Distributors between Fibrations

Jean BÉNABOU, Thomas STREICHER

2002/03

Abstract

For a category **B** the fibration $\partial_1 : \widehat{\mathbf{B}} \downarrow \mathbf{Y}_{\mathbf{B}} \to \mathbf{B}$ is equivalent to the split fibration $\mathbf{Set}(\mathbf{B})$ over **B** where $\mathbf{Set}(\mathbf{B})(I) = \mathbf{Set}^{(\mathbf{B}/I)^{\mathsf{op}}}$. For split fibrations, *i.e.* categories C internal to $\widehat{\mathbf{B}}$, the split fibration $\mathbf{Sp}/\mathbf{B}(C, \mathbf{Set}(\mathbf{B}))$ amounts to the category of $\widehat{\mathbf{B}}$ -valued functors on C (internal to $\widehat{\mathbf{B}}$).

Thus, for $C, D \in \mathbf{cat}(\mathbf{B})$ the split fibration $\mathbf{Sp}/\mathbf{B}(D^{\mathsf{op}} \times C, \mathbf{Set}(\mathbf{B}))$ amounts to the category of distributors from C to D (internal to $\widehat{\mathbf{B}}$). By analogy for fibrations $P, Q \in \mathbf{Fib}/\mathbf{B}$ the internal category of distributors from P to Q may be defined as

 $\mathsf{Dist}_{\mathbf{B}}(P,Q) = \mathsf{Func}_{\mathbf{B}}(Q^{\mathsf{op}} \times P, \mathbf{Set}(\mathbf{B}))$

where Q^{op} is the fibration opposite to Q and $\mathsf{Func}_{\mathbf{B}}$ stands for the exponential in \mathbf{Fib}/\mathbf{B} .

1 Preliminaries

We first recall a result about fibrations generalising the well-known fact that presheaf toposes are closed under slicing.

Theorem 1.1 Let **B** be a category and $P : \mathbf{X} \to \mathbf{B}$ be a discrete fibration over **B**. Then $(\mathbf{Fib}/\mathbf{B})/P$ is 2-isomorphic to \mathbf{Fib}/\mathbf{X} . Moreover, this isomorphism preserves discreteness in the sense that it restricts to an isomorphism between $(\mathbf{Disc}/\mathbf{B})/P$ and \mathbf{Disc}/\mathbf{X} . *Proof:* First we show that a functor $F : \mathbf{Y} \to \mathbf{X}$ is a fibration iff $Q = P \circ F$ is a fibration and $F \in \mathsf{Cart}_{\mathbf{B}}(Q, P)$. The implication from left to right is easy.

For the reverse direction assume that $F \in \operatorname{Cart}_{\mathbf{B}}(Q, P)$. For showing that F is a fibration over \mathbf{X} suppose that $X \in \mathbf{Y}$ and $f : A \to F(X)$ in \mathbf{X} . Let $\varphi : Y \to X$ be a Q-cartesian arrow over P(f). We claim that φ is F-cartesian over f. As $F(\varphi)$ and f have the same codomain and are both above F(f) it follows from discreteness of the fibration Q that $F(\varphi) = f$. Thus, the arrow φ is over f. For F-cartesianness of φ suppose that $\psi : Z \to X$ and $g : B \to A$ with $F(\psi) = f \circ g$. As f is Q-cartesian there exists a $\theta : Z \to Y$ over P(g) with $\psi = \varphi \circ \theta$. As $P(g) = Q(\theta) = P(F(\theta))$ and both g and $F(\theta)$ have the same codomain A it follows by discreteness of φ as if $\theta' : Z \to Y$ with $\varphi \circ \theta'$ and $F(\theta') = g$ then $Q(\theta') = P(F(\theta')) = P(g)$ and thus $\theta = \theta'$.

Actually, we have shown that a morphism φ in **Y** is cartesian w.r.t. F iff it is cartesian w.r.t. $P \circ F$. Moreover, as P is a discrete fibration it reflects identities and, therefore, a morphism v in **Y** is vertical w.r.t. F iff it is vertical w.r.t. $P \circ F$.

Thus, if G is a fibration over **X** and $U : G \to F$ in **Cat**/**X** then U is a cartesian functor from G to F over **X** iff U is a cartesian functor from $P \circ G$ to $P \circ F$. If U and U' are morphisms from G to F in **Cat**/**X** and τ is a natural transformation from U to U' then τ is cartesian over **X** iff it is cartesian over **B**.

