Random walks that avoid bounded sets, and applications to the largest gap problem

Vlad Vysotsky

Arizona State University,
St. Petersburg Division of Steklov Institute, Chebyshev Laboratory at St. Petersburg State University

$$
\text { Darmstadt, July 16, } 2014
$$

Outline

I. Random walks that avoid bounded sets Strongly related to persistence probability. Motivated by Part II.
II. Applications to the largest gap problem Interesting by itself. Related to persistence probability of iterated random walks.

I. Random walks that avoid bounded sets

1. The exit problem for random walks

Let X_{1}, X_{2}, \ldots be i.i.d. r.v.'s so $S_{n}:=x+X_{1}+\cdots+X_{n}$ is a random walk.
Denote $\mathbb{P}_{x}(\cdot)$ the law of walk starting at x, and put $\mathbb{E}_{x} f:=\int f d \mathbb{P}_{x}$.

I. Random walks that avoid bounded sets

1. The exit problem for random walks

Let X_{1}, X_{2}, \ldots be i.i.d. r.v.'s so $S_{n}:=x+X_{1}+\cdots+X_{n}$ is a random walk.
Denote $\mathbb{P}_{x}(\cdot)$ the law of walk starting at x, and put $\mathbb{E}_{x} f:=\int f d \mathbb{P}_{x}$.
Let $\tau_{B}:=\inf \left\{n \geq 1: S_{n} \in B\right\}$ be the hitting time for a Borel set B. A huge number of works is devoted to the asymptotic of $\mathbb{P}_{x}\left(\tau_{B}>n\right)$ under different assumptions of S_{n} and B. For example, for $B=(-\infty, 0) \subset \mathbb{R}$ this is the problem of persistence probability. In this case a rather complete theory have been developed (from Sparre-Andersen '50s to Rogozin '72). Some recent advances include exit times from cones in \mathbb{R}^{d} (Denisov \& Wachtel '12+).

We will assume that B is bounded. Fewer results are available here. Kesten, Spitzer '63: For any aperiodic RW in $\mathbb{Z}^{1,2}$ and any finite $B \subset \mathbb{Z}^{1,2}$, there exists

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{P}_{x}\left(\tau_{B}>n\right)}{\mathbb{P}_{0}\left(\tau_{\{0\}}>n\right)}:=g_{B}(x)
$$

Remark: in \mathbb{Z}^{1}, if S_{n} is centred and asymptotically α-stable with $1<\alpha \leq 2$, then $\mathbb{P}_{0}\left(\tau_{\{0\}}>n\right) \sim c n^{1 / \alpha-1} L(n)$.
Moreover, $L(n)=$ const if $\operatorname{Var}\left(X_{1}\right)<\infty$.

We will assume that B is bounded. Fewer results are available here. Kesten, Spitzer '63: For any aperiodic RW in $\mathbb{Z}^{1,2}$ and any finite $B \subset \mathbb{Z}^{1,2}$, there exists

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{P}_{x}\left(\tau_{B}>n\right)}{\mathbb{P}_{0}\left(\tau_{\{0\}}>n\right)}:=g_{B}(x)
$$

Remark: in \mathbb{Z}^{1}, if S_{n} is centred and asymptotically α-stable with $1<\alpha \leq 2$, then $\mathbb{P}_{0}\left(\tau_{\{0\}}>n\right) \sim c n^{1 / \alpha-1} L(n)$.
Moreover, $L(n)=$ const if $\operatorname{Var}\left(X_{1}\right)<\infty$.
Remark: $g_{B}(x)$ is harmonic for the walk killed as it hits B, that is $g_{B}(x)=\mathbb{E}_{x} g_{B}\left(S_{\tau_{B} \wedge n}\right)$.

The proof is by induction in $|B|$ and a renewal argument. Neither works in general case.

