Random walks and Brownian motion with drift in cones

Kilian Raschel

Joint with Rodolphe Garbit (Université d'Angers)

Workshop "Persistence probabilities and related fields" TU Darmstadt — July 16, 2014

Introduction and motivations

Brownian motion without drift in cones

Brownian motion with drift in cones

Random walks without drift in cones

Random walks with drift in cones

Conclusions

Random processes (RW and BM) in cones

First exit time from the cone C

Random processes (RW and BM) in cones

First exit time from the cone C

Random processes (RW and BM) in cones

First exit time from the cone C

Random processes (RW and BM) in cones

First exit time from the cone C

$$
\begin{aligned}
& \tau_{C}=\inf \{n>0: S(n) \notin C\}(S \mathrm{RW}) \\
& T_{C}=\inf \{t>0: B(t) \notin C\}(B \mathrm{BM})
\end{aligned}
$$

Random processes (RW and BM) in cones

First exit time from the cone C

$$
\begin{aligned}
& \tau_{C}=\inf \{n>0: S(n) \notin C\}(S \mathrm{RW}) \\
& T_{C}=\inf \{t>0: B(t) \notin C\}(B \mathrm{BM})
\end{aligned}
$$

Exact and asymptotic expressions for the non-exit probab. $\mathbf{P}_{x}\left[\tau_{C}>n\right](n \rightarrow \infty) \& \mathbf{P}_{x}\left[T_{C}>t\right](t \rightarrow \infty)$

Random processes (RW and BM) in cones

First exit time from the cone C

$$
\begin{aligned}
& \tau_{C}=\inf \{n>0: S(n) \notin C\}(S \mathrm{RW}) \\
& T_{C}=\inf \{t>0: B(t) \notin C\}(B \mathrm{BM})
\end{aligned}
$$

Exact and asymptotic expressions for the non-exit probab.
$\mathbf{P}_{x}\left[\tau_{C}>n\right](n \rightarrow \infty) \& \mathbf{P}_{x}\left[T_{C}>t\right](t \rightarrow \infty)$

Motivations

- Constructing RW and BM conditioned on staying in cones (e.g., Weyl chambers);
- Constructing BM conditioned on starting at the origin of cones (Brownian meander);
- Many processes are naturally in cones (non-colliding processes, eigenvalues of certain random matrices, etc.).

Introduction and motivations

Brownian motion without drift in cones

Brownian motion with drift in cones

Random walks without drift in cones

Random walks with drift in cones

Conclusions

Dimension 1: two characterizations of $\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right]$
Exact computation of the non-exit probability

$$
\begin{aligned}
\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right] & =\mathbf{P}_{0}\left[\min _{u \in[0, t]} B(u)>-x\right] \\
& =\mathbf{P}_{0}[|B(t)|<x] \\
& =\frac{2}{\sqrt{2 \pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2 t}} \mathrm{~d} y .
\end{aligned}
$$

Dimension 1: two characterizations of $\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right]$

Exact computation of the non-exit probability

$$
\begin{aligned}
\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right] & =\mathbf{P}_{0}\left[\min _{u \in[0, t]} B(u)>-x\right] \\
& =\mathbf{P}_{0}[|B(t)|<x] \\
& =\frac{2}{\sqrt{2 \pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2 t}} \mathrm{~d} y .
\end{aligned}
$$

Heat equation

The function $g(t ; x)=\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right]$ satisfies the heat equation:

$$
\left\{\begin{aligned}
\left(\frac{\partial}{\partial t}-\frac{1}{2} \Delta\right) g(t ; x)=0, & \forall x \in(0, \infty), \quad \forall t \in(0, \infty), \\
g(0 ; x)=1, & \forall x \in(0, \infty), \\
g(t ; 0)=0, & \forall t \in(0, \infty) .
\end{aligned}\right.
$$

Dimension d : explicit expression for $\mathbf{P}_{\chi}\left[T_{C}>t\right]$

Heat equation [Doob '55]

For essentially any domain C in any dimension $d, \mathbf{P}_{x}\left[T_{C}>t\right]$ and $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y\right)$ satisfy heat equations.

