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Introduction

Let X = {Xt, t ≥ 0} be a real-valued process starting at x < 0 and
define

T0 = inf{t > 0, Xt > 0}.

In many interesting cases the survival function of T0 has a polynomial
decay :

Px(T0 > t) = t−θ+o(1), t→ +∞,

where θ is a positive constant which is called the persistence
exponent and usually does not depend on x.
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Examples

1 If X = B is a Brownian motion, then :

Px(T0 > t) ∼
t→+∞

|x|
√

2
πt

(θ = 1/2).

2 If Xt = x +

∫ t

0
Bu du with B0 = 0, then :

Px(T0 > t) ∼
t→+∞

c
|x|1/6

t1/4 (θ = 1/4).

Theorem [Aurzada - Dereich]

The exponent remains 1/4 if one replaces B by any centered Lévy
process having exponential moments.
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Open problems

This result leads to some natural generalizations. What is the
persistence exponent of :

1 twice integrated Brownian motion ?
(r2 in Prof. Dembo’s talk yesterday, and r3, . . . )

2 the integrated fractional Brownian motion ?
(Gaussian but no longer Markov)

3 an integrated α−stable Lévy process ?
(Markov but no longer Gaussian, and with infinite variance)
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Notations

Let L be a strictly α−stable Lévy process starting from zero, with
characteristic exponent :

E
[
eiλL1

]
= exp

(
−(iλ)αeiπαρsgn(λ)

)
(λ ∈ R)

where {
α ∈ (0, 2] denote the self-similarity parameter, and
ρ = P[L1 ≥ 0] the positivity parameter.

We set

Xt = x +

∫ t

0
Lu du

and denote by P(x,y) the law of (X,L) when started from X0 = x and
L0 = y.
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Remarks

1 If α < 1, then ρ ∈ [0, 1]. We shall exclude the cases ρ = 0 and
ρ = 1 for which |L| is a subordinator.

2 If α = 1, then ρ ∈ (0, 1) and L is a Cauchy process with a linear
drift.

3 If 1 < α < 2, then ρ ∈ [ 1− 1/α︸ ︷︷ ︸
no negative jumps

, 1/α︸︷︷︸
no positive jumps

]

When started from (0, 0), for k > 0 :

{Lkt, t ≥ 0} L= {k1/αLt, t ≥ 0} and {Xkt, t ≥ 0} L= {k1+1/αXt, t ≥ 0}



Introduction Main results Sketch of the proof

Graphs

FIGURE: One path of L and X for α = 1.5 and ρ = 1/2
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Graphs

FIGURE: One path of L and X for α = 0.8 and ρ = 1/2
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Main result

Theorem
Assume that x < 0 or that x = 0 and y < 0. There exist two constants
0 < κ1 ≤ κ2 < +∞ such that :

κ1

tθ
≤ P(x,y) (T0 > t) ≤ κ2

tθ
(t→ +∞)

with
θ =

ρ

1 + α(1− ρ)
.

In particular, if L is symmetric, the exponent reads : θ =
1

2 + α
.
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Heuristic

Instead of studying directly T0, we shall first focus on LT0 .

Indeed, by scaling, if T0 and L were independent, then :

LT0

L
= T1/α

0 L1,

so we may hope that :

P(x,y)(LT0 > z) = z−αθ+o(1) (z→ +∞)
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Study of LT0

Theorem
For x < 0 or x = 0 and y < 0, the Mellin transform of LT0 is given, for
s ∈ (0, 1), by :

E(x,y)
[
Ls−1

T0

]
=

π
∫ +∞

0 E(x,y)

[
X

s
1+α−1
t 1{Xt>0}

]
dt

(1 + α)
s

1+α

(
Γ( s

1+α )
)2

Γ(1− s) sin(π(1− γ)s)

where
γ =

ρα

1 + α
.
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Sketch of the proof

By right-continuity, LT0 ≥ 0 a.s.