2. Our assumptions and a lower bound

Assume that the walk is in $\mathbb{R}, \mathbb{E} X_{1}=0, \operatorname{Var}\left(X_{1}\right):=\sigma^{2} \in(0, \infty)$.
Consider the basic case that $B=(-d, d)$ for some $d>0$. Put

$$
p_{n}(x):=\mathbb{P}_{x}\left(\tau_{(-d, d)}>n\right), \quad x \notin B .
$$

2. Our assumptions and a lower bound

Assume that the walk is in $\mathbb{R}, \mathbb{E} X_{1}=0, \operatorname{Var}\left(X_{1}\right):=\sigma^{2} \in(0, \infty)$.
Consider the basic case that $B=(-d, d)$ for some $d>0$. Put

$$
p_{n}(x):=\mathbb{P}_{x}\left(\tau_{(-d, d)}>n\right), \quad x \notin B .
$$

Hitting times for half-lines: for any $x \geq 0$,

$$
\mathbb{P}_{x}\left(\tau_{(-\infty, 0)}>n\right) \sim \sqrt{\frac{2}{\pi}} \frac{U \geqslant(x)}{\sigma \sqrt{n}},
$$

where $U \geqslant(x)$ is the renewal function. It is harmonic for the walk killed as it enters $(-\infty, 0)$ and satisfies $U \geqslant(x)=\mathbb{E}_{x}\left(x-S_{\tau_{(-\infty, 0)}}\right)$.

2. Our assumptions and a lower bound

Assume that the walk is in $\mathbb{R}, \mathbb{E} X_{1}=0, \operatorname{Var}\left(X_{1}\right):=\sigma^{2} \in(0, \infty)$.
Consider the basic case that $B=(-d, d)$ for some $d>0$. Put

$$
p_{n}(x):=\mathbb{P}_{x}\left(\tau_{(-d, d)}>n\right), \quad x \notin B .
$$

Hitting times for half-lines: for any $x \geq 0$,

$$
\mathbb{P}_{x}\left(\tau_{(-\infty, 0)}>n\right) \sim \sqrt{\frac{2}{\pi}} \frac{U_{\geqslant}(x)}{\sigma \sqrt{n}}
$$

where $U \geqslant(x)$ is the renewal function. It is harmonic for the walk killed as it enters $(-\infty, 0)$ and satisfies $U \geqslant(x)=\mathbb{E}_{x}\left(x-S_{\tau_{(-\infty, 0)}}\right)$. Lower bound: for $|x| \geq d$, staying to one side of B gives

$$
p_{n}(x) \geq \mathbb{P}_{x}\left(T_{1}>n\right) \sim \sqrt{\frac{2}{\pi}} \frac{U_{d}(x)}{\sigma \sqrt{n}}, \quad U_{d}(x):=\mathbb{E}_{x}\left|x-S_{T_{1}}\right|
$$

where T_{1} is the first moment of jump over $\partial B=\{-d, d\}$.

3. Results for the basic case

Let T_{k} be the moment of the k th jump over $\{-d, d\}$ from the outside; let $H_{k}:=S_{T_{k}}, k \geq 0$ be the overshoots; denote the $\#$ of jumps over $(-d, d)$ before it is hit as $\kappa:=\min \left(k \geq 1:\left|H_{k}\right|<d\right)$.

Theorem 1

Let S_{n} be a random walk with $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}:=\sigma^{2} \in(0, \infty)$.
Then for any $d>0$ and any $x \in \mathbb{R}$,

$$
p_{n}(x) \sim \sqrt{\frac{2}{\pi}} \frac{V_{d}(x)}{\sigma \sqrt{n}}, \quad V_{d}(x):=\mathbb{E}_{x}\left[\sum_{i=1}^{\kappa}\left|H_{i}-H_{i-1}\right|\right]
$$

Moreover, this holds uniformly for $x=o(\sqrt{n})$. Further,

- $V_{d}(x)$ is harmonic for the walk killed as it enters $(-d, d)$;
- $0<U_{d}(x) \leq V_{d}(x)<\infty$ for $|x| \geq d$;
- $V_{d}(\pm(d+y))-U_{d}(\pm(d+y)) \rightarrow 0$ as $d \rightarrow \infty$ for any $y \geq 0$.

