Real roots of random polynomials and zero crossing properties of diffusion equation

Grégory Schehr

Laboratoire de Physique Théorique et Modèles Statistiques Orsay, Université Paris XI

G. S., S. N. Majumdar, Phys. Rev. Lett. 99, 060603 (2007), arXiv:0705.2648,
J. Stat. Phys. 132, 235-273 (2008), arXiv:0803.4396

Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\langle X(t) \rangle = 0$
- Persistence probability $p_0(t) \equiv \text{Proba. that } X \text{ has not changed sign up to time } t$

Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\langle X(t) \rangle = 0$
- Persistence probability $p_0(t) \equiv \text{Proba. that } X \text{ has not changed sign up to time } t$

Persistence in spatially extended systems

phase ordering kinetics

• Glauber dynamics of 2d Ising model at T=0 , $H_{\rm Ising}=-J\sum_{\langle i,j\rangle}\sigma_i\sigma_j$ $\sigma_i=\pm 1$

$$t_1 = 0$$

• Glauber dynamics of 2d Ising model at T=0 , $H_{\text{Ising}}=-J\sum_{\langle i,j\rangle}\sigma_i\sigma_j \sigma_i\sigma_j$

$$t_2=10^2$$

• Glauber dynamics of 2d Ising model at T=0 , $H_{\rm Ising}=-J\sum_{\langle i,j\rangle}\sigma_i\sigma_j \sigma_i=\pm 1$

$$t_1 = 0$$

• Glauber dynamics of 2d Ising model at T=0 , $H_{\text{Ising}}=-J\sum_{\langle i,j\rangle}\sigma_i\sigma_j$ $\sigma_i = \pm 1$

$$t_1 = 0$$

$$t_3 = 10^4$$

$$t_2 = 10^2$$

Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\langle X(t) \rangle = 0$
- Persistence probability $p_0(t) \equiv \text{Proba. that } X \text{ has not changed sign up to time } t$

Persistence in spatially extended systems

phase ordering kinetics ('94-)

Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\langle X(t) \rangle = 0$
- Persistence probability $p_0(t) \equiv \text{Proba. that } X \text{ has not changed sign up to time } t$

Persistence in spatially extended systems

- phase ordering kinetics ('94-)
- diffusion field ('96-)

Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\langle X(t) \rangle = 0$
- Persistence probability $p_0(t) \equiv \text{Proba. that } X \text{ has not changed sign up to time } t$

Persistence in spatially extended systems

- phase ordering kinetics ('94-)
- diffusion field ('96-)
- height of a fluctuating interface ('97-)
- ...

Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\langle X(t) \rangle = 0$
- Persistence probability $p_0(t) \equiv \text{Proba. that } X \text{ has not changed sign up to time } t$

Persistence in spatially extended systems

- phase ordering kinetics ('94-)
- diffusion field ('96-)
- height of a fluctuating interface ('97-)
- ...

$$p_0(t) \propto t^{-\theta_p}$$

A. J. Bray, S. N. Majumdar, G. S., Adv. Phys. **62**, pp 225-361 (2013), arXiv:1304.1195

"Persistence and First-Passage Properties in Non-equilibrium Systems"

Diffusion equation with random initial conditions

$$\partial_t \phi(\mathbf{x},t) = \nabla^2 \phi(\mathbf{x},t)$$

$$\langle \phi(\mathbf{x}, \mathbf{0}) \phi(\mathbf{x}', \mathbf{0}) \rangle = \delta^{\mathbf{d}}(\mathbf{x} - \mathbf{x}')$$

Diffusion equation with random initial conditions

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t)$$

 $\langle \phi(x,0)\phi(x',0)\rangle = \delta^d(x-x')$

- Diffusion equation (or heat equation) is universal and ubiquitous in nature
- Ordering dynamics for O(N)-symmetric spin models in the limit $N \to \infty$
- see A. Dembo, S. Mukherjee 12

Diffusion equation with random initial conditions

$$\partial_t \phi(\mathbf{x}, t) = \nabla^2 \phi(\mathbf{x}, t)$$
$$\langle \phi(\mathbf{x}, 0) \phi(\mathbf{x}', 0) \rangle = \delta^d(\mathbf{x} - \mathbf{x}')$$

Single length scale $\ell(t) \propto t^{1/2}$

- Diffusion equation (or heat equation) is universal and ubiquitous in nature
- Ordering dynamics for O(N)-symmetric spin models in the limit $N \to \infty$
- see A. Dembo, S. Mukherjee 12

