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Outline

I. Random walks that avoid bounded sets
Strongly related to persistence probability. Motivated by Part II.

II. Applications to the largest gap problem
Interesting by itself. Related to persistence probability of iterated
random walks.
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I. Random walks that avoid bounded sets

1. The exit problem for random walks
Let X1,X2, . . . be i.i.d. r.v.’s so Sn := x + X1 + · · ·+ Xn is a
random walk.
Denote Px(·) the law of walk starting at x , and put Ex f :=

∫
fdPx .

Let τB := inf{n ≥ 1 : Sn ∈ B} be the hitting time for a Borel set
B. A huge number of works is devoted to the asymptotic of
Px(τB > n) under different assumptions of Sn and B. For example,
for B = (−∞, 0) ⊂ R this is the problem of persistence probability.
In this case a rather complete theory have been developed (from
Sparre-Andersen ’50s to Rogozin ’72). Some recent advances
include exit times from cones in Rd (Denisov & Wachtel ’12+).
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We will assume that B is bounded. Fewer results are available here.
Kesten, Spitzer ’63: For any aperiodic RW in Z1,2 and any finite
B ⊂ Z1,2, there exists

lim
n→∞

Px(τB > n)

P0(τ{0} > n)
:= gB(x).

Remark: in Z1, if Sn is centred and asymptotically α-stable with
1 < α ≤ 2, then P0(τ{0} > n) ∼ cn1/α−1L(n).
Moreover, L(n) = const if Var(X1) <∞.

Remark: gB(x) is harmonic for the walk killed as it hits B, that is
gB(x) = ExgB(SτB∧n).

The proof is by induction in |B| and a renewal argument. Neither
works in general case.
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2. Our assumptions and a lower bound
Assume that the walk is in R, EX1 = 0, Var(X1) := σ2 ∈ (0,∞).
Consider the basic case that B = (−d , d) for some d > 0. Put

pn(x) := Px(τ(−d ,d) > n), x /∈ B.

Hitting times for half-lines: for any x ≥ 0,

Px(τ(−∞,0) > n) ∼
√

2

π

U>(x)

σ
√
n
,

where U>(x) is the renewal function. It is harmonic for the walk
killed as it enters (−∞, 0) and satisfies U>(x) = Ex(x − Sτ(−∞,0)).
Lower bound: for |x | ≥ d , staying to one side of B gives

pn(x) ≥ Px(T1 > n) ∼
√

2

π

Ud(x)

σ
√
n
, Ud(x) := Ex |x − ST1 |,

where T1 is the first moment of jump over ∂B = {−d , d}.
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3. Results for the basic case
Let Tk be the moment of the kth jump over {−d , d} from the
outside; let Hk := STk

, k ≥ 0 be the overshoots; denote the # of
jumps over (−d , d) before it is hit as κ := min(k ≥ 1 : |Hk | < d).

Theorem 1
Let Sn be a random walk with EX1 = 0, EX 2

1 := σ2 ∈ (0,∞).
Then for any d > 0 and any x ∈ R,

pn(x) ∼
√

2

π

Vd(x)

σ
√
n
, Vd(x) := Ex

[ κ∑
i=1

|Hi − Hi−1|
]
.

Moreover, this holds uniformly for x = o(
√
n). Further,

• Vd(x) is harmonic for the walk killed as it enters (−d , d);
• 0 < Ud(x) ≤ Vd(x) <∞ for |x | ≥ d ;
• Vd(±(d + y))− Ud(±(d + y))→ 0 as d →∞ for any y ≥ 0.

The later means that there almost no jumps over a wide stripe.
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4. Ideas of the proof
1. It costs to jump over:
There exists a γ ∈ (0, 1) such that

Px(|H1| ≥ d) ≤ γ.

This follows since H1 converge weakly as x → ±∞ to the
overshoots over “infinitely remote” levels.

2. Regularity of pn(x) in both x and n is needed.
Lemma: For any x ∈ R and n ≥ 1, pn(x) ≤ C |x |n−1/2.
Roughly, Expn−T1(H1)1{|H1|≥d ,T1≤n} is controlled by Ex |H1|.
3. The mechanism of stabilisation:
For any α ∈ (0, 1) it holds that

Ex |H1| ≤ α|x |+ K (α), |x | ≥ d .

This follows from the known Ex |H1| = o(|x |) as |x | → ∞.
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5. General sets
Let M be the state space of the random walk, that is M := λZ if
the walk is λ-arithmetic for some λ > 0 and M := R if otherwise.
Denote T ′k the moments of jumps over {inf B, supB}; H ′k := S ′Tk

the overshoots; and put κ′ := min{k ≥ 1 : T ′k ≥ τB}.

Theorem 2
Assume that EX1 = 0, EX 2

1 := σ2 ∈ (0,∞), and B is a bounded
Borel set with the non-empty IntM(B). Then for any x ∈ M,

p′n(x) ∼
√

2VB(x)

σ
√
πn

, VB(x) := Ex

[ κ′∑
i=1

∣∣H ′i−H ′i−1∣∣1{H′i−1 /∈Conv(B)}

]
.

Moreover, this holds uniformly for x = o(
√
n). It is true that

0 < VB(x) <∞ for x /∈ Conv(B).

Clearly, V(−d ,d)(x) = Vd(x).
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6. Heuristics
1. It costs to start at Conv(B) \ B and exit from it avoiding B.
2. It costs exponentially in time to stay within Conv(B) so the
time spent there is negligible.
3. The rest is as in the basic case.
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7. Conditional functional limit theorem
Define Ŝn(t): for t = k/n with a k ∈ N put Ŝn(k/n) := Sk/(σ

√
n),

and define the other values by linear interpolation.