We first apply the Markov property, for a ≥ 0 :

P(x,y)(Xt ∈ da) =

∫ ∞
0

∫ t

0
P(0,z)(Xt−s ∈ da)P(x,y)(T0 ∈ ds,LT0 ∈ dz).

We then integrate in time (to make T0 disappear) :∫ ∞
0

P(x,y)(Xt ∈ da) dt =

∫ ∞
0

(∫ ∞
0

P(0,z)(Xt ∈ da) dt
)
P(x,y)(LT0 ∈ dz)
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Sketch of the proof

We finally integrate in space with respect to a−ν :∫ ∞
0

E(x,y)[X−νt 1{Xt>0}]dt =

∫ ∞
0

P(x,y)(LT0 ∈ dz)
(∫ ∞

0
E(0,z)[X−νt 1{Xt>0}] dt

)
and the expressions E(x,y)[X

−ν
t 1{Xt>0}] may be (partially) computed

thanks to the formula :∫ ∞
0

λν−1 E
[
sin
(
λX +

νπ

2

)]
dλ = Γ(ν) sin(πν)E[X−ν1{X>0}]
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Corollary

When x = 0 (and y < 0) :

E(0,y)[L
s−1
T0

] = |y|s−1
(

sin(πγs)
sin(π(1− γ)s)

)
.

Therefore under P(0,y),

LT0

L
=
(

C1−γ
αθ

)(1)

where Cµ denote a µ−Cauchy random variable and X(1) the size bias
of order 1 of X.
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Corollary

When y = 0 (and x < 0) :

E(x,0)
[
Ls−1

T0

]
=

(1 + α)
1−s
1+αΓ(α+2

α+1 )Γ( 1−s
α+1 ) sin(πγ)

Γ( s
α+1 )Γ(1− s) sin(π(1− γ)s)

|x|
s−1
α+1 .

In particular,
1 when α = 1, we deduce that under P(x,0) :

LT0

L
=
√

2|x|
(

C1−γ
(1+αθ)/2

)(1)
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Corollary

When y = 0 (and x < 0) :

E(x,0)
[
Ls−1

T0

]
=

(1 + α)
1−s
1+αΓ(α+2

α+1 )Γ( 1−s
α+1 ) sin(πγ)

Γ( s
α+1 )Γ(1− s) sin(π(1− γ)s)

|x|
s−1
α+1 .

In particular,
2 when α = 2, we deduce that under P(x,0) :

LT0

L
= |9x|1/3

(
Γ5/6

B1/6,1/6

)1/3

.

where Γc and Ba,b denote standard Gamma and Beta r.v.’s.
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Reduction of the problem

From a converse mapping theorem for Mellin transforms, we deduce
that when {x < 0 and y = 0} or {x = 0 and y < 0} :

P(x,y)(LT0 > z) ∼
z→+∞

c z−αθ

We shall in the following restrict our attention to these cases.

Proposition

Assume that x < 0. For every y ∈ R, there exist 0 < κ1 ≤ κ2 < +∞
such that :

κ1 P(x,0)(T0 > t) ≤ P(x,y)(T0 > t) ≤ κ2 P(x,0)(T0 > t).
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From LT0 to T0

From the Markov property :∫ ∞
0

e−λt E(x,y)
[
(X+

t )−ν
]

dt = E(x,y)

[
e−λT0

∫ ∞
0

e−λt E(0,LT0 )

[
(X+

t )−ν
]

dt
]

hence, integrating by parts :

E(x,y)

[
(1− e−λT0)

∫ ∞
0

e−λtE(0,LT0 )

[
(X+

t )−ν
]

dt
]

= E(x,y)

[∫ ∞
0

e−λtE(0,LT0 )

[
(X+

t )−ν
]

dt
]
−
∫ ∞

0
e−λtE(x,y)

[
(X+

t )−ν
]

dt

= λ

∫ ∞
0

e−λt
∫ ∞

t

(
E(x,y)