Diffusion equation with random initial conditions

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t)$$

 $\langle \phi(x,0)\phi(x',0)\rangle = \delta^d(x-x')$

Single length scale $\ell(t) \propto t^{1/2}$

Persistence $p_0(t, L)$ for a *d*-dim. system of linear size *L*

 $p_0(t,L) \equiv \text{Proba.}$ that $\phi(x,t)$ has not changed sign up to t

S. N. Majumdar, C. Sire, A. J. Bray and S. J. Cornell, PRL 96

B. Derrida, V. Hakim and R. Zeitak, PRL 96

Diffusion equation with random initial conditions

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t)$$

 $\langle \phi(x,0)\phi(x',0) \rangle = \delta^d(x-x')$

Single length scale $\ell(t) \propto t^{1/2}$

Persistence $p_0(t, L)$ for a *d*-dim. system of linear size *L*

 $p_0(t, L) \equiv \text{Proba.}$ that $\phi(x, t)$ has not changed sign up to t

Diffusion equation with random initial conditions

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t)$$

 $\langle \phi(x,0)\phi(x',0)\rangle = \delta^d(x-x')$

Single length scale $\ell(t) \propto t^{1/2}$

Persistence $p_0(t, L)$ for a *d*-dim. system of linear size *L*

 $p_0(t, L) \equiv \text{Proba. that } \phi(x, t) \text{ has not changed sign up to } t$

$$p_0(t,L) \propto L^{-2\theta(d)} h(t/L^2)$$

$$\theta(1) = 0.1207$$

$$\theta(2) = 0.1875$$
, Numerics

Diffusion equation with random initial conditions

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t)$$

 $\langle \phi(x,0)\phi(x',0) \rangle = \delta^d(x-x')$

STATISTICAL MECHANICS

Persistence Pays Off in Defining History of Diffusion

A. Watson, Science 96

Persistence in 1d diffusion : NMR experiments on Xe

VOLUME 86, NUMBER 18

PHYSICAL REVIEW LETTERS

30 APRIL 2001

Measurement of Persistence in 1D Diffusion

Glenn P. Wong, Ross W. Mair, and Ronald L. Walsworth

Harvard-Smithsonian Center for Astrophysics. 60 Garden Street. Cambridge. Massachusetts 02138

David G. Corv

Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 September 2000)

$$p_0(t, L) \propto t^{-\theta_{\exp}(1)}$$

 $\theta_{\exp}(1) \simeq 0.12$

Motivations: Real random polynomials

Real Kac's polynomials

$$K_n(x) = \sum_{i=0}^{n-1} a_i x^i$$

$$a_i \equiv ext{Gaussian random variables,} \ \langle a_i
angle = 0, \, \langle a_i a_j
angle = \delta_{ij}$$

Motivations: Real random polynomials

Real Kac's polynomials

$$K_n(x) = \sum_{i=0}^{n-1} a_i x^i$$

$$a_i \equiv$$
 Gaussian random variables, $\langle a_i \rangle = 0, \, \langle a_i a_j \rangle = \delta_{ij}$

Complex roots

Motivations: Real random polynomials

Real Kac's polynomials

$$K_n(x) = \sum_{i=0}^{n-1} a_i x^i$$

$$a_i \equiv \text{Gaussian random variables},$$

 $\langle a_i \rangle = 0, \langle a_i a_j \rangle = \delta_{ij}$

Real roots

 $\mathcal{N}_n \equiv$ mean number of roots on the real axis

M.Kac '43

$$\mathcal{N}_n \sim \frac{2}{\pi} \log n$$

Motivations : Real roots of Kac's polynomials

JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 15, Number 4, Pages 857-892 S 6894-0347(02)00386-7 Article electronically published on May 16, 2002

RANDOM POLYNOMIALS HAVING FEW OR NO REAL ZEROS

AMIR DEMBO, BJORN POONEN, QI-MAN SHAO, AND OFER ZEITOUNI

 $q_0(n) \equiv$ Probability that $K_n(x)$ has no real root in [0, 1]

$$q_0(n) \propto n^{-\gamma}$$

with $\gamma = 0.19(1)$ (Numerics)

Purpose: a link between random polynomials & diffusion equation

Generalized Kac's polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

$$a_i \equiv$$
 Gaussian random variables, $\langle a_i \rangle = 0$, $\langle a_i a_i \rangle = \delta_{ii}$

