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Let Sn be a random walks with independent identically distributed increments Xi. Let Tx
denote the first time when Sn crosses−x, that is,

Tx := inf{n ≥ 1 : Sn < −x}.

It is well known that if P(Sn > 0)→ ρ ∈ (0, 1) then

P(Tx > n) ∼ h(x)nρ−1L(n),

where h is the renewal function corresponding to strict decreasing ladder heights of our

random walk.

(The proof of this relation is based on the Wiener-Hopf factorisation.)



Let g(t) be an increasing function and consider

Tg := inf{n ≥ 1 : Sn < −g(n)}.

Wiener-Hopf identity for Tg is known under additional restrictions on g(t). Moreover, this

identity for curved boundaries is not very useful.



Brownian motion.

Uchiyama (1980), Novikov (1981) and Gärtner (1982):

0 < E[|B(T (bm)
g )|] <∞ ⇐⇒

∫ ∞
1

g(t)t−3/2dt <∞

and, moreover,

P(T (bm)
g > t) ∼ E[B(T (bm)

g )]P(T (bm)
1 > t) as t→∞.

Finiteness of the integral is also necessary: if
∫∞
1
g(t)t−3/2dt =∞ then

P{T (bm)
g > t} � P{T (bm)

1 > t} as t→∞.



Random walks.

Novikov (1981), Novikov (1982) and Novikov and Greenwood (1986): If g is concave and

Eg(T0) <∞ then there exists Rg ∈ (0,∞) such that

P(Tg > n) ∼ RgP(T0 > n)

Since P(T0 > n) ∼ nρ−1L(n),

Eg(T0) <∞ ⇔
∫ ∞

1

g(t)
L(t)
t2−ρ

dt <∞.

Therefore, one can not take g(t) ≥ t1−ρ+ε.

Aurzada, Kramm and Savov (2012), Aurzada and Kramm (2013):

If Sn is asymptotically stable and g(t) = tγ with some γ < 1/α then

P(Tg > n) = nρ−1+o(1).

This relation gives strong grounds to expect that P(Tg > n) and P(T0 > n) are

asymptotically equivalent under a weaker than Eg(T0) <∞ condition.



Theorem 1. Assume that P(Sn > 0)→ ρ ∈ (0, 1). If h(g(x)) is subadditive and

Eh(g(T0)) <∞ then there exists V (g) ∈ (0,∞) such that

P(Tg > n) ∼ V (g)P(T0 > n).



Remarks

• If Sn is asymptotically stable then

Eh(g(T0)) <∞ ⇔
∫ ∞

1

h(g(t))
th(c(t))

dt <∞.

• The theorem is valid if h(g(x) posesses a subadditive majorant r(x) such that

Er(T0) <∞. In particular,Theorem 1 is applicable to all functions g(t) ≤ tγ with

some γ < 1/α.

• Since every renewal function is subadditive, concavity of g(x) implies that h(g(x)) is

subadditive. Therefore, our condition is weaker than that in Greenwood and Novikov

(1986).



• Mogulskii and Pecherskii (1979): If g is superadditive, i.e., g(x+ y) ≥ g(x) + g(y),

then there exists a sequence of events En such that

∞∑
n=0

znP(Tg > n) = exp

{ ∞∑
n=1

zn

n
P(En)

}
.

Moreover,

En ⊆ {Sn ≥ −g(n)} for all n ≥ 1

and

En = {Sn ≥ −g(n)} for linear g(t).

From the upper bound for En we get

P(Tg > n) ≤ qn,

where qn is determined by

∞∑
n=0

znqn = exp

{ ∞∑
n=1

zn

n
P(Sn ≥ −g(n))

}
.



Assume that function g satisfies ∫ ∞
1

g(t)
tc(t)

dt <∞.

Then applying the estimate

P(Sn ∈ [x, x+ 1)) ≤ C

c(n)
,

we conclude that coefficients of

R(z) := exp

{ ∞∑
n=1

zn

n
P(Sn ∈ [−g(n), 0]

}
are summable, i.e., R(1) <∞. Noting now that

∞∑
n=0

znqn =

( ∞∑
n=0

znP(T0 > n)

)
R(z),

we arrive at the relation

qn ∼ R(1)P(T0 > n)



and, consequently,

1 ≤ lim inf
n→∞

P(Tg > n)
P(T0 > n)

≤ lim inf
n→∞

P(Tg > n)
P(T0 > n)

≤ R(1).