The later means that there almost no jumps over a wide stripe.

4. Ideas of the proof

1. It costs to jump over:

There exists a $\gamma \in(0,1)$ such that

$$
\mathbb{P}_{x}\left(\left|H_{1}\right| \geq d\right) \leq \gamma
$$

This follows since H_{1} converge weakly as $x \rightarrow \pm \infty$ to the overshoots over "infinitely remote" levels.

4. Ideas of the proof

1. It costs to jump over:

There exists a $\gamma \in(0,1)$ such that

$$
\mathbb{P}_{x}\left(\left|H_{1}\right| \geq d\right) \leq \gamma
$$

This follows since H_{1} converge weakly as $x \rightarrow \pm \infty$ to the overshoots over "infinitely remote" levels.
2. Regularity of $p_{n}(x)$ in both x and n is needed.

Lemma: For any $x \in \mathbb{R}$ and $n \geq 1, p_{n}(x) \leq C|x| n^{-1 / 2}$.
Roughly, $\mathbb{E}_{x} p_{n-T_{1}}\left(H_{1}\right) \mathbb{1}_{\left\{\left|H_{1}\right| \geq d, T_{1} \leq n\right\}}$ is controlled by $\mathbb{E}_{x}\left|H_{1}\right|$.

4. Ideas of the proof

1. It costs to jump over:

There exists a $\gamma \in(0,1)$ such that

$$
\mathbb{P}_{x}\left(\left|H_{1}\right| \geq d\right) \leq \gamma
$$

This follows since H_{1} converge weakly as $x \rightarrow \pm \infty$ to the overshoots over "infinitely remote" levels.
2. Regularity of $p_{n}(x)$ in both x and n is needed.

Lemma: For any $x \in \mathbb{R}$ and $n \geq 1, p_{n}(x) \leq C|x| n^{-1 / 2}$.
Roughly, $\mathbb{E}_{x} p_{n-T_{1}}\left(H_{1}\right) \mathbb{1}_{\left\{\left|H_{1}\right| \geq d, T_{1} \leq n\right\}}$ is controlled by $\mathbb{E}_{x}\left|H_{1}\right|$.
3. The mechanism of stabilisation:

For any $\alpha \in(0,1)$ it holds that

$$
\mathbb{E}_{x}\left|H_{1}\right| \leq \alpha|x|+K(\alpha), \quad|x| \geq d
$$

This follows from the known $\mathbb{E}_{x}\left|H_{1}\right|=o(|x|)$ as $|x| \rightarrow \infty$,

5. General sets

Let M be the state space of the random walk, that is $M:=\lambda \mathbb{Z}$ if the walk is λ-arithmetic for some $\lambda>0$ and $M:=\mathbb{R}$ if otherwise. Denote T_{k}^{\prime} the moments of jumps over $\{\inf B, \sup B\} ; H_{k}^{\prime}:=S_{T_{k}}^{\prime}$ the overshoots; and put $\kappa^{\prime}:=\min \left\{k \geq 1: T_{k}^{\prime} \geq \tau_{B}\right\}$.

5. General sets

Let M be the state space of the random walk, that is $M:=\lambda \mathbb{Z}$ if the walk is λ-arithmetic for some $\lambda>0$ and $M:=\mathbb{R}$ if otherwise. Denote T_{k}^{\prime} the moments of jumps over $\{\inf B, \sup B\} ; H_{k}^{\prime}:=S_{T_{k}}^{\prime}$ the overshoots; and put $\kappa^{\prime}:=\min \left\{k \geq 1: T_{k}^{\prime} \geq \tau_{B}\right\}$.

