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Some background

A classic result by F. Spitzer (1956) states that the angular part {ω(t), t ≥ 0} of a

two-dimensional Brownian motion starting away from the origin satisfies the

following limit theorem

2ω(t)

log t

d−→ C as t→ +∞,

where C denotes the standard Cauchy law.
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two-dimensional Brownian motion starting away from the origin satisfies the

following limit theorem

2ω(t)

log t

d−→ C as t→ +∞,

where C denotes the standard Cauchy law. An analogue of this result for planar

isotropic α−stable Lévy processes was obtained by Bertoin and Werner (1996),

who showed that
2ω(t)√
log t

d−→ Gα as t→ +∞,

where Gα is a centered Gaussian limit law whose variance depends on α.
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Some background

A classic result by F. Spitzer (1956) states that the angular part {ω(t), t ≥ 0} of a

two-dimensional Brownian motion starting away from the origin satisfies the

following limit theorem

2ω(t)

log t

d−→ C as t→ +∞,

where C denotes the standard Cauchy law. An analogue of this result for planar

isotropic α−stable Lévy processes was obtained by Bertoin and Werner (1996),

who showed that
2ω(t)√
log t

d−→ Gα as t→ +∞,

where Gα is a centered Gaussian limit law whose variance depends on α. Notice

that both theorems can be obtained as a functional limit theorem in the Skorohod

topology. Doney and Vakeroudis (2013) revisit these problems, with further results

and an updated bibliography.
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The Kolmogorov diffusion

The Kolmogorov diffusion is the two-dimensional process Z = (A,B), where

B = {Bt, t ≥ 0} is a linear Brownian motion and

At =

∫ t

0

Bs ds

its primitive.
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The Kolmogorov diffusion

The Kolmogorov diffusion is the two-dimensional process Z = (A,B), where

B = {Bt, t ≥ 0} is a linear Brownian motion and

At =

∫ t

0

Bs ds

its primitive. It was introduced by Kolmogorov (1934), who considered the more

general process on Rn made out of the successive primitives of order p of a linear

Brownian motion, 0 ≤ p ≤ n− 1. It is a Feller process with infinitesimal generator

L =
1

2

∂2

∂y2
+ y

∂

∂x
·
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The Kolmogorov diffusion

The Kolmogorov diffusion is the two-dimensional process Z = (A,B), where

B = {Bt, t ≥ 0} is a linear Brownian motion and

At =

∫ t

0

Bs ds

its primitive. It was introduced by Kolmogorov (1934), who considered the more

general process on Rn made out of the successive primitives of order p of a linear

Brownian motion, 0 ≤ p ≤ n− 1. It is a Feller process with infinitesimal generator

L =
1

2

∂2

∂y2
+ y

∂

∂x
·

Nowadays, this process is still an object of research in analysis or in probability, as a

toy model for degenerate diffusion processes. See e.g. Kendall et al. (2004) for

coupling theorems and Hamel et al. (2014) for Harnack inequalities.
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Windings of the Kolmogorov diffusion

McKean (1963) investigated the asymptotic behaviour of the windings of the

Kolmogorov diffusion, and showed the following almost sure limit theorem:

ω(t)

log t

a.s.−→ −
√
3

2
as t→ +∞
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Windings of the Kolmogorov diffusion

McKean (1963) investigated the asymptotic behaviour of the windings of the

Kolmogorov diffusion, and showed the following almost sure limit theorem:

ω(t)

log t

a.s.−→ −
√
3

2
as t→ +∞

Compared to the planar Brownian case, the accuracy of the limit velocity of the

windings is not a surprise. Indeed, the degeneracy of the Kolmogorov diffusion

makes it wind in a very particular way, since this process visits a.s. alternatively and

clockwise the left and right half-planes.
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Windings of the Kolmogorov diffusion

McKean (1963) investigated the asymptotic behaviour of the windings of the

Kolmogorov diffusion, and showed the following almost sure limit theorem:

