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Preface

This little book is the outcome of a course I have given over the last ten
years at the Technical University Darmstadt for students of Mathematics
and Computer Science. The aim of this course is to provide a solid basis for
students who want to write their Masters Thesis in the field of Denotational
Semantics or want to start a PhD in this field. For the latter purpose it
has been used successfully also at the Univ. of Birmingham (UK) by the
students of Martin Escardó.

Thus I think this booklet serves well the purpose of filling the gap be-
tween introductory textbooks like e.g. [Winskel 1993] and the many research
articles in the area of Denotational Semantics. Intentionally I have concen-
trated on denotational semantics based on Domain Theory and neglected
the more recent and flourishing field of Game Semantics (see [Hyland and
Ong 2000; Abramsky et.al. 2000]) which in a sense is located in between
Operational and Denotational Semantics. The reason for this choice is that
on the one hand Game Semantics is covered well in [McCusker 1998] and on
the other hand I find domain based semantics mathematically simpler than
competing approaches since its nature is more abstract and less combina-
torial. Certainly this preference is somewhat subjective but my excuse is
that I think one should write books rather about subjects which one knows
quite well than about subjects with which one is less familiar.

We develop our subject by studying the properties of the well known
functional kernel language PCF introduced by D. Scott in the late 1960ies.
The scene is set in Chapters 2 and 3 where we introduce the operational
and domain semantics of PCF, respectively. Subsequently we concentrate
on studying the relation between operational and domain semantics em-
ploying more and more refined logical relation techniques culminating in
the construction of the fully abstract model for PCF in Chapters 11 and

ix
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12. I think that our construction of the fully abstract model is more elegant
and more concise than the accounts which can be found in the literature
though, of course, it is heavily based on them. Somewhat off this main
thread we show also how to interpret recursive types (Chapter 9) and give
a self contained account of computability in Scott domains (Chapter 13)
where we prove the classical theorem of [Plotkin 1977] characterizing the
computable elements of the Scott model of PCF as those elements defin-
able in PCF extended by two parallel constructs por (“parallel or”) and
∃ (Plotkin’s “continuous existential quantifier”) providing an extensional
variant of the dove tailing technique known from basic recursion theory.

Besides basic techniques like naive set theory, induction and recursion
(as covered e.g. by [Winskel 1993]) we assume knowledge of basic cate-
gory theory (as covered by [Barr and Wells 1990] or the first chapters of
[MacLane 1998]) from Chapter 9 onwards and knowledge of basic recur-
sion theory only in the final Chapter 13. Except these few prerequisits this
little book is essentially self contained. However, the pace of exposition is
not very slow and most straightforward verifications—in particular at the
beginning—are left to the reader. We recommend the reader to solve the
many exercises indicated in the text whenever they show up. Most of them
are straightforward and in case they are not we give some hints.

I want to express my gratitude to all the colleagues who over the years
have helped me a lot by countless discussions, providing preprints etc. Ob-
viously, this little book would have been impossible without the seminal
work of Dana Scott and Gordon Plotkin. The many other researchers in
the field of domain theoretic semantics who have helped me are too numer-
ous to be listed here. I mention explicitly just Klaus Keimel and Martin
Escardó, the former because he was and still is the soul of our little working
group on domain theory in Darmstadt, the latter because his successful use
of my course notes for his own teaching brought me to think that it might
be worthwhile to publish them. Besides for many comments on the text I
am grateful to Martin also for helping me a lot with TEXnical matters. I
acknowledge the use of Paul Taylor’s diagram and prooftree macros which
were essential for type setting.

Finally I want to thank the staff of IC press for continuous aid and
patience with me during the process of preparing this book. I have ex-
perienced collaboration with them as most delightful in all phases of the
work.
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Chapter 1

Introduction

Functional programming languages are essentially as old as the more well-
known imperative programming languges like FORTRAN, PASCAL, C etc.
The oldest functional programming language is LISP which was developed
by John McCarthy in the 1950ies, i.e. essentially in parallel with FOR-
TRAN. Whereas imperative or state-oriented languages like FORTRAN
were developed mainly for the purpose of numerical computation the in-
tended area of application for functional languages like LISP was (and still
is) the algorithmic manipulation of symbolic data like lists, trees etc.

The basic constructs of imperative languages are commands which mod-
ify state (e.g. by an assignment x:=E) and conditional iteration of com-
mands (typically by while-loops). Moreover, imperative languages strongly
support random access data structures like arrays which are most important
in numerical computation.

In purely functional languages, however, there is no notion of state or
state-changing command. Their basic concepts are

• application of a function to an argument
• definition of functions either explicitly (e.g. f(x) = x∗x+1) or re-

cursively (e.g. f(x) = if x=0 then 1 elsex∗f(x−1)fi).

These examples show that besides application and definition of functions
one needs also basic operations on basic data types (like natural numbers or
booleans) and a conditional for definition by cases. Moreover, all common
functional programming languages like LISP, Scheme, (S)ML, Haskell etc.
provide the facility of defining recursive data types by explicitly listing their
constructors as e.g. in the following definition of the data type of binary
trees

tree = empty() | mk tree(tree, tree)

1



25th August 2006 16:58 WSPC/Book Trim Size for 9in x 6in MGFP

2 Domain-Theoretic Foundations of Functional Programming

where empty is a 0–ary constructor for the empty tree with no sons and
mk tree is a binary constructor taking two trees t1 and t2 and building a
new tree where the left and right sons of its root are t1 and t2, respec-
tively. Thus functional languages support not only the recursive definition
of functions but also the recursive definition of data types. The latter has to
be considered as a great advantage compared to imperative languages like
PASCAL where recursive data types have to be implemented via pointers
which is known to be a delicate task and a source of subtle mistakes which
are difficult to eliminate.

A typical approach to the development of imperative programs is to
design a flow chart describing and visualising the dynamic behaviour of the
program. Thus, when programming in an imperative language the main
task is to organize complex dynamic behaviours, the so–called control flow.

In functional programming, however, the dynamic behaviour of pro-
grams need not be specified explicitly. Instead one just has to define the
function to be implemented. Of course, in practice these function defini-
tions are fairly hierarchical, i.e. are based on a whole cascade of previously
defined auxiliary functions. Then a program (as opposed to a function
definition) usually takes the form of an application f(e1, . . . , en) which is
evaluated by the interpreter1. As programming in a functional language
essentially consists of defining functions (explicitly or recursively) one need
not worry about the dynamical aspects of execution as this task is taken
over completely by the interpreter. Thus, one may concentrate on the what
and forget about the how when programming in a functional language.
However, when defining functions in a functional programming language
one has to stick to the forms of definition as provided by the language and
cannot use ordinary set-theoretic language as in everyday mathematics.

In the course of these lectures we will investigate functional (kernel)
languages according to the following three aspects

Model Interpreter

Logic

1But usually implementations of functional languages also provide the facility of com-

piling your programs.
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or

Denotational Semantics Operational Semantics

Verification Calculus

respectively and, in particular, how these aspects interact.

First we will introduce a most simple functional programming language
PCF (Programming Computable Functionals) with natural numbers as
base type but no general recursive types.

The operational semantics of PCF will be given by an inductively defined
evaluation relation

E⇓V

specifying which expressions E evaluate to which values V (where values
are particular expressions which cannot be further evaluated). For example
if E⇓V and E is a closed term of the type nat of natural numbers then
V will be an expression of the form n, i.e. a canonical expression for the
natural number n (usually called numeral). It will turn out as a prop-
erty of the evaluation relation ⇓ that V1 = V2 whenever E⇓V1 and E⇓V2.
That means that ⇓ is determinstic in the sense that ⇓ assigns to a given
expression E at most one value. An operational semantics as given by an
(inductively defined) evaluation relation ⇓ is commonly called a “Big Step
Semantics” as it abstracts from intermediary steps of the computation (of
V from E).2 Notice that in general there does not exists a value V with
E⇓V for arbitrary expressions E, i.e. not every program terminates. This
is due to the presence of general recursion in our language PCF guarantee-
ing that all computable functions on natural numbers can be expressed by
PCF programs.

Based on the big step semantics for PCF as given by ⇓ we will introduce
a notion of observational equality for closed PCF expressions of the same
type where E1 and E2 are considerd as observationally equal iff for all
contexts C[ ] of base type nat it holds that

C[E1]⇓n ⇐⇒ C[E2]⇓n
2For sake of completeness we will also present a “Small Step Semantics” for PCF as

well as an abstract machine serving as an interpreter for PCF.
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for all natural numbers n ∈ N. Intuitively, expressions E1 and E2 are
observationally equal iff the same observations can be made for E1 and
E2 where an observation of E consists of observing that C[E]⇓n for some
context C[ ] of base type nat and some natural number n. This notion
of observation is a mathematical formalisation of the common practice of
testing of programs and the resulting view that programs are considered as
(observationally) equal iff they pass the same tests.

However, this notion of observational equality is not very easy to use
as it involves quantification over all contexts and these form a collection
which is not so easy to grasp. Accordingly there arises the desire for more
convenient criteria sufficient for observational equality which, in particu-
lar, avoid any reference to (the somewhat complex) syntactic notions of
evaluation relation and context.

For this purpose we introduce a so-called Denotational Semantics for
PCF which assigns to every closed expression E of type σ an element
[[E]] ∈ Dσ, called the denotation or meaning or semantics of E, where
Dσ is a previously defined structured set (called “semantic domain”) in
which closed expressions of type σ will find their interpretation.

The idea of denotational semantics was introduced end of the 1960ies
by Ch. Strachey and Dana S. Scott. Of course, there arises the question
of what is the nature of the mathematical structure one should impose
on semantical domains. Although the semantic domains which turn out
as appropriate can be considered as particular topological spaces they are
fairly different3 in flavour from the spaces arising in analysis or geometry.
An appropriate notion of semantic domain was introduced by Dana S. Scott
who also developed their basic mathematical theory to quite some extent
of sophistication. From the early 1970ies onwards various research groups
all over the world invested quite some energy into developing the theory of
semantic domains—from now on simply referred to as Domain Theory—
both from a purely mathematical point of view and from the point of view of
Computer Science as (at least one) important theory of meaning (semantics)
for programming languages.

Though discussed later into much greater detail we now give a prelimi-
nary account of how the domains Dσ are constructed in which closed terms
of type σ find their denotation. For the type nat of natural numbers one
puts Dnat = N∪{⊥} where ⊥ (called “bottom”) stands for the denotation

3In particular, as we shall see they will not satisfy Hausdorff’s separation property
requiring that for distinct points x and y there are disjoint open sets U and V containing

x and y, respectively.
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of terms of type nat whose evaluation “diverges”, i.e. does not terminate.
We think ofDnat as endowed with an “information ordering” v w.r.t. which
⊥ is the least element and all other elements are incomparable. The types
of PCF are built up from the base type nat by the binary type forming
operator → where Dσ→τ is thought of as the type of (computable or contin-
uous) functionals from Dσ to Dτ , i.e. Dσ→τ ⊆ DDσ

τ = {f | f : Dσ → Dτ}.
In particular, the domain Dnat→nat will consist of certain functions from
Dnat to itself. It will turn out as appropriate to define Dnat→nat as con-
sisting of those functions on N∪{⊥} which are monotonic, i.e. preserve the
information ordering v. The clue of Domain Theory is that domains are
not simply sets but sets endowed with some additional structure and Dσ→τ

will then accordingly consist of all structure preserving maps from Dσ to
Dτ . However, for higher types (i.e. types of the form σ→τ where σ is dif-
ferent form nat) it will turn out that it is not sufficient for maps in Dσ→τ

to preserve the information ordering v. One has to require in addition
some form of continuity4 which can be expressed as the requirement that
certain suprema are preserved by the functions. The information ordering
on Dσ→τ will be defined pointwise, i.e. f v g iff f(x) v g(x) for all x ∈ Dσ.

Denotational semantics provides a purely extensional view of functional
programs as closed expressions of type σ→τ will be interpreted as partic-
ular functions from Dσ to Dτ which are considered as equal when they
deliver the same result for all arguments. In other words the meaning of
such a program is fully determined by its input/output behaviour. Thus,
denotational semantics just captures what is computed by a function (its
extensional aspect) and abstracts from how the function is computed (its
intensional aspect as e.g. time or space complexity).

When a programming language like PCF comes endowed with an op-
erational and a denotational semantics there arises the question how good
they fit together. We will now discuss a sequence of criteria for “goodness
of fit” of increasing strength.

Correctness
Closed expressions P and Q of type σ are called semantically or denota-

tionally equal iff [[P ]] = [[Q]] ∈ Dσ. We call the operational semantics correct
w.r.t. the denotational one iff P and V are denotationally equal whenever
P⇓V , i.e. when evaluation preserves semantical equality. In particular for

4which is in accordance with the usual topological notion of continuity when the
domains Dσ and Dτ are endowed with the so-called Scott topology which is defined in

terms of the information ordering
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programs, i.e. closed expressions P of base type nat, correctness ensures
that [[P ]] = n whenever P⇓n, i.e. the operational semantics evaluates a
program in case of termination to the number which is prescribed by the
denotational semantics.

Completeness
On the other hand it is also desirable that if a program denotes n then

the operational semantics evaluates program P to the numeral n or, more
formally, P⇓n whenever [[P ]] = n in which case we call the operational
semantics complete w.r.t. the denotational semantics.

Computational Adequacy
In case the operational semantics is both correct and complete w.r.t.

the denotational semantics, i.e.

P⇓n ⇐⇒ [[P ]]=n

for all programs P and natural numbers n, we say that the denotational
semantics is computationally adequate5 w.r.t. the operational semantics.

Computational adequacy is sort of a minimal requirement for the rela-
tion between operational and denotational semantics and holds for (almost)
all examples considered in the literature. Nevertheless, we shall see later
that the proof of computational adequacy does indeed require some math-
ematical sophistication.

If the denotational semantics is computationally adequate w.r.t. the
operational semantics then closed expressions P and Q are observationally
equal if and only if [[C[P ]]] = [[C[Q]]] for all contexts C[ ] of base type,
i.e. observational equality can be reformulated without any reference to an
operational semantics.

The denotational semantics considered in the sequel will be composi-
tional in the sense that from [[P ]] = [[Q]] it follows that [[C[P ]]] = [[C[Q]]]
for all contexts C[ ] (not only those of base type). Thus, for compositional
computationally adequate denotational semantics from [[P ]] = [[Q]] it fol-
lows that P and Q are observationally equal. Actually, this already entails

5One also might say that “the operational semantics is computationally adequate
w.r.t. the denotational semantics” because the denotational semantics may be consid-

ered as conceptually prior to the operational semantics. One could enter an endless
“philosophical” discussion on what comes first, the operational or the denotational se-

mantics. The authors have a slight preference for the view that denotational semantics

should be conceptually prior to operational semantics (the What comes before the How)
being, however, aware of the fact that in practice operational semantics often comes

before the denotational semantics.
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completeness of the denotational semantics as if [[P ]] = n = [[n]] then P and
n are observationally equal from which it follows that P⇓n ⇔ n⇓n and,
therefore, P⇓n as n⇓n does hold anyway. Thus, under the assumption of
correctness for a compositional denotational semantics computational ad-
equacy is equivalent to the requirement that denotational equality entails
observational equality.

Full Abstraction
For those people who think that operational semantics is prior to deno-

tational semantics the notion of observational equality is more basic than
denotational equality because the former can be formulated without ref-
erence to denotational semantics. From this point of view computational
adequacy is sort of a “correctness criterion” as it guarantees that semantic
equality entails the “real” observational equality (besides the even more
basic requirement that denotation is an invariant of evaluation).

However, one might also require that denotational semantics is com-
plete w.r.t. operational semantics in the sense that observational equality
entails denotational equality, in which case one says that the denotational
semantics is fully abstract w.r.t. the operational semantics. At first sight
this may seem a bit weird because in a sense denotational semantics is
more abstract than operational semantics as due to its extensional char-
acter it abstracts from intensional aspects such as syntax. However, ob-
servational equivalence—though defined a priori in operational terms—is
more abstract than denotational equality under the assumption of compu-
tational adequacy guaranteeing that denotational equality entails observa-
tional equality. Accordingly, a fully abstract semantics induces a notion of
denotational equality which is “as abstract as reasonably possible” where
“reasonable” here means that terms are not identified if they can be dis-
tinguished by observations.

Notice, moreover, that under the assumption of computational adequacy
full abstraction can be formulated without reference to operational seman-
tics as follows: closed expressions P and Q (of the same type) are deno-
tationally equal already if C[P ] and C[Q] are denotationally equal for all
contexts C[ ] of base type. A denotational semantics satisfying this condi-
tion is fully abstract w.r.t. an operational semantics iff it is computationally
adequate w.r.t. this operational semantics.

Whereas computational adequacy holds for almost all models of PCF
this is not the case for full abstraction as exemplified by the (otherwise sort
of canonical) Scott model. Though the Scott model (and, actually, also
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all other models considered in the literature) is fully abstract for closed
expressions of first order types nat→nat→ . . .→nat→nat full abstraction
fails already for the second order type (nat→nat→nat)→nat.

However, the Scott model is fully abstract for an extension of PCF by
a parallel, though deterministic, language construct por : nat→nat→nat,
called “parallel or”, which gives 0 as result if its first or its second argument
equals 0, 1 if both arguments equal 1 and delivers ⊥ as result in all other
cases. This example illustrates quite forcefully the relativity of the notion
of full abstraction w.r.t. the language under consideration. The only reason
why the Scott model fails to be fully abstract w.r.t. PCF is that it distin-
guishes closed expressions E1 and E2 of the type (nat→nat→nat)→nat
although these cannot be distinguished by program contexts C[ ] express-
ible in the language of PCF. However, E1 and E2 can be distinguished
by the context [ ](por). In other words whether a denotational semantics
is fully abstract for a language strongly depends on the expressiveness of
this very language. Accordingly, a lack of full abstraction can be repaired
in two possible, but different ways

(1) keep the model under consideration but extend the language in a way
such that the extension can be interpreted in the given model and
denotationally different terms can be separated by program contexts
expressible in the extended language (e.g. keep the Scott model but
extend PCF by por) or

(2) keep the language and alter the model to one which is fully abstract
for the given language.

Whether one prefers (1) or (2) depends on whether one gives preference
to the model or to the syntax, i.e. the language under consideration. A
mathematician’s typical attitude would be (1), i.e. to extend the language
in a way that it can grasp more aspects of the model, simply because he
is interested in the structure and the language is only a secondary means
for communication. However, (even) a (theoretical) computer scientist’s
attitude is more reflected by (2) because for him the language under con-
sideration is the primary concern whereas the model is just regarded as a
tool for analyzing the language. Of course, one could now enter an endless
discussion on which attitude is the more correct or more adequate one. The
authors’ opinion rather is that each single attitude when taken absolutely
is somewhat disputable as (i) why shouldn’t one take into account vari-
ous different models instead of stubbornly insisting on a particular “pet
model” and (ii) why should one take the language under consideration as
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absolute because even if one wants to exclude por for reasons of efficiency
why shouldn’t one allow6 the observer to use it?

Instead of giving a preference to (1) or (2) we will present both ap-
proaches. We will show that extending PCF by por will render the Scott
model fully abstract and we will present a refinement of the Scott model, the
so-called sequential domains, giving rise to a fully abstract model for PCF
which we consider as a final solution to a—or possibly the—most influential
open problem in semantic research in the period 1975–2000. The solution
via sequential domains is mainly known under the name “relational ap-
proach” because domains are endowed with (a lot of) additional relational
structure which functions between sequential domains are required to pre-
serve in addition to the usual continuity requirements of Scott’s Domain
Theory.

A competing and, actually, more influential approach is via game se-
mantics where types are interpreted as games and programs as strategies.
However, this kind of models is never extensional and, accordingly, not fully
abstract for PCF as by Milner’s Context lemma extensional equality en-
tails observational equality. However, the “extensional collapse” of games
models turns out as fully abstract for PCF. But this also holds for the
term model of PCF and in this respect the game semantic approach cannot
really be considered as a genuine solution of the full abstraction problem
at least according to its traditional understanding. However, certain varia-
tions of game semantics are most appropriate for constructing fully abstract
models for non-functional extensions of PCF, e.g. by control operators or
references, as for such extensions the term models obtained by factorisation
w.r.t. observational equivalence are not extensional anymore and, therefore,
the inherently extensional approach via domains is not applicable anymore.

Notice that there is also a more liberal notion of sequentiality, namely
the strongly stable domains of T. Ehrhard and A. Bucciarelli where, how-
ever, the ordering on function spaces is not pointwise anymore.

Universality
In the Scott model one can distinguish for every type σ a subset Cσ ⊆

Dσ of computable elements without any reference to PCF-definability such
that all PCF-definable elements of Dσ are already contained in Cσ. Now,
if one has fixed such a semantic notion of computability for a model then
there arises the question whether all computable elements of the model do

6as for example in cryptology where the attacker is usually assumed to employ as

strong weapons as possible
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arise as denotations of closed PCF terms in which case the model is called
universal.7

A language universal for the Scott model can be obtained from PCF by
adding por (“parallel or”) and Plotkin’s continuous existential quantifier ∃
of type (nat→nat)→nat which is defined as follows: ∃(f) = 0 if f(n) = 0
for some n ∈ N, ∃(f) = 1 if f(⊥) = 1 and ∃(f) = ⊥ in all other cases.

Notice, however, that ∃ cannot be implemented within PCF+por from
which it follows that universality is a stronger requirement than full abstrac-
tion. But universality entails full abstraction as there is a theorem saying
that a model of PCF is fully abstract iff all its “finite” elements are PCF
definable and as these “finite” elements are subsumed by any reasonable
notion of computability.

We conclude this introductory chapter by discussing the relevance of de-
notational semantics for logics of programs, i.e. calculi where properties
of programs can be expressed and verfied.

First of all denotational models of programming languages are needed
for defining validity of assertions about programs as can be expressed in a
logic for this programming language. In case of PCF the family (Dσ)σ∈Type

provides the carriers for a many-sorted structure in which one can interpret
the terms of the program logic LCF (Logic of Computable Functionals)8

whose terms are expressions of the programming language PCF and whose
formulas are constructed via the connectives and quantifiers of first order
logic from atomic formulas t1 v t2 stating that the meaning of t1 is below
the meaning of t2 w.r.t. the information ordering as given by the denota-
tional model. Notice, however, that the term language PCF is not first
order as it contains a binding operator λ needed for explict definitions of
functions. However, this does not cause any problems for the interpretation
of LCF. Instead of first order logic one might equally well consider higher

7Calling this property “universal” is in accordance with the common terminology

where a programming language L is called “Turing universal” iff all partial recursive
functions on N can be implemented by programs of L. The property “universal” as

defined above is stronger since it requires that computable elements of all types can be

implemented within the language under consideration. But in both cases “universal”
means that one has already got an implementation for all possible computable elements

(of a certain kind).
8The calculus LCF was introduced by D. Scott in an unpublished, but widely circu-

lated and most influential manuscript dating back to 1967. In the 1970ies a proof assis-

tant for LCF was implemented by R. Milner who for this very purpose developed and

implemented the functional programming language ML (standing for “Meta-Language”)
whose refined versions SML and OCAML today constitute the most prominent typed

call-by-value functional programming languages.
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order logic over a model of PCF which has the advantage that higher order
logic allows one to express inductively defined predicates which are most
useful for the purposes of program verifiaction.

In principle one could interpret LCF also in the structure obtained by
factorizing the closed PCF terms modulo observational equality. However,
such a structure is not very easy to analyze as it is too concrete. Denota-
tional models have the advantage that simple and strong proof principles
like fixpoint induction, computational induction and Park induction, which
are indispensible for reasoning about recursively defined functions and ob-
jects, can be easily verified for these models as they are actually derived
from some obvious properties of these models.
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Chapter 2

PCF and its Operational Semantics

In this chapter we introduce the prototypical functional programming lan-
guage PCF together with its operational semantics.

The language PCF is a typed language whose set Type of types is defined
inductively as follows

• the base type nat is a type and
• whenever σ and τ are types then (σ→τ) is a type, too.

We often write ι for base type nat and σ→τ instead of (σ→τ) where → is
understood as a right associative binary operation on Type meaning that
e.g. σ1→σ2→σ3 is understood as standing for σ1→(σ2→σ3). Due to the
inductive definition of Type every type σ is of the form σ1→ . . .→σn→ι in
a unique way.

As PCF terms may contain free variables we will define terms relative
to type contexts where finitely many variables are declared together with
their types, i.e. type contexts are expressions of the form

Γ ≡ x1:σ1, . . . , xn:σn

where the σi are types and the xi are pairwise distinct variables. As vari-
ables cannot occur in type expressions the order of the single variable dec-
larations xi:σi in Γ is irrelevant and, accordingly, we identify Γ with Γ′ if
the latter arises from the former by a permutation of the xi:σi.

The valid judgements of the form

Γ `M : σ (M is a term of type σ in context Γ)

are defined inductivly by the rules in Figure 2.1.

One easily shows by induction on the structure of derivations that when-
ever Γ ` M : σ can be derived then π(Γ) ` M : σ can be derived, too, for

13
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Typing Rules for PCF

Γ, x:σ,∆ ` x : σ
Γ, x:σ `M : τ

Γ ` (λx:σ.M) : σ→τ

Γ `M : σ→τ Γ ` N : σ

Γ `M(N) : τ

Γ `M : σ→σ

Γ ` Yσ(M) : σ

Γ ` zero : nat

Γ `M : nat

Γ ` succ(M) : nat

Γ `M : nat

Γ ` pred(M) : nat

Γ `Mi : nat (i=1, 2, 3)

Γ ` ifz(M1,M2,M3) : nat

Figure 2.1 Typing rules for PCF

every permutation π of Γ.
As for every language construct of PCF there is precisely one typing

rule one easily shows (Exercise!) that the σ with Γ ` M : σ is determined
uniquely by Γ and M . Thus, applying these typing rules backwards gives
rise to a recursive type checking algorithm which given M and Γ computes
the type σ with Γ `M : σ provided it exists and reports failure otherwise.
(We invite the reader to test this algorithm for some simple examples!)

In the sequel we will not always stick to the “official” syntax of PCF
terms as given by the typing rules. Often we write MN or (MN) instead of
M(N). In accordance with right-associativity of → we assume that appli-
cation as given by juxtaposition is left-associative meaning that M1 . . .Mn

is read as (. . . (M1M2) . . .Mn) or M1(M2) . . . (Mn), respectively.
For variables bound by λ’s we employ the usual convention of α-

conversion according to which terms are considered as equal if they can
be obtained from each other by an appropriate renaming of bound vari-
ables. Furthermore, when substituting term N for variable x in term M we
first rename the bound variables of M in such a way that free variables of N
will not get bound by lambda-abstractions in M , i.e. we employ so–called
capture-free substitution.1

1These are the same conventions as usually employed for the quantifiers ∀ and ∃.
The only difference is that quantifiers turn formulas into formulas whereas λ-abstraction
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Before we define the operational semantics of PCF we introduce the
notion of “raw terms” of PCF as given by the following grammar

M :: = x | (λx:σ.M) |M(M) | Yσ(M) |
zero | succ(M) | pred(M) | ifz(M,M,M)

in BNF form. Of course, not every raw term is typable as for example
λx:nat.x(x) where the first occurrence of x would have to be of functional
type in order to render x(x) well-typed.

We now present a “big step” semantics for PCF by inductively defining
a binary relation ⇓ on raw terms via the rules exhibited in Figure 2.2 where
n is the canonical numeral for the natural number n defined as 0 ≡ zero

and k+1 ≡ succ(k) by recursion on k.2

Bigstep Semantics for PCF

x ⇓ x λx:σ.M ⇓ λx:σ.M

M ⇓ λx:σ.E E[N/x] ⇓ V

M(N) ⇓ V

M(Yσ(M)) ⇓ V

Yσ(M) ⇓ V

0 ⇓ 0
M ⇓ n

succ(M) ⇓ n+1

M ⇓ 0

pred(M) ⇓ 0

M ⇓ n+1

pred(M) ⇓ n

M ⇓ 0 M1 ⇓ V

ifz(M,M1,M2) ⇓ V

M ⇓ n+1 M2 ⇓ V

ifz(M,M1,M2) ⇓ V

Figure 2.2 Bigstep Semantics for PCF

Whenever E⇓V then V is a variable, a numeral or a λ-abstraction. It
follows by induction on the structure of derivations of E⇓V that the free
turns terms into terms.

