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Introduction

Persistence probability po(t)
@ X(t) = stochastic random variable evolving in time ¢, (X(t)) =0

@ Persistence probability
po(t) = Proba. that X has not changed sign up to time ¢

_ time
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Introduction: Phase ordering kinetics

e Glauber dynamics of 2d Ising model at T = 0, Higng = —J Z<i,j> oty

oj =

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 3/39



Introduction: Phase ordering kinetics

e Glauber dynamics of 2d Ising model at T = 0, Higng = —J Z<i,j> oty

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 3/39



Introduction: Phase ordering kinetics

e Glauber dynamics of 2d Ising model at T = 0, Higng = —J Z<i,j> oty

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 3/39



Introduction: Phase ordering kinetics

e Glauber dynamics of 2d Ising model at T = 0, Higng = —J Z<i,j> oty

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14



Introduction
Persistence probability po(t)

@ X(t) = stochastic random variable evolving in time t, (X(t)) =0

@ Persistence probability
po(t) = Proba. that X has not changed sign up to time ¢

Persistence in

@ phase ordering kinetics ('94-)

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 4/39



Introduction
Persistence probability po(t)

@ X(t) = stochastic random variable evolving in time t, (X(t)) =0

@ Persistence probability
po(t) = Proba. that X has not changed sign up to time ¢

Persistence in

@ phase ordering kinetics ('94-)
@ diffusion field (’96-)

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 4/39



Introduction
Persistence probability po(t)

@ X(t) = stochastic random variable evolving in time t, (X(t)) =0

@ Persistence probability
po(t) = Proba. that X has not changed sign up to time ¢

Persistence in

@ phase ordering kinetics ('94-)

@ diffusion field (’96-)

@ height of a fluctuating interface ("97-)
° ...

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 4/39



Introduction

Persistence probability po(t)
@ X(t) = stochastic random variable evolving in time t, (X(t)) =0

@ Persistence probability
po(t) = Proba. that X has not changed sign up to time ¢

Persistence in

@ phase ordering kinetics ('94-)
@ diffusion field ("96-) po(t) xt

@ height of a fluctuating interface ("97-)
° ...

A. J. Bray, S. N. Majumdar, G. S., Adv. Phys. 62, pp 225-361 (2013), arXiv:1304.1195

“Persistence and First-Passage Properties in Non-equilibrium Systems”
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Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

Ord(x, 1) = V2o(x, 1)
(#(x,0)p(x',0)) = 6(x — x')
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Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

8;¢(X, t) = V2¢(Xv t)
(@(x,0)¢(x",0)) = 6%(x — x')

@ Diffusion equation (or heat equation) is universal and ubiquitous in
nature

@ Ordering dynamics for O(N)-symmetric spin models in the limit
N —

@ see A. Dembo, S. Mukherjee 12
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Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

Ehiles ) = quﬁ(x, ) Single length scale
(¢(x,0)¢(x,0)) = 6%(x — x') o(t) o £1/2

Persistence py(t, L) for a d-dim. system of linear size L
po(t, L) = Proba. that ¢(x, t) has not changed sign up to ¢

S. N. Majumdar, C. Sire, A. J. Bray and S. J. Cornell, PRL 96

B. Derrida, V. Hakim and R. Zeitak, PRL 96
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Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

oA ) = Z%(X’ ) Single length scale
(6(x,0)6(x', 0)) = 8%(x — x') 0(t) o 11/

Persistence py(t, L) for a d-dim. system of linear size L

po(t, L) = Proba. that ¢(x, t) has not changed sign up to ¢
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Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

(X, 1) = Z%(X, ) Single length scale
(¢(x,0)9(x’,0)) = 6%(x — x') o(t) o t1/2

Persistence py(t, L) for a d-dim. system of linear size L
po(t, L) = Proba. that ¢(x, t) has not changed sign up to ¢

po(t, L) oc L2/ Dh(t/L?)