Note also that in order to obtain the relation P(Tg > n) ∼ CP(T0 > n) it suffices

to show that
∞∑
n=1

1
n
|P(En)−P(Sn > 0)| <∞.



The starting point of the proof of Theorem 1 is the following simple observation: Tg
coincides with one of strict descending ladder epochs of Sn. Let (τk, χk) be independent

copies of (T0,−ST0). Then

Tg =
ν∑
k=1

τk,

where

ν := min{k ≥ 1 : χ1 + · · ·+ χk > g(τ1 + · · ·+ τk)}.

Since the tail distribution function of τ ’s is regularly varying with index ρ− 1 ∈ (−1, 0),

we prove that, for any increasing function g,

lim
n→∞

P(Tg > n)
P(T0 > n)

= Eν ∈ [1,∞].

Thus, to prove Theorem 1 it suffices to show that Eν.



By the subadditivity of h(g(x)),

ν ≤ µ := min{k ≥ 1 : h(χ1 + . . .+ χk) > h(g(τ1)) + . . .+ h(g(τk))}.

The random walk on LHS has finite expectation. Thus, the finiteness of Eµ will follow from

the relation Eh(χ) =∞. But the latter is equivalent to Eχ =∞.

In case of finite Eχ we use a bit different upper bound for ν: Fix some k ≥ 1 and consider

Z(k) := χ1 + χ2 + . . .+ χk − g(τ1 + τ2 + ...+ τk)

and let Z
(k)
i be independent copies of Z . Using the subadditivity of g once again, one can

easily show that

ν ≤ kµ(k),

where

µ(k) := min{n ≥ 1 : Z(k)
1 + Z

(k)
2 + . . .+ Z(k)

n > 0}.



The subadditivity assumption in our Theorem 1 seems to be purely technical.

How can one obtain the same asymptotic behaviour without this assumption?



Theorem 2. Assume that Sn is asymptotically stable. If∫ ∞
0

h(g(t))
th(c(t/ log t))

dt <∞

then

P(Tg > n) ∼ V (g)P(T0 > n)

and

V (g) = lim
n→∞

E[h(Sn + g(n));Tg > n] <∞.



“Proof” of Theorem 2: Set

νn := min{k ≥ 1 : |Sk| > c(εnn)},

where εn is such that c(εnn) > g(n). Then

P(Tg > n) = P(Tg > n, νn ≤ δnn) + P(Tg > n, νn > δnn).

For the second probability we have

P(Tg > n, νn > δnn) ≤ P(νn > δnn) ≤ e−cδn/εn .

By the Markov property,

P(Tg > n, νn ≤ δnn) ∼ P(T0 > n)E[h(Sνn
+ g(νn));Tg > νn, νn ≤ nδn].

Next we show that

E[h(Sνn + g(νn));Tg > νn, νn ≤ nδn] ∼ E[h(Sνn + g(n));Tg > νn]

∼ lim
n→∞

E[h(Sn + g(n));Tg > n] = V (g).



Define

T̂g := min{n ≥ 1 : Sn < g(n)}.

If g is positive then

P(T̂g > n)
P(T0 > n)

= P(T̂g > n|T0 > n).

and one can try to represent the limit of this conditional probability as a functional of {Sn}
conditioned to stay nonnegative.

It is well-known that h(x) is a positive harmonic function for {Sn} killed at leaving [0,∞),

that is,

E[h(x+X), x+X > 0] = h(x), x ≥ 0.

We denote by Ph the Doob transform of P by the function h. More precisely, Ph

corresponds to the transition function

ph(x, dy) =
h(y)
h(x)

P(x+X ∈ dy), x, y ≥ 0.



Afanasyev, Geiger, Kersting and Vatutin (2005):

lim
n→∞

P(T̂g > n)
P(T0 > n)

= Ph(T̂g =∞).

Hambly, Kersting and Kyprianou (2003): For driftless random walks with finite variance,

Ph(T̂g =∞) > 0 ⇔
∫ ∞

1

g(x)
x3/2

dx <∞.



Theorem 3. Assume that Sn is asymptotically stable. If∫ ∞
0

h(g(t))
th(c(t/ log t))

dt <∞

then

P(T̂g > n) ∼ V̂ (g)P(T0 > n)

and

V̂ (g) = lim
n→∞

E[h(Sn − g(n)); T̂g > n] > 0.