2Notice that in the literature one finds variants of PCF where instead of zero there
are constants n for every natural number n. However, the same rules can be used for

defining ⇓ inductively (albeit with a slightly different reading).
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variables of V are contained in the free variables of E. Thus, if E is a closed
expression and E⇓V then V is either a numeral or a λ-abstraction without
free variables. Such terms are called (syntactic) values and one can see
easily that for every such value V it holds that V ⇓V . Thus syntactic values
are those terms V such that M⇓V can be derived for some closed term M .
Notice that λx:σ.M is a value even if M is not a value, i.e. evaluation stops
as soon as it has arrived at a functional abstraction. In our investigations
of PCF we are mainly interested in closed terms and will hardly ever need
the evaluation rule for variables. This is also the reason why we have not
included variables into our definition of syntactic values.

Notice that with the exception of pred and ifz for each construct of PCF
there is precisely one evaluation rule. In case of pred and ifz there are two
rules which, however, do not overlap (in the sense that for every term at
most one of these two rules is applicable). This observation gives rise to
the following lemma.

Lemma 2.1 The evaluation relation ⇓ is deterministic, i.e. whenever
M⇓V and M⇓W then V ≡W .

Proof. Straightforward induction on the structure of derivations of
M⇓V . (Exercise!) �

Next we will show that evaluation preserves types, a property which is
usually called Subject Reduction.

Theorem 2.2 (Subject Reduction)
If `M : σ and M⇓V then ` V : σ.

Proof. Straightforward induction (Exercise!) on the structure of deriva-
tions of M⇓V . �

Thus, if M is a closed term of type nat and M⇓V then V ≡ n for some
natural number n and if M is a closed term of type σ→τ and M⇓V then
V ≡ λx:σ.E for some E with x:σ ` E : τ .

Often in the literature one can find definitions of PCF with a base type
bool of boolean values included. In this case one adds the following term
formation rules

Γ ` true : bool Γ ` false : bool

Γ `M : bool Γ `M1 : σ Γ `M2 : σ
(σ ∈ {nat,bool})

Γ ` condσ(M,M1,M2) : σ
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together with the following evaluation rules

true⇓ true false⇓ false

M ⇓ true M1 ⇓V

condσ(M,M1,M2)⇓V

M ⇓ false M2 ⇓V

condσ(M,M1,M2)⇓V

Notice that in this case ifz can be replaced by a predicate isz, i.e. isz(M) is a
term of type bool wheneverM is a term of type nat and isz(M) evaluates to
true iffM⇓0 and to false iffM⇓n+1 for some natural number n. Using isz we
can implement ifz by putting ifz(M,M1,M2) ≡ condnat(isz(M),M1,M2).

However, this extension by boolean values is fairly redundant as we can
simulate boolean values within nat coding, say, true by 0 and false by 1.

Next we present a “single step” semantics for PCF and show that it
coincides with the big step semantics. The single step semantics is given
by specifying a relation B between terms (of the same type) where MBN
reads as “M reduces in one step to N”. This reduction relation B is defined
inductively by the rules given in Figure 2.3.

Only the first six rules of Figure 2.3 specify proper computation steps.
The purpose of the remaining four rules is to fix a leftmost outermost re-
duction strategy. These last four rules could be replaced by a single one,
namely

M1 B M2

E[M1] B E[M2]

where E ranges over evaluation contexts defined by the grammar

E := [ ] | E(M) | succ(E) | pred(E) | ifz(E,M1,M2)

in BNF form. As for every term M there is at most one evaluation context
E such that M ≡ E[N ] and N is the left hand side of some valid reduction
N B N ′ it follows that the reduction relation B is deterministic.

Let us write B∗ for the reflexive transitive closure of B. One can show
(Exercise!) that M⇓V iff MB∗V and V is a syntactic value3. For this
purpose one verifies (Exercise!) that

(a) if M⇓V then M B∗ V and
(b) if M B N then for all values V , if N⇓V then M⇓V

3Notice that V is a value if there is no term N with V B N .
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by induction on the structure of derivations of M⇓V and M B N , respec-
tively. Applying (b) iteratively it follows that

(c) if M B∗ N then for all values V , if N⇓V then M⇓V .

Then from (a) and (c) it follows immediately that M⇓V if and only if
M B∗ V for all terms M and values V . Thus big step and small step
semantics for PCF coincide. Of course, big step semantics is more abstract
in the sense that it forgets about intermediary computation steps. That is
the reason why we stick to big step semantics when studying the relation
between operational and denotational semantics of PCF.

Smallstep Semantics for PCF

(λx:σ.M)(N) B M [N/x] Yσ(M) B M(Yσ(M))

pred(0) B 0 pred(n+1) B n

ifz(0,M1,M2) B M1 ifz(n+1,M1,M2) B M2

M1 B M2

M1(N) B M2(N)

M1 B M2

succ(M1) B succ(M2)

M1 B M2

pred(M1) B pred(M2)

M1 B M2

ifz(M1, N1, N2) B ifz(M2, N1, N2)

Figure 2.3 Small Step Semantics for PCF

The syntactic preorders @
∼ and <

∼

For every type σ we write Prgσ for the set {M | `M :σ} of closed PCF
terms of type σ also called programs of type σ. Programs of base type will
be simply called programs. By induction on the structure of σ we will now
define preorders @∼σ and <∼σ on Prgσ.
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For base type nat we define

M @∼nat N iff ∀n∈N. M⇓n ⇒ N⇓n

and for functional types σ→τ we define

M @∼σ→τ N iff ∀P∈Prgσ. M(P ) @∼τ N(P ) .

The relation @∼ will be called “applicative approximation” and we leave it
as an exercise(!) to the reader to verify that @∼σ is actually a preorder on
Prgσ, i.e. that @∼σ is reflexive and transitive. One easily shows that for
types σ ≡ σ1→ . . .→σn→nat it holds that M @∼σ N iff M ~P @∼nat N ~P for
all ~P ∈ Prgσ1

× . . .×Prgσn
(where we write M ~P for M(P1) . . . (Pn) if ~P is

the n–tuple 〈P1, . . . , Pn〉).
The “observational approximation” ordering <∼σ at type σ is defined as

M <∼σ N iff ∀P∈Prgσ→nat. P (M) @∼nat P (N)

where the underlying intuition is that every “observation” which can be
made about M can also be made about N . Obviously, from M <∼σ N it
follows that M @∼σ N as in the latter one quantifies only over a restricted
class of observations, namely those of the form λx:σ. x~P .

The classical Milner’s Context Lemma says that both orderings are ac-
tually the same. However, its proof requires some sophistication and math-
ematical machinery. Accordingly, we postpone it to a subsequent chapter.

It is straightforward to see that for computationally adequate models it
holds that M <∼ N whenever [[M ]] v [[N ]]. The reverse implications holds
only for fully abstract models which, however, are difficult to construct.

An Abstract Environment Machine for PCF

We now will describe an abstract machine for evaluating PCF terms in
order to give an idea of how functional languages can be implemented on
traditional von Neumann machines.

At first sight one might be inclined to directly implement the small step
semantics considered above, i.e. to implement the partial function on terms
whose graph is the reduction relation B. However, this is not very efficient
since replacing (λx.M)(N) by M [N/x] is somewhat costy if there are many
free occurrences of x inM which is in conflict with the intuitive requirement
that single steps in a computation process should all be simple and change
state only in a very local manner.
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The key idea of an environment machine is to postpone the possibly
costy operation of substitution as long as possible. For this reason the
machine manipulates so-called closures which are pairs [M, e] where M is
a term and e is an environment , i.e. a finite function from variables to
closures.

The syntax of untyped PCF terms is given by the grammar

M ::= x | λx.M |M(M) | Y(M) | zero | succ(M) | pred(M) | ifz(M,M,M)

in BNF form. We consider untyped PCF terms as type information is
irrelevant for the computation process.

We write ∅ for the empty environment and e[x:=c] for the environment
which behaves like e for variables different from x and sends x to the closure
c. We also write dom(e) for the finite set of variables to which e assigns a
closure. Obviously, we have dom(e[x:=c]) = dom(e) ∪ {x}.

The states of the abstract machines will be pairs 〈c, S〉 where c is a
closure and S is a stack or continuation which are defined by the following
grammar

S ::= stop | arg(c, S) | succ(S) | pred(S) | ifz(M,M, e, S)

in BNF form.
Finally the transition rules of the Abstract Environment Machine for

PCF are given in Figure 2.4.
We now try to reveal the intuition behind the various transition rules.
The first three rules are sufficient to compute weak head normal forms

of terms of untyped λ-calculus. Recall that a weak head normal form is
either a variable or a λ-abstraction. For this fragment the continuations
are stacks where arg takes a closure c and pushes it on stack S. When
an application term has to be evaluated its argument together with the
current environment is pushed on the stack. This is iterated until one
lands in case (1) or (2). In the first case the variable x is replaced by the
closure e(x) where e is the current environment provided e(x) is defined
and otherwise we have found the head variable of the term. A λ-expression
λx.M under current environment e is evaluated by evaluating its body M in
the environment e[x:=c] where c is the closure on top of the current stack.
If the current stack is empty then (λx.M)[e] is the weak head normal form.

Rule (4) extends this to general recursion as given by Y. Thus, in
order to evaluate Y(M) under the environment e evaluate M(Y(M)) under
environment e which, however, by (3) is evaluated as follows: push the
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argument Y(M) together with e on the stack and then evaluate M w.r.t.
e. Rule (4) has the same effect but achieves it in one single step.

Transition Rules of the Abstract Environment Machine

(1) 〈[x, e], S〉 → 〈e(x), S〉 if x ∈ dom(e)

(2) 〈[λx.M, e], arg(c, S)〉 → 〈[M, e[x:=c]], S〉

(3) 〈[M(N), e], S〉 → 〈[M, e], arg([N, e], S)〉

(4) 〈[Y(M), e], S〉 → 〈[M, e], arg([Y(M), e], S)〉

(5) 〈[succ(M), e], S〉 → 〈[M, e], succ(S)〉

〈[n, e], succ(S)〉 → 〈[n+1, e], S〉

(6) 〈[pred(M), e], S〉 → 〈[M, e], pred(S)〉

〈[0, e], pred(S)〉 → 〈[0, e], S〉

〈[n+1, e], pred(S)〉 → 〈[n, e], S〉

(7) 〈[ifz(M,N1, N2), e], S〉 → 〈[M, e], ifz(N1, N2, e, S)〉

〈[0, e′], ifz(N1, N2, e, S)〉 → 〈[N1, e], S〉

〈[n+1, e′], ifz(N1, N2, e, S)〉 → 〈[N2, e], S〉

Figure 2.4 Abstract Environment Machine for PCF

Whereas application follows a call-by-name strategy expressions of the
form succ(M) or pred(M) are evaluated following a call-by-value strategy.
Therefore it is not appropriate to push the argument M together with the
current environment e on the current stack S. Instead one evaluates M
w.r.t. e and the stack succ(S). When this evaluation has resulted in the
closure [n, e′] (tacitly assuming that the current stack is again succ(S))
then evaluate [n+1, e′] w.r.t. the original stack S. For pred the procedure
is analogous.

As ifz is call-by-value in its first argument when evaluating an expression
of the form ifz(M,N1, N2) w.r.t. environment e and stack S one first has to
evaluate M w.r.t. e but relative to the stack ifz(N1, N2, e, S) which keeps
the information how to continue when [M, e] has been evaluated to a nu-



25th August 2006 16:58 WSPC/Book Trim Size for 9in x 6in MGFP

22 Domain-Theoretic Foundations of Functional Programming

meral.4 Depending on whether this numeral is 0 or greater 0 one proceeds
by evaluating N1 w.r.t. e and S or by evaluating N1 w.r.t. e and S.

The formal verification of the correctness of our environment machine
is somewhat delicate and we omit it as it isn’t the main concern of this
course but rather of a course on implementations of functional programming
languages.

4That is the reason why stacks are often called “continuations”. They tell us how to

“continue” after an intermediary result has been found.
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Chapter 3

The Scott Model of PCF

In this chapter we introduce the kind of structures within which Dana Scott
has interpreted the language PCF (and its logic LCF). (See [Scott 1969]
for a reprint of a widely circulated “underground” paper from 1969 where
this interpretation was presented the first time.) But before we will discuss
the general form of a denotational semantics for PCF and try to motivate
some of the structural requirements we impose.

A denotational semantics for PCF associates with every type σ a so-
called domain Dσ and with every term x1:σ1, . . . , xn:σn `M : σ a function

[[x1:σ1, . . . , xn:σn `M : σ]] : Dσ1 × · · · ×Dσn → Dσ

assuming that cartesian products of domains exist. In case M is a closed
term (i.e. n=0) we have [[`M : σ]] : 1 → Dσ where 1 stands for the empty
product containing just the empty tuple 〈〉 as its single element.

We have tacitly assumed that domains are sets (and that their finite
products are defined as for sets). But notice that one must not interpret
Dσ→τ as the set of all functions from Dσ to Dτ as then one would run into
problems with interpreting the fixpoint operators Yσ as their interpretation
would have to associate with every f ∈ Dσ→σ, i.e. with every function f

from Dσ to Dσ, a fixpoint of f , i.e. a Yσ(f) ∈ Dσ satisfying the fixpoint
equation Yσ(f) = f(Yσ(f)), and such a fixpoint need not exist in general
(e.g. if f is a fixpoint free permutation of the set Dσ). The solution to
this problem is to endow the domains Dσ with additional structure and to
require that Dσ→τ consists of all maps from Dσ to Dτ which do preserve
this structure. Of course, we then have to endow this set also with an
appropriate structure of that kind.

The question now is to identify what is an appropriate structure to
impose on domains which serve the purpose of interpreting PCF (or other

23
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programming languages). In particular, this kind of structure should not
be arbitrary but rather well motivated by operational phenomena. Well,
in the previous chapter we have seen that for every type σ one can define
the preorder @∼σ on the set Prgσ of programs of type σ where M @∼σ N

means that N contains all the information of M and possibly more. By
analogy this suggests to endow the domains with a partial ordering called
“information ordering”.

If one factors the closed terms of type nat by @∼nat one obtains the
poset (i.e. partially ordered set) N whose underlying set is N∪{⊥} where ⊥
(read “bottom”) is a distinguished object (not contained in N) representing
nontermination or divergence. Actually, for every type σ there is a closed
term Ωσ ≡ Yσ(λx:σ.x) with Ωσ

@∼σ M for all M ∈ Prgσ. Thus, we require
every domain Dσ to be endowed with a partial order vσ and to contain
a least element ⊥Dσ . As @∼ coincides with <∼ by Milner’s Context Lemma1

every program P of type σ→τ preserves @∼ as it obviously preserves <∼.
This leads us to the requirement that the functions f ∈ Dσ→τ should be
monotonic, i.e. preserve the partial order v. As by definition M @∼σ→τ N

iff M(P ) @∼ N(P ) for all programs P of type σ it appears as natural to
define the partial order v on Dσ→τ as the pointwise ordering according to
which f v g iff ∀d∈Dσ. f(d) v g(d).

However, it is not sufficient to require that domains are partial orders
with a least element and functions between them have to be monotonic
because this does not yet guarantee the existence of fixpoints. Consider
for example the set N of natural numbers under their usual ordering ≤ for
which the successor function f : N → N : n 7→ n+1 is surely monotonic but
obviously has no fixpoint.

This problem can be overcome by postulating that every domain has
suprema of chains and functions between domains are not only monotonic
but have to preserve also suprema of chains. Such functions between do-
mains are called “(Scott) continuous”. This has the advantage that for
every domain D every continuous function f : D → D has a least fixpoint
µ(f) which is obtained as the supremum of the chain

⊥ v f(⊥) v f2(⊥) v · · · v fn(⊥) v . . .

That µ(f) is actually a fixpoint of f follows from continuity of f as we
have f(

⊔
n f

n(⊥)) =
⊔

n f(fn(⊥)) =
⊔

n f
n(⊥). That µ(f) is actually the

least fixpoint of f can be seen as follows: if d = f(d) then by induction one

1which still has to be proved but may well serve the purpose of motivation!
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easily shows that fn(⊥) v d for all n ∈ N and thus µ(f) v d since µ(f) is
the supremum of the fn(⊥) which are bounded by d.

Summarizing we notice that the above considerations suggest that

• domains are partially ordered sets with a least element and suprema
for all (weakly) increasing chains and

• functions between domains should preserve the partial ordering and
suprema of (weakly) increasing chains.

One might be inclined to require functions between domains to preserve
also least elements. This, however, would have the most undesirable conse-
quences that (1) every constant map has value ⊥ and (2) the least fixpoint
of every endomap is ⊥ rendering all recursive definitions trivial.

In the following for aesthetical reasons we require not only existence
and preservation of suprema of chains but existence and preservation of
suprema of so-called directed sets.

In the next two sections we develop some basic domain theory and then
introduce the Scott model of PCF.

3.1 Basic Domain Theory

Definition 3.1 A partial order (poset) on a set D is a binary relation
vD⊆ D×D satisfying the following conditions

(reflexive) x vD x

(transitive) x vD z whenever x vD y and y vD z

(antisymmetric) x = y whenever x vD y and y vD x.

A reflexive and transitive relation is called a preorder.
If (D1,vD1) and (D2,vD2) are preorders then a function f : D1 → D2

is called monotonic iff f(x) vD2 f(y) whenever x vD1 y. ♦

Obviously, monotonic maps are closed under composition and the iden-
tity function idD : D → D : d 7→ d is a monotonic map from (D,vD) to
itself.

Definition 3.2 Let (A,v) be a poset. A subset X ⊆ A is called directed
iff every finite subset X0 of X has an upper bound in X, i.e.

∀X0⊆finX.∃y∈X.∀x∈X0. x v y .
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Thus, a directed set X is always nonempty because the empty set ∅ ⊆fin X

has an upper bound in X.
A partial order (A,v) is called predomain or complete partial order

(cpo) iff every directed subset of A has a least upper bound. A predomain
(A,v) is called a domain or pcpo (pointed cpo) iff it has a least element ⊥.

Let (A1,vA1) and (A2,vA2) be cpo’s. A function from (A1,vA1) to
(A2,vA2) is called (Scott) continuous iff it preserves suprema of directed
sets, i.e.

f(
⊔
X) =

⊔
f(X)

for all directed X ⊆ A1. A function between domains is called strict iff it
preserves least elements. ♦

It is a straightforward exercise(!) to show that continuous functions
between predomains are always monotonic.

Theorem 3.3 Let (Ai | i∈I) be a family of predomains. Then their prod-
uct

∏
i∈I Ai is a predomain under the componentwise ordering and the pro-

jections πi :
∏

i∈I Ai → Ai are Scott continuous. If, moreover, all Ai are
domains then so is their product

∏
i∈I Ai.

If (f : B → Ai | i∈I) is a family of continuous maps between predomains
then there is a unique continuous function f : B →

∏
i∈I Ai with

πi ◦ f = fi

for all i ∈ I.

Proof. Straightforward exercise! �

Lemma 3.4 Let A1, A2 and A3 be cpos. Then a function f : A1×A2 →
A3 is continuous iff it is continuous in each argument.

Proof. The implication from left to right is obvious.
For the reverse direction suppose that f is continuous in each argument.

For showing that f is continuous consider an arbitrary directed subset X ⊆
A1×A2. Then for i=1, 2 the sets Xi := πi(X) are directed in Ai. Obviously,
we have

⊔
X = (

⊔
X1,

⊔
X2). As f is monotonic it suffices to show that

f(
⊔
X) v

⊔
x∈X

f(x)

Suppose z w
⊔

x∈X f(x). Then z w f(x1, x2) for all x1 ∈ X1 and x2 ∈ X2

(as if (x1, x
′
2) ∈ X and (x′1, x2) ∈ X then by directedness of X there
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is a (y1, y2) ∈ X with (y1, y2) w (x1, x
′
2), (x

′
1, x2)). Thus, for all x1 ∈

X1 we have z w f(x1,
⊔
X2) as f is continuous in its second argument.

Accordingly, as f is continuous also in its first argument we conclude that
z w f(

⊔
X1,

⊔
X2) = f(

⊔
X) as desired. �

Next we show that there are appropriate function spaces or exponentials
in the category of predomains and continuous maps.

Theorem 3.5 Let A1 and A2 be cpo’s. Then the set AA1
2 = [A1→A2]

of all Scott continuous maps from A1 to A2 is itself a cpo when ordered
pointwise, i.e. when defining

f v g iff ∀a∈A1. f(a) v g(a)

for Scott continuous functions f and g.

Proof. Let F be a directed subset of [A1→A2]. We show that its supre-
mum

⊔
F is given by the function g with

g(a) =
⊔

f∈F

f(a)

for a ∈ A1. Notice that g(a) is always defined because {f(a) | f∈F} is
directed. Obviously, the map g is the supremum of F provided g is contin-
uous. It is easy to see that g is monotonic. Thus, for showing the continuity
of g assume that X is a directed subset of A1. As g is monotonic it suffices
to show that

g
(⊔

X
)
v

⊔
g(X)

For this purpose assume that z w
⊔
g(X), i.e. z w g(x) for all x ∈ X. Then

z is also an upper bound for {f(x) | f∈F, x∈X}. Thus, for all f ∈ F we
have

z w
⊔
f(X) = f

(⊔
X

)
as f is continuous. Accordingly, the element z is also an upper bound of
g
(⊔

X
)

as desired. �

As the evaluation map

ev : [A1→A2]×A1 → A2 : (f, a) 7→ f(a)

is continuous in each argument (exercise!) it follows by Lemma 3.4 that ev

itself is continuous.
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Theorem 3.6 Let A, B and C be predomains. Then for every Scott
continuous function f : C×A → B there exists a unique Scott continuous
function g : C → [A→B] with

g(z)(x) = f(z, x)

for all x ∈ A and z ∈ C.

Proof. Obviously, the function g is uniquely determined by the require-
ment that g(z)(x) = f(z, x) for all x ∈ A and z ∈ C. As g(z) = f(z,−) is
continuous for all z ∈ C it remains to show that g is continuous. For this
purpose assume that Z is a directed subset of C. But then we have for all
x ∈ X

g
(⊔

Z
)
(x) = f(

⊔
Z, x) =

⊔
z∈Z

f(z, x) =
( ⊔

z∈Z

g(z)
)
(x)

where the last equality follows from the fact that directed suprema in
[A→B] are constructed pointwise (see proof of Theorem 3.5). Thus, we
have g(

⊔
Z) =

⊔
z∈Z g(z) as desired. �

The claim of the previous theorem may be formulated more abstractly
as follows: for every continuous f : C×A→ B there is a unique continuous
g : C → [A→B] such that the following diagram commutes

[A→B]×A
ev - B

C×A

g×idA

6

f

-

where (g×idA)(c, a) = (g(c), a). This requirement makes sense in every
category with (binary) cartesian products and characterises the exponential
[A→B] uniquely up to isomorphism. A category with finite products where
for all objects A and B the exponential [A→B] exists is usually called
cartesian closed (see e.g. [Scott 1980]).

One often writes Λ(f) for the unique map g with f = ev ◦ (g×idA).
We will see later that projections, ev and Λ provide enough structure for
interpreting the simply typed λ-calculus in the category of predomains and
continuous maps (and, actually, in an arbitrary cartesian closed category).

But now we dicuss fixpoints and fixpoint operators for domains.
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Theorem 3.7 Let D be a domain and f : D → D be continuous. Then
the supremum

µ(f) =
⊔
n∈N

fn(⊥)

exists and satisfies the conditions

(1) µ(f) = f(µ(f)) and
(2) µ(f) v d whenever f(d) v d.

Thus, in particular µ(f) is the least fixpoint of f .

Proof. First we show by induction on n that fn(⊥) v fn+1(⊥). Obvi-
ously, we have f0(⊥) = ⊥ v f(⊥) = f1(⊥) as ⊥ is the least element of D.
If fn(⊥) v fn+1(⊥) then fn+1(⊥) = f(fn(⊥)) v f(fn+1(⊥)) = fn+2(⊥)
as f is monotonic. Thus µ(f) =

⊔
n∈N f

n(⊥) exists because directed sets
have suprema in D. The element µ(f) is a fixpoint of f as we have

f(µ(f)) = f
( ⊔
n∈N

fn(⊥)
)

=
⊔
n∈N

f(fn(⊥)) =
⊔
n∈N

fn+1(⊥) = µ(f)

where the second equality intrinsically makes use of continuity of f .
For the second claim suppose that f(d) v d. We show by induction

that fn(⊥) v d. Of course, we have f0(⊥) = ⊥ v d as ⊥ is the least
element. If fn(⊥) v d then fn+1(⊥) = f(fn(⊥)) v f(d) v d. Thus, it
follows that µ(f) =

⊔
n∈N f

n(⊥) v d. That µ(f) is the least fixpoint follows
immediately from the fact that µ(f) is below all prefixpoints f(d) v d. �

Obviously, for arbitrary predomains A not every continuous endofunc-
tion f : A→ A will have a fixpoint as this is wrong for sets and those live
within predomains as the discrete partial orders.

By the previous theorem there is a function µ from [D→D] to D sending
continuous f to their least fixpoint. One could show directly that µ is
continuous, i.e. preserves suprema of directed sets. However, the following
proof is much nicer.

Theorem 3.8 Let D be a domain and Φ : [[D→D]→D] → [[D→D]→D]
the continuous operator with

Φ(F )(f) = f(F (f))

for F ∈ [[D→D]→D] and f ∈ [D→D]. The fixpoints of Φ are the continu-
ous fixpoint operators on D and µ is the least fixpoint of Φ. Thus, the least
fixpoint operator µ is continuous.
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Proof. First observe that

Ψ : [[D→D]→D]×[D→D] → D : (F, f) 7→ f(F (f))

is continuous in each argument (exercise!) and thus continuous by
Lemma 3.4. The operator Φ is continuous as one easily sees that Φ = Λ(Ψ).

A continuous function F ∈ [[D→D]→D] is a fixpoint operator iff F (f) is
a fixpoint of f for all f ∈ [D→D], i.e. F (f) = f(F (f)) for all f ∈ [D→D],
i.e. iff F = Φ(F ). Thus, the fixpoints of Φ are precisely the continuous
fixpoint operators.

The least fixpoint of Φ is µ because for all n ∈ N we have

Φn(⊥)(f) = fn(⊥)

for all f ∈ [D→D] as the following inductive argument shows. The claim is
obvious for n=0 as Φ0(⊥)(f) = ⊥(f) = ⊥ = f0(⊥). Suppose as induction
hypothesis that Φn(⊥)(f) = fn(⊥) for all f ∈ [D→D]. Then for all f ∈
[D→D] we have

Φn+1(⊥)(f) = Φ(Φn(⊥))(f) = f(Φn(⊥)(f)) =(IH) f(fn(⊥)) = fn+1(⊥)

proving the induction step. �

Later we will interpret Yσ of PCF as the least fixpoint operator for Dσ.
The previous theorem guarantees that recursive definitions in PCF via the
recursion operators Yσ will not lead out of the world of Scott continuous
functions which is indispensible for further, i.e. iterated, applications of Y.

“Induction Principles” for Least Fixpoints

As the least fixpoint operators of PCF are essential for writing nontriv-
ial programs it is most desirable to have reasoning principles available for
proving properties of least fixpoints. As some of these are formally analo-
gous to proper induction principles it has become customary to call them
“induction principles” though they do not verify that a certain property
holds for all elements of some domain but rather that a property holds for
a particular element, namely the least fixpoint of some given function.

Alas, most reasoning principles do not apply to arbitrary properties of
domains. In the following definition we introduce a class of predicates on
domains for which the subsequent induction principles are “admissible”.

Definition 3.9 A subset P of a predomain A is called an admissible
predicate on A iff P is closed under suprema of directed sets, i.e. P

(⊔
X

)
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for all directed X ⊆ P . ♦

Notice that we often write P (d) for d ∈ P as we identify predicates with
subsets. The first and most general reasoning principle is “computational
induction”.

Theorem 3.10 (Computational Induction)
Let D be a domain, f : D → D a continuous function and P ⊆ D an
admissible predicate on D. Then P (µ(f)) whenever P (fn(⊥)) for all n ∈ N.

Proof. As by assumption all elements of the directed set {fn(⊥) |n∈N}
are in P its supremum µ(f) is in P , too, as P is admissible. �

The following immediate consequence called “fixpoint induction” is of-
ten easier to use.

Theorem 3.11 (Fixpoint Induction)
Let D be a domain, f : D → D a continuous function and P ⊆ D an
admissible predicate on D.

Then P (µ(f)) whenever P (⊥) and ∀x∈D.P (x) ⇒ P (f(x)).

Proof. From the premisses P (⊥) and ∀x∈D.P (x) ⇒ P (f(x)) one eas-
ily shows by ordinary induction on N that ∀n∈N. P (fn(⊥)) from which it
follows by Theorem 3.10 that P (µ(f)). �

Notice the formal analogy of the structure of premisses in ordinary in-
duction

P (0) ∧ (∀x. P (x) ⇒ P (succ(x))) ⇒ ∀x. P (x)

and fixpoint induction

P (⊥) ∧ (∀x. P (x) ⇒ P (f(x))) ⇒ P (µ(f))

which was the reason for calling Theorem 3.11 “fixpoint induction”.
Finally we mention a proof principle due to David Park which is useful

for showing that recursively defined functions diverge for some arguments.