ω(t)

log t

a.s.−→ −
√
3

2
as t→ +∞

Compared to the planar Brownian case, the accuracy of the limit velocity of the

windings is not a surprise. Indeed, the degeneracy of the Kolmogorov diffusion

makes it wind in a very particular way, since this process visits a.s. alternatively and

clockwise the left and right half-planes. McKean introduced the successive passage

times at zero of the area process

T
(1)
0 = inf{t > 0, At = 0} and T

(n)
0 = inf{t > T

(n−1)
0 , At = 0},

and computed the exponential rate of escape of this sequence towards infinity.

These successive passage times have been studied further by Lachal (1997).
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The stable Kolmogorov process

By analogy with the Kolmogorov diffusion, we define the stable Kolmogorov

process as the two-dimensional process Z = (X,L), where L = {Lt, t ≥ 0} is a

strictly α−stable Lévy process and A its primitive.
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The stable Kolmogorov process

By analogy with the Kolmogorov diffusion, we define the stable Kolmogorov

process as the two-dimensional process Z = (X,L), where L = {Lt, t ≥ 0} is a

strictly α−stable Lévy process and A its primitive. We choose the following

normalization for the characteristic exponent

log(E[eiλL1 ]) = −(iλ)αe−iπαρ sgn(λ), λ ∈ R,

where α ∈ (0, 2] is the self-similarity parameter and ρ = P[L1 ≥ 0] is the positivity

parameter.
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The stable Kolmogorov process

By analogy with the Kolmogorov diffusion, we define the stable Kolmogorov

process as the two-dimensional process Z = (X,L), where L = {Lt, t ≥ 0} is a

strictly α−stable Lévy process and A its primitive. We choose the following

normalization for the characteristic exponent

log(E[eiλL1 ]) = −(iλ)αe−iπαρ sgn(λ), λ ∈ R,

where α ∈ (0, 2] is the self-similarity parameter and ρ = P[L1 ≥ 0] is the positivity

parameter. When α = 2, then necessarily ρ = 1/2 and L = {
√
2Bt, t ≥ 0} is a

Brownian motion. When α = 1, the process L is a Cauchy process, with or without

drift. When α ∈ (0, 1) ∪ (1, 2), the positivity parameter ρ reads

ρ =
1

2
+

1

πα
arctan(β tan(πα/2)),

where β is the skewness parameter of L1 (Zolotarev’s formula).
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The case when |L| is a subordinator

If ρ = 1, the process t 7→ Lt is a stable subordinator and has a.s. increasing sample

paths. After a while, the process t 7→ At also increases a.s.
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The case when |L| is a subordinator

If ρ = 1, the process t 7→ Lt is a stable subordinator and has a.s. increasing sample

paths. After a while, the process t 7→ At also increases a.s. Hence, the stable

Kolmogorov process enters the positive quadrant and then stays within once and

for all. Moreover, one has Xt/Lt → +∞, so that ω(t) converges a.s. to a finite

limit which is
̂(Z0,Ox) ∈ (−2π, π/2),

measured in the trigonometric or in the clockwise orientation.
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The case when |L| is a subordinator

If ρ = 1, the process t 7→ Lt is a stable subordinator and has a.s. increasing sample

paths. After a while, the process t 7→ At also increases a.s. Hence, the stable

Kolmogorov process enters the positive quadrant and then stays within once and

for all. Moreover, one has Xt/Lt → +∞, so that ω(t) converges a.s. to a finite

limit which is
̂(Z0,Ox) ∈ (−2π, π/2),

measured in the trigonometric or in the clockwise orientation.