As P reflects identities it follows that a fibration $F : \mathbf{Y} \to \mathbf{X}$ is discrete iff $P \circ F$ is discrete. \Box

As for arbitrary **B** the presheaf category $\widehat{\mathbf{B}}$ is equivalent to \mathbf{Disc}/\mathbf{B} we get as an immediate consequence of Theorem 1.1 the following corollary.

Corollary 1.1 For every $X \in \widehat{\mathbf{B}}$ we have $\widehat{\mathbf{B}}/X \simeq \widehat{\mathbf{El}}(X)$ where $P_X = \partial_0 : \mathbf{El}(X) = \mathbf{Y}_{\mathbf{B}} \downarrow X \to \mathbf{B}$ is the discrete fibration obtained from X via the Grothendieck construction.

Proof: By Theorem 1.1 we have $(\mathbf{Disc/B})/P_X \cong \mathbf{Disc/El}(X)$. The claim follows as $\widehat{\mathbf{B}}/X \cong (\mathbf{Disc/B})/P_X$ and $\mathbf{Disc/El}(X) \simeq \widehat{\mathbf{El}(X)}$. \Box

In the following we will often tacitly use Corollary 1.1 for constructing maps to X by exhibiting the corresponding presheaf over El(X).

We have seen that X-indexed families of fibrations correspond to cartesian functors to X considered as a discrete fibration over **B**. The dual concept

of a cartesian functor from X to a fibration P over **B** can be understood as the notion of "X-indexed family of objects" of the category over **B** as given by P. Accordingly, we may associate with every $P \in \mathbf{Fib}/\mathbf{B}$ the functor $\widehat{Sp}(P): \widehat{\mathbf{B}}^{op} \to \mathbf{Cat}$ defined as

$$\widehat{Sp}(P)(X) = \mathbf{Fib}/\mathbf{B}(X, P)$$
 $\widehat{Sp}(P)(f) = \mathbf{Fib}/\mathbf{B}(f, P)$

where $X \in \widehat{\mathbf{B}}$ understood as a discrete fibration over \mathbf{B} and $f: Y \to X$ is a morphism in $\widehat{\mathbf{B}}$ understood as a cartesian functor between discrete fibrations over \mathbf{B} . Now restricting $\widehat{Sp}(P)$ along the Yoneda functor $\mathbf{Y}_{\mathbf{B}} : \mathbf{B} \hookrightarrow \widehat{\mathbf{B}}$ gives rise to $Sp(P) = \widehat{Sp}(P) \circ \mathbf{Y}_{\mathbf{B}} : \mathbf{B}^{\mathsf{op}} \to \mathbf{Cat}$ canonically equivalent to Paccording to the fibred Yoneda lemma (see [B80]).¹

Notice that \mathbf{Sp}/\mathbf{B} , the 2-category of split fibrations over \mathbf{B} , is isomorphic to $\mathbf{cat}(\widehat{\mathbf{B}})$, the 2-category of internal categories in $\widehat{\mathbf{B}}$. As for all $X \in \widehat{\mathbf{B}}$ there is a canonical isomorphism

$$\mathbf{Fib}/\mathbf{B}(X, P) \cong \mathbf{Sp}/\mathbf{B}(X, Sp(P))$$

natural in X we get that $\widehat{Sp}(P)$ is canonically isomorphic to the externalisation of Sp(P) considered as a category internal to $\widehat{\mathbf{B}}$.

Due to the above mentioned identification of \mathbf{Sp}/\mathbf{B} and $\mathbf{cat}(\mathbf{B})$ one may use the internal language of $\mathbf{\hat{B}}$ for speaking about \mathbf{Sp}/\mathbf{B} . However, its expressivity is limited for the following reason. For an internal functor F the logic of $\mathbf{\hat{B}}$ validates the proposition "F is an equivalence" if and only if U(F)is an equivalence in \mathbf{Fib}/\mathbf{B} (we call such F weak equivalences). Accordingly,

$$\mathbf{Fib}/\mathbf{B}(U(S), P) \simeq \mathbf{Sp}/\mathbf{B}(S, Sp(P))$$

naturally in $S \in \mathbf{Sp}/\mathbf{B}$ and $P \in \mathbf{Fib}/\mathbf{B}$. For this 2-adjunction the components of the counit $E : U \circ Sp \to Id_{\mathbf{Fib}/\mathbf{B}}$ are all equivalences whereas the components of the unit $H : Id_{\mathbf{Sp}/\mathbf{B}} \to Sp \circ U$ in general are *not* equivalences in \mathbf{Sp}/\mathbf{B} although all $U(H_S)$ are equivalences in \mathbf{Fib}/\mathbf{B} .

