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In this talk we discuss one dimensional Brownain motion with zero drift
(Bs)s≥0 and local time at zero defined as

Lt = lim
ε→0

1
2ε

∫ t

0
1{|Bs|≤ε}ds.

We know that Lt is a non-decreasing stochastic process which
increases only on {s ≥ 0 : Bs = 0}.
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We are interested in models in which a deterministic, continuous and
increasing function f : [0,∞) 7→ (0,∞) restricts the rate of return to
zero Lt , i.e. we shall investigate the conditional measures

Pt (.) = P
(
.
∣∣Ls ≤ f (s), 0 ≤ s ≤ t

)
.

We show for a class of functions f that the Brownian motion with
restricted local time exists and describe its properties, i.e. show that

lim
t→∞

Pt (.) = Q (.)

and discuss Q.
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Example: When f (t) ≡ 0 then we have that Q is the law of the three
dimensional Bessel process started from 0. This corresponds to the
extreme case when the Brownian motion is not allowed to return to
zero.
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Previous work: This problem is introduced and studied by I.
Benjamini and N. Berestycki. Their contributions are the following:

1 Always (Pt )t≥0 is a tight sequence of measures
2 If

I(f ) :=

∫ ∞
0

f (s)
ds

s
3
2

<∞

then every possible limit Q of Pt is the law of a transient process
namely

Q
(

lim
t→∞
|Xt | =∞

)
= 1.
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They proposed the following open problems:
1 If I(f ) <∞ then is it true that Pt → Q and can we explicitly

describe Q?
2 If I(f ) =∞ then is it true that Pt → Q? Is the limiting process

recurrent to zero ?
3 If I(f ) =∞ can we describe the descreasing to zero functions

w(t) such that
lim

t→∞
Q (Lt ≤ w(t)f (t)) = 1.

D = {w : limt→∞Q (Lt ≤ w(t)f (t)) = 1} is called the entropic
repulsion envelop. Entropic repulsion is the phenomenon
whence the easiest way for a process to satisfy an imposed
condition is to satisfy even more stringent condition.
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The starting point of our study is the following immediate observation

Ot = {τs ≥ g(s), s ≤ t} = {Ls ≤ f (s), s ≤ g(t)},

where τ = L−1 is the right inverse of L and g = f−1.

We know that (τt )t≥0 is a stable subordinator (increasing Lévy
process) with index 1/2, namely

E
[
e−λτt

]
= e−tλ

1
2 , λ > 0.

Also τt =
∑

s≤t ∆τs. The jumps ∆τ are the length of the excursions
away from zero.
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1 It suffices to study the limit

lim
t→∞

P
(
τ ∈ .

∣∣Ot
)

= Q (τ ∈ .)

and if the limit process τ exists we then conditionally on a path
realization of τ we splice Brownian excursions between the end
points of each jump of τ .

2 The construction above yields the limiting process.
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Some ideas for the proof:
1 Using the Markov property we have that

P (τa ∈ dx |Ot ) =
P (τa ∈ dx ,Ot )

P (Ot )
=

P (τa ∈ dx ,Oa ∩ Ot )

P (Ot )
=

P
(
Ot

∣∣∣τa = x ,Oa

)
P (τa ∈ dx ,Oa)

P (Ot )

P
(
Ox ,a

t−a
)

P (Ot )
P (τa ∈ dx ,Oa) .

2 Above gx ,a(s) = g(s + a)− x and

Ox ,a
t = {τs > gx ,a(s), s ≤ t}.