Dimension d ：explicit expression for $\mathbf{P}_{\chi}\left[T_{C}>t\right]$

Heat equation［Doob＇55］

For essentially any domain C in any dimension $d, \mathbf{P}_{x}\left[T_{C}>t\right]$ and $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y\right)$ satisfy heat equations．
Dirichlet eigenvalues problem［e．g．，Chavel＇84］

$$
\left\{\begin{array}{rlrl}
\Delta_{\mathbf{S}^{d-1}} m & =-\lambda m & \text { in } \mathbf{S}^{d-1} \cap C, \\
m & =0 & & \text { in } \partial\left(\mathbf{S}^{d-1} \cap C\right) .
\end{array}\right.
$$

Dimension d : explicit expression for $\mathbf{P}_{\chi}\left[T_{C}>t\right]$

Heat equation [Doob '55]

For essentially any domain C in any dimension $d, \mathbf{P}_{x}\left[T_{C}>t\right]$ and $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y\right)$ satisfy heat equations.
Dirichlet eigenvalues problem [e.g., Chavel '84]

Discrete eigenvalues $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots$, and eigenfunctions $m_{1}, m_{2}, m_{3} \ldots$

Dimension d : explicit expression for $\mathbf{P}_{\chi}\left[T_{C}>t\right]$
Heat equation [Doob '55]
For essentially any domain C in any dimension $d, \mathbf{P}_{x}\left[T_{C}>t\right]$ and $p^{C}(t ; x, y)\left(\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y)\right.$ dy $)$ satisfy heat equations.
Dirichlet eigenvalues problem [e.g., Chavel '84]

$$
\left\{\begin{aligned}
\Delta_{\mathbf{S}^{d-1}} m & =-\lambda m & \text { in } \mathbf{S}^{d-1} \cap C, \\
m & =0 & \text { in } \partial\left(\mathbf{S}^{d-1} \cap C\right) .
\end{aligned}\right.
$$

Discrete eigenvalues $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots$, and eigenfunctions $m_{1}, m_{2}, m_{3} \ldots$

Series expansion [DeBlassie '87, Bañuelos \& Smits '97]

$\mathbf{P}_{x}\left[T_{C}>t\right]=\int_{C} p^{C}(t ; x, y) \mathrm{d} y=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|)$.

Asymptotics of the non-exit probability

Series expansion [DeBlassie '87, Bañuelos \& Smits '97]

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|) \text { (} B_{j} \text { hypergeometric). }
$$

This series expansion is very well suited to asymptotic problems.

Asymptotics of the non-exit probability

Series expansion [DeBlassie '87, Bañuelos \& Smits '97]

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|) \text { (} B_{j} \text { hypergeometric). }
$$

This series expansion is very well suited to asymptotic problems.
Asymptotic result [DeBlassie '87, Bañuelos \& Smits '97]
One has

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\kappa u(x) t^{-p_{1} / 2}(1+o(1))(t \rightarrow \infty)
$$

Asymptotics of the non-exit probability

Series expansion [DeBlassie '87, Bañuelos \& Smits '97]

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|) \text { (} B_{j} \text { hypergeometric). }
$$

This series expansion is very well suited to asymptotic problems.
Asymptotic result [DeBlassie '87, Bañuelos \& Smits '97]
One has

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\kappa u(x) t^{-p_{1} / 2}(1+o(1))(t \rightarrow \infty)
$$

where

- $p_{1}=\sqrt{\lambda_{1}+(d / 2-1)^{2}}-(d / 2-1)$ is related to the first eigenvalue;

Asymptotics of the non-exit probability

Series expansion [DeBlassie '87, Bañuelos \& Smits '97]

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|) \text { (} B_{j} \text { hypergeometric). }
$$

This series expansion is very well suited to asymptotic problems.
Asymptotic result [DeBlassie '87, Bañuelos \& Smits '97]
One has

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\kappa u(x) t^{-p_{1} / 2}(1+o(1))(t \rightarrow \infty)
$$

where

- $p_{1}=\sqrt{\lambda_{1}+(d / 2-1)^{2}}-(d / 2-1)$ is related to the first eigenvalue;
- $u(x)=|x|^{p_{1}} m_{1}(x /|x|)$ is the unique harmonic function for BM in the cone (réduite of the cone);

Asymptotics of the non-exit probability

Series expansion [DeBlassie '87, Bañuelos \& Smits '97]

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\sum_{j=1}^{\infty} B_{j}\left(|x|^{2} / t\right) m_{j}(x /|x|) \text { (} B_{j} \text { hypergeometric). }
$$

This series expansion is very well suited to asymptotic problems.
Asymptotic result [DeBlassie '87, Bañuelos \& Smits '97]
One has

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\kappa u(x) t^{-p_{1} / 2}(1+o(1))(t \rightarrow \infty)
$$

where

- $p_{1}=\sqrt{\lambda_{1}+(d / 2-1)^{2}}-(d / 2-1)$ is related to the first eigenvalue;
- $u(x)=|x|^{p_{1}} m_{1}(x /|x|)$ is the unique harmonic function for BM in the cone (réduite of the cone);
- $\kappa>0$.

