Real roots of random polynomials and zero crossing properties of diffusion equation

Grégory Schehr

Laboratoire de Physique Théorique et Modèles Statistiques Orsay, Université Paris XI
G. S., S. N. Majumdar, Phys. Rev. Lett. 99, 060603 (2007), arXiv:0705.2648,
J. Stat. Phys. 132, 235-273 (2008), arXiv:0803.4396

Introduction

Persistence probability $p_{0}(t)$

- $X(t) \equiv$ stochastic random variable evolving in time $t,\langle X(t)\rangle=0$
- Persistence probability

$$
p_{0}(t) \equiv \text { Proba. that } X \text { has not changed sign up to time } t
$$

Introduction

Persistence probability $p_{0}(t)$

- $X(t) \equiv$ stochastic random variable evolving in time $t,\langle X(t)\rangle=0$
- Persistence probability
$p_{0}(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems

- phase ordering kinetics

Introduction: Phase ordering kinetics

- Glauber dynamics of $2 d$ Ising model at $T=0, H_{\text {Ising }}=-J \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}$

$$
t_{1}=0
$$

Introduction: Phase ordering kinetics

- Glauber dynamics of $2 d$ Ising model at $T=0, H_{\text {Ising }}=-J \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}$

$$
t_{1}=0
$$

$t_{2}=10^{2}$

Introduction: Phase ordering kinetics

- Glauber dynamics of $2 d$ Ising model at $T=0, H_{\text {Ising }}=-J \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}$

$t_{1}=0$

$$
t_{3}=10^{4}
$$

Introduction: Phase ordering kinetics

- Glauber dynamics of $2 d$ Ising model at $T=0, H_{\text {Ising }}=-J \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}$

$$
t_{1}=0
$$

$t_{3}=10^{4}$

$$
t_{2}=10^{2}
$$

$$
t_{4}=10^{6}
$$

Introduction

Persistence probability $p_{0}(t)$

- $X(t) \equiv$ stochastic random variable evolving in time $t,\langle X(t)\rangle=0$
- Persistence probability $p_{0}(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems

- phase ordering kinetics ('94-)

Introduction

Persistence probability $p_{0}(t)$

- $X(t) \equiv$ stochastic random variable evolving in time $t,\langle X(t)\rangle=0$
- Persistence probability $p_{0}(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems

- phase ordering kinetics ('94-)
- diffusion field ('96-)

Introduction

Persistence probability $p_{0}(t)$

- $X(t) \equiv$ stochastic random variable evolving in time $t,\langle X(t)\rangle=0$
- Persistence probability $p_{0}(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems

- phase ordering kinetics ('94-)
- diffusion field ('96-)
- height of a fluctuating interface ('97-)
- ...

Introduction

Persistence probability $p_{0}(t)$

- $X(t) \equiv$ stochastic random variable evolving in time $t,\langle X(t)\rangle=0$
- Persistence probability $p_{0}(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems

- phase ordering kinetics ('94-)
- diffusion field ('96-)
- height of a fluctuating interface ('97-)
$p_{0}(t) \propto t^{-\theta_{p}}$
A. J. Bray, S. N. Majumdar, G. S., Adv. Phys. 62, pp 225-361 (2013), arXiv:1304.1195
"Persistence and First-Passage Properties in Non-equilibrium Systems"

Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

- Diffusion equation (or heat equation) is universal and ubiquitous in nature
- Ordering dynamics for $O(N)$-symmetric spin models in the limit $N \rightarrow \infty$
- see A. Dembo, S. Mukherjee 12

Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

Single length scale $\ell(t) \propto t^{1 / 2}$

- Diffusion equation (or heat equation) is universal and ubiquitous in nature
- Ordering dynamics for $O(N)$-symmetric spin models in the limit $N \rightarrow \infty$
- see A. Dembo, S. Mukherjee 12

Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

$$
\begin{array}{rc}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) & \text { Single length scale } \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) & \ell(t) \propto t^{1 / 2}
\end{array}
$$