Theorem 2
Assume that $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}:=\sigma^{2} \in(0, \infty)$, and B is a bounded Borel set with the non-empty $\operatorname{Int}_{M}(B)$. Then for any $x \in M$,
$p_{n}^{\prime}(x) \sim \frac{\sqrt{2} V_{B}(x)}{\sigma \sqrt{\pi n}}, \quad V_{B}(x):=\mathbb{E}_{x}\left[\sum_{i=1}^{\kappa^{\prime}}\left|H_{i}^{\prime}-H_{i-1}^{\prime}\right| \mathbb{1}_{\left\{H_{i-1}^{\prime} \notin \operatorname{Conv}(B)\right\}}\right]$.
Moreover, this holds uniformly for $x=o(\sqrt{n})$. It is true that $0<V_{B}(x)<\infty$ for $x \notin \operatorname{Conv}(B)$.
Clearly, $V_{(-d, d)}(x)=V_{d}(x)$.

6. Heuristics

1. It costs to start at $\operatorname{Conv}(B) \backslash B$ and exit from it avoiding B. 2. It costs exponentially in time to stay within $\operatorname{Conv}(B)$ so the time spent there is negligible.
2. The rest is as in the basic case.

7. Conditional functional limit theorem

Define $\hat{S}_{n}(t)$: for $t=k / n$ with a $k \in \mathbb{N}$ put $\hat{S}_{n}(k / n):=S_{k} /(\sigma \sqrt{n})$, and define the other values by linear interpolation.
Theorem 3
Under assumptions of Thm 2, for any $x \in M$ such that $V_{B}(x)>0$,

$$
\operatorname{Law}_{x}\left(\hat{S}_{n}(\cdot) \mid \tau_{B}>n\right) \xrightarrow{\mathcal{P}} \operatorname{Law}\left(\rho W_{+}\right) \quad \text { in } C[0,1],
$$

where W_{+}is a Brownian meander, ρ is a r.v. independent of W_{+} with the distribution given by $\mathbb{P}(\rho= \pm 1)=\frac{1}{2} \pm \frac{x-\mathbb{E}_{x} S_{\tau_{B}}}{2 V_{B}(x)}$.

7. Conditional functional limit theorem

Define $\hat{S}_{n}(t)$: for $t=k / n$ with a $k \in \mathbb{N}$ put $\hat{S}_{n}(k / n):=S_{k} /(\sigma \sqrt{n})$, and define the other values by linear interpolation.

Theorem 3

Under assumptions of Thm 2, for any $x \in M$ such that $V_{B}(x)>0$,

$$
\operatorname{Law}_{x}\left(\hat{S}_{n}(\cdot) \mid \tau_{B}>n\right) \xrightarrow{\mathcal{P}} \operatorname{Law}\left(\rho W_{+}\right) \quad \text { in } C[0,1],
$$

where W_{+}is a Brownian meander, ρ is a r.v. independent of W_{+} with the distribution given by $\mathbb{P}(\rho= \pm 1)=\frac{1}{2} \pm \frac{x-\mathbb{E}_{X} S_{\tau_{B}}}{2 V_{B}(x)}$.
Moreover, $\mathbb{P}_{x}\left(T_{\nu_{n}}^{\prime} \leq b_{n} \mid \tau_{B}>n\right) \rightarrow 1$ for any $b_{n} \rightarrow \infty$, where $\nu_{n}:=\max \left\{k \geq 0: T_{k}^{\prime} \leq n\right\}$.
The later means that the conditional distributions of the moment of the last jump $T_{\nu_{n}}^{\prime}$ over the edges of B are tight.
For integer-valued asymptotically α-stable walks $(1 \leq \alpha \leq 2)$ the weak convergence was proved by Belkin '72.