Proba. of no real root

$$q_0(n) \propto n^{-b(d)}$$

Persistence of diffusion

$$p_0(t,L) \propto L^{-2\theta(d)}$$

Purpose: a link between random polynomials & diffusion equation

Generalized Kac's polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

$$a_i \equiv$$
 Gaussian random variables, $\langle a_i \rangle = 0$, $\langle a_i a_i \rangle = \delta_{ii}$

Proba. of no real root

$$q_0(n) \propto n^{-b(d)}$$

Persistence of diffusion

$$p_0(t,L) \propto L^{-2\theta(d)}$$

$$b(d) = \theta(d)$$

G. S., S. N. Majumdar 07

Purpose: a link between random polynomials & diffusion equation

Generalized Kac's polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

$$a_i \equiv \text{Gaussian random variables},$$

 $\langle a_i \rangle = 0, \langle a_i a_i \rangle = \delta_{ii}$

Proba. of no real root

$$q_0(n) \propto n^{-b(d)}$$

Persistence of diffusion

$$p_0(t,L) \propto L^{-2\theta(d)}$$

$$b(d) = \theta(d)$$

G. S., S. N. Majumdar 07

A. Dembo, S. Mukherjee 12

Outline

- 1 Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Outline

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- \bigcirc Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Persistence of diffusion equation

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t) \qquad \phi(x,t) = \int_{|y| < L} d^d y G(x-y,t) \phi(y,0)$$
$$\langle \phi(x,0) \phi(x',0) \rangle = \delta^d(x-x') \qquad G(x,t) = (4\pi t)^{-\frac{d}{2}} \exp(-x^2/4t)$$

Persistence of diffusion equation

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t) \qquad \phi(x,t) = \int_{|y| < L} d^d y G(x-y,t) \phi(y,0)$$
$$\langle \phi(x,0)\phi(x',0)\rangle = \delta^d(x-x') \qquad G(x,t) = (4\pi t)^{-\frac{d}{2}} \exp(-x^2/4t)$$

Mapping of $\phi(x, t)$ to a Gaussian stationary process

• Normalized process $X(t) = \frac{\phi(x,t)}{\langle \phi(x,t)^2 \rangle^{1/2}}$

$$\langle X(t)X(t') \rangle \sim egin{cases} \left(4 rac{tt'}{(t+t')^2}
ight)^{rac{d}{4}}, & t,t' \ll L^2 \ 1, & t,t' \gg L^2 \end{cases}$$

2 New time variable $T = \log t$, for $t \ll L^2$

$$\langle X(T)X(T')\rangle = \left[\cosh((T-T')/2)\right]^{-d/2}$$

Persistence for a Gaussian stationary process (GSP)

• *X*(*T*) is a GSP with correlations

$$\langle X(T)X(T')\rangle = a(T-T')$$

 $a(T) = (\cosh(T/2))^{-d/2}$

• Persistence probability $\mathcal{P}_0(T)$ (by Slepian's lemma)

For
$$T\gg 1$$
 $a(T)\propto \exp\left(-\frac{d}{2}T\right)\Rightarrow \mathcal{P}_0(T)\propto \exp\left(-\theta(d)T\right)$

• Reverting back to $t = \exp(T)$

$$p_0(t,L) \sim t^{-\theta(d)}$$
 1 $\ll t \ll L^2$

Persistence of diffusion equation

• Normalized process $X(t) = \frac{\phi(x,t)}{\langle \phi(x,t)^2 \rangle^{1/2}}$

$$\langle X(t)X(t') \rangle \sim egin{cases} \left(4 rac{tt'}{(t+t')^2}
ight)^{rac{d}{4}} \;, & t,t' \ll L^2 \ 1 \;, & t,t' \gg L^2 \end{cases}$$

Persistence of diffusion equation

• Normalized process $X(t) = \frac{\phi(x,t)}{\langle \phi(x,t)^2 \rangle^{1/2}}$

$$\langle X(t)X(t') \rangle \sim \begin{cases} \left(4\frac{tt'}{(t+t')^2}\right)^{\frac{d}{4}} , & t,t' \ll L^2 \\ 1 , & t,t' \gg L^2 \end{cases}$$

$$p_0(t,L) \propto L^{-2\theta(d)} h(t/L^2)$$
 $h(u) \sim \begin{cases} u \sim u^{-\theta(d)} &, u \ll 1 \\ u \sim c^{st} &, u \gg 1 \end{cases}$