Persistence $p_{0}(t, L)$ for a d-dim. system of linear size L
$p_{0}(t, L) \equiv$ Proba. that $\phi(x, t)$ has not changed sign up to t
S. N. Majumdar, C. Sire, A. J. Bray and S. J. Cornell, PRL 96
B. Derrida, V. Hakim and R. Zeitak, PRL 96

Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

Single length scale $\ell(t) \propto t^{1 / 2}$

Persistence $p_{0}(t, L)$ for a d-dim. system of linear size L
$p_{0}(t, L) \equiv$ Proba. that $\phi(x, t)$ has not changed sign up to t

Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

Single length scale $\ell(t) \propto t^{1 / 2}$

Persistence $p_{0}(t, L)$ for a d-dim. system of linear size L
$p_{0}(t, L) \equiv$ Proba. that $\phi(x, t)$ has not changed sign up to t

$$
\begin{aligned}
& p_{0}(t, L) \propto L^{-2 \theta(d)} h\left(t / L^{2}\right) \\
& \theta(1)=0.1207 \\
& \theta(2)=0.1875, \quad \text { Numerics }
\end{aligned}
$$

Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

STATISTICAL MECHANICS

Persistence Pays Off in Defining History of Diffusion

A. Watson, Science 96

Persistence in 1d diffusion : NMR experiments on Xe

Measurement of Persistence in 1D Diffusion

Glenn P. Wong, Ross W. Mair, and Ronald L. Walsworth
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138
David G. Cory
Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 September 2000)

$$
\begin{aligned}
p_{0}(t, L) & \propto t^{-\theta_{\exp }(1)} \\
\theta_{\exp }(1) & \simeq 0.12
\end{aligned}
$$

Motivations : Real random polynomials

Real Kac's polynomials

$$
K_{n}(x)=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

$a_{i} \equiv$ Gaussian random variables,

$$
\left\langle a_{i}\right\rangle=0,\left\langle a_{i} a_{j}\right\rangle=\delta_{i j}
$$

Motivations : Real random polynomials

Real Kac's polynomials

$$
K_{n}(x)=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

$a_{i} \equiv$ Gaussian random variables,

$$
\left\langle\mathbf{a}_{i}\right\rangle=0,\left\langle\mathbf{a}_{i} \mathbf{a}_{j}\right\rangle=\delta_{i j}
$$

Complex roots

Motivations : Real random polynomials

Real Kac's polynomials

$$
K_{n}(x)=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

$a_{i} \equiv$ Gaussian random variables,

$$
\left\langle a_{i}\right\rangle=0,\left\langle a_{i} a_{j}\right\rangle=\delta_{i j}
$$

Real roots
$\mathcal{N}_{n} \equiv$ mean number of roots on the real axis

$$
\mathcal{N}_{n} \sim \frac{2}{\pi} \log n
$$

Motivations :

of Kac's polynomials

JOURNAL OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 15, Number 4, Pages 857-892
S 0894-0347(02)00386-7
Article electronically published on May 16, 2002

RANDOM POLYNOMIALS HAVING FEW OR NO REAL ZEROS

AMIR DEMBO, BJORN POONEN, QI-MAN SHAO, AND OFER ZEITOUNI
$q_{0}(n) \equiv$ Probability that $K_{n}(x)$ has no real root in $[0,1]$

$$
q_{0}(n) \propto n^{-\gamma}
$$

with $\quad \gamma=0.19(1) \quad$ (Numerics)

Purpose : a link between random polynomials \& diffusion equation

Generalized Kac's polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

$a_{i} \equiv$ Gaussian random variables,

$$
\left\langle a_{i}\right\rangle=0,\left\langle a_{i} a_{j}\right\rangle=\delta_{i j}
$$

Proba. of no real root

$$
q_{0}(n) \propto n^{-b(d)}
$$

Persistence of diffusion

$$
p_{0}(t, L) \propto L^{-2 \theta(d)}
$$

Purpose : a link between random polynomials \& diffusion equation

Generalized Kac's polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

$a_{i} \equiv$ Gaussian random variables,

$$
\left\langle a_{i}\right\rangle=0,\left\langle a_{i} a_{j}\right\rangle=\delta_{i j}
$$