Thus, one may obtain **Fib**/**B** from **Sp**/**B** by freely quasi-inverting weak equivalences in **Sp**/**B**, *i.e.* those split cartesian functors in **Sp**/**B** whose image under U gets an equivalence in **Fib**/**B**, where "quasi-inverting" means "sending to an equivalence". This, however, does not mean that $Sp_{P,Q}$: **Fib**/**B**(P,Q) \rightarrow **Sp**/**B**(Sp(P), Sp(Q)) : $F \mapsto Sp(F)$ is an isomorphism of categories, it just is an equivalence of categories.

¹The full version of the fibred Yoneda lemma (see [Str] but due to J. Bénabou) says that the forgetful 2-functor $U: \mathbf{Sp/B} \to \mathbf{Fib/B}$ has a right 2-adjoint Sp, *i.e.*

in $\widehat{\mathbf{B}}$ one cannot express the notion of equivalence. Actually, this fails already for functors to discrete internal categories in $\widehat{\mathbf{B}}$ as in its internal logic one can express that a morphism is epic but not that it is split epic.²

i Does that mean that \mathbf{Sp}/\mathbf{B} looks like \mathbf{Fib}/\mathbf{B} from point of view of \mathbf{B} ?

In [B80] one finds the following characterisation of "fibred fibrations".

Theorem 1.2 Let $P : \mathbf{X} \to \mathbf{B}$ be a fibration. Then a $F : \mathbf{Y} \to \mathbf{X}$ is a fibration if and only if $Q = P \circ F$ is a fibration and F is a cartesian functor from Q to P such that

- (1) every $F_I : \mathbf{Y}_I \to \mathbf{X}_I$ is a fibration and
- (2) for every commuting square

with φ_1 and φ_2 Q-cartesian over $u: J \to I$ and f and g Q-vertical the arrow g is F_J -cartesian whenever f is F_I -cartesian.

Definition 1.1 Let **B** be a category. We write $\operatorname{Fib}//B$ for the 2-fibration obtained from the 2-fibration $\operatorname{Fib} \to \operatorname{Cat}$ by change of base along $\mathbf{B}/(-)$: $\mathbf{B} \to \operatorname{Cat}$. Similarly, we write $\operatorname{Disc}//B$ and $\operatorname{Sp}//B$ for the 2 fibrations we get by change of base along $\mathbf{B}/(-)$: $\mathbf{B} \to \operatorname{Cat}$ from the 2-fibrations $\operatorname{Disc} \to \operatorname{Cat}$ and $\operatorname{Sp} \to \operatorname{Cat}$, respectively.

2 B as a Universe of Small Objects in B

One wants to think of the representable objects in $\widehat{\mathbf{B}}$ as "small" objects in $\widehat{\mathbf{B}}$ whereas non-representable presheaves are thought of as "big" objects in $\widehat{\mathbf{B}}$. As usual for arbitrary $X \in \widehat{\mathbf{B}}$ a family of possibly big objects indexed by X is simply a morphism $f: Y \to X$ in $\widehat{\mathbf{B}}$. However, there arises the

²But if **B** has a terminal object then for a fixed morphism $f: X \to Y$ one can express in the internal language of $\widehat{\mathbf{B}}$ that it is a split epi by the formula $\exists s: X^Y. f \circ s = id$ since if it is forced at 1 then there does exist an element s of X^Y over 1 with $f \circ s = id$.

question of what is a family of "small" objects indexed by a possibly big object. An answer to this question is provided by A. Grothendieck's notion of *representable morphism*.

Definition 2.1 A morphism $f: Y \to X$ in $\widehat{\mathbf{B}}$ is called representable or a family of small objects *iff for all pullbacks*

 \Diamond

the object J is representable whenever I is representable.

