One-sided boundary crossing for random walks

Vitali Wachtel
University of Munich

(joint work with Denis Denisov)

Let S_{n} be a random walks with independent identically distributed increments X_{i}. Let T_{x} denote the first time when S_{n} crosses $-x$, that is,

$$
T_{x}:=\inf \left\{n \geq 1: S_{n}<-x\right\}
$$

It is well known that if $\mathbf{P}\left(S_{n}>0\right) \rightarrow \rho \in(0,1)$ then

$$
\mathbf{P}\left(T_{x}>n\right) \sim h(x) n^{\rho-1} L(n)
$$

where h is the renewal function corresponding to strict decreasing ladder heights of our random walk.
(The proof of this relation is based on the Wiener-Hopf factorisation.)

Let $g(t)$ be an increasing function and consider

$$
T_{g}:=\inf \left\{n \geq 1: S_{n}<-g(n)\right\}
$$

Wiener-Hopf identity for T_{g} is known under additional restrictions on $g(t)$. Moreover, this identity for curved boundaries is not very useful.

Brownian motion.

Uchiyama (1980), Novikov (1981) and Gärtner (1982):

$$
0<\mathbf{E}\left[\left|B\left(T_{g}^{(b m)}\right)\right|\right]<\infty \Longleftrightarrow \int_{1}^{\infty} g(t) t^{-3 / 2} d t<\infty
$$

and, moreover,

$$
\mathbf{P}\left(T_{g}^{(b m)}>t\right) \sim \mathbf{E}\left[B\left(T_{g}^{(b m)}\right)\right] \mathbf{P}\left(T_{1}^{(b m)}>t\right) \text { as } t \rightarrow \infty
$$

Finiteness of the integral is also necessary: if $\int_{1}^{\infty} g(t) t^{-3 / 2} d t=\infty$ then

$$
\mathbf{P}\left\{T_{g}^{(b m)}>t\right\}>\mathbf{P}\left\{T_{1}^{(b m)}>t\right\} \quad \text { as } t \rightarrow \infty
$$

Random walks.

Novikov (1981), Novikov (1982) and Novikov and Greenwood (1986): If g is concave and $\mathbf{E} g\left(T_{0}\right)<\infty$ then there exists $R_{g} \in(0, \infty)$ such that

$$
\mathbf{P}\left(T_{g}>n\right) \sim R_{g} \mathbf{P}\left(T_{0}>n\right)
$$

Since $\mathbf{P}\left(T_{0}>n\right) \sim n^{\rho-1} L(n)$,

$$
\mathbf{E} g\left(T_{0}\right)<\infty \quad \Leftrightarrow \quad \int_{1}^{\infty} g(t) \frac{L(t)}{t^{2-\rho}} d t<\infty
$$

Therefore, one can not take $g(t) \geq t^{1-\rho+\varepsilon}$.
Aurzada, Kramm and Savov (2012), Aurzada and Kramm (2013):
If S_{n} is asymptotically stable and $g(t)=t^{\gamma}$ with some $\gamma<1 / \alpha$ then

$$
\mathbf{P}\left(T_{g}>n\right)=n^{\rho-1+o(1)} .
$$

This relation gives strong grounds to expect that $\mathbf{P}\left(T_{g}>n\right)$ and $\mathbf{P}\left(T_{0}>n\right)$ are asymptotically equivalent under a weaker than $\mathbf{E} g\left(T_{0}\right)<\infty$ condition.

Theorem 1. Assume that $\mathbf{P}\left(S_{n}>0\right) \rightarrow \rho \in(0,1)$. If $h(g(x))$ is subadditive and $\mathbf{E} h\left(g\left(T_{0}\right)\right)<\infty$ then there exists $V(g) \in(0, \infty)$ such that

$$
\mathbf{P}\left(T_{g}>n\right) \sim V(g) \mathbf{P}\left(T_{0}>n\right)
$$

Remarks

- If S_{n} is asymptotically stable then

$$
\mathbf{E} h\left(g\left(T_{0}\right)\right)<\infty \quad \Leftrightarrow \quad \int_{1}^{\infty} \frac{h(g(t))}{t h(c(t))} d t<\infty
$$

- The theorem is valid if $h(g(x)$ posesses a subadditive majorant $r(x)$ such that $\mathbf{E} r\left(T_{0}\right)<\infty$. In particular, Theorem 1 is applicable to all functions $g(t) \leq t^{\gamma}$ with some $\gamma<1 / \alpha$.
- Since every renewal function is subadditive, concavity of $g(x)$ implies that $h(g(x))$ is subadditive. Therefore, our condition is weaker than that in Greenwood and Novikov (1986).
- Mogulskii and Pecherskii (1979): If g is superadditive, i.e., $g(x+y) \geq g(x)+g(y)$, then there exists a sequence of events E_{n} such that

$$
\sum_{n=0}^{\infty} z^{n} \mathbf{P}\left(T_{g}>n\right)=\exp \left\{\sum_{n=1}^{\infty} \frac{z^{n}}{n} \mathbf{P}\left(E_{n}\right)\right\}
$$

