One-sided boundary crossing for random walks

Vitali Wachtel

University of Munich

(joint work with Denis Denisov)



Let S,, be a random walks with independent identically distributed increments X ;. Let T,

denote the first time when S,, crosses —x, that is,

T, :=inf{n>1:5, < —x}.
It is well known that if P(S,, > 0) — p € (0,1) then

P(T, > n) ~ h(z)n”"*L(n),

where h is the renewal function corresponding to strict decreasing ladder heights of our

random walk.

(The proof of this relation is based on the Wiener-Hopf factorisation.)



Let g(t) be an increasing function and consider

T, =inf{n>1:85, < —g(n)}.

Wiener-Hopf identity for 17, is known under additional restrictions on g(%). Moreover, this
identity for curved boundaries is not very useful.



Brownian motion.

Uchiyama (1980), Novikov (1981) and Gartner (1982):

0 <E[B(IT")|] < 00 < / g(Ot=3/2dt < o0
1

and, moreover,

P(T™ > t) ~ E[B(T™)P(T"™ > t) ast — .

Finiteness of the integral is also necessary: if [, g(t)t~3/2dt = oo then

P{Tg(bm) >t > P{Tl(bm) >t} ast — oo.



Random walks.

Novikov (1981), Novikov (1982) and Novikov and Greenwood (1986): If g is concave and
Eg(Tp) < oo then there exists R, € (0, 00) such that

P(T, >n)~ R,P(Tp > n)

Since P(Ty > n) ~ n?~1L(n),
> L(t
Eg(Ty) < 0o < / g(t)ﬁ%dt < 00.
1

Therefore, one can not take g(t) > t1—~T¢.

Aurzada, Kramm and Savov (2012), Aurzada and Kramm (2013):

If S,, is asymptotically stable and g(t) = t” with some v < 1/a then
P(T, > n) = nP~ 1o,

This relation gives strong grounds to expect that P(7, > n) and P(Tp > n) are
asymptotically equivalent under a weaker than Eg(Tj) < oo condition.



Theorem 1. Assume that P(S,, > 0) — p € (0,1). If h(g(x)) is subadditive and
Eh(g(Ty)) < oo then there exists V' (g) € (0, 00) such that

P(T, >n)~V(g)P(Ip > n).



Remarks

e If S,, is asymptotically stable then

Eh(g(Th)) < 0 < /100 Mdt < 00.

th(c(t))
e The theorem is valid if h(g(x) posesses a subadditive majorant () such that
Er(Ty) < oo. In particular,Theorem 1 is applicable to all functions g(t) < t7 with
some 7 < 1/

e Since every renewal function is subadditive, concavity of g(x) implies that h(g(x)) is
subadditive. Therefore, our condition is weaker than that in Greenwood and Novikov
(1986).



e Mogulskii and Pecherskii (1979): If g is superadditive, i.e., g(x + y) > g(x) + g(y),
then there exists a sequence of events F,, such that

Z Z"P(Ty; >n)=exp {Z iP(En)} .

n=0 n=1

Moreover,
E, C{S,>—g(n)} foraln>1

and
E, ={S,> —g(n)} forlinear g(t).

From the upper bound for £, we get
P(T, >n) < qn,
where @,, is determined by

S g, = exp {Z %P(Sn > —g(n))} |

n n=1



Assume that function g satisfies

> g(t)
/1 0 dt < oo.

Then applying the estimate

we conclude that coefficients of

R(2) = exp {Z TP, € [g<n>,0]}

are summable, i.e., R(1) < oco. Noting now that

Z 2"q, = <Z 2"P(Ty > n)) R(z),

n=0 n=0
we arrive at the relation
qn ™~ R(].)P(TO > n)



and, consequently,

o P(Ty>n) _ P(T, > n)
1<1 f J < lim inf
s ST s ) = R e s )

< R(1).

Note also that in order to obtain the relation P (7, > n) ~ CP(1y > n) it suffices
to show that

=1
ZE —P(S, > 0)] < oo.



The starting point of the proof of Theorem 1 is the following simple observation: 1,
coincides with one of strict descending ladder epochs of S, . Let (7%, X ) be independent

copies of (T, —ST,). Then
14
Ty=) 7
k=1
where

vi=mindk >1:x1+--+xe>9(m1+--+ 7))}

Since the tail distribution function of 7’s is regularly varying with index p — 1 € (—1,0),
we prove that, for any increasing function g,

lim P(T, > n)
n— 00 P(TO > n)

=Ev € [1,00].

Thus, to prove Theorem 1 it suffices to show that Ev.



By the subadditivity of h(g(x)),
v<p:=min{k >1:h(x1+ ...+ xx) > h(g(m1)) +...+ h(g(7))}

The random walk on LHS has finite expectation. Thus, the finiteness of E 1 will follow from

the relation EXh () = oco. But the latter is equivalent to Ex = oc.

In case of finite Xy we use a bit different upper bound for v: Fix some k& > 1 and consider
Z(k) =x1+Xxe+ ...+ Xk —g(7'1 —I-Tz—i—...—l—Tk)

and let Z,L-(k) be independent copies of Z. Using the subadditivity of g once again, one can

easily show that
v < ]{Iu(k)’

where
p*) = min{n >1: Zl(k) + Zék) +...+ 27" >0}



The subadditivity assumption in our Theorem 1 seems to be purely technical.

How can one obtain the same asymptotic behaviour without this assumption?



Theorem 2. Assume that S,, is asymptotically stable. If

> h(g(t))
/O th(c(t/logt))dt<oo

then
P(T, >n)~V(g)P(Ip >n)

and
V(g) = lim E[h(S, +g(n));Ty > n] < oo.

n—oo



“Proof” of Theorem 2: Set
Vp = min{k > 1:|Sk| > c(e,n)},
where £, is such that c¢(e,,n) > g(n). Then
P(T,>n)=P(T,; >n,v, <éyn)+P(T,; >n,v, >n).
For the second probability we have
P(T, > n,v, > 6,n) < P(v, > 6,n) < e On/en,
By the Markov property,
P(T, > n,vy, < 0,n) ~P(Ty > n)E[R(S,, +9(Vn)); Ty > Vn,vn < ndyp).
Next we show that

E[R(S,, +9(n)); Ty > Un, vy < ndy| ~ E[R(S,, +9(n)); T, > vy
~ lim E[h(S, +9g(n));T, >n] =V(g).

n—=oo



Define
fg :=min{n >1:5, <g(n)}.

If g is positive then
P(T, >n)
P(TO > n)

and one can try to represent the limit of this conditional probability as a functional of {.5,, }

= P(T, > n|Ty > n).

conditioned to stay nonnegative.

It is well-known that h(x) is a positive harmonic function for {.5,, } killed at leaving [0, c0),
that is,
Eh(r+ X),z+ X > 0] =h(x), x>0.

We denote by P the Doob transform of P by the function k. More precisely, P"

corresponds to the transition function

Ph(-fl7,dy) = %P(x + X edy), z,y>0.



Afanasyev, Geiger, Kersting and Vatutin (2005):

P(T.

= P"(T, = ).
n—oo P(Ty > n) (Ty = o0)

Hambly, Kersting and Kyprianou (2003): For driftless random walks with finite variance,

AN

h(p _ = g(z)
P"(T,=00)>0 <« /1 mdw<oo.



Theorem 3. Assume that S,, is asymptotically stable. If

then

and

> h(g(1))
/O th(c(t/logt))dt<oo

P(T\g >n) ~ V(g)P(Ty > n)

P

V(g) = lim E[h(S, —g(n)); T, > n] > 0.

n—aoo