Theorem 3.12 (Park Induction)
Let D be a domain and f : D → D a continuous function. Then µ(f) v d

whenever f(d) v d.

Proof. This is just Theorem 3.7 (2). �

Now we have accumulated sufficiently much basic Domain Theory for
introducing Scott’s famous domain model for PCF.
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3.2 Domain Model of PCF

We first describe the domains interpreting PCF types. For this purpose we
need the following definition.

Definition 3.13 Let X be a set. Then X⊥ is the poset whose underlying
set of elements is X∪{⊥} where ⊥ 6∈ X and which is partially ordered by

x v y iff x=⊥ ∨ x = y .

The element ⊥ is a fresh least element and the elements of X are all in-
comparable w.r.t. this ordering. ♦

Now the domains Dσ associated with PCF types σ are defined induc-
tively as follows

Dnat = N where N = N⊥ and
Dσ→τ = [Dσ→Dτ ].

Notice that all Dσ contain a least element ⊥. If one considers the extension
of PCF by Boolean values then one putsDbool = B⊥ where B = {true, false}
is the set of truth values.

If Γ ≡ x1:σ1, . . . , xn:σn then we define [[Γ]] as Dσ1× . . .×Dσn
. A term

in context Γ `M : τ will be interpreted as a function

[[Γ `M ]] : [[Γ]] → Dτ

which is required to be Scott continuous. The definition of the interpreta-
tion of terms in context proceeds by recursion over the structure of deriva-
tions as in the following definition.

Definition 3.14 The interpretation of terms in contexts is given by the
following recursive clauses

[[x1:σ1, . . . , xn:σn ` xi]](d1, . . . , dn) = di

[[Γ ` λx:σ.M ]] = Λ([[Γ, x:σ `M ]])
i.e. [[Γ ` λx:σ.M ]](~d)(d) = [[Γ, x:σ `M ]](~d, d)

[[Γ `M(N)]](~d) = ev([[Γ `M ]](~d), [[Γ ` N ]](~d))

[[Γ ` Yσ(M)]](~d) = µ([[Γ `M ]](~d))

[[Γ ` zero]](~d) = 0

[[Γ ` succ(M)]](~d) = [[succ]]([[Γ `M ]](~d))
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[[Γ ` pred(M)]](~d) = [[pred]]([[Γ `M ]](~d))

[[Γ ` ifz(M,N1, N2)]](~d) = [[ifz]]([[Γ `M ]](~d), [[Γ ` N1]](~d), [[Γ ` N2]](~d))

where [[succ]], [[pred]] : N → N are defined as

[[succ]](⊥) = ⊥ [[succ]](n) = n+1

[[pred]](⊥) = ⊥ [[pred]](0) = 0 [[pred]](n+1) = n

and [[ifz]] : N3 → N is defined as

[[ifz]](⊥, x, y) = ⊥ [[ifz]](0, x, y) = x [[ifz]](n+1, x, y) = y

with n ranging over N and x and y ranging over N = N⊥. ♦

Notice that [[succ]] and [[pred]] are the strict extensions of the ordinary
successor and predecessor functions on N. The function [[ifz]] is strict in its
first argument but non-strict in its second and third argument.

We now collect a few basic properties of the domain interpretation of
PCF whose proof is fairly standard.

Lemma 3.15 (Substitution Lemma)
Let Γ ≡ x1:σ1, . . . , xn:σn be a context and Γ ` M : τ a term. Then for all
contexts ∆ and terms ∆ ` Ni : σi with i=1, . . . , n it holds that

[[∆ `M [ ~N/~x]]](~d) = [[Γ `M ]]([[∆ ` N1]](~d), . . . , [[∆ ` Nn]](~d))

for all ~d ∈ [[∆]].

Proof. Straightforward by induction on derivations of Γ `M . �

As corollaries to the Substitution Lemma we obtain correctness of the
β- and η-equalities as known from λ-calculus.

Corollary 3.16 (β-equality)
If Γ, x:σ `M : τ and Γ ` N : σ then

[[Γ ` (λx:σ.M)(N)]] = [[Γ `M [N/x]]] .

Proof. Straightforward exercise! �

Corollary 3.17 (η-equality)
If Γ `M : σ→τ then

[[Γ ` λx:σ.M(x)]] = [[Γ `M ]]

for x 6∈ Var(Γ).
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Proof. Straightforward exercise! �

The next theorem relates the domain–theoretic fixpoint semantics to
our operational intuition about recursive definitions.

Theorem 3.18 Let Ωσ ≡ Yσ(λx:σ. x). Obviously, we have [[Ωσ]] = ⊥.
For every term Γ `M : σ→σ we have

[[Γ ` Yσ(M)]] =
⊔
n∈N

[[Γ `Mn(Ωσ)]]

where Mn(Ωσ) is defined recursively as M0(Ωσ) ≡ Ωσ and Mn+1(Ωσ) ≡
M(Mn(Ωσ)).

Proof. As the interpretation of λx:σ. x is idDσ
whose least fixpoint is ⊥

we get [[Ωσ]] = ⊥. Now if Γ `M : σ→σ then for all ~d ∈ [[Γ]] we have

[[Γ ` Yσ(M)]](~d) = µ
(
[[Γ `M ]](~d)

)
=

⊔
n∈N

(
[[Γ `M ]](~d)

)n(⊥)

from which it follows that [[Γ ` Yσ(M)]] =
⊔

n∈N[[Γ ` Mn(Ωσ)]] because a
straightforward inductive argument shows that

[[Γ `Mn(Ωσ)]](~d) = ([[Γ `M ]](~d))n(⊥)

holds for all n ∈ N and ~d ∈ [[Γ]]. �

This theorem guarantees that the meaning of a recursive definition
Yσ(M) is the supremum of its finite unfoldings Mn(Ωσ).

3.3 LCF – A Logic of Computable Functionals

At the same time (end of 1960ies) when Dana Scott introduced the pro-
totypical programming language PCF in [Scott 1969] he also defined LCF
(Logic of Computable Functionals) for the purpose of reasoning about PCF
programs. Due to Gödel’s Incompleteness Theorem such a formal system2

can never be complete since it contains arithmetic. Despite its inherent in-
completeness LCF contains a lot of most useful reasoning principles which
we will now discuss informally.

Atomic propositions about PCF terms have the form M vσ N where
both M and N are terms of type σ. The relations vσ are all supposed as

2Here “formal system” means that its set of theorems is recursively enumerable!
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reflexive and transitive. Equality for terms of type σ is then defined as

M =σ N ≡ (M vσ N) ∧ (N vσ M) .

The following axioms are easily validated w.r.t. the Scott model introduced
in the previous section. Notice, however, that we always assume free vari-
ables to be typed by a context which we prefer to leave implicit3 for sake
of readability.

(1) M1 vσ→τ M2 ∧N1 vσ N2 ⇒M1(N1) vτ M2(N2)
(2) λx:σ.M1 vσ→τ λx:σ.M2 ⇔ ∀x:σ.M1 vτ M2

(3) (λx:σ.M)(N) =τ M [N/x]
(4) λx:σ.M(x) =σ→τ M provided x is not free in M
(5) Yσ(M) =σ M(Yσ(M))
(6) ∀x:σ. M(x) vσ x⇒ Yσ(M) vσ x provided x is not free in M
(7) P (Ωσ) ∧ (∀x:σ. P (x) ⇒ P (M(x))) ⇒ P (Yσ(M))

provided x is not free in M and P (x) is a predicate built from atomic
formulas via ∀,∧,∨ and A ⇒ (−) where A is an arbitrary formula
without free occurrences of the variable x.

Notice that the syntactic restrictions on the predicate P in (7) guarantee
that the predicate P is admissible.4 Whereas (7) corresponds to Fixpoint
Induction (6) corresponds to Park Induction from which one may derive
that Ωσ = Yσ(λx:σ.x) vσ M for all terms M of type σ.

But we also need some axioms for the data type of natural numbers.
For their formulation we employ the predicate

N(x) ≡ ¬(x = Ωnat)

expressing that x is a proper natural number different from ⊥. The follow-
ing axioms are (essentially) those of Peano Arithmetic

(8) ¬ succ(x) = zero

(9) ∀x, y:nat. N(x) ∧N(y) ∧ succ(x) = succ(y) ⇒ x = y

3That means that “officially” one would have to consider instead of formulas A rather
expressions of the form Γ ` A where all free variables of A are declared in Γ.

4All these closure properties are straightforward to verify with the exception of dis-

junction. For this purpose suppose P and Q are admissible subsets of a cpo A. Suppose

X is a directed subset of A with X ⊆ P ∪Q. If P ∩X is cofinal in X, i.e. for all x ∈ X
there exists y ∈ P ∩X with x v y then P ∩X is directed and

⊔
X =

⊔
P ∩X from which

it follows that
⊔

X =
⊔

P ∩X ∈ P since P is admissible. Otherwise, i.e. if P ∩X is not

cofinal in X, there exists an x ∈ X with x 6v y for all y ∈ P ∩X, i.e. for all y ∈ X with
x v y it holds that y 6∈ P and thus y ∈ Q, from which it follows that Q ∩X is directed

and has the same supremum as X and thus
⊔

X =
⊔

Q ∩X ∈ Q since Q is admissible.
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(10) P (zero) ∧
(
∀x:nat. N(x)∧P (x)⇒P (succ(x))

)
⇒ ∀x:nat. N(x)⇒P (x)

where P in (10) is an arbitrary predicate. Finally we need a few axioms
governing the use of the basic functions

(11) N(zero)
(12) ∀x:nat. N(x) ⇔ N(succ(x))
(13) pred(zero) = zero

(14) ∀x:nat. pred(succ(x)) = x

(15) ifz(Ωnat, x, y) = Ωnat

(16) ifz(zero, x, y) = x

(17) ∀z:nat. N(z) ⇒ ifz(succ(z), x, y) = y.

These axioms turn out as sufficient in practice for verifying properties of
PCF programs. We have already mentioned that for principal reasons there
cannot be a complete axiomatization of the Scott model. However, it is an
interesting open problem to find a set of axioms for PCF which together
with all true sentences of arithmetic allow one to derive all sentences true
in the Scott model. The list of axioms given above surely does not have
this property as they are known to be valid in models of PCF different from
the Scott model as e.g. the fully abstract model of PCF.
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Chapter 4

Computational Adequacy

One easily verifies by induction on the structure of derivations that in the
Scott model we have [[M ]] = [[V ]] whenever M⇓V . Thus, the Scott model
is correct w.r.t. the operational semantics. This holds in particular for
programs, i.e. closed terms of type nat. In this chapter we will show that the
Scott model is also computationally adequate for the operational semantics,
i.e. that M⇓n whenever [[M ]] = n ∈ N.1

At first one might think of proving computational adequacy by induc-
tion on the structure of programs. This, however, is impossible because
subterms of programs, i.e. closed terms of type nat, need neither be closed
nor of type nat. The first problem is not that serious as one may quantify
over all closed instances of open terms. The second problem, however, is
much more serious and requires the introduction of a new concept, namely
that of a logical relation. This notion and its variations will turn out as a
key concept for semantic investigations since—as we shall see later on—it
has much more applications than just providing a nice perspicuous proof of
computational adequacy.

Our proof of computational adequacy will be organised as follows. We
define for each type σ a relation

Rσ ⊆ Dσ × Prgσ

by induction on the structure of σ. The family R = (Rσ |σ ∈ Type)
will be called a logical relation (between semantics and syntax of PCF).

1Notice that for types different from nat one cannot expect that M⇓V whenever

[[M ]] = [[V ]] as is immediate from considering the different syntactic values

M ≡ λx:nat.x and V ≡ λx:nat.pred(succ(x))

whose interpretation is equal, namely the identity function on N⊥.

37
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Then we prove that [[M ]]RσM holds for all closed terms M of type σ. As
the logical relation will be defined in a way that [[M ]]RnatM just means
∀n∈N. [[M ]]=n⇒M⇓n we are done.

Now we define the logical relation needed for our proof of computational
adequacy.

Definition 4.1 We define a family R = (Rσ |σ ∈ Type) of relations
Rσ ⊆ Dσ × Prgσ via the clauses

dRnatM iff ∀n∈N. d=n⇒M⇓n

fRσ→τM iff ∀d∈Dσ.∀N∈Prgσ. dRσN ⇒ f(d)RτM(N)

by induction on the structure of types. ♦

Notice that for σ ≡ σ1→ . . .→σk→nat we can reformulate fRσM as

∀d1Rσ1N1. . . .∀dkRσk
Nk. f(d1) . . . (dk)RnatM(N1) . . . (Nk)

or, more explicitly, as

∀d1Rσ1N1. . . .∀dkRσk
Nk. ∀n∈N. f(d1) . . . (dk)=n⇒M(N1) . . . (Nk)⇓n .

In any case it is obvious from the definition of Rnat that computational
adequacy is equivalent to [[M ]]RnatM for all programs M of type nat.

For the purpose of showing that [[M ]]RσM holds for all M ∈ Prgσ we
need some properties of the logical relation R.

Lemma 4.2 For all types σ it holds that

(1) if d′ v d and dRσM then d′RσM

(2) for every M ∈ Prgσ the set RσM := { d ∈ Dσ | dRσM } is closed under
directed suprema and contains ⊥

(3) if dRσM and M @∼σ M
′ then dRσM

′.

Proof. Obviously, conditions (1)–(3) hold for base type nat. For the
general case σ ≡ σ1→ . . .→σk→nat we employ the characterisation of Rσ

as given in the remark after Definition 4.1.
ad (1) : Suppose g v f and fRσM . For showing gRσM sup-
pose that diRσi

Ni for i=1, . . . , k. From fRσM it follows that
f(d1) . . . (dk)RnatM(N1) . . . (Nk). Since g v f we have g(d1) . . . (dk) v
f(d1) . . . (dk). Thus, since (1) holds for base type it follows that
g(d1) . . . (dk)RnatM(N1) . . . (Nk) as desired.
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ad (2) : Obviously, we have ⊥RσM since (2) holds for base type
and ⊥(d1) . . . (dk) = ⊥ for all di ∈ Dσi

. For closure under directed
suprema suppose that F ⊆ {d ∈ Dσ | dRσM} is directed. For
showing that

⊔
FRσM suppose that diRσi

Ni for i=1, . . . , k. Then for
all f ∈ F we have f(d1) . . . (dk)RnatM(N1) . . . (Nk) since fRσM . As(⊔

F
)
(d1) . . . (dk) =

⊔
f∈F f(d1) . . . (dk) and (2) holds for base type it fol-

lows that
(⊔

F
)
(d1) . . . (dk)RnatM(N1) . . . (Nk) as desired.

ad (3) : Suppose fRσM and M @∼σ M ′. For showing
fRσM

′ suppose that diRσi
Ni for i=1, . . . , k. Since fRσM we have

f(d1) . . . (dk)RnatM(N1) . . . (Nk). From M @∼σ M ′ it follows that
M(N1) . . . (Nk) @∼nat M

′(N1) . . . (Nk). Thus, since (3) holds for base type
it follows that f(d1) . . . (dk)RnatM

′(N1) . . . (Nk) as desired. �

We also need that the least fixpoint operator on Dσ is related to Yσ via
R(σ→σ)→σ. For showing this we need the following lemma.

Lemma 4.3 For every PCF type σ it holds that M(Yσ(M)) @∼σ Yσ(M).

Proof. Suppose that M(Yσ(M))(N1) . . . (Nk)⇓n. Then by inspection
of the inductive definition of ⇓ there exist syntactic values V1, . . . , Vk

such that M(Yσ(M))⇓V1, Vi(Ni)⇓Vi+1 for i < k and Vk(Nk)⇓n. But
from M(Yσ(M))⇓V1 it follows that Yσ(M)⇓V1 and, accordingly, that
Yσ(M)(N1) . . . (Nk)⇓n as desired. �

A similar argument shows that Yσ(M) @∼σ M(Yσ(M)). Thus, by Mil-
ner’s Context Lemma (proved in the next chapter) the terms Yσ(M) and
M(Yσ(M)) are observationally equivalent as expected.

Lemma 4.4 If fRσ→σM then µ(f)RσYσ(M).

Proof. Suppose fRσ→σM . For showing µ(f)RσYσ(M) by Lemma 4.2(2)
it suffices to show that fn(⊥)RσYσ(M) for all n ∈ N. The base case
⊥RσYσ(M) holds by Lemma 4.2(2). Suppose fn(⊥)RσYσ(M) as induction
hypothesis. Thus, as fRσM it follows that fn+1(⊥)RσM(Yσ(M)). By
Lemma 4.3 we have M(Yσ(M)) @∼σ Yσ(M). Using Lemma 4.2(3) conclude
that fn+1(⊥)RσYσ(M) as desired. �

Now we are ready to prove the following Main Lemma for the logical
relation R entailing that [[M ]]RσM for all M ∈ Prgσ.

Lemma 4.5 (Main Lemma for R)
If x1:σ1, . . . , xk:σk `M : τ and diRσiNi for i=1, . . . , k then

[[x1:σ1, . . . , xk:σk `M ]](~d) Rτ M [ ~N/~x] .
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Proof. The proof is by induction on the structure of derivations of terms
in context. For facilitating notation we write ~dR ~N instead of diRσi

Ni for
i=1, . . . , k.
Variables : For x1:σ1, . . . , xk:σk ` xi : σi and ~dR ~N we have

[[x1:σ1, . . . , xk:σk ` xi]](~d) = diRσi
Ni ≡ xi[ ~N/~x]

as desired.
λ-Abstraction : Suppose as induction hypothesis that the claim of the the-
orem holds for Γ, x:σ ` M : τ . Further suppose that ~dR ~N . We have to
show that

[[Γ ` λx:σ.M ]](~d) Rσ→τ (λx:σ.M)[ ~N/~x]

where ~x is the list of variables declared in Γ. For that purpose assume that
dRσN . From the induction hypothesis it follows that

[[Γ, x:σ `M ]](~d, d) Rτ M [ ~N,N/~x, x]

and, therefore, by Lemma 4.2(3) that

[[Γ ` λx:σ.M ]](~d)(d) Rτ (λx:σ.M)[ ~N/~x](N)

because

[[Γ ` λx:σ.M ]](~d)(d) = [[Γ, x:σ `M ]](~d, d)

and2

M [ ~N,N/~x, x] ≡M [ ~N/~x][N/x] @∼τ (λx:σ.M [ ~N/~x])(N) ≡ (λx:σ.M)[ ~N/~x](N) .

Application : Suppose as induction hypothesis that the claim of the theorem
holds for Γ ` M1 : σ→τ and Γ ` M2 : σ. Now if ~dR ~N then due to the
induction hypotheses we have

[[Γ `Mi]](~d) R Mi[ ~N/~x]

for i=1, 2 from which it follows that

[[Γ`M1]](~d)([[Γ `M2]](~d)) R M1[ ~N/~x](M2[ ~N/~x]) .

As

[[Γ`M1(M2)]](~d) = [[Γ`M1]](~d)([[Γ `M2]](~d))
2as it generally holds that M [N/x] @∼ (λx:σ.M)N for M ∈ Prgσ→τ and N ∈ Prgσ
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and

M1[ ~N/~x](M2[ ~N/~x]) ≡M1(M2)[ ~N/~x]

it then follows that

[[Γ`M1(M2)]](~d) R M1(M2)[ ~N/~x]

as desired.
Recursion : Suppose as induction hypothesis that Γ ` M : σ→σ satisfies
the requirement of the theorem. Now if ~dR ~N then due to the induction
hypothesis we have

[[Γ `M ]](~d) R M [ ~N/~x]

from which it follows by Lemma 4.4 that

[[Yσ(M)]](~d) = µ([[Γ `M ]](~d)) R Yσ(M [ ~N/~x]) ≡ Yσ(M)[ ~N/~x]

as desired.

Basic Operations : One easily checks that 0Rnatzero and that from
xRnatM , y1RnatN1 and y2RnatN2 it follows that [[succ]](x)Rnatsucc(M),
[[pred]](x)Rnatpred(M) and [[ifz]](x, y1, y2)Rnatifz(M,N1, N2). Using these
observations the remaining cases for zero, succ, pred and ifz go through
without pain. �

The following theorem is a special case of the previous lemma.

Theorem 4.6 (Computational Adequacy)
For every closed term M of type nat we have M⇓n whenever [[M ]] = n.

Proof. Immediate from Lemma 4.5 since ` M : nat for closed terms M
of type nat. �

Thus, for `M : nat and n ∈ N we have

M ⇓n iff [[M ]] = n

i.e. a closed term of type nat denotes a natural number if and only if it
evaluates to the corresponding numeral.
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Chapter 5

Milner’s Context Lemma

We now will use the logical relation R of the previous chapter to cook
up a slick proof of Milner’s Context Lemma saying that @∼ and <∼ coincide
at all types. Whereas older proofs were fairly syntactical and combinato-
rial in character the current proof (due to A. Jung) is fairly abstract and,
accordingly, more transparent.

Theorem 5.1 (Milner’s Context Lemma)
For all types σ and M,N ∈ Prgσ the following conditions are equivalent

(a) M @∼σ N (b) M <∼σ N (c) [[M ]]RσN .

Proof. (b) ⇒ (a) : since contexts of the form [ ]~P are just particular
contexts of base type.
(a) ⇒ (c) : Suppose M @∼σ N . From Lemma 4.5 we know that [[M ]]RM .
Thus, it follows from Lemma 4.2(3) that [[M ]]RσN .
(c) ⇒ (b) : Suppose [[M ]]RσN . Let P ∈ Prgσ→nat. As by Lemma 4.5
we have [[P ]]Rσ→natP it follows that [[P ]]([[M ]])RnatN(P ). Thus, as
[[P (M)]] = [[P ]]([[M ]]) we have [[P (M)]]RnatP (N). If P (M)⇓n then by cor-
rectness of the operational semantics we have [[M(P )]] = n and, therefore,
also nRnatP (N) from which it follows that P (N)⇓n as desired. �

The following corollary gives a further characterisation of <∼.

Corollary 5.2 For all types σ and M,N ∈ Prgσ we have

M <∼σ N iff ∀d∈Dσ. dRσM ⇒ dRσN .

Proof. The forward direction follows from Lemma 4.2(3) since by Theo-
rem 5.1 the relations <∼σ and @∼σ coincide.

For the reverse direction suppose that ∀d∈Dσ. dRσM ⇒ dRσN . Then,
in particular, we have [[M ]]RσM ⇒ [[M ]]RσN . As by Lemma 4.5 we have
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[[M ]]RσM it follows that [[M ]]RσN . Thus, by Theorem 5.1 it follows that
M <∼σ N as desired. �

This corollary tells us that we may replace quantification over syntac-
tic experiments of the form P (−)⇓n equivalently by quantification over
semantic experiments of the form dRσ(−).

We may also use the logical relation R for defining an alternative partial
order ≤σ on Dσ as follows

d1 ≤σ d2 iff ∀P ∈ Prgσ. d2RσP ⇒ d1RσP

which by Lemma 4.2(1) contains vDσ . It is an easy exercise(!) to show
that ≤σ (as a subset of Dσ×Dσ) is closed under suprema of directed sets.
For closed terms M and N of type σ we have

[[M ]] ≤σ [[N ]] iff M <∼σ N

as by Theorem 5.1 the condition ∀P ∈ Prgσ. [[N ]]RσP ⇒ [[M ]]RσP is
equivalent to ∀P ∈ Prgσ. N

<∼σ P ⇒ M <∼σ P , i.e. M <∼σ N . Thus, in a
very precise sense ≤ is the denotational analogue of <∼.
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Chapter 6

The Full Abstraction Problem

In the previous chapter we have seen that [[M ]] v [[N ]] entails M <∼ N as
from [[M ]] v [[N ]] and [[N ]]RN it follows that [[M ]]RN and thus M <∼ N . In
this chapter we will show that the reverse implication is not valid for the
Scott model. Even more we will show that [[M ]] = [[N ]] need not hold even
if M and N are observationally equal. This phenomenon occurs already at
type (ι→ι→ι)→ι and the reason is that there are not enough PCF-definable
objects within Dι→ι→ι.

For the reader’s convenience we officially fix some terminology intro-
duced informally already in the introduction.

Definition 6.1 (Full Abstraction)
A model of PCF is called equationally fully abstract iff

M ' N ⇒ [[M ]] = [[N ]]

for all closed terms M and N of the same type where M ' N is an abbre-
viation for M <∼ N ∧N <∼ N .
A model of PCF is called fully abstract iff

M <∼ N ⇒ [[M ]] v [[N ]]

for all closed terms M and N of the same type. ♦

Obviously, every fully abstract model is also equationally fully abstract.

In the next chapter we will show that there is no PCF-definable function
f ∈ Dι→ι→ι satisfying the constraints

(†) f0⊥ = 0 f⊥0 = 0 f11 = 1 .

45



25th August 2006 16:58 WSPC/Book Trim Size for 9in x 6in MGFP

46 Domain-Theoretic Foundations of Functional Programming

In the Scott model there is a least one such function, namely

porxy =


0 if x = 0 or y = 0
1 if x = 1 = y

⊥ otherwise

called “parallel or”. In the following lemma we exhibit two functionals of
type (ι→ι→ι)→ι which are definable in PCF and give different results only
when applied to f satisfying condition (†).

Lemma 6.2 Consider the terms

portesti ≡ λf :ι→ι→ι. ifz(f 0 Ωι, ifz(f Ωι 0, ifz(p̃red(f 1 1), i,Ωι),Ωι),Ωι)

of type (ι→ι→ι)→ι for i=0, 1 where Ωι ≡ Yι(λx:ι.x) and p̃red stands for
the term λx:ι.ifz(x,Ωι, ifz(pred(x), 0,Ωι)). Then for all f ∈ Dι→ι→ι

• [[portesti]](f) = i whenever f satisfies condition (†) and
• [[portesti]] = ⊥ otherwise.

Proof. Obvious by unfolding the definition of portest0 and portest1. �

Thus, if for all closed terms of type ι→ι→ι their interpretation does
not satify condition (†) then by Milner’s Context Lemma (and computa-
tional adequacy) the programs portest0 and portest1 are observationally
equal although their interpretations are different in the Scott model since
[[portest0]](por) = 0 and [[portest1]](por) = 1.

Intuitively, it is clear that one cannot implement a function satisfying
(†) in PCF because evaluation strategies for PCF terms are necessarily
sequential, i.e. either the first or the second argument has to be evaluated
first, whereas any implementation of an f satisfying condition (†) has to
evaluate both arguments in parallel.1 However, a precise mathematical
proof of this fact requires some sophistication and, therefore, we postpone
it to the next chapter where we develop the necessary machinery of logical
relations.

Actually, we will show a bit more, namely that all first order PCF-
definable functions are stable, i.e. preserve binary infima (denoted by u) of
consistent pairs, i.e. pairs of elements having a common extension2.

1For example the first argument may diverge whereas the second argument evaluates

to 0. In this case it would be wrong to evaluate the first argument first as this would lead

to non-termination of the function call although it should evaluate to 0. A symmetric
argument shows that it is also wrong to evaluate always the second argument first.

2We write x↑y as an abbreviation for ∃z. x v z ∧ y v z and say that “x and y are

consistent” if this condition holds.
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Lemma 6.3 For every term M of first order type, i.e. of type

k times︷ ︸︸ ︷
ι→ . . .→ι→ ι

for some k ∈ N, it holds that

[[M ]](x1uy1) . . . (xkuyk) = [[M ]](x1) . . . (xk) u [[M ]](y1) . . . (yk)

for all ~x, ~y ∈ Dk
ι with xi↑yi for i=1, . . . , k.

This has the consequence that

Corollary 6.4 There are no PCF definable functions of type Dι→ι→ι

satisfying the constraint (†).

Proof. Suppose f is PCF definable and satisfies (†). Then f0⊥ = 0 =
f⊥0 and, therefore, we have

f⊥⊥ = f(0 u ⊥)(⊥ u 0) = f0⊥ u f⊥0 = 0 u 0 = 0

by Lemma 6.3. However, by (†) we have f11 = 1 and, thus, by monotonicity
of f it follows that 0 v 1 which is impossible. �

The observation of Lemma 6.3 was taken as a starting point by G. Berry,
who in his Thése d’ Etat [Berry 1979] introduced and investigated a cat-
egory of so-called “stable domains” where all morphisms are required not
only to be Scott continuous but also stable in the sense that

x↑y ⇒ f(xuy) = f(x)uf(y)

for all arguments x and y. The obvious advantage of stable domain theory
is that it refutes the existence of maps like “parallel or” which—as we have
seen—are responsible for the lack of full abstraction of the Scott model.
This, however, is achieved only at the price that the order on function
spaces is not pointwise anymore.

