly, > Atl/a) > E]P(x,y)(TO > t) J

Recall that : .
1+1 v—1
t( /) H(x,y)(t) t_}'t;oo [70
and
o C
Piey)(To > 1, Ly, > AY®) < Pioy)(Ln, > A®) ~ .

Therefore, there exists x, > 0 such that :

Py (To >1t) < % ast — +oo.
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Lower bound

Fix v € (a(1 —6)/(1 4+ «a),a/(1 + «)) and observe that :

Eq, [(X5)™"] < Kuv(+1/a),

Setn=v(1+1/a) € (0,1)and fix e € (0, 1). We decompose

t(1=2) P, \(To > L Py (To >
tnilH(x,y)(t) SKtnil / (M)( o) du + / (XJ)( ° Lt) du
0 (t—u)m (—e) (E—w)"
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Lower bound

Fix v € (a(1 —6)/(1 4+ «a),a/(1 + «)) and observe that :

Eq, [(X5)™"] < Kuv(+1/a),

Setn=v(1+1/a) € (0,1)and fix e € (0, 1). We decompose

1 Hig) (1) < K17 P“”) LR / - P,
(t—u)n (1—e) (E—u)"

Kel=n
/ (x,y) T0>u du + 1_77 P(X’}.)(To>l‘(1—€))
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Lower bound

Fix v € (a(1 —6)/(1 4+ «a),a/(1 + «)) and observe that :

Eq, [(X5)™"] < Kuv(+1/a),

Setn=v(1+1/a) € (0,1)and fix e € (0, 1). We decompose

w(=e) p,_ (T > LR (T >
0 t(l1—e)

(t—u)" (t—u)"
! Kel=n
/O P(x’y)(To > u) du + ﬁ P(X’).)(To > l(l — 6))
Kel—n Ko

t
Py, (T du + ——o 2
Jy P> e+ (=g



Sketch of the proof
000e0

Lower bound

K ]—7] —n t
< 2 < K £ P(xy)(T() > u) du J

T H e () — ——————
= goya=are < K7 ),

Taking ¢ small enough, we deduce that there exists x; > 0 such that :

1 [ K
?/O Py (To > u) du > 791 ast — +oo,

and the result follows from the mean value theorem.
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Thank you for your attention.
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