If ρ = 0, the process t 7→ −Lt is a stable subordinator and the stable Kolmogorov

process enters the negative quadrant after a while, ω(t) converging a.s. to the

finite limit
̂(Z0,Ox) ± π ∈ (−2π, π/2).
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The harmonic measure of the half-planes

We henceforth suppose ρ ∈ (0, 1), so that the processes L and A oscillate, taking

arbitrary large positive or negative values. We also suppose that Z does not start at

(0, 0). We partition the punctured plane into

P− = {x < 0} ∪ {x = 0, y < 0} and P+ = {x > 0} ∪ {x = 0, y > 0}.
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The harmonic measure of the half-planes

We henceforth suppose ρ ∈ (0, 1), so that the processes L and A oscillate, taking

arbitrary large positive or negative values. We also suppose that Z does not start at

(0, 0). We partition the punctured plane into

P− = {x < 0} ∪ {x = 0, y < 0} and P+ = {x > 0} ∪ {x = 0, y > 0}.

When Z starts in P−, it eventually enters P+ through the half-line {x = 0, y > 0}.
The family of probability measures

P(x,y)[LT0 ∈ .], (x, y) ∈ P−,

is called the harmonic measure of the left half-plane.
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The harmonic measure of the half-planes

We henceforth suppose ρ ∈ (0, 1), so that the processes L and A oscillate, taking

arbitrary large positive or negative values. We also suppose that Z does not start at

(0, 0). We partition the punctured plane into

P− = {x < 0} ∪ {x = 0, y < 0} and P+ = {x > 0} ∪ {x = 0, y > 0}.

When Z starts in P−, it eventually enters P+ through the half-line {x = 0, y > 0}.
The family of probability measures

P(x,y)[LT0 ∈ .], (x, y) ∈ P−,

is called the harmonic measure of the left half-plane. Similarly, when Z starts in

P+, it eventually enters P− through the half-line {x = 0, y < 0} and the family of

probability measures P(x,y)[|LT0
| ∈ .], (x, y) ∈ P+, is the harmonic measure of the

right half-plane.
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An exact computation

Introduce the two parameters

γ =
ρα

1 + α
∈ (0, 1/2) and µ =

ρα

1 + α(1− ρ)
∈ (0, 1).
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An exact computation

Introduce the two parameters

γ =
ρα

1 + α
∈ (0, 1/2) and µ =

ρα

1 + α(1− ρ)
∈ (0, 1).

Then, for every y < 0, under P(0,y) we show that

LT0

d
= |y|(C1−γ

µ )(1)

where Cµ is a half-Cauchy random variable with density

sin(πµ)

πµ(x2 + 2 cos(πµ)x+ 1)
1{x≥0}

and the size bias X(1) of the integrable random variable X = C1−γ
µ is defined by

multiplying its density by x and renormalizing.
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An exact computation

Introduce the two parameters

γ =
ρα

1 + α
∈ (0, 1/2) and µ =

ρα

1 + α(1− ρ)
∈ (0, 1).

Then, for every y < 0, under P(0,y) we show that

LT0

d
= |y|(C1−γ

µ )(1)

where Cµ is a half-Cauchy random variable with density

sin(πµ)

πµ(x2 + 2 cos(πµ)x+ 1)
1{x≥0}

and the size bias X(1) of the integrable random variable X = C1−γ
µ is defined by

multiplying its density by x and renormalizing. For α = 2, this formula had been

obtained by McKean (1963).
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Some uniform estimates

The law of LT0 under P(x,y) with x < 0 is more complicated. Its Mellin transform

s 7→ E(x,y)[L
s−1
T0

]

can be expressed through a certain integral formula.
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Some uniform estimates

The law of LT0 under P(x,y) with x < 0 is more complicated. Its Mellin transform

s 7→ E(x,y)[L
s−1
T0

]

can be expressed through a certain integral formula. Assuming (x, y) ∈ P−, it can

be proved that this Mellin transform is real-analytic on (1/(γ − 1), 1/(1− γ)), with

two simple poles at 1/(γ − 1) and 1/(1− γ). In particular, the random variable LT0

has a smooth density fx,y under P(x,y), and these exist c1, c2 > 0 such that

fx,y(z) ∼
z→0

c1 z
µ/γ and fx,y(z) ∼

z→+∞
c2 z
−µ−1.
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Some uniform estimates