Notice that in the Scott model even very simple PCF-definable functions
are not stable as for example the evaluation function

ev = λf :ι→ι.λx:ι.f(x)

which can be seen as follows. Consider the functions f1 = [[λx:ι.zero]]
and f2 = [[λx:ι.ifz(x, zero, zero)]]. We have f1⊥ = 0 and f20 = 0 and,
therefore, also f1⊥u f20 = 0 whereas (f1uf2)(⊥u0) = f2⊥ = ⊥ which is a
counterexample to stability of ev as f2 v f1 and ⊥ v 0. Accordingly, in the
stable domains model f2 6v f1 as otherwise ev were not even monotonic. But
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we have λx:ι.ifz(x, zero, zero) <∼ λx:ι.zero and, accordingly, Berry’s stable
domains models is not fully abstract either.

A remarkable consequence of the stability of PCF-definable first order
functions f is that whenever f~x = n ∈ ι then there exists a least ~y v ~x with
f~y = n, namely the infimum of all ~z v ~x with f~z = n. Notice that if there
is a sequential evaluation strategy for f then this property is automatic.
Thus, there is no sequential algorithm for functions f satisfying condition
(†) as then f0⊥ = 0 = f⊥0 whereas f⊥⊥ = ⊥, i.e. (0,⊥) and (⊥, 0) are
different minimal approximations to (0, 0) giving rise to output 0.

An operational semantics for por for which the Scott model is compu-
tationally adequate is given by the rules

M⇓0

porMN⇓0

N⇓0

porMN⇓0

M⇓1 N⇓1

porMN⇓1

where the first two rules do overlap as there are two different derivations of
por00⇓0. Although for every term M there is still at most one V with M⇓V
there is no sequential evaluation strategy for terms of the form porMN . As
if one would always evaluate the first argument first then the evaluation
of the whole term may diverge even if the second argument evaluates to 0.
A symmetric argument shows that it is also wrong to evaluate always the
second argument first.

For reasons of efficiency deterministic parallel language constructs like
por are not implemented in actual functional languages and, accordingly,
the Scott model is not fully abstract for them. However, it should be em-
phasized that por is computable and thus can be implemented in principle.
It corresponds to the well known dove tailing technique known from recur-
sion theory (see e.g. [Rogers 1987]) where it is used e.g. for showing that
semi-decidable predicates are closed under binary unions. Dove tailing as
used in recursion theory is highly intensional as it uses Kleene’s T -predicate
which amounts to a primitive recursive coding3 of operational semantics: if
Ai = {n∈N | ∃k.T (ei, n, k)} then A1∪A2 is the halting set of the algorithm
µk.T (e1, n, k)∨T (e2, n, k). The language construct por may be considered
as an extensional version of dove tailing avoiding any coding of the op-
erational semantics. In recursion theory one uses also infinite variants of
dove tailing e.g. for showing that the union of an r.e. set of r.e. sets is
r.e. again. This can be implemented in PCF using por via the functional

3Recall that T (e, n, k) means “k is a code for a terminating computation sequence for

the application of program with number e to argument n”.
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por∞ : (ι→ι)→ι defined via the recursion equation

por∞(p) = por(p(zero))(por∞(λx:nat.p(succ(x))))

from which one can read off easily an implementing PCF term.
In his famous paper “LCF considered as a programming language”

[Plotkin 1977] G. Plotkin has shown that the Scott model is fully abstract
for PCF+por. The clue of the proof4 was to show that for every type σ
sufficiently many elements, namely the so-called compact (or finite) ele-
ments, are all definable in PCF + por. These compact elements suffice as
every element of Dσ appears as directed supremum of the compact elements
approximating it. Thus, if continuous functions are identical on the com-
pact elements then they are identical on all arguments. In the same paper
[Plotkin 1977] Plotkin has shown that, however, not all “computable” el-
ements of the Scott model can be denoted by terms of PCF+por.5 This,
however, can be remedied by adding the “continuous existential quantifier”
∃ : (ι→ι)→ι whose operational semantics is given by the rules

Mn⇓ 0
(n ∈ N)

∃(M)⇓ 0

MΩι ⇓ 1

∃(M)⇓ 1

Summarizing we can say that the Scott model is neither fully abstract
nor universal for PCF. However, this doesn’t diminish the relevance of
the Scott model as there are reasonable extensions of PCF for which the
Scott model is fully abstract and even universal. Much later in Chapters
11 and 12 we will use a somewhat sophisticated logical relation technique
for transforming the Scott model into a fully abstract model for PCF.

4for details see Chapter 13
5An element is called “computable” iff the set of codes of approximating compact

elements is recursively enumerable.
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Chapter 7

Logical Relations

In this chapter we will discuss logical relations on the Scott model for PCF.
These will allow us to express invariance properties of syntactic definability
without any reference to syntax and use these to prove in a mathematically
precise way that certain elements of the Scott model are not PCF definable.

Definition 7.1 (Logical Relation)
Let W be an arbitrary set. A logical relation of arity W on the Scott model
of PCF is a family

R = (Rσ ∈ P(DW
σ ) | σ ∈ Type)

such that

f ∈ Rσ→τ ⇔ ∀d∈Rσ. λi∈W.f(i)(d(i)) ∈ Rτ ⇔ ∀d∈Rσ. ev◦〈f, d〉 ∈ Rτ

for all types σ and τ . ♦

Notice that a logical relation R of arity W is uniquely determined by
Rnat and that for all subsets P ⊆ DW

nat there exists a unique logical relation
R of arity W with Rnat = P .

Theorem 7.2 (Main Lemma for Logical Relations)
Let R be a logical relation of arity W on the Scott model of PCF. Then for
λ-terms x1:σ1, . . . , xn:σn `M : τ and dj ∈ Rσj for j=1, .., n it holds that

λi∈W. [[x1:σ1, . . . , xn:σn `M ]](~d(i)) ∈ Rτ

where ~d(i) = 〈d1(i), . . . , dn(i)〉 for i ∈W .

Proof. We proceed by induction on the structure of derivations of judge-
ments of the form Γ `M : σ using only the rules for variables, λ-abstraction
and application.
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(1) If M is a variable then the claim is trivial (exercise!).

(2) Suppose as induction hypothesis that the claim holds for Γ, x:σ `M : τ
where Γ ≡ x1:σ1, . . . , xn:σn. Suppose that dj ∈ Rσj

for j=1, . . . , n. We
have to show that

λi∈W. [[Γ ` λx:σ.M ]](~d(i)) ∈ Rσ→τ .

For that purpose assume that d ∈ Rσ. Then we have

λi∈W. [[Γ ` λx:σ.M ]](~d(i))(d(i)) = λi∈W. [[Γ, x:σ `M ]](〈~d(i), d(i)〉)

whose right hand side is in Rτ due to the induction hypothesis.

(3) Suppose as induction hypotheses that the claim holds for Γ `M : σ→τ

and Γ ` N : σ where Γ ≡ x1:σ1, . . . , xn:σn. Let dj ∈ Rσj for j=1, . . . , n.
We have to show that

λi∈W. [[Γ `M(N)]](~d(i)) ∈ Rτ .

As [[Γ ` M(N)]](~d(i)) = [[Γ ` M ]](~d(i))([[Γ ` N ]](~d(i))) this amounts to
showing

λi∈W. [[Γ `M ]](~d(i))([[Γ ` N ]](~d(i))) ∈ Rτ

which, however, follows immediately from the definition of Rσ→τ because
we have λi∈W. [[Γ ` M ]](~d(i)) ∈ Rσ→τ and λi∈W. [[Γ ` N ]](~d(i)) ∈ Rσ by
the induction hypotheses on M and N . �

Thus, for closed λ-terms we get that in particular

Corollary 7.3 If R is a logical relation of arity W and M is a closed
λ–term of type σ then λi∈W. [[M ]] ∈ Rσ.

Proof. Immediate from Theorem 7.2 specializing to empty contexts. �

which motivates the following

Definition 7.4 (R-invariant)
Let R be a logical relation of arity W . Then an object d ∈ Dσ is called
R-invariant iff δW (d) := λi∈W.d ∈ Rσ. ♦

Thus Corollary 7.3 can be reformulated as follows: the denotation of a
closed λ-term is R-invariant for all logical relations R.

Corollary 7.5 Let R be a logical relation on the Scott model of arity W
and x1:σ1, . . . , xn:σn ` M : τ a λ-term. Then [[Γ ` M ]](~d) is R-invariant
whenever all di in ~d are R-invariant.
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Proof. If all di are R–invariant then all δW (di) ∈ Rσi
and, therefore,

δW ([[Γ `M ]](~d)) = λi∈W. [[Γ `M ]](〈δW (d1)(i), . . . , δW (dn)(i)〉) ∈ Rτ

by Theorem 7.2. �

Thus, an element of the Scott model is R-invariant if it is λ-definable
from elements which are R-invariant. Accordingly, the interpretation of a
closed PCF-term is R-invariant if the interpretations of the terms

zero λx:ι.succ(x) λx:ι.pred(x) λx:ι.λy:ι.λz:ι.ifz(x, y, z) λf :σ→σ.Yσ(f)

are all R-invariant in which case we say that “all PCF constants are R-
invariant”.

We now discuss a property of logical relations guaranteeing that the
interpretations of all λf :σ→σ.Yσ(f) are R-invariant.

Definition 7.6 A logical relation R of arity W is called admissible iff
δW (⊥) ∈ Rι and Rι is closed under suprema of directed subsets. ♦

Notice that for finite W there are no nontrivial directed subsets of DW
ι

and, accordingly, in this case a logical relation of arity W is admissible if
and only if δW (⊥) ∈ Rι.

Theorem 7.7 Let R be a an admissible logical relation on the Scott model
of arity W . Then for all types σ we have that

(1) δW (⊥) ∈ Rσ and Rσ is closed under suprema of directed subsets and
(2) the interpretation of λf :σ→σ.Yσ(f) is R-invariant.

Proof. First we show claim (1) by induction on the structure of σ.
For ι claim (1) holds by definition of admissibility. Suppose as induc-
tion hypotheses that claim (1) holds for σ and τ . That δW (⊥) ∈ Rσ→τ

follows from δW (⊥) ∈ Rτ as insured by the induction hypothesis for
τ . Suppose that F is a directed subset of Rσ→τ . For showing that⊔
F ∈ Rσ→τ assume that d ∈ Rσ. Then λi∈W.f(i)(d(i)) ∈ Rτ for all

f ∈ F and, therefore, also
⊔

f∈F λi∈W.f(i)(d(i)) ∈ Rτ as Rτ is closed
under suprema of directed sets by induction hypothesis for τ . Thus, as⊔

f∈F λi∈W.f(i)(d(i)) = λi∈W.
⊔

f∈F f(i)(d(i)) = λi∈W.
(⊔

F
)
(i)(d(i)) it

follows that

λi∈W.
(⊔

F
)
(i)(d(i)) ∈ Rτ

as desired.
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For claim (2) suppose that f ∈ Rσ→σ. Then one easily shows by induc-
tion that λi∈W.f(i)n(⊥) ∈ Rσ for all n ∈ N. As by (1) the set Rσ is closed
under suprema of directed sets it follows that

λi∈W.δW ([[λf :σ→σ.Yσ(f)]])(i)(f(i)) = λi∈W.µ(f(i)) ∈ Rσ

as desired. �

This has the following immediate consequence.

Theorem 7.8 Let R be an admissible logical relation on the Scott model
such that the interpretations of the terms

zero λx:ι.succ(x) λx:ι.pred(x) λx:ι.λy:ι.λz:ι.ifz(x, y, z)

are all R-invariant. Then all interpretations of closed PCF-terms are R-
invariant.

Proof. Immediate from (the remark after) Corollary 7.5 and Theo-
rem 7.7(2). �

We now consider some (useful) examples of logical relations satisfying
the premisses of Theorem 7.8.

(x, y, z) ∈ R(1)
ι ⇔ x↑y ∧ z = x u y

(x, y, z) ∈ R(2)
ι ⇔ x=⊥ ∨ y=⊥ ∨ z=⊥ ∨ x=y=z

where x↑y is an abbreviation for ∃z. x v z ∧ y v z.
As the arity of these relations is finite and (⊥,⊥,⊥) is an element of both

R
(1)
ι and R(2)

ι it follows that they are admissible. That the interpretations of
zero, λx:ι.succ(x), λx:ι.pred(x) and λx:ι.λy:ι.λz:ι.ifz(x, y, z) are all invariant
under both R(1) and R(2) is a straightforward, but tedious exercise.

Thus, we can now give the

Proof (of Lemma 6.3) :
As the logical relation R(1) satisfies the premisses of Theorem 7.8 we know
that the interpretation of every closed PCF term of first order type is R(1)-
invariant and thus stable. �

As R(2) satisfies the premisses of Theorem 7.8 we know that every PCF
definable f ∈ Dι→ι→ι is R(2)-invariant. Such an f cannot simultaneously
satisfy f0⊥ = 0 = f⊥0 and f11 = 1 as (⊥, 0, 1) and (0,⊥, 1) are in R

(2)
ι

whereas (f⊥0, f0⊥, f11) = (0, 0, 1) is not. This consideration provides an
alternative proof of Lemma 6.3.

However, we have that
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Lemma 7.9 Plotkin’s continuous existential quantifier is R(2)-invariant.

Proof. Suppose (∃(f1),∃(f2),∃(f3)) 6∈ R
(2)
ι then w.l.o.g. one of the fol-

lowing to cases applies

(1) ∃(f1) = 0 = ∃(f2) and ∃(f3) = 1
(2) ∃(f1) = 0 and ∃(f2) = 1 = ∃(f3).

In case (1) there exist n1, n2 ∈ N with f1(n1) = 0 = f2(n2) and f3(⊥) = 1.
As (n1, n2,⊥) ∈ R(2)

ι it follows that (f1, f2, f3) 6∈ R(2)
ι→ι.

In case (2) there exists an n ∈ N with f1(n) = 0 and f2(⊥) = 1 = f3(⊥).
As (n,⊥,⊥) ∈ R(2)

ι it follows that (f1, f2, f3) 6∈ R(2)
ι→ι. �

As ∃ is R(2)-invariant but por is not R(2)-invariant it follows from Corol-
lary 7.5 that por is not PCF definable from ∃.

More generally, there arises the question to which extent one can char-
acterise PCF definability via logical relations. To some extent K. Sieber
has achieved such a characterization up to type level ≤ 2, i.e. for types
σ1→ . . .→σn→ι where the σi are all first order, in [Sieber 1992] where he
has shown that for types σ of type level ≤ 2 an element d ∈ Dσ arises as
supremum of a directed set of PCF-definable elements if and only if d is
invariant under all logical relations of finite arity satisfying the premisses of
Theorem 7.8. Moreover, he has given also a purely combinatorial, syntax-
free characterization of this class of logical relations. However, using a
wider class of logical relations (of varying arity also called Kripke logical
relations) one may characterise for arbitrary types σ those d ∈ Dσ which
arise as suprema of directed sets of PCF-definable elements. Later in Chap-
ters 10 and 11 we will use Kripke logical relations for constructing a fully
abstract model of PCF in a completely syntax-free way.

In his seminal paper [Plotkin 1977] G. Plotkin has shown that ∃ is
not definable from por by a purely syntactical argument. The following
consideration shows that this cannot be achieved by an argument using
admissible logical relations. Consider

∃n(f : ι→ι) = ifz(f(0) por . . . porf(n), 0, f(Ωι))

which is obviously definable in PCF+por. As ∃ is the supremum of the
increasing chain (∃n)n∈N it follows that ∃ is invariant under all admissible
logical relations under which the constants of PCF and por are invariant.
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Chapter 8

Some Structural Properties of the Dσ

Up to now we know about the Dσ arising in the Scott model of PCF
just that they are domains, i.e. have suprema of directed subsets and a
least element. Actually, they have much more properties which will be
investigated in this chapter.

Lemma 8.1 For every PCF type σ the cpo Dσ has infima of nonempty
finite subsets and there exists a closed PCF term glbσ of type σ→σ→σ such
that [[glbσ]]xy is the infimum of x and y for all x, y ∈ Dσ.

Proof. For ι we may define glbι as λx:ι.λy:ι.ifz(eqxy, x,Ωι) where eq is
a PCF term deciding equality of natural numbers. The function eq can for
example be implemented by the PCF term λx:ι.λy:ι. (x−. y)+(y−. x) where
−. stands for truncated subtraction. Obviously, [[glbι]]xy = x if x = y and ⊥
otherwise and, therefore, delivers the binary infimum of x and y as desired.

Now if by induction hypothesis there is a PCF term glbσ computing the
binary infimum for Dσ then

glbτ→σ ≡ λf :τ→σ.λg:τ→σ.λy:τ. glbσ(f(y), g(y))

computes the binary infimum in Dτ→σ which can be seen as follows. If f
and g are continuous functions from Dτ to Dσ then [[glbτ→σ]]fg is contin-
uous and [[glbτ→σ]]fgy = f(y)ug(y) for all y ∈ Dτ . Obviously, we have
[[glbτ→σ]]fg v f, g and if h : Dτ→Dσ with h v f, g then h(y) v f(y)u g(y)
for all y ∈ Dτ , i.e. h v [[glbτ→σ]]fg. Thus [[glbτ→σ]]fg is the infimum of f
and g as desired. �

Next we will show that every element in Dσ appears as supremum of
an ascending chain of “finite approximations”.

57
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Definition 8.2 Let less be a PCF term of type ι→ι→ι with

[[less]]xy =


0 if x, y ∈ N and x < y

1 if x, y ∈ N and x ≥ y

⊥ otherwise.

For all PCF types σ we define closed PCF terms ψσ
n of type σ→σ by

recursion on the structure of σ via the following two clauses

ψι
n ≡ λx:ι. ifz(lessxn, x,Ωι)

ψσ→τ
n ≡ λf :σ→τ.λx:σ.ψτ

n(f(ψσ
n(x)))

for all n∈N. ♦

The next lemma identifies characteristic properties of the functions de-
noted by the ψσ

n.

Lemma 8.3 For hσ
n := [[ψσ

n]] it holds that

(1) hσ
n ◦ hσ

n = hσ
n v idDσ

(2) (hσ
n)n∈N is an ascending chain whose supremum is idDσ

(3) hσ
n[Dσ] := {hσ

n(d) | d ∈ Dσ} is finite.

Proof. Obviously, the three requirements hold for ι.
Suppose as induction hypotheses that the three requirements hold for σ

and τ . Obviously, we have hσ→τ
n (f) = hτ

n ◦f ◦hσ
n from which (1) and (2) for

σ→τ follow easily from the requirements (1) and (2) for σ and τ as ensured
by the induction hypotheses. Furthermore, from hσ→τ

n (f) = hτ
n ◦ f ◦ hσ

n

it follows1 that
∣∣hσ→τ

n [Dσ→τ)]
∣∣ ≤ ∣∣hτ

n[Dτ ]
∣∣∣∣hσ

n[Dσ ]
∣∣

which is finite as by
induction hypothesis

∣∣hσ
n[Dσ]

∣∣ and
∣∣hτ

n[Dτ ]
∣∣ are finite. �

Now we will study the properties identified in Lemma 8.1 and Lemma 8.3
axiomatically as requirements for cpo’s.

Definition 8.4 A cpo D is called SFP iff there exists an ascending chain
(hn : D→D)n∈N of continuous functions such that

(1) every hn is a projection, i.e. hn ◦ hn = hn v idD

(2)
⊔

n∈N hn = idD

(3) every hn is finitary, i.e. hn[D] is finite.

Accordingly, a cpo D is called SFP iff idD is the supremum of an ascending
chain of finitary projections. ♦

1as hσ→τ
n (f) = hσ→τ

n (g) are equal iff their restrictions to hσ
n[Dσ ] are equal
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If idD is the supremum of a chain hn of finitary projections then we may
call an element d ∈ D compact (or simply finite) iff d = hn(d) for some
n ∈ N. The next lemma shows that this notion is independent from the
choice of the sequence (hn)n∈N exhibiting D as an SFP cpo.

Lemma 8.5 Let (hn:D→D)n∈N be an increasing sequence of finitary pro-
jections whose supremum is idD. Then for e ∈ D the following two condi-
tions are equivalent

(1) e = hn(e) for some n ∈ N
(2) for every directed subset X ⊆ D with e v

⊔
X there exists an x ∈ X

with e v x.

Proof. Suppose e = hn(e). Let X be a directed subset of D with e v⊔
X. Then e = hn(e) v hn

(⊔
X

)
=

⊔
hn[X]. As hn[X] is finite (since

hn[D] is finite) and directed there exists an x ∈ X with hn(x) =
⊔
hn[X] w

e. For such an x we have e v hn(x) v x ∈ X as desired.
For the reverse direction suppose that e satisfies (2). Notice that the

set {hn(e) | n ∈ N} is directed and its supremum is e. Thus, as e satisfies
(2) there exists an n ∈ N with e v hn(e). As hn(e) v e it follows that
e = hn(e) as desired. �

Notice that condition (2) of the previous lemma makes sense for arbi-
trary cpo’s (and not only for those satisfying the SFP property).

Definition 8.6 (compact elements)
Let A be a cpo. An element e ∈ A is called compact (or finite) iff for every
directed subset X of A with e v

⊔
X there exists already an x ∈ X with

e v x. We write K(A) for the set of compact elements of A. ♦

Lemma 8.7 Let A be a cpo with the property SFP. Then for every a ∈ A
the set Ka := {e ∈ K(A) | e v a} is directed and a =

⊔
Ka.

Proof. Let (hn) be a chain of finitary projections whose supremum is
idA and a ∈ A. First we show that Ka is directed. For that purpose
suppose that e1, e2 ∈ Ka. Thus, since {hn(a) | n ∈ N} is directed and
has supremum a there exists n1, n2 ∈ N with ei v hni

(a) for i=1, 2. Then
for n := max(n1, n2) we have e1, e2 v hn(a). As by Lemma 8.5 we have
hn(a) ∈ K(A) it is an element of Ka above e1 and e2. Thus Ka is directed.
As {hn(a) | n ∈ N} is a subset of Ka and a =

⊔
hn(a) it follows that

a =
⊔
Ka as desired. �

Next we will show that elements of an SFP predomain A are in 1-1-
correspondence with order-theoretic ideals in the poset K(A).
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Theorem 8.8 Let A be an SFP predomain. A subset I of K(A) is called
an ideal iff I is downward closed and directed. We write Idl(K(A)) for the
poset of ideals in K(A) ordered by ⊆. Then the map

iA : A→ Idl(K(A)) : a 7→ Ka

is an isomorphism of posets.

Proof. Obviously, the map iA is monotonic. It reflects the order as if
Ka1 ⊆ Ka2 then a1 =

⊔
Ka1 v

⊔
Ka2 = a2 by Lemma 8.7. As iA reflects

the order it is one-to-one. Thus, it remains to show that iA is surjective.
Suppose that I is an ideal in K(A). Let a:=

⊔
I. We show that I = Ka.

Obviously, we have I ⊆ Ka. But if e ∈ Ka then (as e is compact) there is
an e′ ∈ I with e v e′ from which it follows that e ∈ I since I is downward
closed. �

Next we show that SFP predomains are closed under a lot of useful
constructions.

Theorem 8.9 SFP predomains are closed under × and → and for a set
S the domain S⊥ is SFP iff S is countable.

Proof. Let A and B be SFP predomains. Then there exist ascend-
ing chains (hn)n∈N and (kn)n∈N, respectively, of finitary projections with
idA=

⊔
n∈N hn and idB=

⊔
n∈N kn.

The predomain A×B is SFP as

hn×kn : A×B → A×B : (a, b) 7→ (hn(a), kn(b))

is a finitary projection for all n ∈ N and idA×B = idA×idB =
⊔

n∈N hn×kn.
The predomain [A→B] is SFP as

hn→kn : [A→B] → [A→B] : f 7→ kn ◦ f ◦ hn

is a finitary projection for all n ∈ N and idA→B = idA→idB =
⊔

n∈N hn→kn.
That the image of hn→kn is finite follows from the facts that there are just
finitely many functions from hn[A] to kn[B] and that kn◦f◦hn is determined
uniquely by its restriction to hn[A].

For a set S all elements of S⊥ are compact. If S⊥ is SFP then S⊥ =
K(S⊥) is countable and, therefore, the set S itself has to be countable. On
the other hand if S is countable then one may enumerate its elements as
s0, s1, . . . , sn, . . . . Define hn as the mapping sending si with i < n to si and
all other arguments to ⊥. Obviously, the hn form an ascending sequence of
finitary projections whose supremum is idS⊥ . �
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Thus the Dσ and their finite cartesian products are all SFP domains and
accordingly determined by their subposets of compact elements as ensured
by Theorem 8.8.

It is a straightforward exercise(!) to show that SFP predomains are also
closed under (−)⊥ (lifting2) and + and that SFP domains are closed under
⊕ (coalesced sum3), ⊗ (smash product4.) and ◦→ (strict function space5).

Next we show that continuous functions from SFP predomains A to
arbitray cpo’s B are (by restriction to K(A)) in 1-1-correspondence with
the monotonic maps from K(A) to B.

Theorem 8.10 Let A be an SFP predomain and B an arbitrary cpo.
Then every continuous map f : A → B is uniquely determined by its re-
striction to K(A) and every monotonic map h : K(A) → B extends to a
continuous map f : A → B, i.e. there is a unique continuous f : A → B

with h = f�K(A).

Proof. Suppose f and g are continuous maps from A to B with f�K(A) =
g�K(A). We have to show that for an arbitrary a ∈ A it holds that f(a) =
g(a). For all e ∈ Ka we have f(e) = g(e) since f�K(A) = g�K(A) and,
therefore, we have f(a) =

⊔
e∈Ka

f(e) =
⊔

e∈Ka
g(e) = g(a) as desired.

Suppose h : K(A) → B is monotonic. Its tentative continuous extension
f is defined by putting f(a) =

⊔
h[Ka]. Obviously, the map f is monotonic

and f(e) = h(e) for compact e in A. For showing that f is also continuous
consider a directed set X ⊆ A. As f is monotonic it suffices to show that
f
(⊔

X
)
v

⊔
f(X). From the definition of f we know that f

(⊔
X

)
is the

supremum of all h(e) with e compact and e v
⊔
X. But a compact e is

below
⊔
X if and only if e v x for some x∈X. Thus we get that f(

⊔
X) is

the supremum of all h(e) where e is compact and e v x for some x∈X. As
this latter supremum is below

⊔
f(X) it follows that f(

⊔
X) v

⊔
f(X) as

desired. �

Finally, we introduce the notion of a Scott domain and show that, in
particular, all Dσ and their finite products are actually Scott domains.

2The “lifting” A⊥ of a predomain A is the domain obtained from A by adding a new

bottom element.
3A ⊕ B is obtained from the disjoint union A + B by identifying its two minimal

elements.
4A⊗B is obtained from A×B by identifying all pairs where at least one component

equals ⊥
5[A◦→B] is obtained from [A→B] by removing all non-strict maps.
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Definition 8.11 A cpo A has continuous binary infima iff for all x, y ∈ A
their infimum x u y exists and the function

u : A×A→ A : (x, y) 7→ x u y

is Scott continuous. A Scott (pre)domain is an SFP (pre)domain with
continuous binary infima. ♦

Obviously, a cpo A has continuous binary infima iff it has binary infima
and u satisfies the following restricted distributivity law, namely

a u
⊔

x∈X

x =
⊔

x∈X

a u x

for all a ∈ A and all directed X ⊆ A.

For showing that Scott domains are closed under the usual type forming
operations we need besides Theorem 8.9 the following lemma.

Lemma 8.12 Cpo’s with continuous binary infima are closed under ×
and →. Moreover, for all sets S the cpo S⊥ has binary continuous infima.

Proof. That S⊥ has continuous binary infima is an easy exercise.
Suppose that A and B are cpo’s having continuous binary infima. That

A×B has continuous binary infima follows from the fact that

(x1, y1) u (x2, y2) = (x1 uA x2, y1 uB y2)

and uA and uB are continuous by assumption. That [A→B] has continuous
binary infima can be seen as follows. Given f, g ∈ [A→B] the function
f u g = λx:A.f(x)uB g(x) is continuous as uB is continuous and one easily
sees that f u g is the infimum of f and g. That the binary function u on
[A→B] is continuous follows from the fact that it is λ-definable from the
continuous function uB . �

Theorem 8.13 Scott domains are closed under × and → and S⊥ is a
Scott domain for all countable sets S.