II. The largest gap problem

Define the largest gap (maximal spacing) within the range of S_{n} :

$$
\operatorname{Gap}\left(\left\{S_{k}\right\}_{k \geq 1}^{n}\right):=G_{n}:=\max _{1 \leq k \leq n-1}\left(S_{(k+1, n)}-S_{(k, n)}\right)
$$

where $m_{n}:=S_{(1, n)} \leq S_{(2, n)} \leq \cdots \leq S_{(n, n)}=: M_{n}$ denote the elements of S_{1}, \ldots, S_{n} arranged in the weakly ascending order.
Motivation: persistence of iterated random walks $Z_{n}=Y\left(\left|S_{n}\right|\right)$, where $Y(t)$ is a centred Lévy process independent with S_{n}. Considered by Baumgarten '11, V. '12. Is it true that

$$
\mathbb{P}\left(Z_{k}>0, k=1, \ldots, n\right) \asymp \mathbb{P}\left(Y(t)>0, m_{n} \leq t \leq M_{n}\right) ?
$$

II. The largest gap problem

Define the largest gap (maximal spacing) within the range of S_{n} :

$$
\operatorname{Gap}\left(\left\{S_{k}\right\}_{k \geq 1}^{n}\right):=G_{n}:=\max _{1 \leq k \leq n-1}\left(S_{(k+1, n)}-S_{(k, n)}\right),
$$

where $m_{n}:=S_{(1, n)} \leq S_{(2, n)} \leq \cdots \leq S_{(n, n)}=: M_{n}$ denote the elements of S_{1}, \ldots, S_{n} arranged in the weakly ascending order.
Motivation: persistence of iterated random walks $Z_{n}=Y\left(\left|S_{n}\right|\right)$, where $Y(t)$ is a centred Lévy process independent with S_{n}. Considered by Baumgarten '11, V. '12. Is it true that

$$
\mathbb{P}\left(Z_{k}>0, k=1, \ldots, n\right) \asymp \mathbb{P}\left(Y(t)>0, m_{n} \leq t \leq M_{n}\right) ?
$$

The closest result by Borodin '81: for any aperiodic random walk in \mathbb{Z}, the number $E_{n}:=\left(M_{n}-m_{n}\right)-\#\left(\left\{S_{k}\right\}_{k=1}^{n}\right)+1$ of non-visited sites within the range satisfies $\frac{E_{n}}{\sqrt{n}} \xrightarrow{\mathbb{P}} 0$ (under $\left.\mathbb{E} X_{1}=0, \operatorname{Var}\left(X_{1}\right)<\infty\right)$.
2. The order of G_{n}.

Proposition (Ding, Peres, V.)

If $\mathbb{E} X_{1}=0, \operatorname{Var}\left(X_{1}\right)<\infty$, then the family $\operatorname{Law}\left(G_{n}\right)_{n \geq 1}$ is tight.
Proof: Notice that for any $h>0$,

$$
\left\{G_{n} \geq 2 h\right\}=\bigcup_{k=1}^{n}\left\{S_{i} \notin\left(S_{k}, S_{k}+2 h\right), i=1, \ldots, n ; S_{k}<M_{n}\right\}
$$

By splitting the trajectory at S_{k} and reversing time for the part S_{1}, \ldots, S_{k-1}, we obtain

$$
\begin{gathered}
\mathbb{P}\left(G_{n} \geq 2 h\right) \leq \ldots \\
\leq \frac{2}{\sigma^{2} \pi} \sum_{k=1}^{n} \frac{\left(V_{h}(h)-U_{h}(h)\right) V_{h}(-h)+\left(V_{h}(-h)-U_{h}(-h)\right) V_{h}(h)+o(1)}{\sqrt{k(n-k+1)}}
\end{gathered}
$$