Moreover,

$$
E_{n} \subseteq\left\{S_{n} \geq-g(n)\right\} \quad \text { for all } n \geq 1
$$

and

$$
E_{n}=\left\{S_{n} \geq-g(n)\right\} \quad \text { for linear } g(t)
$$

From the upper bound for E_{n} we get

$$
\mathbf{P}\left(T_{g}>n\right) \leq q_{n}
$$

where q_{n} is determined by

$$
\sum_{n=0}^{\infty} z^{n} q_{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{z^{n}}{n} \mathbf{P}\left(S_{n} \geq-g(n)\right)\right\}
$$

Assume that function g satisfies

$$
\int_{1}^{\infty} \frac{g(t)}{t c(t)} d t<\infty
$$

Then applying the estimate

$$
\mathbf{P}\left(S_{n} \in[x, x+1)\right) \leq \frac{C}{c(n)}
$$

we conclude that coefficients of

$$
R(z):=\exp \left\{\sum_{n=1}^{\infty} \frac{z^{n}}{n} \mathbf{P}\left(S_{n} \in[-g(n), 0]\right\}\right.
$$

are summable, i.e., $R(1)<\infty$. Noting now that

$$
\sum_{n=0}^{\infty} z^{n} q_{n}=\left(\sum_{n=0}^{\infty} z^{n} \mathbf{P}\left(T_{0}>n\right)\right) R(z)
$$

we arrive at the relation

$$
q_{n} \sim R(1) \mathbf{P}\left(T_{0}>n\right)
$$

and, consequently,

$$
1 \leq \liminf _{n \rightarrow \infty} \frac{\mathbf{P}\left(T_{g}>n\right)}{\mathbf{P}\left(T_{0}>n\right)} \leq \liminf _{n \rightarrow \infty} \frac{\mathbf{P}\left(T_{g}>n\right)}{\mathbf{P}\left(T_{0}>n\right)} \leq R(1)
$$

Note also that in order to obtain the relation $\mathbf{P}\left(T_{g}>n\right) \sim C \mathbf{P}\left(T_{0}>n\right)$ it suffices to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|\mathbf{P}\left(E_{n}\right)-\mathbf{P}\left(S_{n}>0\right)\right|<\infty
$$

The starting point of the proof of Theorem 1 is the following simple observation: T_{g} coincides with one of strict descending ladder epochs of S_{n}. Let $\left(\tau_{k}, \chi_{k}\right)$ be independent copies of $\left(T_{0},-S_{T_{0}}\right)$. Then

$$
T_{g}=\sum_{k=1}^{\nu} \tau_{k}
$$

where

$$
\nu:=\min \left\{k \geq 1: \chi_{1}+\cdots+\chi_{k}>g\left(\tau_{1}+\cdots+\tau_{k}\right)\right\}
$$

Since the tail distribution function of τ 's is regularly varying with index $\rho-1 \in(-1,0)$, we prove that, for any increasing function g,

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{P}\left(T_{g}>n\right)}{\mathbf{P}\left(T_{0}>n\right)}=\mathbf{E} \nu \in[1, \infty]
$$

Thus, to prove Theorem 1 it suffices to show that $\mathbf{E} \nu$.

By the subadditivity of $h(g(x))$,

$$
\nu \leq \mu:=\min \left\{k \geq 1: h\left(\chi_{1}+\ldots+\chi_{k}\right)>h\left(g\left(\tau_{1}\right)\right)+\ldots+h\left(g\left(\tau_{k}\right)\right)\right\} .
$$

The random walk on LHS has finite expectation. Thus, the finiteness of $\mathbf{E} \mu$ will follow from the relation $\mathbf{E} h(\chi)=\infty$. But the latter is equivalent to $\mathbf{E} \chi=\infty$.

In case of finite $\mathbf{E} \chi$ we use a bit different upper bound for ν : Fix some $k \geq 1$ and consider

$$
Z^{(k)}:=\chi_{1}+\chi_{2}+\ldots+\chi_{k}-g\left(\tau_{1}+\tau_{2}+\ldots+\tau_{k}\right)
$$

and let $Z_{i}^{(k)}$ be independent copies of Z. Using the subadditivity of g once again, one can easily show that

$$
\nu \leq k \mu^{(k)}
$$

where

$$
\mu^{(k)}:=\min \left\{n \geq 1: Z_{1}^{(k)}+Z_{2}^{(k)}+\ldots+Z_{n}^{(k)}>0\right\}
$$

The subadditivity assumption in our Theorem 1 seems to be purely technical.