3 However, to prove recurrence, we need uniform asymptotic of
P
(
Ox ,a

t−a
)
, so as to apply DCT in

1 = P (τa > g(a)|Ot ) =

∫ ∞
g(a)

P
(
Ox ,a

t−a
)

P (Ot )
P (τa ∈ dx ,Oa)
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Intuition behind the asymptotic of Ot :
Since τs is non-decreasing a jump ∆ exceeding g(t) at time T < t
will ensure that Ot = {τv > g(v), v ≤ t} = O′T ∩ {T ≤ t}.
O′s = {τ ′v > g(v), v ≤ s} and τ ′ is obtained from τ by truncating all
jumps larger than g(t).
Then the total probability formula gives

P (Ot ) =

∫ t

0
P (Os, T ∈ ds) + P (Ot , T > t) =

2K√
g(t)

∫ t

0
P
(
O′s
)

e
− 2Ks√

g(t) ds + P (Ot , T > t)

Now
P (Os) = P (Os,T < s) + P (Os,T > s) =

P (Os,T < s) + P
(
O′s
)

e
− 2Ks√

g(t)
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Feeding back we get

P (Ot ) =
2K√
g(t)

∫ t

0
P (Os) ds−

2K√
g(t)

∫ t

0
P (Os, T < s) ds + P (Ot , T > t) =

2K√
g(t)

∫ t

0
P (Os) ds−

4K 2

g(t)

∫ t

0

∫ s

0
P
(
O′v
)

e
− 2Kv√

g(t) dvds + P (Ot , T > t)

Therefore
Φ′(t) =

2K√
g(t)

Φ(t) + Rg(t)Φ(t)

The last identity is valid regardless of the subordinator τ provided
it has jumps larger than g(t).
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Φ′(t) =
2K√
g(t)

Φ(t) + Rg(t)Φ(t)

The solution of the simple ODE is

Φ(t) = Φ(t0)e
∫ t

t0
2K√
g(s)

ds+
∫ t

t0
Rg(s)ds

When
∫∞

t0
Rg(s)ds <∞ the asymptotic is entirely determined by∫ t

t0
2K√
g(s)

ds. When τ is stable with index α = 1/2 this is the case

when lim inf
t→∞

g(t)/(t2 ln
8
5+ε(t)) =∞.

When
∫∞

t0
2K√
g(s)

ds <∞ we have our criterion I(f ) <∞ and

Φ(∞) =
∫∞

0 P (Os) ds <∞.
However,

∫∞
t0

Rg(s)ds <∞ is not needed to obtain asympotic
results for Φ(t),Φ′(t) = P (Ot ).
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Φ(t) = Φ(t0)e
∫ t

t0
2K√
g(s)

ds+
∫ t

t0
Rg(s)ds

If
∫∞

t0
Rgi (s)ds <∞, i = 1,2. Then the asymptotic of

P (τs > gi(s), s ≤ t) are directly comparable and tightly related if
furthermore ∫ ∞

t0

∣∣∣∣∣ 1√
g1(s)

− 1√
g2(s)

∣∣∣∣∣ds <∞.

This is how we prove uniformity in the asymptotics of
P (τs > g(s + a)− x , s ≤ t) = P (τs > gx ,a(s), s ≤ t)
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Under
I(f ) =

∫ ∞
1

f (s)

s
3
2

ds <∞

we have that the limiting measure corresponds to the process:
1 Sample from the random variable X with density Φ−1(∞)P (Os) ds
2 Conditional on X = s run a Brownian motion with the restriction
{L(v) ≤ f (v), v ≤ s}.

3 At the moment s choose with equal probability the value Y = ±1.
4 We choose independent Bessel process B(3) and from time s we

attach YB(3) (the attachment of this process plays the role of an
excursion away of zero of infinite length at time X ).
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When I(f ) =∞ and with g = f−1. Then when
lim inft→∞ g(t)/t2 ln

8
5+ε(t) =∞ we have that:

1 Pt → Q
2 Under Q the process is recurrent at zero. In this case Φ(∞) =∞

and infinite excursion away from zero is not attached
3 For a function w(t) ↓ 0 we have that

lim
t→∞

Q (L(t) ≤ f (t)w(t)) = 0 ⇐⇒ lim
t→∞

∫ f
(

g(t)
w(t)

)
t

1√
g(s)

ds = 0.
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Thank you!
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