Outline

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- \bigcirc Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Real roots of generalized Kac's polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

Averaged density of real roots for $n \to \infty$

$$\rho_{\infty}(x) = \frac{\left(\text{Li}_{-1-d/2}(x^2)(1 + \text{Li}_{1-d/2}(x^2)) - \text{Li}_{-d/2}^2(x^2)\right)^{\frac{1}{2}}}{\pi|x|(1 + \text{Li}_{1-d/2}(x^2))}$$

Real roots of generalized Kac's polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

Real roots of generalized Kac's polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

Mean number of real roots in [0, 1]: Kac-Rice formula

$$\langle N_n[0,1] \rangle = \int_0^1 \rho_n(x) \, dx \sim \frac{1}{2\pi} \sqrt{\frac{d}{2}} \log n$$

Dembo et al. '02

Statistical independence of $K_n(x)$ in the 4 sub-intervals \implies Focus on the interval [0, 1]

 $P_0(x, n) \equiv \text{Proba. that } K_n(x) \text{ has no real root in } [0, x]$

Two-point correlator

$$C_n(x,y) = \langle K_n(x)K_n(y) \rangle = \sum_{i=0}^{n-1} i^{(d-2)/2} (xy)^i$$

Normalization

$$C_n(x,y) = \frac{C_n(x,y)}{(C_n(x,x))^{\frac{1}{2}}(C_n(y,y))^{\frac{1}{2}}}$$

Change of variable

$$x=1-\frac{1}{t} \quad , \quad t\gg 1$$

Normalized correlator in the scaling limit

Scaling limit

$$t \gg 1$$
 , $n \gg 1$ keeping $\tilde{t} = \frac{t}{n}$ fixed

ullet $\mathcal{C}_n(t,t') o \mathcal{C}(ilde{t}, ilde{t}')$ with the asymptotic behaviors

$$\mathcal{C}(ilde{t}, ilde{t}') \sim egin{cases} \left(4rac{ ilde{t} ilde{t}'}{(ilde{t}+ ilde{t}')^2}
ight)^{rac{d}{4}}, & ilde{t}, ilde{t}' \ll 1 \ 1, & ilde{t}, ilde{t}' \gg 1 \end{cases}$$

Persistence of diffusion equation (reminder)

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t) \qquad \phi(x,t) = \int d^d y G(x-y) \phi(y,0)$$
$$\langle \phi(x,0)\phi(x',0)\rangle = \delta^d(x-x') \qquad G(x,t) = (4\pi t)^{-\frac{d}{2}} \exp(-x^2/4t)$$

Mapping of $\phi(x, t)$ to a Gaussian stationary process

1 Normalized process $X(t) = \frac{\phi(x,t)}{\langle \phi(x,t)^2 \rangle^{1/2}}$

$$\langle X(t)X(t') \rangle \sim \begin{cases} \left(4\frac{tt'}{(t+t')^2}\right)^{\frac{d}{4}}, & t,t' \ll L^2 \\ 1, & t,t' \gg L^2 \end{cases}$$

2 Persistence probability $p_0(t, L)$

$$p_0(t,L) \propto L^{-2\theta(d)} h(t/L^2)$$

$$\mathcal{C}(\tilde{t},\tilde{t}') \sim \begin{cases} \left(4\frac{\tilde{t}\tilde{t}'}{(\tilde{t}+\tilde{t}')^2}\right)^{\frac{d}{4}} \;, & \tilde{t},\tilde{t}' \ll 1 \\ 1\;, & \tilde{t},\tilde{t}' \gg 1 \end{cases}$$

 $P_0(x, n) \equiv \text{Proba. that } K_n(x) \text{ has no real root in } [0, x]$

Scaling form for $P_0(x, n)$

$$P_0(x,n) \propto n^{-\theta(d)} \tilde{h}(n(1-x))$$

$$ilde{h}(u) \sim egin{cases} c^{st} \ , & u \ll 1 \ u^{ heta(d)} \ , & u \gg 1 \end{cases}$$

Scaling form for $P_0(x, n)$

$$P_0(x,n) \propto n^{-\theta(d)} \tilde{h}(n(1-x))$$

$$ilde{h}(u) \sim \left\{ egin{aligned} c^{st} &, & u \ll 1 \ u^{ heta(d)} &, & u \gg 1 \end{aligned}
ight.$$