3. The limit theorems for G_{n} and E_{n}.

Theorem 4

Let S_{n} be a random walk with $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}<\infty$. For any sequence $b_{n} \rightarrow \infty$ such that $b_{n}=o(n)$ it holds that

$$
G_{n}^{\text {Int }}:=\max _{b_{n} \leq k \leq n-b_{n}}\left(S_{(k+1, n)}-S_{(k, n)}\right) \xrightarrow{\mathbb{P}} u,
$$

where $u=\lambda$ if the walk is λ-arithmetic and $u=0$ if o / w, and

$$
G_{n}^{E x t}:=\max _{k \in\left[1, b_{n}\right] \cup\left[n-b_{n}, n-1\right]}\left(S_{(k+1, n)}-S_{(k, n)}\right) \xrightarrow{\mathcal{D}} \max \left(G^{-}, G^{+}\right),
$$

where G^{-}and G^{+}are i.i.d. positive proper random variables.
Consequently, $G_{n} \xrightarrow{\mathcal{D}} \max \left(G^{-}, G^{+}\right)$.
3. The limit theorems for G_{n} and E_{n}.

Theorem 4

Let S_{n} be a random walk with $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}<\infty$. For any sequence $b_{n} \rightarrow \infty$ such that $b_{n}=o(n)$ it holds that

$$
G_{n}^{\text {Int }}:=\max _{b_{n} \leq k \leq n-b_{n}}\left(S_{(k+1, n)}-S_{(k, n)}\right) \xrightarrow{\mathbb{P}} u,
$$

where $u=\lambda$ if the walk is λ-arithmetic and $u=0$ if o / w, and

$$
G_{n}^{E x t}:=\max _{k \in\left[1, b_{n}\right] \cup\left[n-b_{n}, n-1\right]}\left(S_{(k+1, n)}-S_{(k, n)}\right) \xrightarrow{\mathcal{D}} \max \left(G^{-}, G^{+}\right),
$$

where G^{-}and G^{+}are i.i.d. positive proper random variables.
Consequently, $G_{n} \xrightarrow{\mathcal{D}} \max \left(G^{-}, G^{+}\right)$.
Moreover, if the walk is λ-arithmetic, then

$$
E_{n} \xrightarrow{\mathcal{D}} E^{-}+E^{+},
$$

where E^{-}and E^{+}are i.i.d. proper random variables.

What are $G_{ \pm}, E_{ \pm}$?
Let S_{n}^{\geqslant}and $S_{n}^{<}$be independent Markov chains on $[0, \infty)$ and $(-\infty, 0)$, resp., that start at 0 with the transition probabilities

$$
\begin{gathered}
\mathbb{P}_{x}\left(S_{1}^{\geqslant} \in d y\right)=\frac{U_{\geqslant}(y)}{U_{\geqslant}(x)} \mathbb{P}_{x}\left(S_{1} \in d y\right), \quad x, y \geq 0 \\
\mathbb{P}_{x}\left(S_{1}^{<} \in d y\right)=\frac{U_{<}(y)}{U_{<}(x)} \mathbb{P}_{x}\left(S_{1} \in d y\right), \quad x \geq 0, y<0
\end{gathered}
$$

These are the Doob h-transforms of the random walk S_{n}. Here $U_{\geqslant}(x)=x-\mathbb{E}_{x} S_{\tau_{(-\infty, 0)}}$ and $U_{<}(x):=\mathbb{E}_{x} S_{\tau_{[0, \infty)}}-x$.

What are $G_{ \pm}, E_{ \pm}$?
Let S_{n}^{\geqslant}and $S_{n}^{<}$be independent Markov chains on $[0, \infty)$ and $(-\infty, 0)$, resp., that start at 0 with the transition probabilities

$$
\begin{gathered}
\mathbb{P}_{x}\left(S_{1}^{\geqslant} \in d y\right)=\frac{U_{\geqslant}(y)}{U_{\geqslant}(x)} \mathbb{P}_{x}\left(S_{1} \in d y\right), \quad x, y \geq 0 \\
\mathbb{P}_{x}\left(S_{1}^{<} \in d y\right)=\frac{U_{<}(y)}{U_{<}(x)} \mathbb{P}_{x}\left(S_{1} \in d y\right), \quad x \geq 0, y<0
\end{gathered}
$$