The law of LT0
under P(x,y) with x < 0 is more complicated. Its Mellin transform

s 7→ E(x,y)[L
s−1
T0

]

can be expressed through a certain integral formula. Assuming (x, y) ∈ P−, it can

be proved that this Mellin transform is real-analytic on (1/(γ − 1), 1/(1− γ)), with

two simple poles at 1/(γ − 1) and 1/(1− γ). In particular, the random variable LT0

has a smooth density fx,y under P(x,y), and these exist c1, c2 > 0 such that

fx,y(z) ∼
z→0

c1 z
µ/γ and fx,y(z) ∼

z→+∞
c2 z
−µ−1.

The same result holds for (x, y) ∈ P+, replacing ρ by 1− ρ in the definition of γ

and µ. Notice that the rough estimate

P(x,y)[LT0 > z] � z−µ as z → +∞

is crucial to obtain the persistence exponent of A (see next talk).
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Windings of the stable Kolmogorov process

Recall the definition of γ and introduce the auxiliary parameter

γ =
(1− ρ)α
1 + α

∈ (0, 1/2).
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Windings of the stable Kolmogorov process

Recall the definition of γ and introduce the auxiliary parameter

γ =
(1− ρ)α
1 + α

∈ (0, 1/2).

Our main result is the following.

Theorem. Assume ρ ∈ (0, 1) and (x, y) 6= (0, 0). Then, under P(x,y), one has

ω(t)

log t

a.s.−→ −2 sin(πγ) sin(πγ)

α sin(π(γ + γ))
as t→ +∞.
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Windings of the stable Kolmogorov process

Recall the definition of γ and introduce the auxiliary parameter

γ =
(1− ρ)α
1 + α

∈ (0, 1/2).

Our main result is the following.

Theorem. Assume ρ ∈ (0, 1) and (x, y) 6= (0, 0). Then, under P(x,y), one has

ω(t)

log t

a.s.−→ −2 sin(πγ) sin(πγ)

α sin(π(γ + γ))
as t→ +∞.

Notice that in the Brownian case α = 2, we have γ = γ = 1/3, so that

2 sin(πγ) sin(πγ)

α sin(π(γ + γ))
=

√
3

2

and we recover McKean’s result.
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Elements of proof I

By symmetry, we can suppose (x, y) ∈ P−. We consider the Markovian sequence(
T

(n)
0 , |L

T
(n)
0
|
)
n≥1

.
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Elements of proof I

By symmetry, we can suppose (x, y) ∈ P−. We consider the Markovian sequence(
T

(n)
0 , |L

T
(n)
0
|
)
n≥1

.

By self-similarity, the Markov property and an induction we obtain the identities

|L
T

(2p)
0
| d
= |LT0 | ×

p−1∏
k=1

`−k ×
p∏
k=1

`+k and |L
T

(2p−1)
0

| d
= |LT0 | ×

p−1∏
k=1

`−k ×
p−1∏
k=1

`+k

for all p ≥ 1, where {`+k , k ≥ 1} and {`−k , k ≥ 1} are two i.i.d. sequences

distributed as LT0
under P(0,1), resp. |LT0

| under P(0,−1).
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Elements of proof I

By symmetry, we can suppose (x, y) ∈ P−. We consider the Markovian sequence(
T

(n)
0 , |L

T
(n)
0
|
)
n≥1

.