Introduction and motivations

Brownian motion without drift in cones

Brownian motion with drift in cones

Random walks without drift in cones

Random walks with drift in cones

Conclusions

Dimension 1: Brownian motion with drift $a \in \mathbf{R}$

Density of Brownian motion with drift

$$
\mathbf{P}_{x}[B(t) \in \mathrm{d} y]=e^{a(y-x)-t a^{2} / 2} \frac{e^{-\frac{(x-y)^{2}}{2 t}}}{\sqrt{2 \pi t}} d y
$$

Dimension 1：Brownian motion with drift $a \in \mathbf{R}$

Density of Brownian motion with drift

$$
\mathbf{P}_{x}[B(t) \in \mathrm{d} y]=e^{a(y-x)-t a^{2} / 2} \frac{e^{-\frac{(x-y)^{2}}{2 t}}}{\sqrt{2 \pi t}} d y
$$

Exact expression of the non－exit probability

$$
\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right]=\int_{0}^{\infty}\left(\mathbf{P}_{x}[B(t) \in \mathrm{d} y]-\mathbf{P}_{x}[B(t) \in-\mathrm{d} y]\right) .
$$

Dimension 1: Brownian motion with drift $a \in \mathbf{R}$

Density of Brownian motion with drift

$$
\mathbf{P}_{x}[B(t) \in \mathrm{d} y]=e^{a(y-x)-t a^{2} / 2} \frac{e^{-\frac{(x-y)^{2}}{2 t}}}{\sqrt{2 \pi t}} \mathrm{~d} y .
$$

Exact expression of the non-exit probability

$$
\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right]=\int_{0}^{\infty}\left(\mathbf{P}_{x}[B(t) \in \mathrm{d} y]-\mathbf{P}_{x}[B(t) \in-\mathrm{d} y]\right) .
$$

Asymptotic behavior of the non-exit probability
For all starting point $x>0$, as $t \rightarrow \infty$,

$$
\mathbf{P}_{x}\left[T_{(0, \infty)}>t\right]=(1+o(1)) \begin{cases}\frac{x e^{-a x} e^{-t a^{2} / 2}}{\sqrt{2 \pi} a^{2} t^{3 / 2}} & \text { if } a<0, \\ \frac{\sqrt{2} x}{\sqrt{\pi t}} & \text { if } a=0, \\ 1-e^{-2 a x} & \text { if } a>0 .\end{cases}
$$

Dimension 2: simple cases

Cones in dimension 2

In dimension 2 , any cone is a rotation of $\left\{\rho e^{i \theta}: \rho>0,0<\theta<\beta\right\}$, for some $\beta \in(0,2 \pi]$.

Dimension 2: simple cases

Cones in dimension 2

In dimension 2, any cone is a rotation of $\left\{\rho e^{i \theta}: \rho>0,0<\theta<\beta\right\}$, for some $\beta \in(0,2 \pi]$.

Half-space $(\beta=\pi)$ with drift $\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$
The upper half-plane is a one-dimensional case.

Dimension 2: simple cases

Cones in dimension 2

In dimension 2, any cone is a rotation of $\left\{\rho e^{i \theta}: \rho>0,0<\theta<\beta\right\}$, for some $\beta \in(0,2 \pi]$.

Half-space $(\beta=\pi)$ with drift $\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$
The upper half-plane is a one-dimensional case.
Quarter plane $\mathbf{R}_{+}^{2}(\beta=\pi / 2)$ with drift $\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$

$$
\begin{aligned}
& \mathbf{P}_{\times}\left[T_{\mathbf{R}_{+}^{2}}>t\right] \\
& \quad=\mathbf{P}_{x_{1}}\left[T_{(0, \infty)}\left(B^{(1)}\right)>t\right] \\
& \quad \times \mathbf{P}_{x_{2}}\left[T_{(0, \infty)}\left(B^{(2)}\right)>t\right] \\
& =\kappa h(x) t^{-\alpha} e^{-\gamma t}(1+o(1))
\end{aligned}
$$

Dimension d : general case of drift $a \in \mathbf{R}^{d}$

Exact expression of the non-exit probability

Using

- the expression of the heat kernel $p^{C}(t ; x, y)$ for the zero drift case,
- Girsanov theorem,
one obtains

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=e^{\langle-a, x\rangle-t|a|^{2} / 2} \int_{C} e^{\langle a, y\rangle} p^{C}(t ; x, y) \mathrm{d} y .
$$