(1) = 0.1207
f(2) = 0.1875 , Numerics
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Motivations : persistence for the diffusion equation

Diffusion equation with random initial conditions

Ord(x, 1) = V2o(x, 1)
($(x,0)p(x',0)) = 6%(x — x')

STATISTICAL MECHANICS

Persistence Pays Off in
Defining History of Diffusion

A. Watson, Science 96
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Persistence in 1d diffusion : NMR experiments on Xe

VOLUME 86, NUMBER 18 PHYSICAL REVIEW LETTERS 30 ApriL 2001

Measurement of Persistence in 1D Diffusion

Glenn P. Wong, Ross W. Mair, and Ronald L. Walsworth
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138

David G. Cory

Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
{Received 1 September 2000)

po(t,L) o t %l
fexp(1) =~ 0.12
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Motivations : Real random polynomials

Real Kac’s polynomials
n—1
; a; = Gaussian random variables,
Kn(x) =>_ aix’ /

P (@) =0, (g;a) = 0j
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Motivations : Real random polynomials

Real Kac’s polynomials

! - a; = Gaussian random variables
Kiyx)=) ax' 7= ’
) ; : (@) =0, (a;a;) = Jj

Complex roots
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Motivations : Real random polynomials

Real Kac’s polynomials

! - a; = Gaussian random variables
K.(x)=) ax' = ’
) ; : (a) =0, (aia) = 3

Real roots
N, = mean number of roots on the real axis M.Kac *43

/\/'nNgIogn
v
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Motivations : of Kac’s polynomials

JOURMAL OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 15, Number 4, Pages 857502

5 0894-0347(02)00386-7

Article electronically published on May 16, 2002

RANDOM POLYNOMIALS HAVING FEW OR NO REAL ZEROS

AMIR DEMBO, BIORN POONEN, QI-MAN SHAO, AND OFER ZEITOUNI

go(n) = Probability that K,,(x) has no real root in [0, 1] J

Qo(n) ox N7

with v =0.19(1) (Numerics)
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Purpose : a link between random polynomials
& diffusion equation

Generalized Kac’s polynomials

n—1
o ; i = Gaussian random variables
Kn(x) = ao + Y _ ail?2)/4x’ 8, ’
R (a) =0, (ai3)) =

i=1

Proba. of no real root Persistence of diffusion

Qo(n) oc n~P) po(t, L) oc L7209
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Purpose : a link between random polynomials
& diffusion equation

Generalized Kac’s polynomials

n—1
o ; i = Gaussian random variables
Kn(x) = ap+ Y  &ild-2/4x 8 ’
=2+ a4 (aj) =0, (aia)) = Jj

i=1

Persistence of diffusion

Proba. of no real root

qo(n) oc n~(d) po(t, L) oc L=2609)

b(d) = 6(d)

G. S., S. N. Majumdar 07
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Persistence of diffusion

Proba. of no real root

qo(n) oc n~(d) po(t, L) oc L=2609)

b(d) = 6(d)

G. S., S. N. Majumdar 07
A. Dembo, S. Mukherjee 12
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o Mapping to a Gaussian Stationary Process (GSP)
@ The case of diffusion equation
@ The case of random polynomials
@ Numerical check
@ Conclusion

Q Probability of k-zero crossings
@ Generalization to k zero crossings for diffusion and polynomials
@ Mean field approximation and large deviation function
@ A more refined analysis
@ Conclusion
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o Mapping to a Gaussian Stationary Process (GSP)
@ The case of diffusion equation
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Persistence of diffusion equation

ap(x. ) = V2p(x,f) PN = /WL d?yG(x — y, t)é(y,0)

(#(x,0)¢(x', 0)) = 6%(x — x G(x,t) = (47rt)_% exp (—x2/4t)
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Persistence of diffusion equation

ap(x, ) = V2p(x,f) P00 = /|y|<L d?yG(x -y, )$(y,0)

(G000, 0) = =X) G 1y (ant)F oxp (—x2 /a0

Mapping of ¢(x, t) to a Gaussian stationary process

o(x,t)

@ Normalized process X(t) = BT

\4
(45tp)" s .t <L?

1, tt > 12
Q New time variable T = log t, for t <« L2

(X(T)X(T')) = [cosh((T — T')/2)]~¥/2
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Persistence for a Gaussian stationary process (GSP)

@ X(T)is a GSP with correlations

(X(MX(T')) = aT-T)
a(T) = (cosh(T/2))~9/2

@ Persistence probability Po(T) (by Slepian’s lemma)

For T>1 a(T)ocexp(—9T) = Po(T) o exp(—0(d)T) )

@ Reverting back to t = exp (T)

po(t, L) ~ 799 1« t<I?
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Persistence of diffusion equation

@ Normalized process X(t) = < o(x.1)

(@(x.1)2)172

d
)4 .
<X(t)X(t/)> ~ (4(t+t’)2) , Lt <L
1, tt > 12

Po(t.L)

10 100 1000 10000
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Persistence of diffusion equation

@ Normalized process X(t) = %

d
o \4 . s
1 Lt > L2
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o Mapping to a Gaussian Stationary Process (GSP)