[
(X+

u )−ν
]
− E(x,y)

[
E(0,LT0 )

[
(X+

u )−ν
]])

du dt
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∫ ∞

t
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u )−ν
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E(0,LT0 )

[
(X+

u )−ν
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From LT0 to T0

This last relation may be inverted to obtain :

E(x,y)

[∫ t

0
1{T0>t−u}E(0,LT0 )

[
(X+

u )−ν
]

du
]

= H(x,y)(t)

with

H(x,y)(t) =

∫ +∞

t

(
E(x,y)

[
(X+

u )−ν
]
− E(x,y)

[
E(0,LT0 )

[
(X+

u )−ν
]])

du

Lemma

For all ν ∈ (α(1− θ)/(α+ 1), 1) there exists κ > 0 such that

E(x,y)

[∫ t

0
1{T0>t−u} E(0,LT0 )

[
(X+

u )−ν
]

du
]
∼

t→+∞
κ t1−(1+1/α)ν−θ.
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Upper bound

Fix A > 0 and ν ∈ (α/(α+ 1), 1). By continuity and positivity there
exists ε > 0 such that for all z ∈ [0,A],∫ 1

0
E(0,z)

[
(X+

u )−ν
]

du ≥ ε.

For all t > 0,

t(1+1/α)ν−1H(x,y)(t) ≥ t(1+1/α)ν−1 E(x,y)

[
1{T0>t}

∫ t

0
E(0,LT0 )

[
(X+

u )−ν
]

du
]

= E(x,y)

[
1{T0>t}

∫ 1

0
E(0, 1

t1/α
LT0 )

[
(X+

u )−ν
]

du

]

≥ εP(x,y)(T0 > t,LT0 ≤ At1/α)

≥ ε
(
P(x,y)(T0 > t)− P(x,y)(T0 > t,LT0 ≥ At1/α)

)
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Upper bound

t(1+1/α)ν−1H(x,y)(t) + εP(x,y)(T0 > t,LT0 ≥ At1/α) ≥ εP(x,y)(T0 > t)

Recall that :
t(1+1/α)ν−1H(x,y)(t) ∼

t→+∞

κ

tθ

and

P(x,y)(T0 > t,LT0 ≥ At1/α) ≤ P(x,y)(LT0 ≥ At1/α) ∼
t→+∞

c
tθ
.

Therefore, there exists κ2 > 0 such that :

P(x,y)(T0 > t) ≤ κ2

tθ
as t→ +∞.
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Lower bound

Fix ν ∈ (α(1− θ)/(1 + α), α/(1 + α)) and observe that :

E(0,y)
[
(X+

u )−ν
]
≤ K u−ν(1+1/α).

Set η = ν(1 + 1/α) ∈ (0, 1) and fix ε ∈ (0, 1). We decompose

tη−1H(x,y)(t) ≤ K tη−1

(∫ t(1−ε)

0

P(x,y)(T0 > u)

(t − u)η
du +

∫ t

t(1−ε)

P(x,y)(T0 > u)

(t − u)η
du

)

≤ K
ε−η

t

∫ t

0
P(x,y)(T0 > u) du +

Kε1−η

1− η
P(x,y)(T0 > t(1− ε))

≤ K
ε−η

t

∫ t

0
P(x,y)(T0 > u) du +

Kε1−η

(1− η)(1− ε)θ
κ2

tθ
.
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Lower bound

tη−1H(x,y)(t)− Kε1−η

(1− η)(1− ε)θ
κ2

tθ
≤ K

ε−η

t

∫ t

0
P(x,y)(T0 > u) du

Taking ε small enough, we deduce that there exists κ1 > 0 such that :

1
t

∫ t

0
P(x,y)(T0 > u) du ≥ κ1

tθ
as t→ +∞,

and the result follows from the mean value theorem.
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Thank you for your attention.
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