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Random processes (RW and BM) in cones

First exit time from the cone C

C
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τC = inf{n > 0 : S(n) /∈ C} (S RW)
TC = inf{t > 0 : B(t) /∈ C} (B BM)

Exact and asymptotic expressions for the non-exit probab.

Px [τC > n] (n→∞) & Px [TC > t] (t →∞)

Motivations
I Constructing RW and BM conditioned on staying in cones

(e.g., Weyl chambers);
I Constructing BM conditioned on starting at the origin of

cones (Brownian meander);
I Many processes are naturally in cones (non-colliding

processes, eigenvalues of certain random matrices, etc.).
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Dimension 1: two characterizations of Px [T(0,∞) > t]

Exact computation of the non-exit probability

Px [T(0,∞) > t] = P0[ min
u∈[0,t]

B(u) > −x ]

= P0[|B(t)| < x ]

=
2√
2πt

∫ x

0
e−

y2

2t dy .
-

6

x

t

Heat equation

The function g(t; x) = Px [T(0,∞) > t] satisfies the heat equation:
(
∂
∂t −

1
2∆
)

g(t; x) = 0, ∀x ∈ (0,∞), ∀t ∈ (0,∞),
g(0; x) = 1, ∀x ∈ (0,∞),
g(t; 0) = 0, ∀t ∈ (0,∞).
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Dimension d : explicit expression for Px [TC > t]

Heat equation [Doob ’55]

For essentially any domain C in any dimension d , Px [TC > t] and
pC (t; x , y) (Px [TC > t] =

∫
C pC (t; x , y)dy) satisfy heat equations.

Dirichlet eigenvalues problem [e.g., Chavel ’84 ]
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C

1
tt Sd−1 ∩ C

{
∆Sd−1m = −λm in Sd−1 ∩ C ,

m = 0 in ∂(Sd−1 ∩ C ).

Discrete eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ ..., and eigenfunctions
m1, m2, m3 ...

Series expansion [DeBlassie ’87, Bañuelos & Smits ’97]

Px [TC > t] =

∫
C

pC (t; x , y)dy =
∞∑
j=1

Bj(|x |2/t)mj(x/|x |).
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Px [TC > t] =

∫
C

pC (t; x , y)dy =
∞∑
j=1

Bj(|x |2/t)mj(x/|x |).



Dimension d : explicit expression for Px [TC > t]

Heat equation [Doob ’55]

For essentially any domain C in any dimension d , Px [TC > t] and
pC (t; x , y) (Px [TC > t] =

∫
C pC (t; x , y)dy) satisfy heat equations.

Dirichlet eigenvalues problem [e.g., Chavel ’84 ]

-�
�
�
�
�
�
�
��

C

1
tt Sd−1 ∩ C

{
∆Sd−1m = −λm in Sd−1 ∩ C ,

m = 0 in ∂(Sd−1 ∩ C ).

Discrete eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ ..., and eigenfunctions
m1, m2, m3 ...

Series expansion [DeBlassie ’87, Bañuelos & Smits ’97]
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Asymptotics of the non-exit probability

Series expansion [DeBlassie ’87, Bañuelos & Smits ’97]

Px [TC > t] =
∞∑
j=1

Bj(|x |2/t)mj(x/|x |) (Bj hypergeometric).

This series expansion is very well suited to asymptotic problems.

Asymptotic result [DeBlassie ’87, Bañuelos & Smits ’97]

One has

Px [TC > t] = κu(x)t−p1/2(1 + o(1)) (t →∞),

where
I p1 =

√
λ1 + (d/2− 1)2 − (d/2− 1) is related to the first

eigenvalue;
I u(x) = |x |p1m1(x/|x |) is the unique harmonic function for BM

in the cone (réduite of the cone);
I κ > 0.
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Dimension 1: Brownian motion with drift a ∈ R

Density of Brownian motion with drift

Px [B(t) ∈ dy ] = ea(y−x)−ta
2/2 e−

(x−y)2

2t

√
2πt

dy .

Exact expression of the non-exit probability

Px [T(0,∞) > t] =

∫ ∞
0

(Px [B(t) ∈ dy ]− Px [B(t) ∈ −dy ]).

Asymptotic behavior of the non-exit probability

For all starting point x > 0, as t →∞,

Px [T(0,∞) > t] = (1 + o(1))



xe−axe−ta
2/2

√
2πa2t3/2

if a < 0,

√
2x√
πt

if a = 0,

1− e−2ax if a > 0.
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Dimension 2: simple cases
Cones in dimension 2
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tt β
In dimension 2, any cone is a rotation
of {ρe iθ : ρ > 0, 0 < θ < β}, for some
β ∈ (0, 2π].

Half-space (β = π) with drift (a1, a2) ∈ R2

The upper half-plane is a one-dimensional case.

Quarter plane R2
+ (β = π/2) with drift (a1, a2) ∈ R2

Px [TR2
+
> t]

= Px1 [T(0,∞)(B(1)) > t]

×Px2 [T(0,∞)(B(2)) > t]
= κh(x)t−αe−γt(1 + o(1))

-

6

1

0

23

1/2

3/2

a1

a2

m mm
m
m m
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Dimension d : general case of drift a ∈ Rd (1/3)

Exact expression of the non-exit probability

Using
I the expression of the heat kernel pC (t; x , y) for the zero drift

case,
I Girsanov theorem,

one obtains

Px [TC > t] = e〈−a,x〉−t|a|
2/2

∫
C

e〈a,y〉pC (t; x , y)dy .

Decomposition of the asymptotics

Px [TC > t] = κh(x)t−αe−γt(1 + o(1)) (t →∞).