Dimension d : general case of drift $a \in \mathbf{R}^{d}$

Exact expression of the non-exit probability

Using

- the expression of the heat kernel $p^{C}(t ; x, y)$ for the zero drift case,
- Girsanov theorem,
one obtains

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=e^{\langle-a, x\rangle-t|a|^{2} / 2} \int_{C} e^{\langle a, y\rangle} p^{C}(t ; x, y) \mathrm{d} y .
$$

Decomposition of the asymptotics

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\kappa h(x) t^{-\alpha} e^{-\gamma t}(1+o(1))(t \rightarrow \infty) .
$$

Dimension d : general case of drift $a \in \mathbf{R}^{d}$

Exact expression of the non-exit probability

Using

- the expression of the heat kernel $p^{C}(t ; x, y)$ for the zero drift case,
- Girsanov theorem,
one obtains

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=e^{\langle-a, x\rangle-t|a|^{2} / 2} \int_{C} e^{\langle a, y\rangle} p^{C}(t ; x, y) \mathrm{d} y .
$$

Decomposition of the asymptotics

$$
\mathbf{P}_{x}\left[T_{C}>t\right]=\kappa h(x) t^{-\alpha} e^{-\gamma t}(1+o(1))(t \rightarrow \infty) .
$$

Universal exponential decay [Garbit \& R. '13]
Distance between the drift and the cone:

$$
\gamma=\frac{1}{2} d(a, C)^{2}=\frac{1}{2} \min _{y \in}|a-y|^{2} .
$$

Dimension d ：general case of drift $a \in \mathbf{R}^{d}$
Cones and polar cones
－C a cone

Dimension d: general case of drift $a \in \mathbf{R}^{d}$

Cones and polar cones

- C a cone
- Polar cone

$$
C^{\#}=\left\{x \in \mathbf{R}^{d}:\langle x, y\rangle \leq 0, \forall y \in C\right\}
$$

Dimension d: general case of drift $a \in \mathbf{R}^{d}$

Cones and polar cones

- C a cone
- Polar cone
$C^{\#}=\left\{x \in \mathbf{R}^{d}:\langle x, y\rangle \leq 0, \forall y \in C\right\}$

Dimension d : general case of drift $a \in \mathbf{R}^{d}$

Cones and polar cones

- C a cone
- Polar cone

$$
C^{\#}=\left\{x \in \mathbf{R}^{d}:\langle x, y\rangle \leq 0, \forall y \in C\right\}
$$

Six possible cases

- polar interior drift: $a \in\left(C^{\sharp}\right)^{o}$;
- zero drift: $a=0$;
- interior drift: $a \in C$;
- boundary drift: $a \in \partial C \backslash\{0\}$;
- non-polar exterior drift: $a \in \mathbf{R}^{d} \backslash\left(\bar{C} \cup C^{\sharp}\right)$;
- polar boundary drift: $a \in \partial C^{\sharp} \backslash\{0\}$.

Dimension d: general case of drift $a \in \mathbf{R}^{d}$

Main remark [Garbit \& R. '13]

- Universal exponential decay $e^{-\gamma t}$ with $\gamma=\frac{1}{2} d(a, C)^{2}$;

Dimension d：general case of drift $a \in \mathbf{R}^{d}$

Main remark［Garbit \＆R．＇13］

－Universal exponential decay $e^{-\gamma t}$ with $\gamma=\frac{1}{2} d(a, C)^{2}$ ；
－Polynomial correction $t^{-\alpha}$ ：depends on
－position of the drift w．r．t．cone \＆polar cone；
－the local geometry of the cone at the points that minimize the distance to the drift．

Dimension d: general case of drift $a \in \mathbf{R}^{d}$

Main remark [Garbit \& R. '13]

- Universal exponential decay $e^{-\gamma t}$ with $\gamma=\frac{1}{2} d(a, C)^{2}$;
- Polynomial correction $t^{-\alpha}$: depends on
- position of the drift w.r.t. cone \& polar cone;
- the local geometry of the cone at the points that minimize the distance to the drift.
Results in dimension 2 [Garbit \& R. '13]

Introduction and motivations

Brownian motion without drift in cones

Brownian motion with drift in cones

Random walks without drift in cones

Random walks with drift in cones

Conclusions

Framework and different approaches

Random walk in C

- Let $(S(n))_{n \geq 0}$ be a random walk:

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d.

- $\tau_{C}=\inf \{n>0: S(n) \notin C\}$.