Proba. of no real root
Persistence of diffusion
$q_{0}(n) \propto n^{-b(d)} \quad p_{0}(t, L) \propto L^{-2 \theta(d)}$

$$
b(d)=\theta(d)
$$

G. S., S. N. Majumdar 07

Purpose : a link between random polynomials \& diffusion equation

Generalized Kac's polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

$a_{i} \equiv$ Gaussian random variables,

$$
\left\langle a_{i}\right\rangle=0,\left\langle a_{i} a_{j}\right\rangle=\delta_{i j}
$$

Proba. of no real root

Persistence of diffusion

$$
q_{0}(n) \propto n^{-b(d)}
$$

$$
p_{0}(t, L) \propto L^{-2 \theta(d)}
$$

$$
b(d)=\theta(d)
$$

G. S., S. N. Majumdar 07
A. Dembo, S. Mukherjee 12

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Persistence of diffusion equation

$$
\begin{aligned}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) & \phi(x, t)=\int_{|y|<L} d^{d} y G(x-y, t) \phi(y, 0) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) & G(x, t)=(4 \pi t)^{-\frac{d}{2}} \exp \left(-x^{2} / 4 t\right)
\end{aligned}
$$

Persistence of diffusion equation

$$
\begin{aligned}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) & \phi(x, t)=\int_{|y|<L} d^{d} y G(x-y, t) \phi(y, 0) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) & G(x, t)=(4 \pi t)^{-\frac{d}{2}} \exp \left(-x^{2} / 4 t\right)
\end{aligned}
$$

Mapping of $\phi(x, t)$ to a Gaussian stationary process

(1) Normalized process $X(t)=\frac{\phi(X, t)}{\left\langle\phi(x, t)^{2}\right\rangle^{1 / 2}}$

$$
\left\langle X(t) X\left(t^{\prime}\right)\right\rangle \sim \begin{cases}\left(4 \frac{t^{\prime}}{\left(t+t^{\prime}\right)^{2}}\right)^{\frac{d}{4}}, & t, t^{\prime} \ll L^{2} \\ 1, & t, t^{\prime} \gg L^{2}\end{cases}
$$

(2) New time variable $T=\log t$, for $t \ll L^{2}$

$$
\left\langle X(T) X\left(T^{\prime}\right)\right\rangle=\left[\cosh \left(\left(T-T^{\prime}\right) / 2\right)\right]^{-d / 2}
$$

Persistence for a Gaussian stationary process (GSP)

- $X(T)$ is a GSP with correlations

$$
\begin{aligned}
\left\langle X(T) X\left(T^{\prime}\right)\right\rangle & =a\left(T-T^{\prime}\right) \\
a(T) & =(\cosh (T / 2))^{-d / 2}
\end{aligned}
$$

- Persistence probability $\mathcal{P}_{0}(T) \quad$ (by Slepian's lemma)

For $\quad T \gg 1 \quad a(T) \propto \exp \left(-\frac{d}{2} T\right) \Rightarrow \mathcal{P}_{0}(T) \propto \exp (-\theta(d) T)$

- Reverting back to $t=\exp (T)$

$$
p_{0}(t, L) \sim t^{-\theta(d)} \quad 1 \ll t \ll L^{2}
$$

Persistence of diffusion equation

- Normalized process $X(t)=\frac{\phi(x, t)}{\left\langle\phi(x, t)^{2}\right)^{1 / 2}}$

$$
\left\langle X(t) X\left(t^{\prime}\right)\right\rangle \sim \begin{cases}\left(4 \frac{t^{\prime}}{\left(t+t^{\prime}\right)^{2}}\right)^{\frac{d}{4}}, & t, t^{\prime} \ll L^{2} \\ 1, & t, t^{\prime} \gg L^{2}\end{cases}
$$