Proof. Immediate from Theorem 8.9 and Lemma 8.12. �

Moreover, it is an easy exercise(!) to show that Scott domains are
closed under the further domain constructions (−)⊥, separated sum

(
(−1)+

(−2)
)
⊥, ⊕, ⊗ and ◦→.

Notice that our definition of Scott domain is somewhat unorthodox but
equivalent to the usual one (as e.g. in [Griffor et.al. 1994]) as shown in the
next theorem.
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Theorem 8.14 A cpo D with ⊥ is a Scott domain iff D is

(1) bounded complete, i.e. all bounded subsets of D have a supremum in
D, and

(2) countably algebraic, i.e. K(D) is countable and for every d ∈ D the set
Kd = {e ∈ K(D) | e v d} is directed and has supremum d.

Proof. Suppose D is a Scott domain. Since D is SFP it is countably
algebraic. For showing that D is bounded complete it suffices to show that
every finite bounded set of compact elements has a supremum in D.

Suppose e1, . . . , en are compact elements of D having a common upper
bound b in D. Since D is SFP there exists a finitary projection h : D → D

with e1, . . . , en ∈ h[D]. Obviously, the elements e1, . . . , en are bounded in
h[D] by h(b). Thus {e1, . . . , en} has a minimal upper bound in h[D] because
h[D] is finite. Suppose e′ and e′′ are minimal upper bounds of {e1, . . . , en}
in h[D]. Then for i ∈ {1, . . . , n} we have ei = h(ei) v h(e′ u e′′) v e′, e′′

from which it follows that e′ = e′′. Now let e be the supremum of e1, . . . , en

in h[D]. Suppose d is an upper bound of e1, . . . , en in D. Then h(d) is an
upper bound of e1, . . . , en in h[D] and thus e v h(d) v d. Thus e is the
supremum of e1, . . . , en in D.

Suppose D is bounded complete and countably algebraic. Let {en | n ∈
N} be an enumeration of K(D). First observe that suprema of bounded
finite subsets of K(D) are compact (exercise!). Let Dn be the least subset
of D which is closed under finite suprema and contains all ei with i < n.
Obviously Dn is a finite set of compact elements. Let hn : D → D : d 7→⊔
{e ∈ Dn | e v d}. One easily shows (exercise!) that all hn are finitary

projections and idD =
⊔

n∈N hn thus exhibiting D as an SFP domain.
It remains to show that D has binary continuous infima. Suppose x, y ∈

D. Then the set {z ∈ D | z v x, y} is bounded and thus has a supremum
giving rise to xuy. For showing continuity of u : D×D → D suppose that
X ⊆ D is directed and y ∈ D. Obviously, we have y u x v y u

⊔
X for all

x ∈ X and thus
⊔

x∈X y u x v y u
⊔
X. For the reverse direction suppose

e ∈ K(D) with e v y u
⊔
X. Then e v y and e v

⊔
X. Since e is compact

there exists x ∈ X with e v x. Thus, we have e v y u x v
⊔

x∈X y u x.
Since this implication holds for all e ∈ K(D) and D is countably algebraic
we conclude that y u

⊔
X v

⊔
x∈X y u x as desired. �

Notice that the above proof shows in particular that in algebraic do-
mains binary infima are continuous provided they always exist.
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The motivation for our definition of Scott domain is that it appears as
the most natural one when starting to investigate the structure of the do-
mains arising in the Scott model of PCF. The usual definition, however, is
motivated by weakening the most respectable notion of a “countably alge-
braic lattice”, i.e. a complete lattice satisfying condition (2). As one wants
to get rid of the annoying > element which does not have a computational
meaning it appears as most natural to weaken completeness by requiring
(besides directed completeness) the existence of suprema just for bounded
sets and not for arbitrary subsets.

Notice, however, that the class of Scott domains is a bit wider than
actually needed because all domains showing up in Scott semantics of pro-
gramming languages actually satisfy the following stronger requirement.

Definition 8.15 A cpo A is called coherently complete iff all coherent
subsets X of A have a supremum in A where a subset X of A is called
coherent iff all x, y ∈ X have an upper bound in A. ♦

The reader is invited to show that all Dσ are coherently complete. Ac-
tually, one can show that coherently complete domains are closed under all
the usual domain constructions.6

An aesthetically pleasing aspect of coherently complete domains is that
they can be characterised as those partial orders where every coherent sub-
set has a supremum (because every directed set is coherent).

6One exception is the so-called Smyth powerdomain. However, Scott domains are not
closed under the Plotkin powerdomain construction whereas SFP domains are closed

under this latter construction and were introduced by G. Plotkin (see [Plotkin 1978])
precisely for this purpose. Thus, if one wants to have closure under (all sorts of) pow-
erdomains then one should work with SFP domains and otherwise coherently complete

SFP domains are absolutely sufficient.
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Chapter 9

Solutions of Recursive Domain
Equations

Unlike PCF “real” functional programming languages like ML or Haskell
provide the facility of defining types recursively. A recursive definition of
type A takes the form of a “domain equation” A = E[A] where the right
hand side is a type expression typically involving the recursively defined
type A. Typical examples of such domain equations are

N = 1⊥ ⊕N S = A⊗ S⊥ D = N ⊕ [D→D]⊥ C = RC×C

where (−)⊥ stands for lifting, ⊕ for coalesced sum and ⊗ for the so-called
“smash product”1. Although we use the symbol = in domain equations
we rather mean ∼=, i.e. that the domain on the left hand side should be
isomorphic to the domain on the right hand side of the domain equation.
The intended solution for the domain equation for N is N⊥. If A is a flat
domainM⊥ (whereM is a set of “tokens”) then the intended solution for the
domain equation for S is the domain of “streams over M , i.e. the finite and
infinite sequences of elements of M under the prefix-ordering. The intended
solution of the domain equation for D is not so easy to describe but the
intention is that the elements of D different from ⊥D are either natural
numbers or continuous functions from D to D (where ⊥D is distinguished
from the function λd:D.⊥D). Solutions of C = RC×C are also not so easy
to visualize or describe in a concrete way but notice that for any such C

we have that RC ∼= RRC×C ∼= (RC)(R
C), i.e. we get a nontrivial solution of

the domain equation D = DD when R is nontrivial.
The general form of a domain equation is D = F (D,D) where F is a

locally continuous functor from Cop×C to C and C is the category of domains
and strict functions. Here “locally continuous” means that the function

1If A and B are domains then their smash product A⊗B consists of all pairs (a, b) ∈
A×B with a=⊥ ∨ b=⊥ ⇒ a=⊥=b and the order on A⊗B is inherited from A×B.

65
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F : C(Y2, Y1) × C(X1, X2) → C(F (Y1, X1), F (Y2, X2)) is Scott continuous
for all objects X1, X2, Y1, Y2 in C. This assumption is guaranteed when
the right hand side of a domain equation is built up from 1 (containing
just ⊥) by the functors (−)⊥ (lifting), × (cartesian product), ⊗ (smash
product), + (separated sum), ⊕ (coalesced sum), → (function space) and
◦→ (strict function space) where only the last two make proper use of their
contravariant argument.

Definition 9.1 Let F : Cop × C → C be a locally continuous functor. A
bifree solution of X = F (X,X) is a domainD together with an isomorphism
α : F (D,D) → D such that every strict e : D → D with e = α◦F (e, e)◦α−1

is equal to idD. ♦

We show now that bifree solutions are unique up to isomorphism.

Lemma 9.2 Let F : Cop × C → C be a locally continuous functor. If
α : F (A,A) → A and β : F (B,B) → B are bifree solutions of the domain
equation X = F (X,X) then there exists a unique isomorphism i : A → B

with i = β ◦ F (i−1, i) ◦ α−1.

Proof. Let (i : A→ B, j : B → A) be the least solution of the equations

i = β ◦ F (j, i) ◦ α−1 j = α ◦ F (i, j) ◦ β−1

which exists as the assignment (i, j) 7→ (β ◦ F (j, i) ◦ α−1, α ◦ F (i, j) ◦ β−1)
gives rise to a continuous function ϕ = 〈ϕ1, ϕ2〉 : C(A,B) × C(B,A) →
C(A,B)× C(B,A). But then we have

j ◦ i = α ◦ F (j ◦ i, j ◦ i) ◦ α−1 i ◦ j = β ◦ F (i ◦ j, i ◦ j) ◦ β−1

from which it follows that j ◦ i = idA and i ◦ j = idB as both α and β are
bifree solutions by assumption. Thus, the map j equals i−1 from which it
follows that i = β ◦ F (i−1, i) ◦ α−1 as desired.

Let ι : A → B be some isomorphism with ι = β ◦ F (ι−1, ι) ◦ α−1. We
want to show that ι = i and ι−1 = j where i and j are defined as above.
For this purpose consider the continuous function δ : C(A,A) → C(A,A) :
e 7→ α ◦ F (e, e) ◦ α−1. We write en for δn(⊥). As α is bifree we have
idA =

⊔
n∈N en. We will show now by induction on n that

(ι ◦ en, en ◦ ι−1) = ϕn(⊥,⊥)

from which it follows that (ι, ι−1) = (i, j). For n=0 we have (ι◦e0, e0◦ι−1) =
(⊥,⊥) since ι◦⊥ = ⊥ and⊥◦ι−1 = ⊥. Now suppose as induction hypothesis
that (ι ◦ en, en ◦ ι−1) = ϕn(⊥,⊥). Then
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ι ◦ en+1 = β ◦ F (ι−1, ι) ◦ α−1 ◦ α ◦ F (en, en) ◦ α−1 =

= β ◦ F (en ◦ ι−1, ι ◦ en) ◦ α−1 = ϕ1(ϕn(⊥,⊥))

where the last equality follows from the induction hypothesis and

en+1 ◦ ι−1 = α ◦ F (en, en) ◦ α−1 ◦ α ◦ F (ι, ι−1) ◦ β−1 =

= α ◦ F (ι ◦ en, en ◦ ι−1) ◦ β−1 = ϕ2(ϕn(⊥,⊥))

where the last equality follows from the induction hypothesis. Thus, we
have

(ι ◦ en+1, en+1 ◦ ι−1) = 〈ϕ1(ϕn(⊥,⊥)), ϕ2(ϕn(⊥,⊥))〉 = ϕn+1(⊥,⊥)

as desired. �

Now we will show that for every locally continuous functor F : Cop×C →
C there exists a bifree solution of the domain equation X = F (X,X) which
we know to be unique up to isomorphism by the previous Lemma 9.2.
However, for this purpose we need some preparatory notions and lemmas.

Definition 9.3 An embedding/projection pair from A to B is a pair (e, p)
where e : A→ B and p : B → A are continuous functions with p ◦ e = idA

and e ◦ p v idB . We call e embedding and p projection. ♦

One easily sees that for an embedding/projection pair (e, p) from A to B
we have e(a) v b⇔ a v p(b) for all a ∈ A and b ∈ B from which it follows
that p(b) is the greatest a with e(a) v b. We leave it as an exercise(!) to
show that embeddings and projections are always strict.

Next we show that one component of an embedding/projection pair
determines the other one uniquely.

Lemma 9.4 Let (e, p) and (e′, p′) be embedding projection pairs from A

to B. Then (e, p) = (e′, p′) whenever e = e′ or p = p′.

Proof. If e = e′ then we have p = p′ ◦ e◦p v p′ and similarly p′ v p from
which it follows that p = p′. If p = p′ then e = e ◦ p ◦ e′ v e′ and similarly
e′ v e from which it follows that e = e′. �

Accordingly, we say that a map e is an embedding iff there is a map
p such that (e, p) is an embedding/projection pair and that a map p is a
projection iff there is a map e such that (e, p) is an embedding/projection
pair.
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Canonical solutions of domain equations will be constructed as inverse
limits of projections. The notion of inverse limit will be explained in the
next theorem.

Theorem 9.5 Let (fn : Dn+1 → Dn | n ∈ N) be a sequence of maps in
C. Its inverse limit is given by the sequence qn : D → Dn where

|D| = { d ∈
∏
n∈N

Dn | ∀n ∈ N. dn = fn(dn+1) }

and d vD d′ iff ∀n∈N. dn v d′n and qn : D → Dn : d 7→ dn, i.e. qn projects
on the n-th component. Notice that qn = fn ◦ qn+1 for all n ∈ N.

The inverse limit satisfies the universal property that for all sequences
(gn : E → Dn | n ∈ N) with gn = fn ◦ gn+1 for all n ∈ N there exists a
unique map h : E → D with gn = qn ◦ h for all n ∈ N.

Proof. Directed suprema in D = (|D|,vD) are computed pointwise
which does not lead out of D as the fn preserve directed suprema. As
suprema in D are computed pointwise it readily follows that the qn pre-
serve them. For d ∈ D we have fn(qn+1(d)) = fn(dn+1) = dn = qn(d)
where the penultimate equality holds as d ∈ |D|.

For showing that D satisfies the universal property suppose that (gn :
E → Dn | n ∈ N) with gn = fn ◦ gn+1 for all n ∈ N. The map h : E → D

with gn = qn ◦ h for all n ∈ N is uniquely determined by this property, i.e.
we have h(y) = (gn(y))n∈N. That this h is Scott continuous follows from
the fact that suprema in D are computed pointwise and the assumption
that the gn are all Scott continuous. �

Notice that the universal property of inverse limits determines them
uniquely up to isomorphism. If we take inverse limits of sequences consisting
of projections we can characterise their inverse limit (up to isomorphism)
in a purely local way as follows.

Theorem 9.6 Let (pn : Dn+1 → Dn | n ∈ N) be a sequence of pro-
jections. We write en for the embeddings associated uniquely with the pn.
Then the qn of the inverse limit are all projections whose associated embed-
dings in : Dn → D can be defined explicitly as follows

in(x)m =
{

(em−1 ◦ · · · ◦ en)(x) if n ≤ m

(pm ◦ · · · ◦ pn−1)(x) otherwise.
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Moreover, we have

(‡)
⊔
n∈N

in ◦ qn = idD

and this property together with the requirement qn = pn ◦qn+1 characterises
inverse limits up to isomorphism.

Proof. Straightforward computation checks that the in are continuous
strict maps from Dn to D and that the (in, qn) are embedding/projection
pairs. Moreover, one easily sees that in+1 ◦ en = in for all n ∈ N. Thus, we
have

in+1 ◦ qn+1 w in+1 ◦ en ◦ pn ◦ qn+1 = in ◦ qn

i.e. that the sequence in ◦ qn is ascending in [D→D]. As

qn ◦
⊔
k∈N

ik ◦ qk =
⊔
k∈N

qn ◦ ik ◦ qk =
⊔
k≥n

qn ◦ ik ◦ qk =
⊔
k≥n

qn = qn = qn ◦ idD

it follows from the universal property of (qn)n∈N that (‡) holds.
On the other hand suppose that we have a sequence of embed-

ding/projection pairs (i′n, q
′
n) from Dn to D′ with q′n = pn ◦ q′n+1 and⊔

n∈N i
′
n ◦ q′n = idD′ . By the universal property of the inverse limit (qn)n∈N

there is a unique map ι : D′ → D with q′n = qn ◦ ι. We show now that this
ι is an isomorphism by constructing its (tentative) inverse as

ι−1 =
⊔
n∈N

i′n ◦ qn .

First notice that from q′n = pn ◦ q′n+1 it follows by Lemma 9.4 that i′n =
i′n+1 ◦ en from which it follows that the sequence (i′n ◦ qn)n∈N is ascending
and, therefore, the map ι−1 is well defined. That ι−1 ◦ ι = idD′ can be seen
as follows

ι−1 ◦ ι =
( ⊔
n∈N

i′n ◦ qn
)
◦ ι =

⊔
n∈N

i′n ◦ qn ◦ ι =
⊔
n∈N

i′n ◦ q′n = idD′ .

For showing that ι ◦ ι−1 = idD we first observe that

(∗) q′n ◦ i′n+k ◦ qn+k = qn

for all k, n ∈ N which can be seen as follows. For k=0 claim (∗) is obvious as
q′n ◦ i′n = idDn

. Suppose now as induction hypothesis that q′n ◦ i′n+k ◦qn+k =
qn for all n ∈ N. Now for arbitrary n ∈ N it follows from the induction
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hypothesis that q′n+1 ◦ i′n+1+k ◦ qn+1+k = qn+1. Thus, by postcomposition
with pn we get

q′n ◦ i′n+k+1 ◦ qn+k+1 = pn ◦ q′n+1 ◦ i′n+1+k ◦ qn+1+k = pn ◦ qn+1 = qn

as desired. Now from (∗) it follows that

qn◦ι◦ι−1 = q′n◦
⊔
k∈N

i′k◦qk =
⊔
k∈N

q′n◦i′k◦qk =
⊔
k≥n

q′n◦i′k◦qk =
⊔
k≥n

qn = qn◦idD

which by the universal property of (qn)n∈N implies ι ◦ ι−1 = idD.
Thus, we have shown that ι−1 is actually the inverse of ι. We have

qn ◦ ι = q′n by definition of ι and, therefore, also qn = q′n ◦ ι−1. Thus, the
cone (q′n)n∈N is isomorphic to the limiting cone (qn)n∈N via the isomorphism
ι as desired. �

Now we can construct bifree solutions of domain equations X =
F (X,X) for arbitrary locally continuous functors F : Cop × C → C.

Theorem 9.7 Let F : Cop × C → C be a locally continuous functor.
Consider the sequence of embedding/projection pairs (en, pn) from Dn to
Dn+1 defined recursively as follows

D0 = 1 = {⊥} Dn+1 = F (Dn, Dn)

e0 = ⊥ : D0→D1 en+1 = F (pn, en) : Dn+1→Dn+2

p0 = ⊥ : D1→D0 pn+1 = F (en, pn) : Dn+2→Dn+1

and let (in, qn) be the inverse limit for the sequence (en, pn). Then α =⊔
n∈N in+1 ◦ F (in, qn) : F (D,D) → D is a bifree solution of the domain

equation X = F (X,X). The inverse of α is given by
⊔

n∈N F (qn, in)◦qn+1.

Proof. Straighforward induction (using monotonicity of the morphism
part of F ) shows that the (en, pn) are actually embedding/projection pairs.
By Theorem 9.6 the sequence in ◦ qn is ascending and has supremum idD.
From this it follows (again by local monotonicity and continuity of F ) that
the sequence F (qn, in)◦F (in, qn) is ascending and has supremum idF (D,D).
Thus, by Theorem 9.6 we know that both (qn+1)n∈N and (F (in, qn))n∈N
are limiting cones for the diagram (pn+1)n∈N. From Theorem 9.6 we know
that the unique map α : F (D,D) → D with qn+1 ◦ α = F (in, qn) is an
isomorphism. That α−1 =

⊔
n∈N F (qn, in) ◦ qn+1 follows from inspection of

the proof of Theorem 9.6 (namely the construction of ι−1 in this proof).
Similarly it follows that α =

⊔
n∈N in+1 ◦ F (in, qn) since α is the inverse of
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α−1 which is the mediating arrow from the limiting cone (qn+1)n∈N to the
limiting cone (F (in, qn))n∈N.

Thus, for bifreeness it remains to show that every e : D ◦→D with
e = δ(e) := α ◦ F (e, e) ◦ α−1 is actually equal to idD. We show that

qn ◦ e = qn and e ◦ in = in

for all n ∈ N by induction on n from which it follows by the universal
property of the limiting cone (qn)n∈N that e = idD. For n=0 we have
qn ◦ e = qn as all maps from D to 1 = D0 are equal and e ◦ in = in as all
strict maps from 1 to D are equal. Suppose as induction hypothesis that
qn ◦ e = qn and e ◦ in = in. Then using the induction hypothesis we have

qn+1 ◦ e = qn+1 ◦ α ◦ F (e, e) ◦ α−1 = F (in, qn) ◦ F (e, e) ◦ α−1

= F (e ◦ in, qn ◦ e) ◦ α−1 = F (in, qn) ◦ α−1 =

= qn+1

and

e ◦ in+1 = α ◦ F (e, e) ◦ α−1 ◦ in+1 = α ◦ F (e, e) ◦ F (qn, in) =

= α ◦ F (qn ◦ e, e ◦ in) = α ◦ F (qn, in) =

= in+1

proving the induction step. �

Having shown that canonical solutions which are unique up to isomor-
phism do exist we now give an alternative characterisation of them.

Theorem 9.8 Let F : Cop×C → C be a locally continuous functor. Then
α : F (A,A) → A is a bifree solution of the domain equation X = F (X,X)
if and only if for all morphisms f : F (C,B) → B and g : C → F (B,C) in
C there exist unique morphisms h : A → B and k : C → A in C making
the diagrams

F (C,B)
f- B F (B,C) �g C

F (A,A)

F (k, h) 6

�
α−1

A

h
6

F (A,A)

F (h, k)
?

α
- A

k
?

commute.
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Proof. We first show the implication from right to left. Instantiating B
and C by A and f by α and g by α−1 we get that from e = α◦F (e, e)◦α−1

it follows that e = idA as both h = idA = k and h = e = k make the above
diagrams commute and the choice of h and k is unique by assumption.

For the reverse direction assume that α is a bifree solution and that
the two diagrams commute. We show that h and k are actually the least
(simultaneous) solutions of the equations

h = f ◦ F (k, h) ◦ α−1 and k = α ◦ F (h, k) ◦ g .

The least solution of this system of equations is given by
⊔

n∈N hn and⊔
n∈N kn, respectively, where the hn and kn are defined recursively as follows

h0 = ⊥ : A→ B hn+1 = f ◦ F (kn, hn) ◦ α−1

k0 = ⊥ : C → A kn+1 = α ◦ F (hn, kn) ◦ g.

As α is a bifree solution we also have idA =
⊔

n∈N en where

e0 = ⊥ : A→ A en+1 = α ◦ F (en, en) ◦ α−1 .

We show now by induction on n that

hn = h ◦ en and kn = en ◦ k

from which it follows that

h = h ◦ idA = h ◦
⊔
n∈N

en =
⊔
n∈N

h ◦ en =
⊔
n∈N

hn

and

k = idA ◦ k = (
⊔
n∈N

en) ◦ k =
⊔
n∈N

en ◦ k =
⊔
n∈N

kn

i.e., that the pair (h, k) is the least solution of the equations

h = f ◦ F (k, h) ◦ α−1 and k = α ◦ F (k, h) ◦ g .

For n=0 the claim holds as ⊥ = h◦⊥ because h is strict and ⊥ = ⊥◦k holds
anyway. Suppose as induction hypothesis that hn = h ◦ en and kn = en ◦ k.
Then we have

h ◦ en+1 = f ◦ F (k, h) ◦ α−1 ◦ α ◦ F (en, en) ◦ α−1 =

= f ◦ F (k, h) ◦ F (en, en) ◦ α−1 =

= f ◦ F (en ◦ k, h ◦ en) ◦ α−1 = f ◦ F (kn, hn) ◦ α−1 =
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= hn+1

and

en+1 ◦ k = α ◦ F (en, en) ◦ α−1 ◦ α ◦ F (h, k) ◦ g =

= α ◦ F (en, en) ◦ F (h, k) ◦ g =

= α ◦ F (h ◦ en, en ◦ k) ◦ g = α ◦ F (kn, hn) ◦ g =

= kn+1

as desired. �

Notice that in the above proof we have used intrinsically that h is strict.
There may arise the question why it is essential to restrict attention to C,
i.e. to strict continuous maps. This will get clear from the following theorem
where one considers the particular case of mixed variant functors induced
by locally continuous covariant endofunctors on C which are also practically
most important.

Theorem 9.9 Let T : C → C be a locally continuous covariant functor.
Let FT : Cop × C → C be the locally continuous mixed variant functor
defined from T by putting FT (Y,X) = T (X) and FT (g, f) = T (f). Then
an isomorphism α : T (A) → A is a bifree solution of the domain equation
X = FT (X,X) = T (X) iff one of the following three equivalent conditions
is satisfied

(1) if e : A ◦→A with e = α ◦ T (e) ◦ α−1 then e = idA

(2) for every f : T (B) ◦→B there exists a unique map h : A ◦→B with
h = f ◦ T (h) ◦ α−1, i.e.

T (B)
f- B

T (A)

T (h) 6

α
- A

h
6

since α is an isomorphism.
(3) for every g : B ◦→T (B) there exists a unique map k : B ◦→A with
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k = α ◦ T (k) ◦ g, i.e.

B
g- T (B)

A

k
?

α−1
- T (A)

T (k)
?

since α is an isomorphism.

Proof. Obviously, condition (1) is equivalent to α being a bifree solution
of X = FT (X,X). By Theorem 9.8 condition (1) implies conditions (2) and
(3). But each of the conditions (2) and (3) entails condition (1) instantiating
f and g by α and α−1, respectively. �

If we allowed in C also non-strict continuous maps as morphisms then
condition (2) of Theorem 9.9 would not be satisfied anymore for bifree so-
lutions of the domain equation X = X for the following reason. Obviously,
the isomorphism id1 where 1 = {⊥} is a bifree solution for X = IdC(X)
where IdC is the identity functor on C. But now for every domain A and
continuous a : 1 → A we have

A
idA- A

1

a
6

id1

- 1

a
6

but if we do not require a to be strict there are as many a as there are
elements of A. Thus, for A with more than one element condition (2) of
Theorem 9.9 were violated if we allowed non-strict maps in C.

We conclude this chapter by observing that condition (2) of Theorem 9.9
gives rise to an induction principle for recursive types A = T (A) where
T : C → C is locally continuous. Suppose that P ⊆ A is closed under
directed suprema and contains ⊥. Let us write i for the inclusion from P

into A. If there exists a map π : T (P ) → P with

T (A)
α- A

T (P )

T (i) 6

π
- P

i
∪

6
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then one easily shows (exercise!) that i is an isomorphism whose inverse is
given by the unique j : A → P with π ◦ T (j) = j ◦ α (using condition (2)
of Theorem 9.9). Thus, the map i is surjective and P = A. We leave it as
an exercise(!) for the inclined reader to show that admissibility of P ⊆ A

and ⊥ ∈ P are necessary assumptions for this induction principle.
Alas, for general mixed variant locally continuous F : Cop×C → C such

an induction principle is not available. The best we can get is the following.
Let α : F (A,A) → A be a bifree solution and P ⊆ A be closed under
directed suprema and ⊥ ∈ P . Then a ∈ P iff ∀n∈N.δn(⊥)(a) ∈ P where
δ : C(A,A) → C(A,A) : e 7→ α ◦ F (e, e) ◦ α−1. We leave the verification of
this claim to the inclined reader.

Models of Untyped λ-Calculus

Historically, the first domain equation ever considered was D = [D→D]. It
was solved by Dana Scott in fall 1969 with the intention of finding mathe-
matical models for untyped λ-calculus where every term can be used as a
function. Up to that time there were not known any set-theoretic models
of the untyped λ-calculus. The reason was that for every set S contain-
ing more than one element the set SS of endofunctions on S has greater
cardinality than S itself because of |S| < |P(S)| ≤ |SS | already known to
Cantor. The ingenious idea of Scott was to take instead of a set S a domain
D and consider instead of all endofunctions on D just the continuous ones!

Obviously, the bifree solution of D = [D→D] is trivial, i.e. the triv-
ial domain 1 = {⊥}. To obtain a non-trivial solution D. Scott started
with an arbitrary2 domain R, considered the following sequence of embed-
ding/projection pairs

R0 = R Rn+1 = [Rn→Rn]

e0 = R0→R1 : r 7→ λx.r en+1 = [pn→en]

p0 : R1→R0 : f 7→ f(⊥) pn+1 = [en→pn]

and showed (as in our Theorem 9.7) that its inverse limit R∞ is isomorphic
to [R∞→R∞]. Notice, however, that one may show (exercise!) that—as
first observed in [Riecke and Sandholm 2002]—the domainR∞ is isomorphic
to [C→R] where C is the bifree solution of C = [C→R]×C rendering the
consideration of non-bifree solutions unnecessary.

2Actually, he used the more common complete lattices instead but, nevertheless, Scott

continuous maps as morphisms between them!
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A more liberal notion of model for untyped λ-calculus is the following:
a domain D such that [D→D] is a retract of D, i.e. there exist continuous
maps s : [D→D] → D and p : D → [D→D] with p ◦ s = id[D→D]. An
example for this is the lattice P(N) which contains [P(N)→P(N)] as a
retract in the following way. Let e : N → Pfin(N) be a primitive recursive
bijection3 between natural numbers and finite subsets of them such that
the relation m ∈ en is decidable. Then define p : P(N) → [P(N)→P(N)]
as p(A)(B) = {n ∈ N | 〈m,n〉 ∈ A and em ⊆ B} and s(f) = {〈m,n〉 | n ∈
f(em)}. One easily checks that p◦s = id[P(N)→P(N)] and s◦p◦s◦p = s◦p w
idP(N). Notice that for arbitrary infinite sets S one can organize P(S) into
a model of λ-calculus exploiting the fact that S ∼= Pfin(S)×S for all infinite
sets S.