@ The case of random polynomials
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Real roots of generalized Kac’s polynomials

n—1 ( :
Kn(x) =ao+ Y _ ail?2)/*x’

=1 ;

Averaged density of real roots for n — o~

(Li1_g/(0®)(1 + Lis_g/o(x2)) — LiZ o 5(x2))2
Poo(X) = ;
X1 + Liy_a/20:2))

2

ol /|
’ |

0
2 16 -1 05 0 05 1 15 2
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Real roots of generalized Kac’s polynomials

» 1 |
Kn(x) =ao+ Y _ ail?2)/4x’ ;

i=1
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Real roots of generalized Kac’s polynomials

n—1 I .
Ko(x) =ap+ »_ ail? 2%’ ;

i=1

Mean number of real roots in [0, 1] : Kac-Rice formula

1
(Na[0, 1]) = /0 p(X) A ~ ;7@ log
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Probability of no real root for K,(x)

2.5
‘ ‘ Dembo et al. '02

il I Statistical independence of K(x)

a 15 []

il s \ in the 4 sub-intervals

— Focus on the interval [0, 1]
05 U
: / K

2 =l Hl 05 0 05 1 15
X

Po(x, n) = Proba. that Kj(x) has no real root in [0, ] |
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Probability of no real root for K,(x)

@ Two-point correlator

n—1
Cn(X,y) = (Kn(X)Kn(y)) = > {22 (xy
i=0

@ Normalization

Cn(x,
Cn(x,_}/) = ng y) l
(Cn(X,X))z(Cn(y,y))Q
@ Change of variable
o] ‘\
L 1
a 15 \‘\ I X:1_? ’ t>>1

2 15 1 05 0 05 1 15 2
x
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Probability of no real root for Kj(x)

Normalized correlator in the scaling limit
@ Scaling limit

t>1 , n>1 Kkeeping f:% fixed

@ Cp(t, t') — C(1, 1) with the asymptotic behaviors

d

to\°
c(t,t) ~ <4(}+}/)2> ’

~2
\;tz
A
—_

—
~1
vhtz
\%
—_
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Persistence of diffusion equation (reminder)

ao(x, t) = V2o(x, 1) D= / d?yG(x — y)é(y,0)

($0,0)80¢,0) =80 =X) Gy 1~ (amt)~F exp (—x2/at

Mapping of ¢(x, t) to a Gaussian stationary process

o(x,t)
( o(x t)2) 772

@ Normalized process X(t) =

tt’ 4 , >
X(OX(E)) ~ (4—(t+t’)2> LA
1, tt > 12

Q Persistence probability py(t, L)

po(t, L) oc L2%Dp(t/12)

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 20/39



Probability of no real root for K,(x)

Po(x, n) = Proba. that K,(x) has no real root in [0, x]

Scaling form for Py(x, n)

Po(x, n) o< n=%Dh(n(1 — x))

Grégory Schehr (LPTMS Orsay)

Rand. polynomials & the heat equation Darmstadt, July 14 21/39



Probability of no real root for K,(x)

Scaling form for Py(x, n)

Po(x, n) oc n=%Dh(n(1 — x))

~ i u<
h(u) ~ ’
(u) {u(’(d) . u>1

go(n) = Probability that K,,(x) has no real root in [0, 1] ]

qo(n) = P(1,n) ~ 0"
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o Mapping to a Gaussian Stationary Process (GSP)

@ Numerical check
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Numerical check of the scaling form

Numerical computation of Py(x, n) for d = 2

n= 128
n= 256
n= 512
n =1024
=
X
o
o
1e-04 0.001 0.01 0.1

1-x
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Numerical check of the scaling form

Numerical computation of Py(x, n) for d = 2

Po(x,n) n%@

‘ ‘ n=1024 -
0.01 0.1 1 10 100
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o Mapping to a Gaussian Stationary Process (GSP)

@ Conclusion
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Conclusion

@ A link between diffusion equation and random polynomials

Proba. of no real root Persistence of diffusion

@ Universality see A. Dembo, S. Mukherjee 12

© Towards exact results for 6(d) , 1/(4v3) <6(2) <1/4
G. Molchan 12 W. Li, Q. M. Shao 02
see also D. Zaporozhets 06
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9 Probability of k-zero crossings
@ Generalization to k zero crossings for diffusion and polynomials
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Generalization to k zero crossings

@ Diffusion equation

at¢(xv t) = V2¢(X, t)
(6(x,0)¢(x’,0)) = 6%(x — x')

pk(t, L) = Proba. that ¢(x, t) crosses zero k times up to t )

@ Real polynomials

n—1
Kn(X) = 4qg + Z a;i(d‘z)/4x'

i=1

gk(n) = Proba. that K,(x) has exactly k real roots )
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9 Probability of k-zero crossings

@ Mean field approximation and large deviation function
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Mean field approximation for diffusion equation

@ Fort < L2, pk(t, L) is given by Px(T), T = log t
Pk(T) = Proba. that X(T) crosses zero K times up to T

@ (X(T)X(T")) = (cosh(T — T'))"92 =1 - &£T2 4 o(T?)