Persistence of diffusion equation

- Normalized process $X(t)=\frac{\phi(x, t)}{\left\langle\phi(x, t)^{2}\right\rangle^{1 / 2}}$

$$
\left\langle X(t) X\left(t^{\prime}\right)\right\rangle \sim \begin{cases}\left(4 \frac{t t^{\prime}}{\left(t+t^{\prime}\right)^{2}}\right)^{\frac{d}{4}}, & t, t^{\prime} \ll L^{2} \\ 1, & t, t^{\prime} \gg L^{2}\end{cases}
$$

$$
p_{0}(t, L) \propto L^{-2 \theta(d)} h\left(t / L^{2}\right)
$$

$$
h(u) \sim\left\{\begin{array}{l}
u \sim u^{-\theta(d)} \quad, \quad u \ll 1 \\
u \sim c^{\text {st }}, \quad u \gg 1
\end{array}\right.
$$

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Real roots of generalized Kac's polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

Averaged density of real roots for $n \rightarrow \infty$

Real roots of generalized Kac's polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

Real roots of generalized Kac's polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

Mean number of real roots in $[0,1]$: Kac-Rice formula

$$
\left\langle N_{n}[0,1]\right\rangle=\int_{0}^{1} \rho_{n}(x) d x \sim \frac{1}{2 \pi} \sqrt{\frac{d}{2}} \log n
$$

Probability of no real root for $K_{n}(x)$

Dembo et al. '02
Statistical independence of $K_{n}(x)$ in the 4 sub-intervals
\Longrightarrow Focus on the interval $[0,1]$

$P_{0}(x, n) \equiv$ Proba. that $K_{n}(x)$ has no real root in $[0, x]$

Probability of no real root for $K_{n}(x)$

- Two-point correlator

$$
C_{n}(x, y)=\left\langle K_{n}(x) K_{n}(y)\right\rangle=\sum_{i=0}^{n-1} i^{(d-2) / 2}(x y)^{i}
$$

- Normalization

$$
\mathcal{C}_{n}(x, y)=\frac{C_{n}(x, y)}{\left(C_{n}(x, x)\right)^{\frac{1}{2}}\left(C_{n}(y, y)\right)^{\frac{1}{2}}}
$$

- Change of variable

$$
x=1-\frac{1}{t} \quad, \quad t \gg 1
$$

Probability of no real root for $K_{n}(x)$

Normalized correlator in the scaling limit

- Scaling limit

$$
t \gg 1 \quad, \quad n \gg 1 \quad \text { keeping } \quad \tilde{t}=\frac{t}{n} \quad \text { fixed }
$$

- $\mathcal{C}_{n}\left(t, t^{\prime}\right) \rightarrow \mathcal{C}\left(\tilde{t}, \tilde{t}^{\prime}\right)$ with the asymptotic behaviors

$$
\mathcal{C}\left(\tilde{t}, \tilde{t^{\prime}}\right) \sim \begin{cases}\left(4 \frac{\tilde{t} \tilde{t}^{\prime}}{\left(\tilde{t}+\tilde{t}^{\prime}\right)^{2}}\right)^{\frac{d}{4}}, & \tilde{t}, \tilde{t}^{\prime} \ll 1 \\ 1, & \tilde{t}, \tilde{t}^{\prime} \gg 1\end{cases}
$$

Persistence of diffusion equation (reminder)

$$
\begin{array}{rr}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) & \phi(x, t)=\int d^{d} y G(x-y) \phi(y, 0) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right) & G(x, t)=(4 \pi t)^{-\frac{d}{2}} \exp \left(-x^{2} / 4 t\right)
\end{array}
$$

Mapping of $\phi(x, t)$ to a Gaussian stationary process

(1) Normalized process $X(t)=\frac{\phi(x, t)}{\left\langle\phi(x, t)^{2}\right\rangle^{1 / 2}}$

$$
\left\langle X(t) X\left(t^{\prime}\right)\right\rangle \sim \begin{cases}\left(4 \frac{t t^{\prime}}{\left(t+t^{\prime}\right)^{2}}\right)^{\frac{d}{4}}, & t, t^{\prime} \ll L^{2} \\ 1, & t, t^{\prime} \gg L^{2}\end{cases}
$$