Notice, however, that models of the form P(S) (usually called graph
models) do not model η-equality as [[λy. x(y)]]ρ = s(p(ρ(x))) whereas [[x]]ρ =
ρ(x) and s ◦ p 6= idP(N). The latter can be seen by considering the set
I = {〈2n, n〉 | n ∈ N} for which we have s(p(I)) = {〈m,n〉 | n ∈ em}
strictly bigger than I.

For an in-depth investigation of these models see e.g. the encyclopedic
book [Barendregt 1981] by H. Barendregt.

3e.g. by putting e(n) = A iff n =
∑

i∈A 2i
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Chapter 10

Characterisation of Fully Abstract
Models

The aim of this chapter is to show that extensionally fully abstract models
of PCF are unique up to isomorphism. For this purpose we first fix an
appropriate notion of model.

Definition 10.1 A domain-enriched category C is given by

(1) a collection |C| of objects
(2) for all A,B ∈ |C| a domain C(A,B) whose least element is denoted by

⊥A,B

(3) a Scott continuous function ◦A,B,C : C(B,C) × C(A,B) → C(A,C) for
all objects A,B,C ∈ |C|

(4) a morphism idA ∈ C(A,A) for every object A ∈ |C|

such that

(Assoc) h ◦ (g ◦ f) = (h ◦ g) ◦ f

(Neutr) id ◦ f = f = f ◦ id

whenever both sides of the equations are defined. ♦

Subsequently we often write f : A→ B for f ∈ C(A,B).

Definition 10.2 (Λ-category)
A cartesian closed domain-enriched category (or Λ-category) is a domain-
enriched category C with

(1) an object 1 ∈ |C| such that for all A ∈ |C| there is a unique f ∈ C(A, 1),
namely ⊥A,1

(2) for all A,B ∈ |C| a distinguished object A×B ∈ |C| and distinguished
maps πA,B

1 ∈ C(A×B,A) and πA,B
2 ∈ C(A×B,B) such that for all maps

f ∈ C(C,A) and g ∈ C(C,B) there exists a unique map h ∈ C(C,A×B)

77
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with πA,B
1 ◦ h = f and πA,B

2 ◦ h = g which is denoted by 〈f, g〉
Notation If f ∈ C(C,A) and g ∈ C(D,B) then we write f×g as an
abbreviation for 〈f ◦ πC,D

1 , g ◦ πC,D
2 〉.

(3) for all A,B ∈ |C| a distinguished object [A→B] ∈ |C| and a distin-
guished map evA,B ∈ C([A→B]×A,B]) such that for all f ∈ C(C×A,B)
there is a unique map g ∈ C(C, [A→B]) with evA,B ◦ (g×idA) = f for
which we write ΛA,B,C(f) or simply Λ(f)

such that

(i) 〈f, g〉 v 〈f ′, g′〉 whenever f v f ′ and g v g′

(ii) Λ(f) v Λ(g) whenever f v g

(iii) ⊥ ◦ f = ⊥
(iv) ev ◦ 〈⊥, a〉 = ⊥

where the last two equations are required to hold whenever both sides of
the equation are defined. ♦

It follows from the above axioms that for all objects A, B and C the
mappings

〈−,−〉 : C(C,A)× C(C,B) → C(C,A×B)

and

Λ : C(C×A,B) → C(C, [A→B])

are order isomorphisms and thus continuous. Their inverses are given by
the assignments h 7→ (π1◦h, π2◦h) and g 7→ ev ◦ (g×idA), respectively.

Next we show that in Λ-categories one has least fixpoint operators.

Lemma 10.3 Let C be a Λ-category and A ∈ |C|. Then there exists a
least morphism fixA ∈ C([A→A], A) with ev ◦ 〈id[A→A], fixA〉 = fixA.

Proof. For A ∈ |C| the function

FA : C([A→A], A) → C([A→A], A) : h 7→ ev ◦ 〈id[A→A], h〉

is Scott continuous due to the properties required for a Λ-category. Thus,
the mapping FA has a least fixpoint fixA =

⊔
n∈N F

n
A(⊥[A→A],A). �

Using the fix of the previous lemma one can construct least fixpoints in
the following way.
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Theorem 10.4 Let C be a Λ-category and f ∈ C(C, [A→A]). Then fixA◦f
is the least morphism a ∈ C(C,A) satisfying

a = ev ◦ 〈f, a〉

where fixA is as in Lemma 10.3.

Proof. Obviously, for f : C → [A→A] we have

fixA ◦ f = ev ◦ 〈id[A→A], fixA〉 ◦ f = ev ◦ 〈id[A→A]◦f, fixA◦f〉 = ev ◦ 〈f, fixA◦f〉

due to the defining equation for fixA. Now if a : C → A satisfies the
inequality ev◦〈f, a〉 v a then it follows by fixpoint induction that fixA◦f v a

because

⊥[A→A],A ◦ f = ⊥C,A v a

and

FA(h) ◦ f = ev ◦ 〈id[A→A], h〉 ◦ f = ev ◦ 〈f, h◦f〉 v ev ◦ 〈f, a〉 v a

whenever h ◦ f v a. �

As C(A,A) ∼= C(1×A,A) ∼= C(1, [A→A]) by f 7→ f ◦ π1,A
2 7→

Λ(f◦π1,A
2 ) =: pfq one easily shows (exercise!) that fixA ◦ pfq : 1 → A

is the least a : 1 → A with a = f ◦ a.

From the above considerations it appears that a Λ-category is endowed
with enough structure to interpret typed λ-calculus with fixpoint operators
at all types. For interpreting full PCF one just needs an object N together
with appropriate morphisms zero : 1 → N , succ, pred : N → N and ifz :
N×N×N → N for interpreting base type nat and the basic operations on
it. In order to formulate the necessary requirements we need some notation
introduced in the next definition.

Definition 10.5 Let C be a Λ-category. For A ∈ |C| we write Γ(A) as an
abbreviation for the domain C(1, A) and for morphisms f : A→ B in C we
write Γ(f) for the continuous map Γ(A) → Γ(B) : a 7→ f ◦ a. ♦

The elements of Γ(A) are often referred to as “global elements of A”.

Definition 10.6 (N -structure)
An N-structure or natural numbers structure in a Λ-category is given by

• an object N ∈ |C|
• zero ∈ C(1, N)
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• succ, pred : N → N

• ifz : N×N×N → N

such that the map iN : N⊥ → Γ(N) sending ⊥ to ⊥1,N and n ∈ N to
succn◦zero is an isomorphism of domains and the following conditions are
satisfied

(1) pred ◦ zero = zero and pred ◦ succ = idN

(2) ifz ◦ 〈zero ◦ !N×N , π
N,N
1 , πN,N

2 〉 = πN,N
1 and

ifz ◦ 〈succn+1 ◦ zero ◦ !N×N , π
N,N
1 , πN,N

2 〉 = πN,N
2 and

ifz ◦ 〈⊥N×N,N , π
N,N
1 , πN,N

2 〉 = ⊥N×N,N . ♦

We are particularly interested in Λ-categories where equality and order
on morphisms is determined by their behaviour on global elements.

Definition 10.7 ((order) extensional)
A Λ-category C is called extensional iff Γ(f) = Γ(g) implies f = g for
all morphisms f, g : A → B in C and it is called order extensional iff
Γ(f) v Γ(g) implies f v g for all morphisms f, g : A→ B in C. ♦

The notions of extensionality and order extensionality can be explici-
tated as follows: the Λ-category C is extensional iff

∀a ∈ C(1, A). f ◦ a = g ◦ b ∈ C(1, B) ⇒ f = g ∈ C(A,B)

and it is order extensional iff

∀a ∈ C(1, A). f ◦ a v g ◦ b ∈ C(1, B) ⇒ f v g ∈ C(A,B) .

In an extensional Λ-category the continuous function

App : Γ(BA)× Γ(A) → Γ(B) : (f, a) 7→ ev ◦ 〈f, a〉

induces by functional abstraction the function

Λ(App) : Γ(BA) → Γ(B)Γ(B)

which is injective iff the model is extensional and which reflects the order
iff the model is order extensional in which latter case Γ(BA) appears as a
subposet of Γ(B)Γ(A) via Λ(App).

Now we define a notion of PCF model appropriate for our later charac-
terisation of full abstraction.
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Definition 10.8 (PCF model)
A PCF model is a Λ-category C together with an N -structure in C. Such a
model is called (order) extensional iff C is (order) extensional.

In extensional PCF models we make no notational distinction between
A and Γ(A) and between f and Γ(f) since no information is lost when
restricting attention to global elements. ♦

One can interpret PCF in arbitrary PCF models and not only in the
Scott model as the semantic equations of Definition 3.14 do still make sense
when reformulated in an “element-free” way (exercise!). One easily shows
that the evaluation relation preserves semantic equality w.r.t. such models,
i.e. if Γ ` M : σ and M⇓V then [[Γ ` M ]] = [[Γ ` V ]]. The proof of this
correctness property can be copied almost verbatim from the proof for the
case of the Scott model.

Notice also that for PCF models one may prove computational adequacy
essentially in the same way as in Chapter 4.

As in Chapter 8 using the interpretations of the PCF terms ψσ
n one can

show (see [Stoughton 1990]) that in extensional PCF models the [[σ]] are all
SFP domains (as for this purpose one does not need that the order on the
[[σ→τ ]] is pointwise). In case of order extensionality one can even show (see
[Stoughton 1990]) that all [[σ]] are Scott domains because in this case infima
in functions spaces are pointwise and thus PCF definable (see Chapter 8).

Following [Stoughton 1990] (Theorem 5.7) we show now that in exten-
sional equationally fully abstract PCF models all compact elements of PCF
types are PCF definable.

Lemma 10.9 In equationally fully abstract PCF models all compact ele-
ments of PCF types arise as interpretations of closed PCF terms.

Proof. For the sake of deriving a contradiction suppose that not all com-
pact elements of PCF types are PCF definable. Then there is a minimal
such type σ = σ1→ . . .→σn→ι where the compact elements of the [[σi]] are
all PCF definable but some e = [[ψσ

k ]](e) ∈ [[σ]] is not PCF definable.
Let ≤ denote the pointwise order of [[σ]], i.e. f ≤ g iff fa1 . . . an v

ga1 . . . an for all ai ∈ [[σi]]. As f and g are continuous and the [[σi]] are SFP
domains we have f ≤ g iff fe1 . . . en v ge1 . . . en for all ei ∈ K

(
[[σi]]

)
. It is

easy to see (exercise!) that f u g := [[glbσ]]fg (where glb is defined as in
Lemma 8.1) is the infimum of f and g w.r.t ≤ .
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Let K be the set of PCF definable elements in the image of [[ψσ
k ]] and

K = K+∪̇K− where K+ = {d ∈ K | e ≤ d}.1 As K is finite the elements
of K+ and K− can be enumerated, i.e. K+ = {d0, . . . , dp−1} and K− =
{c0, . . . , cq−1}. For every i < q let bij be compact elements in [[σj ]] for
j=1, . . . , n such that

ebi1 . . . b
i
n 6v cib

i
1 . . . b

i
n

which must exists as otherwise e ≤ ci contradicting ci 6∈ K+. By minimality
of σ all the bij are PCF definable by some closed PCF term Bi

j .

Now we distinguish two cases.

Case 1 : K+ is nonempty
As all di are PCF definable their infimum d := d0 u · · · u dp−1 (w.r.t. ≤)
is PCF definable, too. As by assumption e is not PCF definable we have
e � d. Thus, there exist compact elements a1, . . . , an with

ea1 . . . an = ⊥ and da1 . . . an 6= ⊥

as otherwise e ≤ d.
For x ∈ [[ι]] let [x↘0] be a PCF term denoting the function fx : Dι → Dι

with fx(y) = 0 if x v y and fx(y) = ⊥ otherwise. For i < q consider the
closed PCF terms

Mi ≡ λf :σ. [ebi1 . . . b
i
n↘0](ψσ

k fB
i
1 . . . B

i
n)

and furthermore the closed PCF terms

N1 ≡ λf :σ. [ea1 . . . an↘0](ψσ
k fA1 . . . An)

N2 ≡ λf :σ. [da1 . . . an↘0](ψσ
k fA1 . . . An)

where the Ai are closed PCF terms with [[Ai]] = ai (which exist since
compact elements of the [[σi]] are PCF definable by minimality of σ).

Now for M ≡ M0 u · · · uMq−1 we have [[M ]](e) = 0 since [[Mi]](e) =
0 for i < q. As e = [[ψσ

k ]](e) we have [[N1]](e) = 0 and [[N1]](e) = ⊥
because da1 . . . an 6v ea1 . . . an. Thus, we have [[M u N1]](e) = 0 whereas
[[M uN2]](e) = ⊥ from which it follows that the denotations of M uN1 and
M uN2 are different. But for arbitrary closed terms N of type σ we have

[[M uN1]]([[N ]]) = 0 = [[M uN2]]([[N ]]) if [[ψσ
kN ]] ∈ K+

1We use the symbol ∪̇ to denote disjoint union, i.e. M = M1∪̇M2 iff M = M1∪M2

and M1∩M2 = ∅.
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as then ea1 . . . an v [[ψσ
kN ]]a1 . . . an and

[[M uN1]]([[N ]]) = ⊥ = [[M uN2]]([[N ]]) if [[ψσ
kN ]] ∈ K−

as then for i < q with ci = [[ψσ
kN ]] we have [[Mi]]([[N ]]) = ⊥ because

ebi1 . . . b
i
n 6v cib

i
1 . . . b

i
n. Thus, by Milner’s Context Lemma the terms MuN1

and M u N2 are observationally equal although their denotations are dif-
ferent in contradiction with the assumption that the model under consid-
eration is equationally fully abstract.

Case 2 : K+ is empty
For the M as defined above we have [[M ]](e) = 0 whereas [[Ωσ]](e) = ⊥
and thus [[M ]] 6= [[Ωσ]]. For arbitrary closed terms N of type σ we have
[[ψσ

kN ]] ∈ K− (as K = K−) and, therefore,

[[M ]]([[N ]]) = ⊥ = [[Ωσ]]([[N ]])

since for i < q with ci = [[ψσ
kN ]] we have [[Mi]]([[N ]]) = ⊥ because

ebi1 . . . b
i
n 6v cib

i
1 . . . b

i
n. Thus, by Milner’s Context Lemma the terms M

and Ωσ are observationally equal although their denotations are different
in contradiction with the assumption that the model under consideration
is equationally fully abstract. �

This lemma is crucial for proving the following characterisation of equa-
tional full abstraction for extensional PCF models.

Theorem 10.10 (Characterisation of Equational Full Abstraction)
An extensional PCF model is equationally fully abstract iff all compact el-
ements of PCF types are PCF definable.

Proof. Lemma 10.9 says that all compact elements in an extensional
equationally fully abstract PCF model are PCF definable.

For the reverse direction suppose we are given an extensional PCF model
where all compact elements of PCF types are PCF definable. Suppose M
and N are observationally equal closed PCF terms. Then [[M ]] and [[N ]]
are equal on all PCF definable arguments and, therefore, on all compact
arguments since these are all assumed to be PCF definable. Thus, as [[M ]]
and [[N ]] are continuous maps and all interpretations of PCF types are SFP
domains it follows that [[M ]] = [[N ]] as desired. �

Theorem 10.11 (Characterization of Full Abstraction)
An extensional PCF model is fully abstract iff it is order extensional and
all compact elements of PCF types are PCF definable.
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Proof. Suppose an extensional PCF model is fully abstract. Then it
is in particular also equationally fully abstract from which it follows by
Theorem 10.10 that all compact elements of PCF types are PCF definable.
For showing that the model is also order extensional suppose f, g ∈ [[σ→τ ]]
with f(a) v g(a) for all a ∈ [[σ]]. For n ∈ N let fn = [[ψσ→τ

n ]](f) and gn =
[[ψσ→τ

n ]](g), respectively. Obviously, for all a ∈ [[σ]] we have fn(a) v gn(a).
Thus, as fn and gn are compact and thus PCF definable it follows that
fn v gn since the model is fully abstract and fn(a) v gn(a) for all PCF
definable a ∈ [[σ]]. As fn v gn for al n ∈ N it follows that f =

⊔
n∈N fn v⊔

n∈N gn = g.
For the reverse direction suppose we are given an order extensional PCF

model where all compact elements of PCF types are PCF definable. First
recall that an (order) extensional PCF model is computationally adequate.
Now suppose that M <∼σ N . If σ = ι then by computational adequacy
[[M ]] v [[N ]] because all elements of [[ι]] which are not numerals are equal
to ⊥. If σ is a functional type then by computational adequacy we have
[[M ]](~d) v [[N ]](~d) for all PCF definable arguments ~d. Thus, as all compact
elements in the model are PCF definable, [[M ]] and [[N ]] are continuous
functions and all domains in the model are SFP domains it follows by
order extensionality that [[M ]] v [[N ]] as desired. �

See [Stoughton 1990] for an example of an extensional equationally fully
abstract PCF model which, however, is not fully abstract, i.e. where for
some closed terms M and N it holds that M <∼ N although [[M ]] 6v [[N ]].
Thus, extensional equationally fully abstract PCF models are not unique
up to isomorphism. However, as a consequence of Theorem 10.11, we get
the following uniqueness result for extensional fully abstract models.

Theorem 10.12 (Uniqueness of Extensional Fully Abstract Models)
Extensional fully abstract models of PCF are unique up to isomorphism. In
particular, each [[σ]] is isomorphic to the ideal completion of the preorder
(FTσ, <∼σ) where FTσ is the set of all ψσ

n(M) with M ∈ Prgσ and n ∈ N.

Proof. From Lemma 10.9 it follows that an element of [[σ]] is compact iff
it can be denoted by some term of the form ψσ

n(M). As in a fully abstract
model M <∼σ N iff [[M ]] v [[N ]] it follows that the subposet K

(
[[σ]]

)
of [[σ]] is

isomorphic to FTσ modulo2 <∼σ. Thus, as [[σ]] is an SFP domain it follows
that [[σ]] ∼= Idl(FTσ, <∼σ). Accordingly, all extensional fully abstract models
of PCF are isomorphic. �

2meaning that M, N ∈ FTσ get identified iff M <∼σ N and N <∼σ M



25th August 2006 16:58 WSPC/Book Trim Size for 9in x 6in MGFP

Characterisation of Fully Abstract Models 85

This theorem allows one to construct the extensional fully abstract
model of PCF as the ideal completion of some order-enriched many-sorted
algebra. This construction was first performed by R. Milner in [Milner
1977] already back in 1977 and, therefore, the extensional fully abstract
model of PCF is commonly called the Milner model.

However, people were not satisfied by Milner’s model construction be-
cause it is not at all syntax-free since the relation <∼ is defined in terms of
the operational semantics of PCF. Moreover, in Milner’s construction the
elements of function types are ideals of equivalence classes of terms instead
of—as one might hope—in terms of continuous functions preserving some
additional structure common to all Scott domains in the Milner model.

In Chapter 11 we will identify such a structure. We will define so-called
“sequential domains” which are domains together with a huge bunch of
relations of finite arity and require morphisms between sequential domains
to be continuous maps which preserve all the relational structure. In the
subsequent Chapter 12 we will then show that the category S of sequential
domains hosts the Milner model of PCF.

Notice, however, that in [Normann 2006] Dag Normann has shown that
already at type level 3 the Milner model contains functionals which cannot
be computed by a sequential strategy. This means that already at type
level 3 there are functionals which are not sequential but can be obtained
as the pointwise supremum of an increasing (w.r.t. the pointwise order)
chain of PCF definable functionals.3

3This also gives a negative answer to the old question whether the fully abstract
models considered in Game Semantics (see [Hyland and Ong 2000; Abramsky et.al.

2000]) are cpo-enriched.
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Chapter 11

Sequential Domains as a Model of
PCF

In this chapter, based on previous work by K. Sieber, P. O’Hearn, J. Riecke
and A. Sandholm (see [Sieber 1992; O’Hearn and Riecke 1995; Riecke and
Sandholm 2002]), we define a category S of sequential domains which hosts
a model of PCF which in the next chapter will be shown to be fully abstract.

Definition 11.1 (partial partition)
Let w be a finite subset of N. A partial partition of w is a subset P of P(w)
such that

(1) every element u of P is non-empty and
(2) all u, v ∈ P are either equal or disjoint, i.e.

u, v ∈ P ⇒ u = v ∨ u ∩ v = ∅.

We write pPart(w) for the set of all partial partitions of w. ♦

Notice that every P ∈ pPart(w) is a partition of the set
⋃
P .

Definition 11.2 (ssp)
A structural system of partitions (ssp) on a finite subset w of N is a subset
S ⊆ pPart(w) such that

(SSP1) {w} ∈ S

(SSP2) whenever u ∈ P ∈ S then P\{u} ∈ S

(SSP3) whenever S ∈ P and u, v ∈ P then (P\{u, v}) ∪ {u ∪ v} ∈ P

(SSP4) whenever P,Q ∈ S and u ∈ P
then

(
P\{u}

)
∪

(
{u ∩ v | v ∈ Q}\{∅}

)
∈ S.

We say that (w,S) is structural system of partitions (ssp) iff S is a structural
system of partitions on w ∈ Pfin(N). A homomorphism from (w1, S1) to

87
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(w2, S2) is a function h : w1 → w2 such that

{h−1[u] | u ∈ P}\{∅} ∈ S1

for all P ∈ S2. We write h : (w1, S1) → (w2, S2) if h is a homomorphism
from (w1, S1) to (w2, S2). Obviously, ssp-homorphisms are closed under
composition and idw : (w,S) → (w,S) for all ssp’s (w,S). Thus, structural
systems of partitions and their homomorphisms form a category which we
denote by SSP. ♦

The intuition behind ssp’s (w,S) is that they are “finite data types”
(with underlying set w) together with the collection S of those partial
partitions that are induced by partial maps

f : w ⇀ {1, . . . , n}

arising from functional programs on this data type to some “enumeration
type” {1, . . . , n}. The requirements (SSP1)–(SSP4) reflect some obvious
closure properties of such partitions induced by functional programs:

(SSP1) says that we always have the trivial partition as induced by constant
total maps which certainly arise from programs.

(SSP2) says that from any P ∈ S one may remove any of its elements
corresponding to the fact that if f : w ⇀ {1, . . . , n} arises from a program
then the function f ′ with f ′(k)↑ if f(k) = i and f ′(k) = f(k) otherwise
arises from a program, too.

(SSP3) says that if from some P ∈ S we remove u, v ∈ P and instead add
u∪ v then the resulting set of equivalence classes is also in S corresponding
to the fact that if f : w ⇀ {1, . . . , n} arises from a program then f ′ with
f ′(k) = i if f(k) = i or f(k) = j and f ′(k) = f(k) otherwise arises from a
program, too.

(SSP4) says that if for some P ∈ S we remove u ∈ P and replace it for some
Q ∈ S by all non-empty intersections u∩v with v ∈ Q corresponding to the
fact that if f : w ⇀ {1, . . . , n} and g : w ⇀ {1, . . . ,m} arise from programs
then for every i with 1≤i≤n the function h : w ⇀ {1, . . . , n+m−1} with

h(k) =


f(k) if f(k) < i

i−1+g(k) if f(k) = i and g(k)↓
f(k)+m if f(k) > i

↑ otherwise
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arises from a program, too.

We now define what is a logical relation of arity (w,S) on a domain A.

Definition 11.3 (logical relation of arity (w,S))
Let (w,S) be a ssp and A a domain. A logical relation on A of arity (w,S)
is a subset R ⊆ Aw such that

(R1) R is closed under directed suprema (taken in Aw)

(R2) R contains all constant maps from w to A,
i.e. δ(a) := λi∈w.a ∈ R for all a ∈ A

(R3) whenever f ∈ R and {u} ∈ S then f�u ∈ R where

(f�u)(i) =
{
f(i) if i ∈ u
⊥ otherwise

(R4) if f ∈ Aw and P ∈ S with f�u ∈ R for all u ∈ P then f�
⋃
P ∈ R. ♦

Condition (R3) expresses stability under restriction and condition (R4)
says that one may “ glue elements of R w.r.t. some P ∈ S ”.

Definition 11.4 (Kripke logical relation)
A (varying) arity is a (in general non-full) subcategory of SSP.

For a varying arity A and a domain A a Kripke logical relation on A

of arity A is a function R assigning to every (w,S) ∈ |A| a logical relation
R(w,S) on A of arity (w,S) in such a way that f ◦ h ∈ R(w′,S′) whenever
f ∈ R(w,S) and h : (w′, S′) → (w,S) is an arrow in A. ♦

Now we have collected enough notions to define the category S of se-
quential domains.

Definition 11.5 (Category S of Sequential Domains)
A sequential domain A consists of a domain |A| together with a mapping
R(A) which assigns to every varying arityA a Kripke logical relation R(A)A
on |A| of arity A.

Sequential domains form the objects of a category S whose morphisms
are defined as follows: an S-morphism from A to B is a Scott continuous
function f : |A| → |B| such that for all varying arities A it holds that

a ∈ R(A)(w,S)
A =⇒ f ◦ a ∈ R(B)(w,S)

A

for all (w,S) ∈ |A|. Composition of morphisms and identity maps are
inherited from the category of domains and continuous maps. ♦
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The category of domains and Scott continuous maps is contained in S
as the full subcategory on those objects A = (|A|, R(A)) where R(A)(w,S)

A =
Aw for all varying arities A and all objects (w,S) ∈ A because any Scott
continuous function between such objects necessarily preserves all relations
as required by the above definition of an S-morphism.

The following lemma gives a non-trivial example of a sequential domain
that will later serve as the interpretation of nat in the fully abstract model.

Lemma 11.6 Let |N | = N⊥ and for all arities A and (w,S) ∈ |A| let

f ∈ R(N)(w,S)
A ⇐⇒ {f−1[{n}] | n ∈ N}\{∅} ∈ S

for f : w → N⊥. Then N = (|N |, R(N)) is an object of S.

Proof. Straightforward, but lengthy exercise! �

Next we show that the category S is cartesian closed.

Theorem 11.7 The category S is cartesian closed, i.e. has finite products
and exponential objects.

Proof. The terminal object 1 is given by |1| = {⊥} and R(1)(w,S)
A =

{⊥}w. One readily checks that for every A ∈ |S| the constant map from
|A| to {⊥} is the unique S-morphism from A to 1.

Let A and B be arbitrary sequential domains for which we will give the
construction of A×B and [A→B] next.

The underlying domain of A×B is the cartesian product of the under-
lying domains of A and B, respectively, i.e. |A×B| = |A|×|B|, and

f ∈ R(A×B)(w,S)
A iff π1 ◦ f ∈ R(A)(w,S)

A and π2 ◦ f ∈ R(B)(w,S)
A

where π1 and π2 are first and second projection, respectively. Thus, the
continuous maps π1 : A×B → A and π2 : A×B → B preserve all relations
and, accordingly, are S-morphisms. We leave it as a simple exercise(!) to
show that for S-morphisms f : C → A and g : C → B their target tupling
〈f, g〉 is an S-morphism from C to A×B.

The underlying domain of [A→B] is S(A,B), the set of S-morphisms
from A to B, under the pointwise ordering. One readily checks (using
intrinsically condition (R1) from Definition 11.3) that S(A,B) is closed
under directed suprema taken in

[
|A|→|B|

]
. Due to condition (R2) of

Definition 11.3 every constant map from |A| to |B| is in S(A,B) and thus
the map λx:|A|.⊥|B| is the least element of S(A,B). For variable arities
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A and (w,S) ∈ |A| we define the relation R
(
[A→B]

)(w,S)

A as follows: f ∈
R

(
[A→B]

)(w,S)

A iff

ev ◦ 〈f◦h, a〉 = λj∈w′.f(h(j))(a(j)) ∈ R(B)(w
′,S′)

A

for all h : (w′, S′) → (w,S) in A and a ∈ R(A)(w
′,S′)

A . If all R
(
[A→B]

)(w,S)

A
are logical relations in the sense of Definition 11.3 then it is obvious that
the R

(
[A→B]

)
A are actually Kripke logical relations of arity A (because

of the quantification over all h : (w′, S′) → (w,S) in A).
That R

(
[A→B]

)(w,S)

A satisfies conditions (R1) and (R2) of Defini-
tion 11.3 is left as an easy exercise(!).