Framework and different approaches

Random walk in C

- Let $(S(n))_{n \geq 0}$ be a random walk:

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d.

- $\tau_{C}=\inf \{n>0: S(n) \notin C\}$.

Main objectives

Computing exact and asymptotic expressions of the non-exit probability

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right](n \rightarrow \infty)
$$

Framework and different approaches

Random walk in C

- Let $(S(n))_{n \geq 0}$ be a random walk:

$$
S(n)=x+X(1)+\cdots+X(n)
$$

where the $X(i)$ are i.i.d.

- $\tau_{C}=\inf \{n>0: S(n) \notin C\}$.

Main objectives

Computing exact and asymptotic expressions of the non-exit probability

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right](n \rightarrow \infty) .
$$

Many different approaches

- Analytic approach [Fayolle et al. '99];
- Representation theory [Biane et al. '91];
- Comparison with BM [Shimura '84, Garbit '07, Denisov \& Wachtel '11].

Non-exponential decay of the non-exit probability

Result [Garbit '07]

If $\mathbf{E}[X(i)]=0$ then

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}\left[\tau_{C}>n\right]^{1 / n}=1
$$

Proof: Push the random walk in C.

Non－exponential decay of the non－exit probability

Result［Garbit＇07］

If $\mathbf{E}[X(i)]=0$ then

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}\left[\tau_{C}>n\right]^{1 / n}=1
$$

Proof：Push the random walk in C ．

$$
\mathbf{P}_{0}\left[\tau_{C}>n\right] \geq \mathbf{P}_{0}\left[X_{1}=z, \ldots, X_{\sqrt{n}}=z, \tau_{C}>n\right]
$$

Non-exponential decay of the non-exit probability

Result [Garbit '07]

If $\mathbf{E}[X(i)]=0$ then

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}\left[\tau_{C}>n\right]^{1 / n}=1
$$

Proof: Push the random walk in C.

$$
\begin{aligned}
\mathbf{P}_{0}\left[\tau_{C}>n\right] & \geq \mathbf{P}_{0}\left[X_{1}=z, \ldots, X_{\sqrt{n}}=z, \tau_{C}>n\right] \\
& =\mathbf{P}_{0}\left[X_{1}=z\right]^{\sqrt{n}} \mathbf{P}_{\sqrt{n} z}\left[\tau_{C}>n-\sqrt{n}\right]
\end{aligned}
$$

Non－exponential decay of the non－exit probability
Result［Garbit＇07］
If $\mathbf{E}[X(i)]=0$ then

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}[\tau c>n]^{1 / n}=1 .
$$

Proof：Push the random walk in C ．

$$
\begin{aligned}
\mathbf{P}_{0}\left[\tau_{C}>n\right] & \geq \mathbf{P}_{0}\left[X_{1}=z, \ldots, X_{\sqrt{n}}=z, \tau_{C}>n\right] \\
& =\mathbf{P}_{0}\left[X_{1}=z\right]^{\sqrt{n}} \mathbf{P}_{\sqrt{n z}}\left[\tau_{C}>n-\sqrt{n}\right]
\end{aligned}
$$

Non-exponential decay of the non-exit probability
Result [Garbit '07]
If $\mathbf{E}[X(i)]=0$ then

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}[\tau c>n]^{1 / n}=1 .
$$

Proof: Push the random walk in C.

$$
\begin{aligned}
\mathbf{P}_{0}\left[\tau_{C}>n\right] & \geq \mathbf{P}_{0}\left[X_{1}=z, \ldots, X_{\sqrt{n}}=z, \tau_{C}>n\right] \\
& =\mathbf{P}_{0}\left[X_{1}=z\right]^{\sqrt{n}} \mathbf{P}_{\sqrt{n} z}[\tau C>n-\sqrt{n}] \\
& =\mathbf{P}_{0}\left[X_{1}=z\right]^{\sqrt{n}} \mathbf{P}_{0}\left[\sqrt{n} z+S_{1}, \ldots, \sqrt{n} z+S_{n-\sqrt{n}} \in C\right]
\end{aligned}
$$

Non－exponential decay of the non－exit probability
Result［Garbit＇07］
If $\mathbf{E}[X(i)]=0$ then