(2) Persistence probability $p_{0}(t, L)$

$$
p_{0}(t, L) \propto L^{-2 \theta(d)} h\left(t / L^{2}\right)
$$

Probability of no real root for $K_{n}(x)$

$$
\mathcal{C}\left(\tilde{t}, \tilde{t^{\prime}}\right) \sim \begin{cases}\left(4 \frac{\tilde{t t^{\prime}}}{\left(\tilde{t}+\tilde{t}^{\prime}\right)^{2}}\right)^{\frac{d}{4}}, & \tilde{t}, \tilde{t}^{\prime} \ll 1 \\ 1, & \tilde{t}, \tilde{t}^{\prime} \gg 1\end{cases}
$$

$P_{0}(x, n) \equiv$ Proba. that $K_{n}(x)$ has no real root in $[0, x]$

Scaling form for $P_{0}(x, n)$

$$
P_{0}(x, n) \propto n^{-\theta(d)} \tilde{h}(n(1-x))
$$

$$
\tilde{h}(u) \sim \begin{cases}c^{s t}, & u \ll 1 \\ u^{\theta(d)}, & u \gg 1\end{cases}
$$

Probability of no real root for $K_{n}(x)$

Scaling form for $P_{0}(x, n)$

$$
P_{0}(x, n) \propto n^{-\theta(d)} \tilde{h}(n(1-x))
$$

$$
\tilde{h}(u) \sim \begin{cases}c^{s t}, & u \ll 1 \\ u^{\theta(d)}, & u \gg 1\end{cases}
$$

$q_{0}(n) \equiv$ Probability that $K_{n}(x)$ has no real root in $[0,1]$

$$
q_{0}(n)=P(1, n) \sim n^{-\theta(d)}
$$

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Numerical check of the scaling form

Numerical computation of $P_{0}(x, n)$ for $d=2$

Numerical check of the scaling form

Numerical computation of $P_{0}(x, n)$ for $d=2$

$$
P_{0}(x, n) \propto n^{-\theta(d)} \tilde{h}(n(1-x))
$$

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Conclusion

- A link between diffusion equation and random polynomials

Proba. of no real root
$q_{0}(n) \propto n^{-b(d)}$

Persistence of diffusion

$$
p_{0}(t, L) \propto L^{-2 \theta(d)}
$$

$$
b(d)=\theta(d)
$$

(1) Universality see A. Dembo, S. Mukherjee 12
(2) Towards exact results for $\theta(d), 1 /(4 \sqrt{3}) \leq \theta(2) \leq 1 / 4$
G. Molchan 12 W. Li, Q. M. Shao 02
see also D. Zaporozhets 06

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Generalization to k zero crossings

- Diffusion equation

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

$p_{k}(t, L) \equiv$ Proba. that $\phi(x, t)$ crosses zero k times up to t

- Real polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

$q_{k}(n) \equiv$ Proba. that $K_{n}(x)$ has exactly k real roots

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Mean field approximation for diffusion equation

- For $t \ll L^{2}, p_{k}(t, L)$ is given by $\mathcal{P}_{k}(T), T=\log t$

$$
\mathcal{P}_{k}(T) \equiv \text { Proba. that } X(T) \text { crosses zero } k \text { times up to } T
$$

- $\left\langle X(T) X\left(T^{\prime}\right)\right\rangle=\left(\cosh \left(T-T^{\prime}\right)\right)^{-d / 2}=1-\frac{d}{16} T^{2}+o\left(T^{2}\right)$

$$
\begin{aligned}
\langle\mathcal{N}(T)\rangle & \equiv \text { Mean number of zero crossings in }[0, T] \\
& =\rho T \quad \rho=\frac{1}{2 \pi} \sqrt{\frac{d}{2}}
\end{aligned}
$$