(N(T)) = Mean number of zero crossings in [0, T]
1 /d
= T = — /=
P P=2x V2

@ Assuming that the zeros of X(T) are independent
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Mean field approximation for diffusion equation

@ Fort < L2, pk(t, L) is given by Px(T), T = log t
Pk(T) = Proba. that X(T) crosses zero k times up to T

@ Assuming that the zeros of X(T) are independent
k
rPk(T) _ (pT) e—pT
k!
@ Fork>1,T > 1, k/pT fixed

logPk(T) ~ —Tep <p£7-) , o(x) = p(xlogx — x + 1)

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14



Scaling form for a smooth GSP

X(T)is a GSP with (X(T)X(T') = [sech((T — T")/2)]%/2

Px(T) = Proba. that X(T) crosses 0 exactly k times upto T ]

¢(x) is a large deviation function

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14 32/39



9 Probability of k-zero crossings

@ A more refined analysis
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A more refined analysis

@ Generating function S.N. Majumdar, A.J. Bray, PRL'98

P(z,T) = i ZXP(k, T) ~ exp(—0(2)T)
k=0

where 0(z) depends continuously on z
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Application to the integrated Brownian motion

@ Integrated Brownian motion (Random acceleration process)

aPx(t , ,
2oy L ey =se-1)
@ Generating function T.W. Burkhardt '01

P(z,T) = szPk T) ~ exp(—0(2)T)
k=0

1 6, .. (2
9(z)=z(1—;ArcSm<§)> , 0<z<2
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Application to the integrated Brownian motion

@ Integrated Brownian motion (Random acceleration process)

d?x(t , ,
2oy L ey =se-1)
@ Exact result G. S., S. N. Majumdar 08
V3
‘pplogt _
pe(t) ~ t#(t) | p— Y2

p(x) = gxlog (\/XZZLM) +% <1 - SA“S“] (\/sz?»
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Probability of k-zero crossings for diffusion equation

at¢(x7 t) = Vz(b(X, t)
(@(x,0)¢(x",0)) = 6%(x — x')

pk(t, L) = Proba. that ¢(x, t) crosses zero k times up to t J

|>
-t

pr(t, L) ~t ( ) .t L2

Grégory Schehr (LPTMS Orsay) Rand. polynomials & the heat equation Darmstadt, July 14



Numerical check

lo t, L .
_logpi(t, L) as a function of Kk
logt
Sl e —
t=512
= 2 F t=1024 % &
> {=2048  ©
Q 1]
= 15¢ o
_I_‘ y
= 5]
g 17
>
i}
" 05+
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Numerical check

[ L
— M as a function of ——
log t log t

2.5

-log(py(t.L))/log(t)
Y
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9 Probability of k-zero crossings

@ Conclusion
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Conclusion

@ Large deviation function for random polynomials

n—1
Kn(x) = ao+ Y _ ail?=2)/4x

i=1

gk(n) = Proba. that K,(x) has exactly k real roots in [0, 1]

() o i~ (w7)

@ Extension to other class of polynomials

@ Extension to real eigenvalues of real random matrices (Ginibre’s
matrices)
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A heuristic argument

@ Diffusion equation

Hx=0.t) = (dnt) /2 A<le<dex exp (—) 6(x,0)

81/2

C td/2/ o Ve ()
7

_ g 1/2,-3(d-1) 1 / d
v = 2 lim —
(r) Sd AIrrEO Ar <|x|<r+Ard X ¢(x’ 0)

(W(Nw(r) = o(r—r)
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A heuristic argument

@ Diffusion equation

d(x=0,1) duu 4 e

(Wu)¥()) = ou-u)
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A heuristic argument

@ Diffusion equation

dp(x=0,1) duus et V(u)
W(u)¥()) = éu-—u)

d—2
@ Random polynomials : Ky(x) = ap + > i aii X'

" d-2 _i
Ka(1=1/t) ~ ay+> i % e ta
i=1
n d—2 _u
~ / duu 4 e ta(u)
0

(a(w)a(v)) = o(u—u)
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