By self-similarity, the Markov property and an induction we obtain the identities

|L
T

(2p)
0
| d
= |LT0 | ×

p−1∏
k=1

`−k ×
p∏
k=1

`+k and |L
T

(2p−1)
0

| d
= |LT0 | ×

p−1∏
k=1

`−k ×
p−1∏
k=1

`+k

for all p ≥ 1, where {`+k , k ≥ 1} and {`−k , k ≥ 1} are two i.i.d. sequences distributed

as LT0
under P(0,1), resp. |LT0

| under P(0,−1). The above exact computation shows

that log(`±) has finite exponential moments of both signs and that

E
[
log(`−)

]
= π cot(πγ) and E

[
log(`+)

]
= π cot(πγ).
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Elements of proof II

Setting θ0 = Ẑ0ZT0 , we observe the a.s. identifications

{ω(t) ≥ −(n− 1)π + θ0} = {T (n)
0 ≥ t}

and

{ω(t) ≤ −(n− 2)π + θ0} = {T (n−1)
0 ≤ t}.
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Elements of proof II

Setting θ0 = Ẑ0ZT0 , we observe the a.s. identifications

{ω(t) ≥ −(n− 1)π + θ0} = {T (n)
0 ≥ t}

and

{ω(t) ≤ −(n− 2)π + θ0} = {T (n−1)
0 ≤ t}.

Hence, the Theorem amounts to show that

1

n
log(T

(n)
0 )

a.s.−→ πα sin(π(γ + γ))

2 sin(πγ) sin(πγ)
=

πα

2
(cot(πγ) + cot(πγ)) as n→ +∞.
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Elements of proof II

Setting θ0 = Ẑ0ZT0
, we observe the a.s. identifications

{ω(t) ≥ −(n− 1)π + θ0} = {T (n)
0 ≥ t}

and

{ω(t) ≤ −(n− 2)π + θ0} = {T (n−1)
0 ≤ t}.

Hence, the Theorem amounts to show that

1

n
log(T

(n)
0 )

a.s.−→ πα sin(π(γ + γ))

2 sin(πγ) sin(πγ)
=

πα

2
(cot(πγ) + cot(πγ)) as n→ +∞.

We set Sn = T
(n)
0 − T (n−1)

0 . By self-similarity and the Markov property,

S2p
d
= |LT0

|α × τ+ ×

(
p−1∏
k=1

`−k × `+k

)α
with τ+ distributed as T0 under P(0,1).
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Elements of proof III

Putting everything together, we deduce from the law of large numbers and an

elementary large deviation estimate the required a.s. lower bound:

lim inf
n→∞

1

n
log(T

(n)
0 ) ≥ lim inf

n→∞

1

2p
log(S2p) ≥

πα

2
(cot(πγ) + cot(πγ)) = κα,ρ.
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Elements of proof III

Putting everything together, we deduce from the law of large numbers and an

elementary large deviation estimate the required a.s. lower bound:

lim inf
n→∞

1

n
log(T

(n)
0 ) ≥ lim inf

n→∞

1

2p
log(S2p) ≥

πα

2
(cot(πγ) + cot(πγ)) = κα,ρ.

To obtain the upper bound, we write

P(x,y)

[
T

(n)
0 ≥ en(κα,ρ+ε)

]
≤

n∑
k=1

P(x,y)

[
Sk ≥ n−1en(κα,ρ+ε)

]
≤

n∑
k=1

P(x,y)

[
Sk ≥ en(κα,ρ+ε/2)

]
for every ε > 0 and n large enough.
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Elements of proof III

Putting everything together, we deduce from the law of large numbers and an

elementary large deviation estimate the required a.s. lower bound:

lim inf
n→∞

1

n
log(T

(n)
0 ) ≥ lim inf

n→∞

1

2p
log(S2p) ≥

πα

2
(cot(πγ) + cot(πγ)) = κα,ρ.

To obtain the upper bound, we write

P(x,y)

[
T

(n)
0 ≥ en(κα,ρ+ε)

]
≤

n∑
k=1

P(x,y)

[
Sk ≥ n−1en(κα,ρ+ε)

]
≤

n∑
k=1

P(x,y)

[
Sk ≥ en(κα,ρ+ε/2)

]
for every ε > 0 and n large enough. We then proceed similarly with Cramér’s

theorem, thanks to the analogous identity in law for S2p−1.
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