Theorem 3
Under assumptions of Thm 2, for any x ∈ M such that VB(x) > 0,

Lawx(Ŝn(·)|τB > n)
D→ Law(ρW+) in C [0, 1],

where W+ is a Brownian meander, ρ is a r.v. independent of W+

with the distribution given by P(ρ = ±1) = 1
2 ±

x−ExSτB
2VB(x)

.

Moreover, Px(T ′νn ≤ bn|τB > n)→ 1 for any bn →∞, where
νn := max{k ≥ 0 : T ′k ≤ n}.
The later means that the conditional distributions of the moment
of the last jump T ′νn over the edges of B are tight.
For integer-valued asymptotically α-stable walks (1 ≤ α ≤ 2) the
weak convergence was proved by Belkin ’72.
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II. The largest gap problem
Define the largest gap (maximal spacing) within the range of Sn:

Gap({Sk}nk≥1) := Gn := max
1≤k≤n−1

(
S(k+1,n) − S(k,n)

)
,

where mn := S(1,n) ≤ S(2,n) ≤ · · · ≤ S(n,n) =: Mn denote the
elements of S1, . . . ,Sn arranged in the weakly ascending order.

Motivation: persistence of iterated random walks Zn = Y (|Sn|),
where Y (t) is a centred Lévy process independent with Sn.
Considered by Baumgarten ’11, V. ’12. Is it true that

P(Zk > 0, k = 1, . . . , n) � P(Y (t) > 0,mn ≤ t ≤ Mn)?

The closest result by Borodin ’81: for any aperiodic random walk
in Z, the number En := (Mn −mn)−#({Sk}nk=1) + 1 of

non-visited sites within the range satisfies En√
n

P→ 0 (under

EX1 = 0, Var(X1) <∞).
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where Y (t) is a centred Lévy process independent with Sn.
Considered by Baumgarten ’11, V. ’12. Is it true that

P(Zk > 0, k = 1, . . . , n) � P(Y (t) > 0,mn ≤ t ≤ Mn)?

The closest result by Borodin ’81: for any aperiodic random walk
in Z, the number En := (Mn −mn)−#({Sk}nk=1) + 1 of

non-visited sites within the range satisfies En√
n

P→ 0 (under

EX1 = 0, Var(X1) <∞).

Random walks that avoid bounded sets and the largest gap problem Vladislav Vysotsky



2. The order of Gn.

Proposition (Ding, Peres, V.)

If EX1 = 0, Var(X1) <∞, then the family Law(Gn)n≥1 is tight.

Proof: Notice that for any h > 0,

{Gn ≥ 2h} =
n⋃

k=1

{
Si /∈ (Sk , Sk + 2h), i = 1, . . . , n; Sk < Mn

}
.

By splitting the trajectory at Sk and reversing time for the part
S1, . . . ,Sk−1, we obtain

P(Gn ≥ 2h) ≤ . . .

≤ 2

σ2π

n∑
k=1

(
Vh(h)− Uh(h)

)
Vh(−h) +

(
Vh(−h)− Uh(−h)

)
Vh(h) + o(1)√

k(n − k + 1)
.
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3. The limit theorems for Gn and En.

Theorem 4
Let Sn be a random walk with EX1 = 0, EX 2

1 <∞. For any
sequence bn →∞ such that bn = o(n) it holds that

G Int
n := max

bn≤k≤n−bn
(S(k+1,n) − S(k,n))

P−→ u,

where u = λ if the walk is λ-arithmetic and u = 0 if o/w, and

GExt
n := max

k∈[1,bn]∪[n−bn,n−1]
(S(k+1,n) − S(k,n))

D−→ max(G−,G+),

where G− and G+ are i.i.d. positive proper random variables.

Consequently, Gn
D−→ max(G−,G+).

Moreover, if the walk is λ-arithmetic, then

En
D−→ E− + E+,

where E− and E+ are i.i.d. proper random variables.
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What are G±,E±?
Let S>

n and S<n be independent Markov chains on [0,∞) and
(−∞, 0), resp., that start at 0 with the transition probabilities

Px(S>
1 ∈ dy) =

U>(y)

U>(x)
Px(S1 ∈ dy), x , y ≥ 0,

Px(S<1 ∈ dy) =
U<(y)

U<(x)
Px(S1 ∈ dy), x ≥ 0, y < 0.

These are the Doob h-transforms of the random walk Sn.
Here U>(x) = x − ExSτ(−∞,0) and U<(x) := ExSτ[0,∞)

− x .

Let

G+ := Gap({S>
n ,−S<n }n≥0), E+ := #(λN \ {S>

n ,−S<n }n≥0).

No gaps in the bulk: the Dvoretzky-Erdös-Kakutani Theorem that
a Brownian motion never increases and Theorem 3 (which is
needed to approach the edges of the range).
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Connection with the local time Lx(t) of a Brownian motion W (t)
Denote M := max

0≤t≤1
W (t),m := min

0≤t≤1
W (t). Then

P
(
Lx(1) > 0 for all m < x < M) = 1, P

(
LM(1) = Lm(1) = 0

)
= 1.

Consequently,
P
(

min
m≤x≤M

Lx(1) > 0
)

= 1.

However, for any ε > 0,

P
(

min
m+ε≤x≤M−ε

Lx(1) > 0
)

= 1. (1)

This does not imply our Theorem 4 since there is no general
invariance principle for local times: available only for aperiodic
walks in Z and the walks with E exp(itX1) ∈ L2(R) (Borodin ’80s).
However, for such walks (1) matches our result on G Int

n with
bn � n.
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