For verifying condition (R3) suppose that f ∈ R([A→B])(w,S)
A and {u} ∈

S. We have to show that f�u ∈ R
(
[A→B]

)(w,S)

A , too. For that purpose

suppose that h : (w′, S′) → (w,S) is in A and a ∈ R(A)(w
′,S′)

A . Due to the
assumption f ∈ R

(
[A→B]

)(w,S)

A we know that ev ◦ 〈f◦h, a〉 ∈ R(B)(w
′,S′)

A

and, therefore, also ev◦〈f◦h, a〉 �h−1[u] ∈ R(B)(w
′,S′)

A (because R(B)(w
′,S′)

A
satisfies condition (R3) and either h−1[u] = ∅ or {h−1[u]} ∈ S′). One easily
checks that ev◦〈f◦h, a〉 �h−1[u] = ev◦〈(f�u)◦h, a〉 and, therefore, it follows
that ev ◦ 〈(f�u) ◦ h, a〉 ∈ R(B)(w

′,S′)
A as required by condition (R3).

For verifying condition (R4) suppose that f ∈ S(A,B)w and P ∈ S

with f�u ∈ R
(
[A→B]

)(w,S)

A for all u ∈ P . We have to show that f�
⋃
P ∈

R
(
[A→B]

)(w,S)

A , too. For that purpose assume that h : (w′, S′) → (w,S) is

a morphism in A and a ∈ R(A)(w
′,S′)

A . We have to show that ev◦〈(f�
⋃
P )◦

h, a〉 ∈ R(B)(w
′,S′)

A . As ev ◦ 〈(f�
⋃
P )◦h, a〉 = ev ◦ 〈f ◦h, a〉 �h−1

[⋃
P

]
and

h−1
[⋃

P
]

=
⋃

u∈P h
−1[u] it suffices to show that ev ◦ 〈f◦h, a〉 �h−1[u] ∈

R(B)(w
′,S′)

A for all u ∈ P with h−1[u] 6= ∅ (because R(B)(w
′,S′)

A satisfies
condition (R4) and {h−1[u] | u ∈ S} \ {∅} ∈ S′). This, however, holds as
{h−1[u]} ∈ S′ for u ∈ S with h−1[u] 6= ∅ from which it follows by (R4) that
ev◦〈f◦h, a〉 �h−1[u] = ev◦〈(f�u)◦h, a〉 ∈ R(B)(w

′,S′)
A since we have assumed

that f�u ∈ R
(
[A→B]

)(w,S)

A .
It is immediate that the evaluation map ev :

∣∣[A→B]
∣∣×|A| → |B| :

(f, a) 7→ f(a) preserves all relations and, therefore, is an S-morphism. Sup-
pose that f : C×A → B is an S-morphism. We show now that Λ(f) with
Λ(f)(z)(x) = f(z, x) is an S-morphism from C to [A→B]. Suppose that
z ∈ |C|. We have to show that f(z,−) ∈ S(A,B). Suppose a ∈ R(A)(w,S)

A .
Then λi∈w.f(z, a(i)) = λi∈w.f(δw(z)(i), a(i)) = ev◦〈δw(z), a〉 ∈ R(B)(w,S)

A
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because δw(z) ∈ R(C)(w,S)
A by (R2) and a ∈ R(A)(w,S)

A by assumption.
Thus, we have shown that Λ(f) sends elements of |C| to S(A,B). For
showing that Λ(f) preserves all relations suppose c ∈ R(C)(w,S)

A . We have
to show that Λ(f)◦c ∈ R

(
[A→B]

)(w,S)

A . Suppose that h : (w′, S′) → (w,S)

is in A and a ∈ R(A)(w
′,S′)

A . Then we have ev◦〈Λ(f)◦c◦h, a〉 = f ◦〈c◦h, a〉 ∈
R(B)(w

′,S′)
A since c◦h ∈ R(C)(w

′,S′)
A (as R(C)A is a Kripke logical relation)

and a ∈ R(A)(w
′,S′)

A by assumption. �

Next we show that the usual interpretation of the arithmetic operations
of PCF are actually S-morphisms.

Lemma 11.8 The usual interpretations of the arithmetic basic operations
zero, succ, pred and ifz are morphisms in S when nat is interpreted by the
object N as specified in Lemma 11.6.

Proof. This is trivial for zero, succ and pred and, therefore, left to the
reader as an exercise(!). The case of cond = [[ifz]] is more subtle and illus-
trates the role of conditions (R3) and (R4) in Def. 11.3 and, therefore, we
give it here in detail.

Suppose for that purpose that f = 〈f0, f1, f2〉 ∈ R(N×N×N)(w,S)
A , i.e.

that the fi ∈ R(N)(w,S)
A . By definition of N (see Lemma 11.6) we know

that {u, v} ∈ S where u := f−1
0

[
{0}

]
and v := f−1

0

[
N\{0}

]
. Thus, by

condition (R3) of Definition 11.3 we have

(cond◦f)�u = f1�u ∈ R(N)(w,S)
A and (cond◦f)�v = f2�v ∈ R(N)(w,S)

A

from which it follows by condition (R4) of Definition 11.3 that

cond◦f = (cond◦f)�u∪v ∈ R(N)(w,S)
A

as desired. �

Now we have assembled enough information to show that we get a model
for PCF in S when interpreting nat as N .

Theorem 11.9 The category S is a Λ-category when endowing the hom-
sets S(A,B) with the pointwise ordering. Moreover, S is an order exten-
sional model of PCF when interpreting nat as in Lemma 11.6 and the basic
arithmetic operations as in the Scott model.

Proof. One easily checks that when defining pairing 〈−,−〉 and func-
tional abstraction Λ as usual1 this gives rise to a Λ-category (in the sense

1namely, as 〈f, g〉(x) = 〈f(x), g(x)〉 and Λ(f)(x)(y) = f(x, y)
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of Definition 10.2). That S is order extensional follows from the pointwise
definition of order on the hom-sets of S and the fact that for all sequential
domains A all constant functions a : {⊥} → |A| are S-morphisms (because
by condition (R2) of Definition 11.3 each R(B)(w,S)

A contains all constant
maps from w to |B|), i.e. we have enough global elements of each A avail-
able to distinguish different functions from A to B. From Lemma 11.6 we
know that N is a sequemtial domain and from Lemma 11.8 we know that
the usual interpreations of the basic arithmetic operations actually live in
S as morphisms. Finally, we have least fixpoints as in any Λ-category (see
Theorem 10.4). That least fixpoints are computed as usual by sending f to⊔

n∈N f
n(⊥) follows from Theorem 10.4 and the fact that in S pairing and

application are constructed as usual. �

In a sense the model S appears as sort of a “restriction of the Scott
model to the sequential objects and their limits”. This, however, is literally
true only for first order types as for types of higher order one cannot really
compare the functions because their domains of definition are too differ-
ent. One may, however, define Kripke logical relations on the full Scott
model and then verify (see [Liguoro 1996]) that the objects of the Scott
model that are invariant under all these Kripke logical relations are pre-
cisely those elements of the Scott model which are the directed supremum
of its approximating PCF definable compact elements, i.e. one may char-
acterise by invariance properties the closure under directed suprema of the
PCF definable elements of the Scott model. Instead, in the current chapter
we have cut down “on the fly” all types to the closure of the PCF definable
elements as we shall show in the following Chapter 12.
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Chapter 12

The Model of PCF in S is Fully
Abstract

From the main result of Chapter 10 we know that for order extensional
models full abstraction is equivalent to PCF definability of all compact
elements of all PCF types. For showing that all compact elements of in-
terpretations of PCF types in the model S are actually definable in PCF
we will examine the Kripke logical relations at certain varying arities An

which will be defined subsequently after first fixing some notation in the
following definition.

Definition 12.1 For every PCF type σ let Aσ be its interpretation in
the PCF model in S. For n ∈ N let hσ

n : Aσ → Aσ be the interpretation of
ψσ

n in S. Like in the Scott model the hσ
n form an ascending chain of finitary

projections whose supremum is idAσ . We write Aσ
n for hσ

n[Aσ], the image
of hσ

n. If Γ ≡ x1:σ1, . . . , xk:σk then we write AΓ for Aσ1× . . .×Aσk , hΓ
n for

hσ1
n × . . .×hσk

n and AΓ
n for the image of hΓ

n.
As there are only countably many contexts Γ and each K(AΓ) =⋃

n∈N A
Γ
n is countable we may choose an arbitrary, but fixed bijection be-

tween N and the (disjoint) union of all K(AΓ). This bijection allows us
to identify finite subsets of K(AΓ) with (certain) finite subsets of N. This
identification will tacitly apply subsequently without further mention. ♦

We now define the sequence An of arities needed for the proof of full
abstraction.

Definition 12.2 For a PCF context Γ and n ∈ N the ssp Γn = (wΓn , SΓn)
is defined as follows

• wΓn
is AΓ

n considered as a subset of N
• P ∈ SΓn iff there is a term Γ `M : ι such that

P = { [[Γ`M ]]−1[{i}] ∩ wΓn
| i ∈ N } \ {∅} .

95
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Now the arities An are defined as the subcategories of SSP whose objects
are the Γn for arbitrary PCF contexts Γ and n ∈ N and whose morphisms
are the projections

(Γ,∆)n → Γn : (γ, δ) 7→ γ

which, obviously, are closed under composition. ♦

Of course, one has to verify that the Γn are actually ssp’s but this follows
quite straightforwardly from closure properties of PCF terms of type ι in
context Γ ensuring the requirements (SSP1)–(SSP4) of Definition 11.2 (see
discussion after Def. 11.2 ). That the An are actually arities, i.e. that the
projections (Γ,∆)n → Γn are SSP-morphisms, follows from the fact that
Γ,∆ `M : ι whenever Γ `M : ι.

Now we prove the main lemma ensuring full abstraction for the PCF
model in S where nat is interpreted as the sequential domain N introduced
in Lemma 11.6.

Lemma 12.3 Let σ be a PCF type and n ∈ N. Then for all contexts Γ
and f : AΓ

n → Aσ
n the following two conditions are equivalent

(1) f ∈ R(Aσ)Γn

An

(2) f = [[Γ`M ]]�AΓ
n for some term Γ `M : σ.

Proof. The proof proceeds by induction on the structure of σ.

The base case is trivial because from the definition of SΓn it is immediate
that R(Aι)Γn

An
= R(N)Γn

An
contains precisely the PCF-definable functions

from AΓ
n to N⊥.

Now suppose as induction hypotheses that conditions (1) and (2) are
equivalent for the types σ and τ . For proving that (1) and (2) are equivalent
for the type σ→τ suppose f : AΓ

n → Aσ→τ
n .

For showing that (1) implies (2) suppose that f ∈ R(Aσ→τ )Γn

An
. Then

we have

ev ◦ 〈f◦π1, π2〉 ∈ R(Aτ )(Γ,x:σ)n

An

(where x is some fresh variable not declared in Γ) due to the definition of
exponentials in S because π1 is a morphism in An from (Γ, x:σ)n to Γn

and π2 ∈ R(Aσ)(Γ,x:σ)n

An
by the induction hypothesis for σ since π2 arises

as interpretation of the term Γ, x:σ ` x : σ. Now from the induction
hypothesis for τ it follows that

ev ◦ 〈f◦π1, π2〉 = [[Γ, x:σ `M ]]�AΓ,x:σ
n
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for some PCF term Γ, x:σ `M : τ . But then we have

f = [[Γ ` ψσ→τ
n (λx:σ.M)]]�AΓ

n

as desired.
For showing that (2) implies (1) assume that f = [[Γ`M ]]�AΓ

n for some
PCF term Γ ` M : σ→τ . For showing that f ∈ R(Aσ→τ )Γn

An
consider

an arbitrary morphism π : (Γ,∆)n → Γn in An and an arbitrary element
a ∈ R(Aσ)(Γ,∆)n

An
. By the induction hypothesis for σ there exists a PCF

term Γ,∆ ` N : σ with hσ
n ◦ a = [[Γ,∆`N ]]�AΓ,∆

n as hσ
n ◦ a : AΓ,∆

n → Aσ
n

is in R(Aσ)(Γ,∆)n

An
because hσ

n is PCF-definable and thus an S-morphism.
Now by induction hypothesis on τ we have

ev ◦ 〈f ◦ π, a〉 = ev ◦ 〈hσ→τ
n ◦ f ◦ π, a〉 =

= ev ◦ 〈hσ→τ
n ◦ f ◦ π, hσ

n ◦ a〉 =
= ev ◦ 〈f ◦ π, hσ

n ◦ a〉 =
= [[Γ,∆`M(N)]]�AΓ,∆

n ∈ R(Aτ )(Γ,∆)n

An

as desired. �

Now we can prove the desired full abstraction result for S.

Theorem 12.4 (Full Abstraction for Sequential Domains)
For every PCF type σ every compact element of Aσ is definable in PCF.
Thus, the model of PCF in S with [[nat]] = N is fully abstract.

Proof. Suppose that a ∈ Aσ is compact, i.e. a ∈ Aσ
n for some n ∈ N.

Then the constant function ca : A〈〉n → Aσ
n with value a (where 〈〉 is the

empty context) is an element of R(Aσ
n)〈〉nAn

. Thus, by Lemma 12.3 there
exists a PCF term 〈〉 ` M : σ with ca = [[〈〉 `M ]]�〈〉n, i.e. a = [[M ]]. Thus
a is PCF definable as desired.

Now full abstraction of the PCF model in S follows from Theorem 10.11
since the model is order extensional and all compact elements of PCF types
are PCF definable. �

The construction of the PCF model in S can be understood as a com-
plete characterisation via relational invariants of PCF definability up to
closure under directed suprema since we have shown that a Scott continu-
ous function f : Aσ → Aτ appears as supremum of a chain of PCF definable
functions of type σ→τ if and only if f preserves all Kripke logical relations.
Thus, the relational invariants as given by the collection of all Kripke logical
relations are sufficient for capturing PCF definability up to closure under
directed suprema.
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Notice, moreover, that the category S hosts also fully abstract mod-
els of functional programming languages with recursive types as has been
investigated in detail in [Marz 2000].

It might be disappointing that we have used so many relational in-
variants for characterising PCF-definability up to closure under directed
suprema. However, one cannot expect anything dramatically simpler be-
cause it has been shown by R. Loader [Loader 2001] that already for fini-
tary PCF, i.e. PCF with booleans as its single base type instead of natural
numbers, observational equivalence is undecidable. This forever refutes the
original hope of characterising PCF-definability in terms of preservation of
only finitely many relations.
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Chapter 13

Computability in Domains

The intention of Domain Theory is to provide a mathematical semantics
of computation. However, in the Scott model D for PCF (and also in the
sequential domains model S) the type Dι→ι does contain (strict) functions
that are not computable. The aim of this chapter is to remedy this short-
coming by defining domains endowed with a notion of computability, the
so-called effectively given domains.1 As a byproduct we will arrive at a
notion of higher type computability which is usually neglected2 in the main
stream of recursion-theoretic literature. In this chapter we will concentrate
exclusively on Scott domains because for other notions of domains (as e.g.
stable domains à la Berry and our sequential domains) there arise intrin-
sic difficulties when trying to extend the notion of computability to higher
types. A more detailed account of Computability in Domains can be found
in [Griffor et.al. 1994]. For background information about elementary re-
cursion theory we refer the reader to the classic text by H. Rogers [Rogers
1987].

Before giving the precise definition of effectively given domain we recall
a few basic facts about Scott domains, i.e. bounded complete countably
algebraic domains. The most important property of Scott domains is that
they are closed under exponentiation. Moreover, for Scott domains D and
E the basis K

(
[D→E]

)
of [D→E] can be described explicitly in terms of the

bases K(D) and K(E) in the following way. First observe that a (countably)
algebraic domain D is bounded complete if and only if every finite subset
of K(D) has a supremum in D which necessarily is compact, too. Based on

1Notice, however, that effectively given domains need not be effectively isomorphic

even if their underlying domains are isomorphic. For an explicit counterexample see
[Kanda and Park 1979].

2Although some attention is sometimes paid to the second order case when discussing
effective operations and effective operators as e.g. in [Rogers 1987].
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this fact one easily shows that the compact elements of [D→E] are precisely
those of the form

n⊔
i=1

[ei, e
′
i]

where the ei and e′i are elements of K(D) and K(E), respectively, and the
so-called step functions [ei, e

′
i] are defined as

[ei, e
′
i](x) =

{
e′i if ei v x

⊥ otherwise

provided the following consistency property holds: for every I ⊆ {1, . . . , n}
with {ei | i ∈ I} bounded in D the set {e′i | i ∈ I} is bounded in E.
Obviously, we have

( n⊔
i=1

[ei, e
′
i]
)
(x) =

⊔
{e′i | ei v x}

for x ∈ D. Based on these observations one easily checks that

[ẽ, ẽ′] v
n⊔

i=1

[ei, e
′
i] iff ẽ′ v

⊔
{e′i | ei v ẽ} .

Accordingly, we have

m⊔
j=1

[ẽj , ẽ
′
j ] v

n⊔
i=1

[ei, e
′
i] iff ∀j ∈ {1, . . . ,m}. ẽ′j v

⊔
{e′i | ei v ẽj} .

Now we are ready to define what is an effectively given (Scott) domain.

Definition 13.1 (Effectively Given Domain)
An effectively given domain is a pair (D, ε) such that D is a Scott domain
and ε is an enumeration of K(D), i.e. ε : N → K(D) is a surjective function,
satisfying the following two conditions

(1) ↑{ε(i) | i ∈ en} is a decidable property of n (where e is some effective
coding of Pfin(N) and ↑X stands for “X bounded from above”)

(2)
⊔
{ε(i) | i ∈ en} = ε(m) is a decidable relation between n and m.

An element d ∈ D is called (D, ε)-computable or simply computable iff
the set {n ∈ N | ε(n) v d} is recursively enumerable (r.e.). We write
Comp(D, ε) for the set of computable elements of (D, ε). ♦
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Next we define what are computable functions between effectively given
domains.

Definition 13.2 (Computable Maps)
Let (D1, ε

(1)) and (D2, ε
(2)) be effectively given domains. A Scott continu-

ous function f : D1 → D2 is called computable (w.r.t. ε(1) and ε(2)) iff the
set3 {〈n,m〉 | ε(2)(m) v f(ε(1)(n))} is r.e. To express that f is computable
we write f : (D1, ε

(1)) → (D2, ε
(2)). ♦

Notice that for an effectively given domain (D, ε) the relation ε(n) v
ε(m) is decidable as it is equivalent to ε(m) =

⊔
{ε(n), ε(m)}. Accordingly,

the relation ε(n) = ε(m) is decidable, too.

From these observations the following two lemmas follow rather easily.

Lemma 13.3 Computable maps between effectively given domains pre-
serve computability of elements.

Proof. Suppose f : (D1, ε
(1)) → (D2, ε

(2)) and x ∈ Comp(D1, ε
(1)). Then

the sets A := {n ∈ N | ε(1)(n) v x} and B := {〈n,m〉 | ε(2)(m) v
f(ε(1)(n))} are r.e. Thus, the set {m ∈ N | ∃n ∈ A. 〈n,m〉 ∈ B} = {m ∈
N | ε(2)(m) v f(x)} is also r.e., i.e. f(x) is computable. �

Lemma 13.4 If (D, ε) is an effectively given domain then idD is a com-
putable map (w.r.t. ε). Moreover, computable maps are closed under com-
position, i.e. if f : (D1, ε

(1)) → (D2, ε
(2)) and g : (D2, ε

(2)) → (D3, ε
(3))

then g ◦ f : (D1, ε
(1)) → (D3, ε

(3)).
Accordingly, effectively given domains and computable maps give rise to

a category denoted as Domeff .

Proof. As by the remark after Def. 13.1 the relation ε(n) v ε(m) is
decidable and thus also r.e. the map idD is computable.

As f and g are computable the sets

A := {〈n,m〉 | ε(2)(m) v f(ε(1)(n))} B := {〈m, k〉 | ε(3)(k) v g(ε(2)(m))}

are both r.e. By continuity of f and g we have ε(3)(k) v (g◦f)(ε(1)(n))
iff ∃m∈N. ε(2)(m) v f(ε(1)(n)) ∧ ε(3)(k) v f(ε(2)(m)) iff ∃m∈N. 〈n,m〉 ∈
A ∧ 〈m, k〉 ∈ B. As A and B are r.e. it follows that {〈n, k〉 | ε(3)(k) v
(g◦f)(ε(1)(n))} is r.e., too, and thus g ◦ f is computable.

As all identity maps on effectively given domains are computable and
computable maps between effectively given domains are closed under com-
position they form a category Domeff . �

3usually called the (Scott) graph of f
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The domain N⊥ can be made into an effectively given domain N =
(N⊥, εN ) where εN (0) = ⊥ and εN (n+1) = n. A terminal object 1 in
Domeff is given by ({⊥}, ε1) where ε : N → {⊥} is the unique constant map
with value ⊥.

Lemma 13.5 The category Domeff is order extensional, i.e. f v g iff
f ◦ a v g ◦ a for all a : 1 → A in Domeff .

Proof. Obvious from the fact that every compact element of an effectively
given domain is in particular computable. �

Next we show that the category of effectively given domains is cartesian
closed.

Theorem 13.6 The category Domeff is cartesian closed.

Proof. A terminal object is given by 1 = ({⊥}, ε : N → {⊥}).
Suppose (D1, ε

(1)) and (D2, ε
(2)) are effectively given domains. Their

product is given by
(
[D1×D2], [ε(1)×ε(2)]

)
with [ε(1)×ε(2)](〈n,m〉) =

(ε(1)(n), ε(2)(m)). Their exponential is given by
(
[D1→D2], [ε(1)→ε(2)]

)
for some appropriate numbering [ε(1)→ε(2)] which we describe next.

We call a finite subset A of N “consistent” iff the set {
[
ε(1)(i), ε(2)(j)

]
|

〈i, j〉 ∈ A} of step functions is bounded in [D1→D2]. Due to the remarks
before Def. 13.1 it is a decidable property of n whether en is consistent in
this sense. Let ẽ be an enumeration of the consistent finite subsets of N
obtained from the canonical enumeration e of Pfin(N) putting ẽn = en if en

is consistent and ẽn = ∅ otherwise. Now we define [ε(1)→ε(2)] as

[ε(1)→ε(2)](n) = {
[
ε(1)(i), ε(2)(j)

]
| 〈i, j〉 ∈ ẽn}

for n ∈ N. Next we argue why [ε(1)→ε(2)] satisfies requirements (1) and (2)
of Def. 13.1. In order to decide whether ↑{[ε(1)→ε(2)](k) | k ∈ en} decide
whether

⋃
k∈en

ẽk is consistent. Thus (1) holds for [ε(1)→ε(2)]. In order to
decide whether

⊔
k∈en

[ε(1)→ε(2)](k) = [ε(1)→ε(2)](m) decide whether⊔
{
[
ε(1)(i), ε(2)(j)

]
| 〈i, j〉 ∈ ẽ(k), k∈en} =

⊔
{
[
ε(1)(i), ε(2)(j)

]
| 〈i, j〉 ∈ ẽm}

which can be done effectively due to the remarks before Def. 13.1. Thus
(2) holds for [ε(1)→ε(2)].

One easily checks (exercise!) that the set

{〈〈n,m〉, k〉 | ε(2)(k) v [ε(1)→ε(2)](n)(ε(1)(m))}
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is r.e. from which it follows that the map ev : [D1→D2]×D1 → D2 is
computable.

Suppose (D3, ε
(3)) is an effectively given domain and f : D3×D1 → D2

is computable, i.e. F := {〈〈n,m〉, k〉 | ε(2)(k) v f(ε(3)(n), ε(1)(m))} is r.e.
Then the function Λ(f) : D3 → [D1→D2] : z 7→ (x 7→ f(z, x)) is com-
putable because [ε(1)→ε(2)](m) v Λ(f)(ε(3)(n)) iff ∀〈i, j〉 ∈ ẽm. 〈〈n, i〉, j〉 ∈
F and the latter condition is obviously semidecidable since F is semidecid-
able by assumption.

This concludes the proof that
(
[D1→D2], [ε(1)→ε(2)]

)
is actually the

desired exponential in Domeff . �

Next we show that taking least fixpoints is a computable operation.

Theorem 13.7 For an effectively given domain (D, ε) the least fixpoint
operator µD : [D→D] → D : f 7→

⊔
n∈N f

n(⊥) is computable.

Proof. Recall from the proof of the previous Theorem 13.6 that a com-
pact element [ε→ε](n) ∈ K([D→D]) equals

⊔
{[ε(i), ε(j)] | 〈i, j〉 ∈ ẽ(n)}.

First observe that the set {k ∈ N | ε(k) v µD([ε→ε](n))} is the least set In
s.t.

(1) if ε(k) = ⊥D then k ∈ In and
(2) if k ∈ In, ε(i) v ε(k) and 〈i, j〉 ∈ ẽn then j ∈ In.

As In is r.e. unifomly in n the set

{〈n,m〉 | m ∈ In} = {〈n,m〉 | ε(m) v µD([ε→ε](n))}

is r.e. and, accordingly, the map µD is computable. �

Interpreting base type ι as N = (N⊥, εN ) gives rise to the observation
that the interpretation of PCF in Scott domains factors through Domeff

because the basic operations zero, succ, pred and ifz on N⊥ are all com-
putable and the interpretation of typed λ-calculus and recursion does not
lead outside the effective world as guaranteed by Theorems 13.6 and 13.7,
respectively. This model of PCF inside Domeff is called the effective Scott
model .

Lemma 13.8 The interpretations of por and ∃ are computable elements
of N→N→N and (N→N)→N , respectively.

Proof. One simply checks that in both cases the set of codes of approx-
imating compact elements is r.e. (exercise!). �
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Thus, all terms of PCF++ ≡ PCF+por+∃ denote computable elements
of the Scott model. We write (Dσ, ε

σ) for the interpretation of PCF type
σ in Domeff where base type ι gets interpreted as N = (N⊥, εN ).

In [Plotkin 1977] G. Plotkin has proved the following two remarkable
theorems

Theorem 13.9 (Full Abstraction for PCF+)
Every compact element of the Scott model of PCF arises as interpretation
of some closed term in PCF+ ≡ PCF + por. Thus, the Scott model is fully
abstract for PCF+.

Theorem 13.10 (Universality for PCF++)
All computable elements of PCF types arise as denotations of PCF++

terms. Thus, the effective Scott model is universal for PCF++.
Moreover, every object of the Scott model of PCF is definable in PCF++

Ω ,
i.e. PCF++ extended by constants (so-called “oracles”) for all strict total
functions of type ι→ι.

telling us that the effective Scott model is the best possible one for PCF++

and that it is precisely (the absence of) por which is responsible for the
Scott model’s lack of full abstraction for PCF. Moreover, Theorem 13.10
tells us that

PCF++ provides a purely extensional account of classical4 recursion
theory extended to higher types.

However, it will take several steps to prove these two classical theorems of
Plotkin. First recall that in chapter 7 we invited the reader to prove that

Theorem 13.11 In the Scott model for all PCF types σ the domain Dσ

is coherently complete.

Proof. Obviously, N⊥ is coherently complete and coherently complete
cpo’s are are closed under ×. Suppose D and E are domains and E is
coherently complete. Then [D→E] is coherently complete, too, as if F ⊆
[D→E] is coherent then for all x ∈ D the set {f(x) | f ∈ F} is coherent,
too, and thus has a supremum (as E is coherently complete by assumption).
One easily checks (as in the proof of Lemma 3.5) that the function g with

g(x) =
⊔
{f(x) | f ∈ F} for x ∈ D

is continuous and thus the supremum of F w.r.t. the pointwise order. �
4as in classical recursion theory por and ∃ are available via dove tailing
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If x and y are elements of a domain D we write x↑y for ↑{x, y} and x#y
for the negation of x ↑ y.

Lemma 13.12 Let D be a coherently complete Scott domain. Then for
every e ∈ K(D) the function belowe : D → N⊥ with

belowe(d) =


0 if e v d

1 if e#d
⊥ otherwise

is continuous.

Proof. Obviously, the function belowe is monotonic. Suppose X ⊆ D is
directed and belowe(x) = ⊥ for all x ∈ X. Then e↑x for all x ∈ X from
which it follows that e ↑

⊔
X because {e} ∪X is coherent and, thus, has a

supremum. Moreover, we have e 6v
⊔
X as otherwise e v x for some x ∈ X

since e is assumed as compact. Thus belowe

(⊔
X

)
= ⊥ as well. �

Lemma 13.13 (parallel conditional in PCF+)
In PCF+ one can exhibit a term x:ι, y:ι, z:ι ` pif x then y else z fip : ι
whose interpretation is the ternary function pcond on N⊥ defined as

pcond(x, y, z) =


y if x = 0 or y = z ∈ N
z if x = 1
⊥ otherwise

for all x, y, z ∈ N⊥.

