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First exit time from the cone C
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Exact and asymptotic expressions for the non-exit probab.
Py[7c > n] (n — 00) & Py[Tc > t] (t = o0)

Motivations

» Constructing RW and BM conditioned on staying in cones
(e.g., Weyl chambers);

» Constructing BM conditioned on starting at the origin of
cones (Brownian meander);

» Many processes are naturally in cones (non-colliding
processes, eigenvalues of certain random matrices, etc.).
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Dimension 1: two characterizations of P,[T(o ) > t]

Exact computation of the non-exit probability
A

Px[T(0,00) > t] = Po[urén[g)rjt] B(u) > —x]

W M;N = Po[| B(t)] < x]
W N N 2 Xy
W W wf R _\/ﬁ/o ey

Heat equation
The function g(t; x) = Px[T(g,oc) > t] satisfies the heat equation:

g(0;x) =1, V¥xe (0,00),

(2 - 1A)g(t;x) =0, Vx € (0,00), Vt € (0, 00),
{ g(t;0) =0, Vte (0,00).
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Dimension d: explicit expression for P, [T > t]
Heat equation [Doob '55]
For essentially any domain C in any dimension d, Pyx[T¢ > t] and
pC(t;x,y) (Px[Tc > t] = [ pC(t; x, y)dy) satisfy heat equations.
Dirichlet eigenvalues problem [e.g., Chavel '84 |

C Ags-1m = —Am in si-1nc,
Sdfl NnC m =0 in (9(5‘171 N C)

1
Discrete eigenvalues 0 < A\; < A» < A3 < ..., and eigenfunctions

mi, mp,ms...
Series expansion [DeBlassie '87, Bafiuelos & Smits '97]

Px[Tc>r1=/Cp (t:%,y)dy = ZB (Ix2/6)m;(x/Ix]).
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Dimension 1: Brownian motion with drift a € R

Density of Brownian motion with drift

(x=y)?
2t

P[B(t) € dy] = ev—0-t"28 = 4,
2t

Exact expression of the non-exit probability

P.[Tiom) > 1] = /OOO(PX[B(t) € dy] — P[B(t) € —dy]).

Asymptotic behavior of the non-exit probability
For all starting point x > 0, as t — oo,

2
xe~ X g—ta /2

PToo) > t]=(1+0(1)) v2x ,
\/ﬁ |f a= O,

1 — e 2% if a>0.
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Dimension 2: simple cases
Cones in dimension 2

In dimension 2, any cone is a rotation
of {pei9 :p>0,0<6 <}, for some
B € (0, 2x].

>

Half-space (8 = 7) with drift (a1, a2) € R?
The upper half-plane is a one-dimensional case.
Quarter plane R? (8 = 7/2) with drift (a1, a2) € R?

PX[TR?F > t] an
= PX1[T(O,<><>)(B(1)) > t] @
prz[T(O,oo)(B(z)) > t] 0 @ a

= kh(x)t~“e~7*(1 + o(1))

®O®
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Dimension d: general case of drift a € R? (1/3)

Exact expression of the non-exit probability
Using
> the expression of the heat kernel pC(t; x, y) for the zero drift
case,
» Girsanov theorem,
one obtains

PX[TC > t] — e<—a,X>_t|a|2/2 /C e(a’y>pc(t,X1}/)dy

Decomposition of the asymptotics
P.[Tc > t] = sh(x)t “e 7(1+ o(1)) (t = o).
Universal exponential decay [Garbit & R. '13]

Distance between the drift and the cone:

1 1
v =5d(a, C)* = Sminja—y|*
2 2y€C
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Dimension d: general case of drift a € R (2/3)

Cones and polar cones

» C a cone

» Polar cone

C"={xeR9:(x,y)<0,Vy e C} C#

Six possible cases

» polar interior drift: a € (C¥)°;

> zero drift: a =0;

> interior drift: a € C;

» boundary drift: a € 9C \ {0};

» non-polar exterior drift: a € R\ (C U C%);
» polar boundary drift: a € 9C#\ {0}.
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Dimension d: general case of drift a ¢ R (3/3)
Main remark [Garbit & R. '13]

» Universal exponential decay e 7" with 7 = %d(a, C)?
» Polynomial correction ¢~ “: depends on

» position of the drift w.r.t. cone & polar cone;
» the local geometry of the cone at the points that minimize the
distance to the drift.

Results in dimension 2 [Garbit & R. "13]

@
Eal
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Framework and different approaches

Random walk in C
> Let (5(n))n>0 be a random walk:

S(n) =x+X(1)+---+ X(n),
where the X(/) are i.i.d.
» 7c =inf{n>0:5(n) ¢ C}.
Main objectives
Computing exact and asymptotic expressions of the non-exit
probability
P.[7c > n] (n — o0).
Many different approaches
» Analytic approach [Fayolle et al. '99];
» Representation theory [Biane et al. '91];
» Comparison with BM [Shimura '84, Garbit '07, Denisov &
Wachtel '11].