Notice that $\mathbf{Y}_{\mathbf{B}}(\alpha)$ is representable iff all pullbacks of α exists in \mathbf{B} (as $\mathbf{Y}_{\mathbf{B}}$ preserves and reflects finite limits). Thus, under the (reasonable) assumption that \mathbf{B} has pullbacks families of small objects indexed by representable objects are precisely the maps in \mathbf{B} . A terminal projection $X \to 1$ is small iff $\mathbf{Y}_{\mathbf{B}}(I) \times X$ is representable for all $I \in \mathbf{B}$. Thus, even for representable presheaves X the terminal projection $X \to 1$ need not be a representable morphism unless \mathbf{B} has binary products. Moreover, the terminal object in $\widehat{\mathbf{B}}$ need not be representable unless \mathbf{B} has a terminal object.

We now investigate some closure properties of representable maps relevant when viewing them as families of small objects.

Lemma 2.1 Let **B** be a category. Then for the collection S of representable maps in $\widehat{\mathbf{B}}$ it holds that

- (1) S is stable under pullbacks along arbitrary morphisms in \mathbf{B} .
- (2) \mathcal{S} is a subcategory of \mathcal{S} containing all isomorphism of $\widehat{\mathbf{B}}$.
- (3) There exists a generic family for S, i.e. a map $el : E \to set(\mathbf{B})$ in S such that every map in S can be obtained as pullback of el.
- (4) If **B** is locally cartesian closed then S is closed under dependent products, i.e. whenever $f: Y \to X$ and $g: Z \to Y$ are in S then $\Pi_f(g) \in S$, too.

Proof: It is obvious from Definition 2.1 that $f: Y \to X$ is in S iff for every $s: I \to X$ with I representable it holds that s^*f is a map between representable objects. From this it is clear that S is stable under pullbacks along arbitrary morphisms in $\widehat{\mathbf{B}}$ and that S contains all isos. For closure under composition suppose $f: Y \to X$ and $g: Z \to Y$ are in S. Let $s: I \to X$ with I representable. Consider the pullback

As $f \in S$ it follows that J is representable and, therefore, as $g \in S$ it follows that K is representable, too. Thus S satisfies (1) and (2).

ad (3) : According to Corollary 1.1 morphisms in $\widehat{\mathbf{B}}$ to $I \in \mathbf{B}$ correspond to presheaves over \mathbf{B}/I , the category of elements of $\mathbf{Y}_{\mathbf{B}}(I)$. One easily sees that A is a representable presheaf over \mathbf{B}/I iff the source of the corresponding morphism to I in $\widehat{\mathbf{B}}$ is a representable presheaf over \mathbf{B} . Thus, a presheaf $A : (\mathbf{B}/I)^{\mathsf{op}} \to \mathbf{Set}$ corresponds to a small map to I iff for all $\alpha : J \to I$ in \mathbf{B} the presheaf $(\Sigma_{\alpha})^*A = A \circ (\Sigma_{\alpha})^{\mathsf{op}} : (\mathbf{B}/J)^{\mathsf{op}} \to \mathbf{Set}$ is representable. Such presheaves A we call "stably representable" and they organise into a presheaf $set(\mathbf{B}) : \mathbf{B}^{\mathsf{op}} \to \mathbf{Set}$ putting

 $set(\mathbf{B})(I) = \{A \in \mathbf{B}/I \mid A \text{ stably representable}\}$ and $set(\mathbf{B})(\alpha) = (\Sigma_{\alpha})^*$.

Now we describe the generic map $el : E \to set(\mathbf{B})$ in terms of its corresponding presheaf (also denoted as E) on $\mathbf{El}(set(\mathbf{B}))$: if $A \in set(\mathbf{B})(I)$ then $E(I, A) = A(id_I)$ and for $\alpha : \alpha^*A \to A$ in $\mathbf{El}(set(\mathbf{B}))$ we define $E(\alpha) = A(\alpha \stackrel{\alpha}{\to} id_I)$. One readily checks that for $a : I \to set(\mathbf{B})$ the map $el(a) = a^*el$ is isomorphic to $a(id_I)$ via Theorem 1.1. Thus, the map el is a family of small objects. It is generic for families of small objects as every $f : Y \to X$ in S is isomorphic to χ_f^*el where $\chi_f : X \to set(\mathbf{B})$ is defined as follows: for $x \in X(I)$ the presheaf $(\chi_f)_I(x) : (\mathbf{B}/I)^{\mathsf{op}} \to \mathbf{Set}$ is given by

$$(\chi_f)_I(x)(\alpha) = \{y \mid fy = x\alpha\}$$
 and $(\chi_f)_I(\beta : \alpha\beta \to \alpha)(y) = y\beta$

ad (4): Suppose $f : Y \to X$ and $g : Z \to Y$ are in \mathcal{S} . We have to show that for $s : I \to X$ with I representable the map $s^*\Pi_f(g) \cong \Pi_\alpha(\beta)$ is representable, too, where

Now α and β are in **B** as f and g are in S, respectively. The map $\Pi_{\alpha}(\beta)$ is in **B** as $Y_{\mathbf{B}}$ preserves locally cartesian closed structure.