Universal exponential decay [Garbit & R. ’13]

Distance between the drift and the cone:

γ =
1

2
d(a, C )2 =

1

2
min
y∈C
|a− y |2.
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Dimension d : general case of drift a ∈ Rd (2/3)

Cones and polar cones

I C a cone

I Polar cone
C# = {x ∈ Rd : 〈x , y〉 ≤ 0,∀y ∈ C}
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?

H
HH

HHY C

C#

Six possible cases

I polar interior drift: a ∈ (C ])o ;
I zero drift: a = 0;
I interior drift: a ∈ C ;
I boundary drift: a ∈ ∂C \ {0};
I non-polar exterior drift: a ∈ Rd \ (C ∪ C ]);
I polar boundary drift: a ∈ ∂C ] \ {0}.
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Dimension d : general case of drift a ∈ Rd (3/3)
Main remark [Garbit & R. ’13]

I Universal exponential decay e−γt with γ = 1
2d(a, C )2;

I Polynomial correction t−α: depends on
I position of the drift w.r.t. cone & polar cone;
I the local geometry of the cone at the points that minimize the

distance to the drift.

Results in dimension 2 [Garbit & R. ’13]
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I position of the drift w.r.t. cone & polar cone;
I the local geometry of the cone at the points that minimize the

distance to the drift.

Results in dimension 2 [Garbit & R. ’13]
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Framework and different approaches

Random walk in C
I Let (S(n))n≥0 be a random walk :

S(n) = x + X (1) + · · ·+ X (n),

where the X (i) are i.i.d.
I τC = inf{n > 0 : S(n) /∈ C}.

Main objectives

Computing exact and asymptotic expressions of the non-exit
probability

Px [τC > n] (n→∞).

Many different approaches

I Analytic approach [Fayolle et al. ’99];
I Representation theory [Biane et al. ’91];
I Comparison with BM [Shimura ’84, Garbit ’07, Denisov &

Wachtel ’11].
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Non-exponential decay of the non-exit probability

Result [Garbit ’07]

If E[X (i)] = 0 then

lim
n→∞

Px [τC > n]1/n = 1.

Proof: Push the random walk in C .
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P0[τC > n] ≥ P0[X1 = z , ... , X√n = z , τC > n]

= P0[X1 = z ]
√
nP√nz [τC > n −

√
n]

= P0[X1 = z ]
√
nP0[
√

nz + S1, ... ,
√

nz + Sn−
√
n ∈ C ]

≈ P0[X1 = z ]
√
nP0[z + Bt ∈ C , ∀t ∈ [0, 1]].



More precise asymptotics

Upper and lower bounds [Varopoulos ’99]

One has
c1n−p1 ≤ Px [τC > n] ≤ c2n−p1 ,

with p1 =
√
λ1 + (d/2− 1)2 − (d/2− 1).

Exact asymptotic behavior [Denisov & Wachtel ’11]

One has

Px [τC > n] = κV (x)n−p1(1 + o(1)) (n→∞),

where V (x) is a discrete harmonic function equivalent to u(x) as
|x | → ∞.

More [Denisov & Wachtel ’11]
I Local limit theorems;

I Application in enumerative combinatorics;

I Convergence of conditioned RW to conditioned BM.
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Exponential decay [Garbit & R. ’13]

I C ⊂ Rd (d ≥ 2) is a convex cone, and −C ] is the dual cone;
I µ is the common law of the X (i).

Laplace transform

The Laplace transform is Lµ(x) = E[e〈X (i),x〉].

Hypotheses

I µ is not included in a linear hyperplane;
I µ is not included in a half-space u− = {x ∈ Rd : 〈x , u〉 ≤ 0},

u ∈ −C ] \ {0}.
Results

Lµ(x) reaches a global minimum on −C ] at a unique point x0, and

lim
n→∞

Px [τC > n]1/n = Lµ(x0).

(Starting point sufficiently far away from the origin.)

Walks in half-spaces

The exponential growth depends on the starting point.
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Some ideas of proof

Exponential change of measure (Girsanov or Cramer)

P[X (i) = s] = µ(s) → Pz [X (i) = s] = µ(s)
e〈s,z〉

Lµ(z)

. Same measures if z = 0

. One has

Py [τC > n] = Lµ(z)ne〈z,y〉Ez
y [τC > n, e−〈z,S(n)〉] (∀z)

≤ Lµ(z)ne〈z,y〉 (∀z : 〈z , S(n)〉 ≥ 0)

Upper bound

lim sup
n→∞

Py [τC > n]1/n ≤ min
z∈−C#

Lµ(z).

Lower bound

More complicated: locate the minimum of Lµ(z) on the dual cone.
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Summing local limit theorems

Precise asymptotics in a specific case [Duraj ’13]

There is the identity:

Px [S(n) = y , τC > n] = Lµ(z)ne〈z,x−y〉Pz
x [S(n) = y , τC > n].

I Summing gives

Px [τC > n] = Lµ(z)n
∑
y∈C

e〈z,x−y〉Pz
x [S(n) = y , τC > n].

I If Pz is centered (for some particular z) then the local limit
theorems of Denisov & Wachtel hold;

I Restriction: one can interchange sums and equivalent terms
only if z belongs to the interior of −C ].

Results [Duraj ’13]

Px [τC > n] = κLµ(z)nn−p1−d/2U(x)(1 + o(1)) (n→∞).
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Open questions

. Exact asymptotics for any random walk

. Combinatorics of walks with big jumps

. Combinatorics of walks in higher dimension
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