 $q_0(n) \equiv$ Probability that $K_n(x)$ has no real root in [0, 1]

$$q_0(n) = P(1,n) \sim n^{-\theta(d)}$$

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- \bigcirc Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Numerical check of the scaling form

Numerical computation of $P_0(x, n)$ for d = 2

Numerical check of the scaling form

Numerical computation of $P_0(x, n)$ for d = 2

$$P_0(x,n) \propto n^{-\theta(d)} \tilde{h}(n(1-x))$$

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- \bigcirc Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Conclusion

A link between diffusion equation and random polynomials

Proba. of no real root

 $q_0(n) \propto n^{-b(d)}$

Persistence of diffusion

$$p_0(t,L) \propto L^{-2\theta(d)}$$

$$b(d) = \theta(d)$$

- Universality see A. Dembo, S. Mukherjee 12
- 2 Towards exact results for $\theta(d)$, $1/(4\sqrt{3}) \le \theta(2) \le 1/4$ G. Molchan 12 W. Li, Q. M. Shao 02

see also D. Zaporozhets 06

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- \bigcirc Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Generalization to k zero crossings

Diffusion equation

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t)$$
$$\langle \phi(x,0)\phi(x',0)\rangle = \delta^d(x-x')$$

 $p_k(t, L) \equiv \text{Proba. that } \phi(x, t) \text{ crosses zero } k \text{ times up to } t$

Real polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

 $q_k(n) \equiv \text{Proba. that } K_n(x) \text{ has exactly } k \text{ real roots}$

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Mean field approximation for diffusion equation

• For $t \ll L^2$, $p_k(t, L)$ is given by $\mathcal{P}_k(T)$, $T = \log t$ $\mathcal{P}_k(T) \equiv \text{Proba. that } X(T) \text{ crosses zero } k \text{ times up to } T$

•
$$\langle X(T)X(T')\rangle = (\cosh{(T-T')})^{-d/2} = 1 - \frac{d}{16}T^2 + o(T^2)$$

 $\langle \mathcal{N}(T)\rangle \equiv \text{Mean number of zero crossings in } [0, T]$
 $= \rho T$ $\rho = \frac{1}{2\pi}\sqrt{\frac{d}{2}}$

Assuming that the zeros of X(T) are independent

$$\mathcal{P}_k(T) = \frac{(\rho T)^k}{k!} e^{-\rho T}$$

Mean field approximation for diffusion equation

- For $t \ll L^2$, $p_k(t, L)$ is given by $\mathcal{P}_k(T)$, $T = \log t$ $\mathcal{P}_k(T) \equiv \text{Proba. that } X(T) \text{ crosses zero } k \text{ times up to } T$
- Assuming that the zeros of X(T) are independent

$$\mathcal{P}_k(T) = \frac{(\rho T)^k}{k!} e^{-\rho T}$$

• For $k \gg 1$, $T \gg 1$, $k/\rho T$ fixed

$$\log \mathcal{P}_k(T) \sim -T\varphi\left(\frac{k}{\rho T}\right)$$
, $\varphi(x) = \rho(x \log x - x + 1)$

Scaling form for a smooth GSP

$$X(T)$$
 is a GSP with $\langle X(T)X(T') = [\operatorname{sech}((T - T')/2)]^{d/2}$

 $\mathcal{P}_k(T) \equiv \text{Proba. that } X(T) \text{ crosses 0 exactly } k \text{ times up to } T$

$$\log \mathcal{P}_k(T) \sim -T\varphi\left(\frac{k}{\rho T}\right)$$

 $\varphi(x)$ is a large deviation function

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

A more refined analysis

Generating function

S.N. Majumdar, A.J. Bray, PRL'98

$$\hat{\mathcal{P}}(z,T) = \sum_{k=0}^{\infty} z^k \mathcal{P}(k,T) \sim \exp(-\hat{\theta}(z)T)$$

where $\hat{\theta}(z)$ depends continuously on z

Application to the integrated Brownian motion

Integrated Brownian motion (Random acceleration process)

$$\frac{d^2x(t)}{dt^2} = \zeta(t)$$
 , $\langle \zeta(t)\zeta(t')\rangle = \delta(t-t')$

Generating function

T.W. Burkhardt '01

$$\begin{split} \hat{\mathcal{P}}(z,T) &= \sum_{k=0}^{\infty} z^k \mathcal{P}(k,T) \sim \exp(-\hat{\theta}(z)T) \\ \hat{\theta}(z) &= \frac{1}{4} \left(1 - \frac{6}{\pi} \text{ArcSin}\left(\frac{z}{2}\right) \right) \quad , \quad 0 \leq z \leq 2 \end{split}$$