These are the Doob h-transforms of the random walk S_{n}.
Here $U_{\geqslant}(x)=x-\mathbb{E}_{x} S_{\tau_{(-\infty, 0)}}$ and $U_{<}(x):=\mathbb{E}_{x} S_{\tau_{[0, \infty)}}-x$.
Let

$$
G^{+}:=\operatorname{Gap}\left(\left\{S_{n}^{\geqslant},-S_{n}^{<}\right\}_{n \geq 0}\right), \quad E^{+}:=\#\left(\lambda \mathbb{N} \backslash\left\{S_{n}^{\geqslant},-S_{n}^{<}\right\}_{n \geq 0}\right) .
$$

What are $G_{ \pm}, E_{ \pm}$?
Let S_{n}^{\geqslant}and $S_{n}^{<}$be independent Markov chains on $[0, \infty)$ and $(-\infty, 0)$, resp., that start at 0 with the transition probabilities

$$
\begin{gathered}
\mathbb{P}_{x}\left(S_{1}^{\geqslant} \in d y\right)=\frac{U_{\geqslant}(y)}{U_{\geqslant}(x)} \mathbb{P}_{x}\left(S_{1} \in d y\right), \quad x, y \geq 0 \\
\mathbb{P}_{x}\left(S_{1}^{<} \in d y\right)=\frac{U_{<}(y)}{U_{<}(x)} \mathbb{P}_{x}\left(S_{1} \in d y\right), \quad x \geq 0, y<0
\end{gathered}
$$

These are the Doob h-transforms of the random walk S_{n}. Here $U_{\geqslant}(x)=x-\mathbb{E}_{x} S_{\tau_{(-\infty, 0)}}$ and $U_{<}(x):=\mathbb{E}_{x} S_{\tau_{[0, \infty)}}-x$. Let

$$
G^{+}:=\operatorname{Gap}\left(\left\{S_{n}^{\geqslant},-S_{n}^{<}\right\}_{n \geq 0}\right), \quad E^{+}:=\#\left(\lambda \mathbb{N} \backslash\left\{S_{n}^{\geqslant},-S_{n}^{<}\right\}_{n \geq 0}\right) .
$$

No gaps in the bulk: the Dvoretzky-Erdös-Kakutani Theorem that a Brownian motion never increases and Theorem 3 (which is needed to approach the edges of the range).

Connection with the local time $L^{x}(t)$ of a Brownian motion $W(t)$ Denote $M:=\max _{0 \leq t \leq 1} W(t), m:=\min _{0 \leq t \leq 1} W(t)$. Then
$\mathbb{P}\left(L^{x}(1)>0\right.$ for all $\left.m<x<M\right)=1, \quad \mathbb{P}\left(L^{M}(1)=L^{m}(1)=0\right)=1$.
Consequently,

$$
\mathbb{P}\left(\min _{m \leq x \leq M} L^{x}(1)>0\right)=1
$$

Connection with the local time $L^{x}(t)$ of a Brownian motion $W(t)$ Denote $M:=\max _{0 \leq t \leq 1} W(t), m:=\min _{0 \leq t \leq 1} W(t)$. Then
$\mathbb{P}\left(L^{x}(1)>0\right.$ for all $\left.m<x<M\right)=1, \quad \mathbb{P}\left(L^{M}(1)=L^{m}(1)=0\right)=1$.
Consequently,

$$
\mathbb{P}\left(\min _{m \leq x \leq M} L^{x}(1)>0\right)=1
$$

However, for any $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(\min _{m+\varepsilon \leq x \leq M-\varepsilon} L^{x}(1)>0\right)=1 \tag{1}
\end{equation*}
$$

This does not imply our Theorem 4 since there is no general invariance principle for local times: available only for aperiodic walks in \mathbb{Z} and the walks with $\mathbb{E} \exp \left(i t X_{1}\right) \in L^{2}(\mathbb{R})$ (Borodin '80s). However, for such walks (1) matches our result on $G_{n}^{\operatorname{lnt}}$ with $b_{n} \asymp n$.