Proof. First observe that in PCF+ one can implement a function pand

of type ι→ι→ι such that

pandx y =


0 if x = 0 = y

1 if x = 1 or y = 1
⊥ otherwise

For the sake of readability we write x ∧ y as an abbreviation for pandx y

and x ∨ y as an abbreviation for por x y. Using fixpoint operators we can
define in PCF+ a function h : (ι→ι) → ι→ ι such that

h f x = ifz(f(x), x, h(f)(succ(x))

for all h ∈ Dι→ι and x ∈ Dι. Then the function search : (ι→ι) → ι defined
as

search(f) = h f zero
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is also PCF+ definable and implements unbounded search in N, i.e.,
search(f) terminates iff there exists an n ∈ N such that f(n) = 0 and
f(k) ∈ N\{0} for all k < n in which case search(f) = n.

Now when defining pif x then y else z fip as

search(λw:ι. (w=y ∧ w=z) ∨ (w=y ∧ x=0) ∨ (w=z ∧ x=1))

one easily checks that it satisfies its specification. �

Now we can prove that the Scott model is fully abstract for PCF+.

Proof (of Theorem 13.9) :
By induction on the structure of PCF types σ we show that the following
three claims hold for all e, e′ ∈ K(Dσ)

(1) e is definable in PCF+

(2) [e, 0] is definable in PCF+

(3) [e, 0] t [e′, 1] is definable in PCF+ whenever e#e′.

The claims obviously hold for base type ι. Suppose σ = σ1→ . . .→σk→ι

and as induction hypothesis that (1)–(3) hold for the σi.
First some notation. For compact elements ei ∈ K(Dσi) and n ∈ N we

write [e1, . . . , ek, n] for the function f ∈ Dσ with

ff1 . . . fk =
{
n if ei v fi for all i ∈ {1, . . . , k}
⊥ otherwise.

Such functions are called step functions. Every e ∈ K(Dσ) is the supremum
of a finite set of such step functions. One easily checks (exercise!) that there
exists a least such set which we denote as Fe.

We proceed by induction on the size of |Fe| and |Fe′ |.

ad (1): If Fe is empty then e is denoted by Ωσ. Thus, w.l.o.g. suppose
Fe 6= ∅.

If there are [e1, . . . , ek, n], [e′1, . . . , e
′
k, n

′] ∈ Fe with ei#e′i for some i

with 1≤i≤k then by induction hypothesis there exists a PCF+ term M

denoting [ei, 0]t [e′i, 1]. By induction hypothesis
⊔
Fe\{[e1, . . . , ek, n]} and⊔

Fe\{[e′1, . . . , e′k, n′]} are definable by terms N1 and N2, respectively. But
then e =

⊔
Fe is definable by the PCF+ term

λf1:σ1. . . . λfk:σk.pif Mfi thenN2f1 . . . fk elseN1f1 . . . fk fip

Otherwise for all [e1, . . . , ek, n], [e′1, . . . , e
′
k, n

′] ∈ Fe we have n = n′.
Take [e1, . . . , ek, n] ∈ Fe. By induction hypothesis there are PCF+
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terms Mi denoting [ei, 0] for i=1, . . . , k and a PCF+ term N denoting⊔
Fe\{[e1, . . . , ek, n]}. Then e =

⊔
Fe is denoted by the PCF+ term

λf1:σ1. . . . λfk:σk.pif M1f1 ∧ · · · ∧Mkfk thenn elseNf1 . . . fk fip

where ∧ stands for pand (as introduced in the proof of Lemma 13.13).

ad (2): If Fe = ∅ then λx:σ.0 denotes [e, 0]. Otherwise take some
[e1, . . . , ek, n] ∈ F . By induction hypothesis there exist PCF+ terms
M1, . . . ,Mk, E and N denoting the compact elements e1, . . . , ek, [n, 0] and[⊔

Fe\{[e1, . . . , ek, n]}, 0
]
, respectively. Then the PCF+ term

λf :σ. ifz(E(fM1 . . .Mk), Nf,Ωι)

denotes [e, 0].

ad (3): Suppose e#e′. Then there exist [e1, . . . , ek, n] ∈ Fe and
[e′1, . . . , e

′
k, n

′] ∈ Fe′ such that n 6= n′ and ei↑e′i for i=1, . . . , k. By induction
hypothesis there are PCF+ terms M1, . . . ,Mk denoting e1te′1, . . . , ekte′k,
respectively. As (2) has already been established for σ there exist PCF+

terms N and N ′ denoting [e, 0] and [e′, 0], respectively. Let K be a PCF
term denoting [n, 0] t [n′, 1]. Then [e, 0] t [e′, 1] is denoted by

λf :σ. ifz(K(fM1 . . .Mk), Nf, succ(N ′f))

which, obviously, is a PCF+ term. �

For proving universality of PCF++ we have to observe that sort of a
“continuous universal quantifier” is definable in PCF++.

Lemma 13.14 The function ∀ : [N⊥→N⊥] → N⊥ with

∀(f) =


0 if f(⊥) = 0
1 if f(n) = 1 for some n ∈ N
⊥ otherwise

is definable in PCF++.

Proof. Let swap be a PCF term of type ι→ι with

swap(x) =


0 if x = 1
1 if x = 0
x otherwise.

Then the PCF++ term λf :ι→ι. swap(∃(λx:ι. swap(f(x)))) denotes ∀. �
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Moreover, we will employ the following extension of ifz and the parallel
conditional to arbitrary types σ = σ1→ . . .→σk→ι : if M is of type ι and
N1 and N2 are of type σ (relative to some typing context) then we write
ifz(M,N1, N2) as a shorthand for

λx1:σ1. . . . λxn:σn.ifz(M,N1x1 . . . xn,M2x1 . . . xn)

and pif M thenN1 elseN2 fip as a shorthand for

λx1:σ1. . . . λxn:σn.pif M thenN1x1 . . . xn elseM2x1 . . . xn fip .

We leave it as an exercise(!) to check that

pif Ωι thenN1 elseN2 fip = N1 uN2

which fact we will tacitly use in the subsequent proof of Theorem 13.10
which is due to [Escardó 1997] and easier to follow than the original proof
in [Plotkin 1977].

Proof (of Theorem 13.10) :
By induction on the structure of PCF types we will show that for every type
σ there exist PCF++ terms joinσ : ι→σ→σ, upσ : ι→ι→σ and belowσ :
ι→σ→ι whose denotations (also denoted as joinσ, upσ and belowσ) satisfy
the requirements that

(1) for all d ∈ Dσ and n ∈ N

(i) joinσ(⊥)(d) = ⊥ and
(ii) joinσ(n)(d) = εσ

n t d whenever εσ
n ↑ d

(2) for every n ∈ N the set {d ∈ Comp(Dσ, ε
σ) | εσ

n v d} is enumerated by
the function upσ(n) : N⊥→Dσd

(3) for all n ∈ N and d ∈ Dσ

belowσ(n)(d) =


0 if εσ

n v d

1 if εσ
n # d

⊥ otherwise

i.e. belowσ(n) implements the function belowεσ
n

of Lemma 13.12.

Before verifying the existence of such terms we show how they allow one
to prove that all computable elements of Dσ can be denoted by PCF++

terms.



25th August 2006 16:58 WSPC/Book Trim Size for 9in x 6in MGFP

Computability in Domains 109

Suppose d ∈ Comp(Dσ, ε
σ). Then there exists a PCF term gd : ι→ι

with {gd(n) | n ∈ N} = {n ∈ N | εσ
n v d}. We write hd for the PCF++

term λk:ι.joinσ(gd(k)) of type ι→σ→σ. Let Φσ be the PCF term

λF :(ι→σ→σ)→σ.λf :ι→σ→σ.f(0)(F (λn:ι.f(succ(n))))

of type ((ι→σ→σ)→σ) → (ι→σ→σ)→σ. Then we have

Y(Φσ)(hd) =
⊔

n∈N Φn
σ(⊥)(hd) =

=
⊔

n∈N hd(0) ◦ · · · ◦ hd(n)(⊥) =

=
⊔

n∈N ε
σ
gd(0) t · · · t ε

σ
gd(n) =

= d

where the last equality holds as gd enumerates the codes of finite approxi-
mations to d. Thus, the PCF++ term Y(Φσ)(hd) denotes d and hence d is
definable in PCF++.

For arbitrary d ∈ Dσ there still exists a total function gd : N → N
enumerating {n ∈ N | εσ

n v d} which, however, in general will not be
recursive anymore. Nevertheless, we still have d = Y(Φ)(λk:ι.joinσ(gd(k)))
and hence d is definable in PCF++

Ω (using the oracle gd).

Now we will turn back to the task of exhibiting terms joinσ, upσ and
belowσ satisfying requirements (1)–(3). We proceed by induction on the
structure of σ. For base type ι the claim is obvious. Suppose as induction
hypotheses that the claim holds already for σ and τ .

There is a PCF++ definable function sjoin : N⊥ → Dσ→τ → Dσ→τ with

sjoin(〈n,m〉)(f)(d) = pif belowσ(n)(d) then joinτ (m)(f(d)) else f(d)fip

for all n,m ∈ N. If [εσ
n, ε

τ
m] ↑ f then sjoin(〈n,m〉)(f) = [εσ

n, ε
τ
m] t f as can

be seen from the following case analysis

i) if εσ
n v d then sjoin(〈n,m〉)(f)(d) = ετ

m t f(d) = ([εσ
n, ε

τ
m] t f)(d)

ii) if εσ
n ↑ d but not εσ

n v d then ετ
m ↑ f(d) and belowσ(n)(d) = ⊥ and,

thus, we have sjoin(〈n,m〉)(f)(d) = joinτ (m)(f(d)) u f(d) = f(d) =
([εσ

n, ε
τ
m] t f)(d) because f(d) v ετ

m t f(d) = joinτ (m)(f(d)) as guar-
anteed by ετ

m ↑ f(d) and the induction hypothesis for joinτ

iii) if εσ
n#d then sjoin(〈n,m〉)(f)(d) = f(d) = ([εσ

n, ε
τ
m] t f)(d).

Now joinσ→τ is PCF definable from sjoin putting

joinσ→τ (n)(f)(d) = ifz(bσ→τ (n), f(d), sjoin(δ(n))(joinσ→τ (ρ(n))(f))(d))
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where bσ→τ is a recursive function deciding εσ→τ
n = ⊥ and δ and ρ are

recursive functions such that for n 6= 0, δ(n) is the least element of en and
eρ(n) = en\{δ(n)}.

For defining upσ first consider the PCF++ term

enumσ
1 ≡ λf :ι→ι.Y(Φσ)(λk:ι.joinσ(f(k)))

where Φσ is defined as above. Obviously, if d ∈ Dσ and f ∈ Dι→ι with
{f(n) | n ∈ N} = {n ∈ N | εσ

n v d} then d = enumσ
1 (f). Let U be a PCF

term of type ι→ι→ι such that {U(n) | n ∈ N} is the set of all unary partial
recursive functions.5 Then λx:ι.enumσ

1 (U(x)) enumerates Comp(Dσ, ε
σ).

Thus, the PCF++ definable function

upσ→τ (n)(m) = joinσ→τ (n)(enumσ→τ
1 (m))

satisfies the requirement formulated in (2).
Finally belowσ→τ can be defined as

belowσ→τ (n)(f) = ∀〈i,j〉∈en
∀(λk:ι.belowτ (j)(f(upσ(i)(k))))

where ∀ is the continuous universal quantifier of Lemma 13.14 and the
quantification over en can be expressed in terms of pand (as introduced in
the proof of Lemma 13.13). As belowτ and upσ are PCF++ definable by
induction hypothesis the function belowσ→τ is PCF++ definable as well. �

See pp. 250-251 of [Plotkin 1977] for a syntactic argument showing that
∃ is not PCF+ definable. That already PCF+ suffices for denoting all
compact elements of the Scott model we consider rather as a mere curiosity.
But the following two facts one certainly should remember.

• The Scott model is not fully abstract for PCF as the latter lacks parallel
features.

• If one adds por and ∃ to PCF, i.e. extensional parallel features providing
all the benefits of dove tailing, then one can denote all computable
elements of the Scott model, i.e. the language PCF++ is universal for
the effective Scott model Domeff .

5where a unary partial function f on N is identified with the element f̃ ∈ Dι→ι

defined as

f̃(x) =

{
f(x) if x ∈ N and f(x)↓
⊥ otherwise



25th August 2006 16:58 WSPC/Book Trim Size for 9in x 6in MGFP

Computability in Domains 111

The above universality theorem has been extended to PCF++ with re-
cursive types in [Streicher 1994] by showing that every recursive type ap-
pears as a PCF++ definable retract of the type ι→ι.6 However, it is an open
problem whether in the category S of sequential domains there is a PCF
type υ such that every (recursive) type appears as PCF definable retract
of υ.

As we have seen there is a smooth notion of computability for Scott
domains. When trying to achieve something similar for the sequential do-
mains (introduced in Chapter 11) one runs into the following problems.

Consider the projections π1, π2 : Σ× Σ → Σ (where Σ is the 2-element
lattice {⊥,>}). Then in any sequential model the pointwise supremum
π1 t π2 does not exist as it is the inherently parallel supremum operation
∨ : Σ×Σ → Σ. The only (pointwise) upper bound of π1 and π2 in a sequen-
tial model is the constant map with value >. Thus, in order extensional
sequential models suprema in function spaces are not pointwise. Moreover,
it follows from [Loader 2001] that already in the fully abstract model for
finitary PCF, i.e. over base type bool, where all elements are compact,
it is not decidable whether an element is the supremum of a finite set of
elements.

Any attempt to develop a notion of computability for sequential domains
is hampered by the following observation. Let K be a non-recursive, but
r.e. set of natural numbers (e.g. K = {n ∈ N | {n}(n)↓}). For every n ∈ N
consider the function fn : Σ → [N→Σ] defined as

fn(u) =
{

N if u = >
{k ∈ K | k < n} otherwise.

Obviously, each fn is sequential and computable as it can be implemented
e.g. by an obvious ML program of type unit−>nat−>unit. The sequence
(fn)n∈N is effective and ascending w.r.t. the extensional order but, never-
theless, its limit f =

⊔
fn as given by

f(u) =
{

N if u = >
K otherwise

6Thus, in case of the effective Scott model, i.e. higher type computability in the sense
of recursion theory, higher types are just a “figure of speech” because they can all be

simulated within ι→ι, i.e. the partial recursive functions (together with all constant
functions). Nevertheless, higher types are very convenient from a “stylistic” point of

view.
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is not sequentially computable since

f(u)(n) = > iff n ∈ K ∨ u=>

and the right hand side obviously requires parallel evaluation. Thus, for
sequential domains the computable elements are not closed under suprema
of effective chains of effective elements.

However, via realizability one may construct universal models for se-
quential languages (even with recursive types), see [Rohr 2002].7

But for the stable model of PCF (see [Amadio and Curien 1998]) a
notion computability has been successfully developed by A. Asperti in [As-
perti 1990]. This is possible because the sequence (fn)n∈N considered above
is not increasing w.r.t. the stable ordering.

We conclude this chapter with some more recursion theoretic consider-
ations.

Principal Numberings and the Myhill-Shepherdson Theorem

For an effectively given domain we will define a notion of principal number-
ing of Comp(D, ε) which in a certain sense will be optimal. For this purpose
recall the Gödel numbering W of r.e. sets of natural numbers where

We = {n ∈ N | {e}(n)↓}

see e.g. [Rogers 1987].

Definition 13.15 (principal numbering)
Let (D, ε) be an effectively given domain. A principal numbering of (D, ε)
is a surjective function ζ : N → Comp(D, ε) such that there exist total
recursive functions f and g satisfying the conditions

(ζ1) Wf(n) = {k ∈ N | εk v ζ(n)}
(ζ2) ζ(g(n)) =

⊔
ε[Wn] whenever ε[Wn] is directed.

7See also John Longley’s treatise [Longley 2002] on Sequentially Realizable Function-

als where he constructs a universal model for PCF+H where H is a non-order-extensional

but sequential constant of type 2 having a somewhat complicated operational semantics.
Longley’s sequentially realizable functionals are equivalent to the extensional collapse

of Curien’s Sequential Algorithms (see [Amadio and Curien 1998]) providing a non-

extensional model for PCF.
But notice that this notion of sequentiality is more liberal than the one arising from

PCF definability as studied in this book.
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A computable numbering is a surjective map ν : N → Comp(D, ε) for which
there exists a total recursive function h with Wh(n) = {k ∈ N | εk v ν(n)}
for all n ∈ N. ♦

Obviously, for every computable numbering ν of Comp(D, ε) there exists
a total recursive function t with ζ ◦t = ν (namely t = g◦h). On computable
numberings one may consider the following preorder

ν1 � ν2 iff there exists a total recursive h with ν2 ◦ h = ν1.

Obviously, a principal numbering is a greatest (w.r.t. �) computable num-
bering from which it is immediate that principal numberings are unique
up to recursive reindexing, i.e. whenever ζ and ζ ′ are principal numberings
then ζ ◦ f = ζ ′ and ζ ◦ g = ζ for some total recursive functions f and g.8

We leave it as an exercise(!) for the inclined reader to verify that for every
effectively given domain there does actually exist a principal numbering of
its computable elements.

Next we consider a notion of semidecidable subsets for effectively given
domains.

Definition 13.16 (extensionally r.e.)
A subset P ⊆ Comp(D, ε) is called extensionally recursively enumerable
(e.r.e.) iff {n ∈ N | ζn ∈ P} is r.e. where ζ is some principal numbering of
Comp(D, ε). ♦

Theorem 13.17 (Rice-Shapiro)
For every e.r.e. subset P ⊆ Comp(D, ε) it holds that

(1) for every d ∈ P there exists an e ∈ K(D) ∩ P with e v d

(2) if d ∈ P and d v d′ ∈ Comp(D, ε) then d′ ∈ P as well.

Proof. Let ζ be a principal numbering of Comp(D, ε) and f and g be total
recursive functions satisfying the requirements (ζ1) and (ζ2) of Def. 13.15.
ad (1) : If d is compact then one may take for e the element d itself. Suppose
that d is not compact. For the sake of deriving a contradiction suppose that
e 6∈ P for all compact e v d. As by assumption d ∈ Comp(D, ε) there exists
a r.e. set A such that ε[A] is a chain in D with supremum d. Let h be a
total recursive function such that for all n ∈ N

Wh(n) = {m ∈ A | ∀k ≤ m. ¬T (n, n, k)}
8cf. the admissible numberings of partial recursive functions as introduced and stud-

ied in [Rogers 1987]
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where T is Kleene’s T -predicate (see e.g. [Rogers 1987]). Obviously, for
every n ∈ N the set ε[Wh(n)] is a chain in D and thus its supremum is
ζg(h(n)). Now for all n ∈ N we have {n}(n)↑ iff

⊔
ε[Wh(n)] = d, i.e.

n 6∈ K iff ζg(h(n)) ∈ P

where K = {n ∈ N | {n}(n)↓}. As P is e.r.e. the complement of K is
r.e. in contradiction to the well-known undecidability of the r.e. set K (see
[Rogers 1987]).
ad (2) : Suppose d ∈ P and d v d′ ∈ Comp(D, ε). W.l.o.g. assume that
d 6= d′. Due to the already established condition (1) there exists an e ∈
K(D)∩P with e v d. Let A be a r.e. set such that ε[A] is a chain in D with
supremum d′. W.l.o.g. assume that e = εi0 for some i0 ∈ A. The partial
function

h̃(n, k) =
{

0 if (n ∈ K ∧ k ∈ A) ∨ k = i0
↑ otherwise

is obviously partial recursive. Thus, there exists a total recursive function
h with

Wh(n) = {k ∈ N | h̃(n, k)↓}

for all n ∈ N. Now if d′ 6∈ P then we have

n 6∈ K iff Wh(n) = {i0} iff ζg(h(n)) ∈ P

rendering the complement of K r.e. (since P is .r.e.) in contradiction with
the undecidability of the halting problem. �

Notice that the Rice-Shapiro theorem can be rephrased as follows: e.r.e.
subsets of Comp(D, ε) are open (w.r.t. the subspace topology on Comp(D, ε)
induced by the Scott topology on D). It is a straightforward exercise(!) to
show that an open subset U of Comp(D, ε) is e.r.e. provided {n ∈ N | εn ∈
U} is r.e.

A fairly immediate consequence of the Rice-Shapiro theorem is the
Myhill-Shepherdson Theorem whose formulation, however, requires the fol-
lowing notion.

Definition 13.18 (effective morphism of e.g. domains)
A function f : Comp(D1, ε

(1)) → Comp(D2, ε
(2)) is called an effective mor-

phism iff there exists a total recursive function h with ζ(2) ◦ h = f ◦ ζ(1),
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i.e. making the diagram

N
h - N

Comp(D1, ε
(1))

ζ(1)
??

f
- Comp(D2, ε

(2))

ζ(2)
??

commute, where the ζ(i) are principal numberings of Comp(Di, ε
(i)). ♦

The Myhill-Shepherdson theorem says that every effective morphism of
e.g. domains is Scott continuous (i.e. continuous w.r.t. the subspace topolo-
gies induced by the Scott topologies).

Theorem 13.19 (Myhill-Shepherdson)
Every effective morphism f : Comp(D1, ε

(1)) → Comp(D2, ε
(2)) is mono-

tonic and whenever f(d) w e2 ∈ K(D2) then there exists an e1 ∈ K(D1)
with f(e1) w e2 and e1 v d.

Proof. Suppose d ∈ Comp(D1, ε
(1)) and e2 ∈ K(D2) with e2 v f(d).

The set A2 = {n ∈ N | e2 v ζ
(2)
n } is r.e. from which it follows (as f is

effective) that the set A1 = {m ∈ N | e2 v f(ζ(1)
m )} is also r.e. Thus, the

set {d ∈ Comp(D1, ε
(1)) | e2 v f(d)} is e.r.e. and contains d as an element

from which it follows by Theorem 13.17(1) that there exists a compact
e1 v d with e2 v f(e1).

It remains to show that f is monotonic. For that purpose suppose
d1, d2 ∈ Comp(D1, ε

(1)) with d1 v d2. Suppose e2 ∈ K(D2) with e2 v
f(d1). As f is effective the set {d ∈ Comp(D1, ε

(1)) | e2 v f(d)} is e.r.e.
and contains d1 as an element. From Theorem 13.17(2) it follows that
e2 v f(d2). As this implication holds for all e2 ∈ K(D2) we conclude that
f(d1) v f(d2) as desired. �

This gives rise to the following characterisation of effective morphims.

Theorem 13.20 A function f : Comp(D1, ε
(1)) → Comp(D2, ε

(2)) is
an effective morphism if and only if f = f̄�Comp(D1, ε

(1)) for a (unique)
continuous function f̄ : D1 → D2 computable w.r.t. ε(1) and ε(2).

Proof. An effective morphism f : Comp(D1, ε
(1)) → Comp(D2, ε

(2)) is
Scott continuous by Theorem 13.19. Moreover, the set {〈n,m〉 | ε(2)m v
f(ε(1)n )} is r.e. as there is a recursive function h with ζ

(1)
h(n) = ε

(1)
n for all

n ∈ N. Take for f̄ the unique continuous function whose (Scott) graph is
{〈n,m〉 | ε(2)m v f(ε(1)n )}, i.e. f̄(d) =

⊔
{ε(2)m | ε(1)n v d and ε(2)m v f(ε(1)n )}.
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For the reverse direction suppose f̄ : D1 → D2 is continuous and com-
putable w.r.t. ε(1) and ε(2). Then the set A = {〈n,m〉 | ε(2)m v f̄(ε(1)n )} is
r.e. Let g be a total recursive function with Wg(n) = {k ∈ N | ε(1)k v ζ

(1)
n }

and h a total recursive function with ζ(2)
h(n) =

⊔
ε(2)[Wn] whenever ε(2)[Wn]

is directed. Obviously, the set B = {〈n,m〉 | ∃k. k ∈ Wg(n) ∧ 〈k,m〉 ∈ A}
is r.e. as well. Thus, there exists a total recursive function b with Wb(n) =
{m ∈ N | 〈n,m〉 ∈ B}. Then for the restriction f = f̄�Comp(D1, ε

(1)) it
holds that f(ζ(1)

n ) = ζ
(2)
h(b(n)) for all n ∈ N, i.e.

f ◦ ζ(1) = ζ(2) ◦ h ◦ b

from which it follows that f is an effective morphism since h◦b is recursive.
As a continuous function on a Scott domain is uniquely determined by

its behaviour on compact elements the function f̄ is uniquely determined
by f since compact elements are in particular computable. �

Thus, we have established a 1-1-correspondence between computable
continuous maps and effective morphisms which generalizes the Myhill-
Shepherdson theorem for effective operations and operators as discussed in
[Rogers 1987] to effectively given domains.

Moreover, one easily checks (exercise!) that e.r.e. subsets of Comp(D, ε)
are in 1-1-correspondence with effective morphisms from (D, ε) to the so-
called Sierpinski space Σ = {⊥,>} w.r.t. the effective presentation εΣ(0) =
⊥ and εΣ(n+1) = >. This analogy between topological and recursion-
theoretic notions was D. Scott’s main motivation for his Domain Theory and
lies at the heart of so-called Synthetic Domain Theory (SDT) introduced
around 1990 independently by Martin Hyland in [Hyland 1990] and Paul
Taylor in [Taylor 1991]. SDT aims at axiomatizing domains as particular
sets within constructive higher order logic or set theory. This slogan of
domains as particular sets was promoted by D. Scott during the 1980ies
and finally taken up by Hyland and Taylor. See [Simpson 2004; Reus and
Streicher 1999] for an up-to-date account of SDT.
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M. H. Escardó PCF extended with real numbers: a domain-theoretic approach to
higher-order exact real number computation. PhD Thesis, Imperial College,
Univ. of London (1997).

E. Griffor, I. Lindström and V. Stoltenberg-Hansen Mathematical Theory of
Domains. Cambridge Univ. Press (1994).

J. M. E. Hyland First steps in synthetic domain theory. in Category Theory
(Como 1990) pp.131–156, Lecture Notes in Math. 1488 Springer, Berlin,
1991.

M. Hyland, L. Ong On Full Abstraction for PCF: I,II and III. Inform. and
Comput. 163, no. 2, pp.285–408 (2000).

A. Kanda, D. Park When are two effectively given domains identical? pp.
563–577, LNCS 67, Springer, Berlin-New York, 1979.

U. de’Liguoro PCF definability via Kripke logical relations (after O’Hearn and
Riecke) Lab. Inf. ENS, Report LIENS-96-7, Paris (1996).

R. Loader Finitary PCF is not decidable TCS 266, no. 1-2, pp. 341-364 (2001).
J. Longley Sequentially Realizable Functionals APAL 117, no. 1-3, pp. 1-93

(2002).
S. MacLane Categories for the Working Mathematician Second edition. Graduate

Texts in Mathematics 5, Springer (1998).
M. Marz A Fully Abstract Model for Sequential Computation PhD Thesis, TU

117



25th August 2006 16:58 WSPC/Book Trim Size for 9in x 6in MGFP

118 Domain-Theoretic Foundations of Functional Programming

Darmstadt (2000) electronically available from
www.mathematik.tu-darmstadt.de/~streicher/THESES/marz.ps.gz

G. McCusker Games and full abstraction for a functional metalanguage with
recursive types. CPHC/BCS Distinguished Dissertations, Springer Verlag
London (1998).

R. Milner Fully Abstract Models of Typed λ-Calculi TCS 4, pp. 1-22 (1977).
D. Normann On sequential functionals of type 3 to appear in Math. Struct. Com-

put. Sc. as part of a Festschrift for K. Keimel (2006).
G. Plotkin LCF considered as a programming language TCS 5, pp. 223-255

(1977).
G. Plotkin Tω as a universal domain J. Comput. System Sci. 17 (1978), no. 2,

209–236.
P. O’Hearn, J. Riecke Kripke logical relations and PCF Inf. and Comp. 120,

no. 1, pp. 107-116 (1995).
B. Reus, T. Streicher General synthetic domain theory—a logical approach.

Math. Structures Comput. Sci. 9, no. 2, pp. 177–223 (1999).
J. Riecke, A. Sandholm A relational account of call-by-value sequentiality Inf. and

Comp. 179, no. 2, pp. 296-331 (2002).
H. Rogers jr. Theory of recursive functions and effective computability. 2nd

edition, MIT Press, Cambridge, MA, 1987.
A. Rohr A Universal Realizability Model for Sequential Computation. PhD Thesis,

TU Darmstadt (2002) electronically available from
www.mathematik.tu-darmstadt.de/~streicher/THESES/rohr.ps.gz

Dana S. Scott A type-theoretical alternative to ISWIM, CUCH, OWHY unpub-
lished paper from 1969 reprinted in Böhm Festschrift TCS 121 No.1-2,
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