Application to the integrated Brownian motion

Integrated Brownian motion (Random acceleration process)

$$\frac{d^2x(t)}{dt^2} = \zeta(t)$$
 , $\langle \zeta(t)\zeta(t')\rangle = \delta(t-t')$

• Exact result G. S., S. N. Majumdar 08

$$\begin{split} & \rho_k(t) \sim t^{-\varphi\left(\frac{k}{\rho \log t}\right)} \;,\; \rho = \frac{\sqrt{3}}{2\pi} \\ & \varphi(x) = \frac{\sqrt{3}}{2\pi} x \log\left(\frac{2x}{\sqrt{x^2 + 3}}\right) + \frac{1}{4} \left(1 - \frac{6}{\pi} \mathrm{ArcSin}\left(\frac{x}{\sqrt{x^2 + 3}}\right)\right) \end{split}$$

Probability of *k*-zero crossings for diffusion equation

$$\partial_t \phi(x,t) = \nabla^2 \phi(x,t)$$
$$\langle \phi(x,0)\phi(x',0)\rangle = \delta^d(x-x')$$

 $p_k(t, L) \equiv \text{Proba. that } \phi(x, t) \text{ crosses zero } k \text{ times up to } t$

$$p_k(t,L) \sim t^{-\varphi\left(\frac{k}{\log t}\right)}$$
 , $t \ll L^2$

Numerical check

$$-\frac{\log p_k(t, L)}{\log t}$$
 as a function of k

Numerical check

- Mapping to a Gaussian Stationary Process (GSP)
 - The case of diffusion equation
 - The case of random polynomials
 - Numerical check
 - Conclusion
- Probability of k-zero crossings
 - Generalization to k zero crossings for diffusion and polynomials
 - Mean field approximation and large deviation function
 - A more refined analysis
 - Conclusion

Conclusion

Large deviation function for random polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

 $q_k(n) \equiv \text{Proba. that } K_n(x) \text{ has exactly } k \text{ real roots in } [0, 1]$

$$q_k(n) \propto n^{-\varphi\left(\frac{k}{\log n}\right)}$$

- Extension to other class of polynomials
- Extension to real eigenvalues of real random matrices (Ginibre's matrices)

A heuristic argument

Diffusion equation

$$\phi(x = 0, t) = (4\pi t)^{-d/2} \int_{0 < |\mathbf{x}| < L} d^d \mathbf{x} \exp\left(-\frac{\mathbf{x}^2}{4t}\right) \phi(\mathbf{x}, 0)
= \frac{S_d^{1/2}}{(4\pi t)^{d/2}} \int_0^L dr \ r^{\frac{1}{2}(d-1)} e^{-\frac{r^2}{4t}} \Psi(r)
\Psi(r) = S_d^{-1/2} r^{-\frac{1}{2}(d-1)} \lim_{\Delta r \to 0} \frac{1}{\Delta r} \int_{r < |\mathbf{x}| < r + \Delta r} d^d \mathbf{x} \ \phi(\mathbf{x}, 0)
\langle \Psi(r) \Psi(r') \rangle = \delta(r - r')$$

A heuristic argument

Diffusion equation

$$\phi(x=0,t) \propto \int_0^{L^2} du \, u^{\frac{d-2}{4}} e^{-\frac{u}{t}} \, \tilde{\Psi}(u)$$
$$\langle \tilde{\Psi}(u) \tilde{\Psi}(u') \rangle = \delta(u-u')$$

A heuristic argument

Diffusion equation

$$\phi(x=0,t) \propto \int_0^{L^2} du \ u^{\frac{d-2}{4}} e^{-\frac{u}{t}} \ \tilde{\Psi}(u)$$
$$\langle \tilde{\Psi}(u) \tilde{\Psi}(u') \rangle = \delta(u-u')$$

• Random polynomials : $K_n(x) = a_0 + \sum_{i=1}^n a_i i^{\frac{d-2}{4}} x^i$

$$K_n(1-1/t) \sim a_0 + \sum_{i=1}^n i^{\frac{d-2}{4}} e^{-\frac{i}{t}} a_i$$

$$\sim \int_0^n du \ u^{\frac{d-2}{4}} e^{-\frac{u}{t}} a(u)$$

$$\langle a(u)a(u') \rangle = \delta(u-u')$$