Non-exponential decay of the non-exit probability
Result [Garbit '07]
If E[X()] = 0 then

lim Py[rc > nY/"=1.
n—o0

Proof: Push the random walk in C.

Y



Non-exponential decay of the non-exit probability
Result [Garbit '07]
If E[X()] = 0 then

lim Py[rc > nY/"=1.
n—o0

Proof: Push the random walk in C.

>
>

Po[TC >n] Zpo[Xlzz,...,Xﬁ:Z,Tc>n]



Non-exponential decay of the non-exit probability
Result [Garbit '07]
If E[X()] = 0 then

lim Py[rc > nY/"=1.
n—o0

Proof: Push the random walk in C.

Po[TC > n] > Po[Xl :Z,...,Xﬁ:Z,TC > n]
= Po[X1 = 2]V"P_s,[rc > n— /1]



Non-exponential decay of the non-exit probability
Result [Garbit '07]
If E[X()] = 0 then

lim Py[rc > nY/"=1.
n—o0

Proof: Push the random walk in C.

>
>

PO[TC > n] > Po[Xl :Z,...,Xﬁ:Z,TC > n]
= Po[X1 = 2]V"P /,[rc > n— /1]



Non-exponential decay of the non-exit probability
Result [Garbit '07]
If E[X()] = 0 then

lim Py[rc > nY/"=1.
n—o0

Proof: Push the random walk in C.

>
>

PO[TC > n] > Po[Xl = Z,...,Xﬁ =ZzZ,7c > n]
= Po[X1 = 2]V"P . [rc > n — /]
= Po[Xy = 2]V"Po[Vnz + Sy, .., Vnz+ S, s € C]



Non-exponential decay of the non-exit probability
Result [Garbit '07]
If E[X()] = 0 then

lim Py[rc > nY/"=1.
n—o0

Proof: Push the random walk in C.

>
>

Pol7c > n] > Po[X1 = z,..., X /5 =z, 7c > n]
= Po[X1 = 2]V"P /,[rc > n— /1]
= Po[X1 = 2]V"Po[v/nz + S1,...,v/nz + S,_ s € C]
~ Po[X1 = z]V"Py[z + B: € C,Vt € [0, 1]].
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More precise asymptotics

Upper and lower bounds [Varopoulos '99]
One has
cn Pt < Py[re > n] < n P,
with p1 = /A1 + (d/2 —1)2 — (d/2 - 1).
Exact asymptotic behavior [Denisov & Wachtel '11]
One has

Py [7c > n]=kV(x)n P (1 + o(1)) (n — o),

where V(x) is a discrete harmonic function equivalent to u(x) as
|x| = o0.

More [Denisov & Wachtel '11]

> Local limit theorems;

» Application in enumerative combinatorics;

» Convergence of conditioned RW to conditioned BM.
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Exponential decay [Garbit & R. '13]
» C C RY (d >2)is a convex cone, and —C" is the dual cone;
> /i is the common law of the X(i).
Laplace transform
The Laplace transform is L, (x) = E[eX(D:X)],
Hypotheses

> 1 is not included in a linear hyperplane;
» 4 is not included in a half-space u= = {x € R : (x, u) < 0},
ue —CH\ {0}.
Results
L,.(x) reaches a global minimum on —C* at a unique point xg, and

lim Py[rc > n]Y/" = L,(x0).

n—oo
(Starting point sufficiently far away from the origin.)
Walks in half-spaces
The exponential growth depends on the starting point.
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Some ideas of proof

Exponential change of measure (Girsanov or Cramer)

e<512>
P[X(i)=s]=u(s — P#[X(i) =s] = u(s
[X(i) = s] = p(s) X() = 5] = n(s) |
> Same measures if z=10
> One has
Py[7c > n] = Lu(z)"e<z'y>E§[Tc > n, e~ (&SN (Vz)
< L,(z)"e) (Vz : (z,S(n)) > 0)

Upper bound

limsup Py [rc > n]Y" < min L,(2).
n—00 ze—C#

Lower bound
More complicated: locate the minimum of L,(z) on the dual cone.
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Summing local limit theorems

Precise asymptotics in a specific case [Duraj '13]
There is the identity:

P.[S(n) =y, 7c > n] = Lu(2)"e®*YIPZ[S(n) =y, 7c > n].

» Summing gives

P.lrc > nl = Lu(z ZezxyPZ[S) > n.
yeC

» If P7 is centered (for some particular z) then the local limit
theorems of Denisov & Wachtel hold;

> Restriction: one can interchange sums and equivalent terms
only if z belongs to the interior of —C*.

Results [Duraj '13]

P.[rc > n] = kL (2)"nP=92U(x)(1 4 o(1)) (n — o).
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