How can one obtain the same asymptotic behaviour without this assumption?

Theorem 2. Assume that S_{n} is asymptotically stable. If

$$
\int_{0}^{\infty} \frac{h(g(t))}{\operatorname{th(c(t/\operatorname {log}t))}} d t<\infty
$$

then

$$
\mathbf{P}\left(T_{g}>n\right) \sim V(g) \mathbf{P}\left(T_{0}>n\right)
$$

and

$$
V(g)=\lim _{n \rightarrow \infty} \mathbf{E}\left[h\left(S_{n}+g(n)\right) ; T_{g}>n\right]<\infty .
$$

"Proof" of Theorem 2: Set

$$
\nu_{n}:=\min \left\{k \geq 1:\left|S_{k}\right|>c\left(\varepsilon_{n} n\right)\right\},
$$

where ε_{n} is such that $c\left(\varepsilon_{n} n\right)>g(n)$. Then

$$
\mathbf{P}\left(T_{g}>n\right)=\mathbf{P}\left(T_{g}>n, \nu_{n} \leq \delta_{n} n\right)+\mathbf{P}\left(T_{g}>n, \nu_{n}>\delta_{n} n\right) .
$$

For the second probability we have

$$
\mathbf{P}\left(T_{g}>n, \nu_{n}>\delta_{n} n\right) \leq \mathbf{P}\left(\nu_{n}>\delta_{n} n\right) \leq e^{-c \delta_{n} / \varepsilon_{n}} .
$$

By the Markov property,

$$
\mathbf{P}\left(T_{g}>n, \nu_{n} \leq \delta_{n} n\right) \sim \mathbf{P}\left(T_{0}>n\right) \mathbf{E}\left[h\left(S_{\nu_{n}}+g\left(\nu_{n}\right)\right) ; T_{g}>\nu_{n}, \nu_{n} \leq n \delta_{n}\right] .
$$

Next we show that
$\mathbf{E}\left[h\left(S_{\nu_{n}}+g\left(\nu_{n}\right)\right) ; T_{g}>\nu_{n}, \nu_{n} \leq n \delta_{n}\right] \sim \mathbf{E}\left[h\left(S_{\nu_{n}}+g(n)\right) ; T_{g}>\nu_{n}\right]$

$$
\sim \lim _{n \rightarrow \infty} \mathbf{E}\left[h\left(S_{n}+g(n)\right) ; T_{g}>n\right]=V(g)
$$

Define

$$
\widehat{T}_{g}:=\min \left\{n \geq 1: S_{n}<g(n)\right\} .
$$

If g is positive then

$$
\frac{\mathbf{P}\left(\widehat{T}_{g}>n\right)}{\mathbf{P}\left(T_{0}>n\right)}=\mathbf{P}\left(\widehat{T}_{g}>n \mid T_{0}>n\right)
$$

and one can try to represent the limit of this conditional probability as a functional of $\left\{S_{n}\right\}$ conditioned to stay nonnegative.

It is well-known that $h(x)$ is a positive harmonic function for $\left\{S_{n}\right\}$ killed at leaving $[0, \infty)$, that is,

$$
\mathbf{E}[h(x+X), x+X>0]=h(x), \quad x \geq 0 .
$$

We denote by \mathbf{P}^{h} the Doob transform of \mathbf{P} by the function h. More precisely, \mathbf{P}^{h} corresponds to the transition function

$$
p^{h}(x, d y)=\frac{h(y)}{h(x)} \mathbf{P}(x+X \in d y), \quad x, y \geq 0
$$

Afanasyev, Geiger, Kersting and Vatutin (2005):

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{P}\left(\widehat{T}_{g}>n\right)}{\mathbf{P}\left(T_{0}>n\right)}=\mathbf{P}^{h}\left(\widehat{T}_{g}=\infty\right)
$$

Hambly, Kersting and Kyprianou (2003): For driftless random walks with finite variance,

$$
\mathbf{P}^{h}\left(\widehat{T}_{g}=\infty\right)>0 \quad \Leftrightarrow \quad \int_{1}^{\infty} \frac{g(x)}{x^{3 / 2}} d x<\infty
$$

Theorem 3. Assume that S_{n} is asymptotically stable. If

$$
\int_{0}^{\infty} \frac{h(g(t))}{\operatorname{th}(c(t / \log t))} d t<\infty
$$

then

$$
\mathbf{P}\left(\widehat{T}_{g}>n\right) \sim \widehat{V}(g) \mathbf{P}\left(T_{0}>n\right)
$$

and

$$
\widehat{V}(g)=\lim _{n \rightarrow \infty} \mathbf{E}\left[h\left(S_{n}-g(n)\right) ; \widehat{T}_{g}>n\right]>0 .
$$