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}[\tau c>n]^{1 / n}=1 .
$$

Proof：Push the random walk in C ．

$$
\begin{aligned}
\mathbf{P}_{0}\left[\tau_{C}>n\right] & \geq \mathbf{P}_{0}\left[X_{1}=z, \ldots, X_{\sqrt{n}}=z, \tau_{C}>n\right] \\
& =\mathbf{P}_{0}\left[X_{1}=z\right]^{\sqrt{n}} \mathbf{P}_{\sqrt{n} z}\left[\tau_{C}>n-\sqrt{n}\right] \\
& =\mathbf{P}_{0}\left[X_{1}=z\right]^{\sqrt{n}} \mathbf{P}_{0}\left[\sqrt{n} z+S_{1}, \ldots, \sqrt{n} z+S_{n-\sqrt{n}} \in C\right] \\
& \approx \mathbf{P}_{0}\left[X_{1}=z\right]^{\sqrt{n}} \mathbf{P}_{0}\left[z+B_{t} \in C, \forall t \in[0,1]\right] .
\end{aligned}
$$

More precise asymptotics

Upper and lower bounds [Varopoulos '99]
One has

$$
c_{1} n^{-p_{1}} \leq \mathbf{P}_{x}\left[\tau_{C}>n\right] \leq c_{2} n^{-p_{1}}
$$

with $p_{1}=\sqrt{\lambda_{1}+(d / 2-1)^{2}}-(d / 2-1)$.

More precise asymptotics

Upper and lower bounds [Varopoulos '99]

One has

$$
c_{1} n^{-p_{1}} \leq \mathbf{P}_{x}\left[\tau_{C}>n\right] \leq c_{2} n^{-p_{1}}
$$

with $p_{1}=\sqrt{\lambda_{1}+(d / 2-1)^{2}}-(d / 2-1)$.
Exact asymptotic behavior [Denisov \& Wachtel '11]
One has

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=\kappa V(x) n^{-p_{1}}(1+o(1))(n \rightarrow \infty)
$$

More precise asymptotics

Upper and lower bounds [Varopoulos '99]

One has

$$
c_{1} n^{-p_{1}} \leq \mathbf{P}_{x}\left[\tau_{C}>n\right] \leq c_{2} n^{-p_{1}}
$$

with $p_{1}=\sqrt{\lambda_{1}+(d / 2-1)^{2}}-(d / 2-1)$.
Exact asymptotic behavior [Denisov \& Wachtel '11]
One has

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=\kappa V(x) n^{-p_{1}}(1+o(1))(n \rightarrow \infty)
$$

where $V(x)$ is a discrete harmonic function equivalent to $u(x)$ as $|x| \rightarrow \infty$.

More precise asymptotics

Upper and lower bounds [Varopoulos '99]

One has

$$
c_{1} n^{-p_{1}} \leq \mathbf{P}_{x}\left[\tau_{C}>n\right] \leq c_{2} n^{-p_{1}}
$$

with $p_{1}=\sqrt{\lambda_{1}+(d / 2-1)^{2}}-(d / 2-1)$.
Exact asymptotic behavior [Denisov \& Wachtel '11]
One has

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=\kappa V(x) n^{-p_{1}}(1+o(1))(n \rightarrow \infty)
$$

where $V(x)$ is a discrete harmonic function equivalent to $u(x)$ as $|x| \rightarrow \infty$.
More [Denisov \& Wachtel '11]

- Local limit theorems;
- Application in enumerative combinatorics;
- Convergence of conditioned RW to conditioned BM.

Introduction and motivations

Brownian motion without drift in cones

Brownian motion with drift in cones

Random walks without drift in cones

Random walks with drift in cones

Conclusions

Exponential decay [Garbit \& R. '13]

- $C \subset \mathbf{R}^{d}(d \geq 2)$ is a convex cone, and $-C^{\sharp}$ is the dual cone;
- μ is the common law of the $X(i)$.

Laplace transform

The Laplace transform is $L_{\mu}(x)=\mathbf{E}\left[e^{\langle X(i), x\rangle}\right]$.

Exponential decay［Garbit \＆R．＇13］

－$C \subset \mathbf{R}^{d}(d \geq 2)$ is a convex cone，and $-C^{\#}$ is the dual cone；
－μ is the common law of the $X(i)$ ．

Laplace transform

The Laplace transform is $L_{\mu}(x)=\mathbf{E}\left[e^{\langle X(i), x\rangle}\right]$ ．

Hypotheses

－μ is not included in a linear hyperplane；
－μ is not included in a half－space $u^{-}=\left\{x \in \mathbf{R}^{d}:\langle x, u\rangle \leq 0\right\}$ ， $u \in-C^{\sharp} \backslash\{0\}$ ．

Exponential decay [Garbit \& R. '13]

- $C \subset \mathbf{R}^{d}(d \geq 2)$ is a convex cone, and $-C^{\sharp}$ is the dual cone;
- μ is the common law of the $X(i)$.