- Assuming that the zeros of $X(T)$ are independent

$$
\mathcal{P}_{k}(T)=\frac{(\rho T)^{k}}{k!} e^{-\rho T}
$$

Mean field approximation for diffusion equation

- For $t \ll L^{2}, p_{k}(t, L)$ is given by $\mathcal{P}_{k}(T), T=\log t$

$$
\mathcal{P}_{k}(T) \equiv \text { Proba. that } X(T) \text { crosses zero } k \text { times up to } T
$$

- Assuming that the zeros of $X(T)$ are independent

$$
\mathcal{P}_{k}(T)=\frac{(\rho T)^{k}}{k!} e^{-\rho T}
$$

- For $k \gg 1, T \gg 1, k / \rho T$ fixed

$$
\log \mathcal{P}_{k}(T) \sim-T \varphi\left(\frac{k}{\rho T}\right) \quad, \quad \varphi(x)=\rho(x \log x-x+1)
$$

Scaling form for a smooth GSP

$X(T)$ is a GSP with $\left\langle X(T) X\left(T^{\prime}\right)=\left[\operatorname{sech}\left(\left(T-T^{\prime}\right) / 2\right)\right]^{d / 2}\right.$

$\mathcal{P}_{k}(T) \equiv$ Proba. that $X(T)$ crosses 0 exactly k times up to T

$$
\log \mathcal{P}_{k}(T) \sim-T \varphi\left(\frac{k}{\rho T}\right)
$$

$\varphi(x)$ is a large deviation function

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

A more refined analysis

- Generating function

S.N. Majumdar, A.J. Bray, PRL'98

$$
\hat{\mathcal{P}}(z, T)=\sum_{k=0}^{\infty} z^{k} \mathcal{P}(k, T) \sim \exp (-\hat{\theta}(z) T)
$$

where $\hat{\theta}(z)$ depends continuously on z

Application to the integrated Brownian motion

- Integrated Brownian motion (Random acceleration process)

$$
\frac{d^{2} x(t)}{d t^{2}}=\zeta(t) \quad, \quad\left\langle\zeta(t) \zeta\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)
$$

- Generating function

T.W. Burkhardt '01

$$
\begin{aligned}
& \hat{\mathcal{P}}(z, T)=\sum_{k=0}^{\infty} z^{k} \mathcal{P}(k, T) \sim \exp (-\hat{\theta}(z) T) \\
& \hat{\theta}(z)=\frac{1}{4}\left(1-\frac{6}{\pi} \operatorname{ArcSin}\left(\frac{z}{2}\right)\right) \quad, \quad 0 \leq z \leq 2
\end{aligned}
$$

Application to the integrated Brownian motion

- Integrated Brownian motion (Random acceleration process)

$$
\frac{d^{2} x(t)}{d t^{2}}=\zeta(t) \quad, \quad\left\langle\zeta(t) \zeta\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)
$$

- Exact result

$$
\begin{aligned}
& p_{k}(t) \sim t^{-\varphi\left(\frac{k}{\rho \log t}\right)}, \rho=\frac{\sqrt{3}}{2 \pi} \\
& \varphi(x)=\frac{\sqrt{3}}{2 \pi} x \log \left(\frac{2 x}{\sqrt{x^{2}+3}}\right)+\frac{1}{4}\left(1-\frac{6}{\pi} \operatorname{ArcSin}\left(\frac{x}{\sqrt{x^{2}+3}}\right)\right)
\end{aligned}
$$

Probability of k-zero crossings for diffusion equation

$$
\begin{array}{r}
\partial_{t} \phi(x, t)=\nabla^{2} \phi(x, t) \\
\left\langle\phi(x, 0) \phi\left(x^{\prime}, 0\right)\right\rangle=\delta^{d}\left(x-x^{\prime}\right)
\end{array}
$$

$p_{k}(t, L) \equiv$ Proba. that $\phi(x, t)$ crosses zero k times up to t

$$
p_{k}(t, L) \sim t^{-\varphi\left(\frac{k}{\log t}\right)} \quad, \quad t \ll L^{2}
$$

Numerical check

$$
-\frac{\log p_{k}(t, L)}{\log t} \text { as a function of } k
$$

Numerical check

$-\frac{\log p_{k}(t, L)}{\log t}$ as a function of $\frac{k}{\log t}$

Outline

(1) Mapping to a Gaussian Stationary Process (GSP)

- The case of diffusion equation
- The case of random polynomials
- Numerical check
- Conclusion
(2) Probability of k-zero crossings
- Generalization to k zero crossings for diffusion and polynomials
- Mean field approximation and large deviation function
- A more refined analysis
- Conclusion

Conclusion

- Large deviation function for random polynomials

$$
K_{n}(x)=a_{0}+\sum_{i=1}^{n-1} a_{i} i^{(d-2) / 4} x^{i}
$$

$q_{k}(n) \equiv$ Proba. that $K_{n}(x)$ has exactly k real roots in $[0,1]$

$$
q_{k}(n) \propto n^{-\varphi\left(\frac{k}{\log n}\right)}
$$

- Extension to other class of polynomials
- Extension to real eigenvalues of real random matrices (Ginibre's matrices)

A heuristic argument

- Diffusion equation

$$
\begin{aligned}
\phi(x=0, t) & =(4 \pi t)^{-d / 2} \int_{0<|\mathbf{x}|<L} d^{d} \mathbf{x} \exp \left(-\frac{\mathbf{x}^{2}}{4 t}\right) \phi(\mathbf{x}, 0) \\
& =\frac{S_{d}^{1 / 2}}{(4 \pi t)^{d / 2}} \int_{0}^{L} d r r^{\frac{1}{2}(d-1)} e^{-\frac{r^{2}}{4 t}} \Psi(r) \\
\Psi(r) & =S_{d}^{-1 / 2} r^{-\frac{1}{2}(d-1)} \lim _{\Delta r \rightarrow 0} \frac{1}{\Delta r} \int_{r<|\mathbf{x}|<r+\Delta r} d^{d} \mathbf{x} \phi(\mathbf{x}, 0) \\
\left\langle\Psi(r) \Psi\left(r^{\prime}\right)\right\rangle & =\delta\left(r-r^{\prime}\right)
\end{aligned}
$$

A heuristic argument

- Diffusion equation

$$
\begin{aligned}
\phi(x=0, t) & \propto \int_{0}^{L^{2}} d u u^{\frac{d-2}{4}} e^{-\frac{u}{t}} \tilde{\Psi}(u) \\
\left\langle\tilde{\Psi}(u) \tilde{\Psi}\left(u^{\prime}\right)\right\rangle & =\delta\left(u-u^{\prime}\right)
\end{aligned}
$$

A heuristic argument

- Diffusion equation

$$
\begin{aligned}
\phi(x=0, t) & \propto \int_{0}^{L^{2}} d u u^{\frac{d-2}{4}} e^{-\frac{u}{t}} \tilde{\Psi}(u) \\
\left\langle\tilde{\Psi}(u) \tilde{\Psi}\left(u^{\prime}\right)\right\rangle & =\delta\left(u-u^{\prime}\right)
\end{aligned}
$$

- Random polynomials: $K_{n}(x)=a_{0}+\sum_{i=1}^{n} a_{i} i^{\frac{d-2}{4}} x^{i}$

$$
\begin{aligned}
K_{n}(1-1 / t) & \sim a_{0}+\sum_{i=1}^{n} i^{\frac{d-2}{4}} e^{-\frac{i}{t}} a_{i} \\
& \sim \int_{0}^{n} d u u^{\frac{d-2}{4}} e^{-\frac{u}{t}} a(u) \\
\left\langle a(u) a\left(u^{\prime}\right)\right\rangle & =\delta\left(u-u^{\prime}\right)
\end{aligned}
$$