Laplace transform

The Laplace transform is $L_{\mu}(x)=\mathbf{E}\left[e^{\langle X(i), x\rangle}\right]$.

Hypotheses

- μ is not included in a linear hyperplane;
- μ is not included in a half-space $u^{-}=\left\{x \in \mathbf{R}^{d}:\langle x, u\rangle \leq 0\right\}$, $u \in-C^{\sharp} \backslash\{0\}$.

Results

$L_{\mu}(x)$ reaches a global minimum on $-C^{\sharp}$ at a unique point x_{0},

Exponential decay [Garbit \& R. '13]

- $C \subset \mathbf{R}^{d}(d \geq 2)$ is a convex cone, and $-C^{\sharp}$ is the dual cone;
- μ is the common law of the $X(i)$.

Laplace transform

The Laplace transform is $L_{\mu}(x)=\mathbf{E}\left[e^{\langle X(i), x)}\right]$.

Hypotheses

- μ is not included in a linear hyperplane;
- μ is not included in a half-space $u^{-}=\left\{x \in \mathbf{R}^{d}:\langle x, u\rangle \leq 0\right\}$, $u \in-C^{\sharp} \backslash\{0\}$.

Results

$L_{\mu}(x)$ reaches a global minimum on $-C^{\sharp}$ at a unique point x_{0}, and

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}\left[\tau_{C}>n\right]^{1 / n}=L_{\mu}\left(x_{0}\right)
$$

(Starting point sufficiently far away from the origin.)

Exponential decay [Garbit \& R. '13]

- $C \subset \mathbf{R}^{d}(d \geq 2)$ is a convex cone, and $-C^{\sharp}$ is the dual cone;
- μ is the common law of the $X(i)$.

Laplace transform

The Laplace transform is $L_{\mu}(x)=\mathbf{E}\left[e^{\langle X(i), x)}\right]$.

Hypotheses

- μ is not included in a linear hyperplane;
- μ is not included in a half-space $u^{-}=\left\{x \in \mathbf{R}^{d}:\langle x, u\rangle \leq 0\right\}$, $u \in-C^{\sharp} \backslash\{0\}$.

Results

$L_{\mu}(x)$ reaches a global minimum on $-C^{\sharp}$ at a unique point x_{0}, and

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x}\left[\tau_{C}>n\right]^{1 / n}=L_{\mu}\left(x_{0}\right)
$$

(Starting point sufficiently far away from the origin.)

Walks in half-spaces

The exponential growth depends on the starting point.

Some ideas of proof

Exponential change of measure (Girsanov or Cramer)

$$
\mathbf{P}[X(i)=s]=\mu(s) \quad \rightarrow \quad \mathbf{P}^{z}[X(i)=s]=\mu(s) \frac{e^{\langle s, z\rangle}}{L_{\mu}(z)}
$$

\triangleright Same measures if $z=0$

Some ideas of proof

Exponential change of measure (Girsanov or Cramer)

$$
\mathbf{P}[X(i)=s]=\mu(s) \quad \rightarrow \quad \mathbf{P}^{z}[X(i)=s]=\mu(s) \frac{e^{\langle s, z\rangle}}{L_{\mu}(z)}
$$

\triangleright Same measures if $z=0$
\triangleright One has

$$
\begin{array}{rlr}
\mathbf{P}_{y}\left[\tau_{C}>n\right] & =L_{\mu}(z)^{n} e^{\langle z, y\rangle} \mathbf{E}_{y}^{z}\left[\tau_{C}>n, e^{-\langle z, S(n)\rangle}\right] \quad(\forall z) \\
& \leq L_{\mu}(z)^{n} e^{\langle z, y\rangle} \quad(\forall z:\langle z, S(n)\rangle \geq 0)
\end{array}
$$

Some ideas of proof

Exponential change of measure (Girsanov or Cramer)

$$
\mathbf{P}[X(i)=s]=\mu(s) \quad \rightarrow \quad \mathbf{P}^{z}[X(i)=s]=\mu(s) \frac{e^{\langle s, z\rangle}}{L_{\mu}(z)}
$$

\triangleright Same measures if $z=0$
\triangleright One has

$$
\begin{aligned}
& \mathbf{P}_{y}\left[\tau_{C}>n\right]=L_{\mu}(z)^{n} e^{\langle z, y\rangle} \mathbf{E}_{y}^{z}\left[\tau_{C}>n, e^{-\langle z, S(n)\rangle}\right] \quad(\forall z) \\
& \leq L_{\mu}(z)^{n} e^{\langle z, y\rangle} \quad(\forall z:\langle z, S(n)\rangle \geq 0)
\end{aligned}
$$

Upper bound

$$
\limsup _{n \rightarrow \infty} \mathbf{P}_{y}\left[\tau_{C}>n\right]^{1 / n} \leq \min _{z \in-C^{\#}} L_{\mu}(z)
$$

Some ideas of proof

Exponential change of measure (Girsanov or Cramer)

$$
\mathbf{P}[X(i)=s]=\mu(s) \quad \rightarrow \quad \mathbf{P}^{z}[X(i)=s]=\mu(s) \frac{e^{(s, z)}}{L_{\mu}(z)}
$$

\triangleright Same measures if $z=0$
\triangleright One has

$$
\begin{aligned}
& \mathbf{P}_{y}\left[\tau_{C}>n\right]=L_{\mu}(z)^{n} e^{\langle z, y\rangle} \mathbf{E}_{y}^{z}\left[\tau_{C}>n, e^{-\langle z, S(n)\rangle}\right] \quad(\forall z) \\
& \leq L_{\mu}(z)^{n} e^{\langle z, y\rangle} \quad(\forall z:\langle z, S(n)\rangle \geq 0)
\end{aligned}
$$

Upper bound

$$
\limsup _{n \rightarrow \infty} \mathbf{P}_{y}\left[\tau_{C}>n\right]^{1 / n} \leq \min _{z \in-C^{\#}} L_{\mu}(z) .
$$

Lower bound
More complicated: locate the minimum of $L_{\mu}(z)$ on the dual cone.

Summing local limit theorems

Precise asymptotics in a specific case [Duraj '13]

There is the identity:

$$
\mathbf{P}_{x}\left[S(n)=y, \tau_{C}>n\right]=L_{\mu}(z)^{n} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

Summing local limit theorems

Precise asymptotics in a specific case［Duraj＇13］

There is the identity：

$$
\mathbf{P}_{x}\left[S(n)=y, \tau_{C}>n\right]=L_{\mu}(z)^{n} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right]
$$

－Summing gives

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=L_{\mu}(z)^{n} \sum_{y \in C} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

Summing local limit theorems

Precise asymptotics in a specific case [Duraj '13]

There is the identity:

$$
\mathbf{P}_{x}\left[S(n)=y, \tau_{C}>n\right]=L_{\mu}(z)^{n} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

- Summing gives

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=L_{\mu}(z)^{n} \sum_{y \in C} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

- If P^{z} is centered (for some particular z) then the local limit theorems of Denisov \& Wachtel hold;

Summing local limit theorems

Precise asymptotics in a specific case [Duraj '13]

There is the identity:

$$
\mathbf{P}_{x}\left[S(n)=y, \tau_{C}>n\right]=L_{\mu}(z)^{n} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

- Summing gives

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=L_{\mu}(z)^{n} \sum_{y \in C} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

- If P^{z} is centered (for some particular z) then the local limit theorems of Denisov \& Wachtel hold;
- Restriction: one can interchange sums and equivalent terms only if z belongs to the interior of $-C^{\sharp}$.

Summing local limit theorems

Precise asymptotics in a specific case [Duraj '13]

There is the identity:

$$
\mathbf{P}_{x}\left[S(n)=y, \tau_{C}>n\right]=L_{\mu}(z)^{n} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

- Summing gives

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=L_{\mu}(z)^{n} \sum_{y \in C} e^{\langle z, x-y\rangle} \mathbf{P}_{x}^{z}\left[S(n)=y, \tau_{C}>n\right] .
$$

- If P^{z} is centered (for some particular z) then the local limit theorems of Denisov \& Wachtel hold;
- Restriction: one can interchange sums and equivalent terms only if z belongs to the interior of $-C^{\sharp}$.

Results [Duraj '13]

$$
\mathbf{P}_{x}\left[\tau_{C}>n\right]=\kappa L_{\mu}(z)^{n} n^{-p_{1}-d / 2} U(x)(1+o(1))(n \rightarrow \infty)
$$

Introduction and motivations

Brownian motion without drift in cones

Brownian motion with drift in cones

Random walks without drift in cones

Random walks with drift in cones

Conclusions

Open questions

\triangleright Exact asymptotics for any random walk

Open questions

\triangleright Exact asymptotics for any random walk
\triangleright Combinatorics of walks with big jumps

Open questions

\triangleright Exact asymptotics for any random walk
\triangleright Combinatorics of walks with big jumps
\triangleright Combinatorics of walks in higher dimension