As representable objects are never initial for every $X \in \mathbf{\hat{B}}$ the morphism $0 \to X$ is not small unless X is initial. Thus, if $f: Y \to X$ is in \mathcal{S} and $m: Z \to Y$ is monic the composite $f \circ m$ in general will not be in \mathcal{S} . However, if **B** has finite (nonempty) limits then for $h_1, h_2: g \to f$ with $f, g \in \mathcal{S}$ it holds that $g \circ e \in \mathcal{S}$ where e is the equalizer of h_1 and h_2 in $\mathbf{\hat{B}}$.

In general $\Omega_{\widehat{\mathbf{B}}} \to 1$ will not be in \mathcal{S} . For example if \mathbf{B} is a poset with a terminal object then $\Omega_{\widehat{\mathbf{B}}} \to 1$ is not in \mathcal{S} as $\Omega_{\widehat{\mathbf{B}}}$ is not representable (because $\Omega_{\widehat{\mathbf{B}}}$ is not subterminal).

By Lemma 2.1(1) the collection \mathcal{S} of representable morphisms in $\widehat{\mathbf{B}}$ determines a full subfibration \mathcal{S}/\mathbf{B} of the fundamental fibration $P_{\widehat{\mathbf{B}}} = \partial_1 : \widehat{\mathbf{B}}^2 \to \widehat{\mathbf{B}}$ for $\widehat{\mathbf{B}}$. That \mathcal{S}/\mathbf{B} is definable (in the sense of [B80]) as a full subfibration of $P_{\widehat{\mathbf{B}}}$ follows from the next lemma.

Lemma 2.2 For maps $f: Y \to X$ in $\widehat{\mathbf{B}}$ there exists a subobject $i: X_0 \hookrightarrow X$ such that for all $g: Z \to X$ it holds that $g^* f \in S$ iff g factors through i.

Proof: Define $X_0(I)$ as the set of all $s : I \to X$ such that s^*f is a representable morphism. Obviously, if $x \in X_0(I)$ and $\alpha : J \to I$ in **B** then $s\alpha \in X_0(J)$ as by Lemma 2.1 representable morphisms are stable under pullbacks in $\widehat{\mathbf{B}}$ and, therefore, X_0 is a subpresheaf of X. Let i be the corresponding inclusion. Suppose $g : Z \to X$ in $\widehat{\mathbf{B}}$. Then g^*f is a representable morphism iff for all generalised elements $s : I \to Z$ the map $s^*g^*f \cong (gs)^*f$

is a representable morphism, *i.e.* iff $gs \in X_0(I)$ for all generalised elements $s: I \to Z$, *i.e.* if g factors through i.

That representable morphisms capture the right notion of smallness is supported by the following Theorem we mention here just *pars pro toto*.

Theorem 2.1 A split fibration S is locally small iff for the corresponding internal category C the "hom-family" $C_1 \rightarrow C_0 \times C_0$ is a representable morphism. Moreover, the split fibration S is small iff S is locally small and C_0 is representable.

3 A Large Internal Category Set(B)

Inspecting the proof of Lemma 2.1(3) one easily sees that if **B** has pullbacks then the fundamental fibration $P_{\mathbf{B}} = \partial_1 : \mathbf{B}^2 \to \mathbf{B}$ is equivalent to the split fibration $\mathbf{set}(\mathbf{B})$ sending $I \in \mathbf{B}$ to the category $\mathbf{set}(\mathbf{B})(I)$ of *representable* presheaves over \mathbf{B}/I and $\alpha : J \to I$ to Σ^*_{α} , *i.e.* change of base along Σ_{α} .³

The same constructions as in the proof of Lemma 2.1(3) can be performed when dropping the restriction to stably representable presheaves.

Definition 3.1 For a category \mathbf{B} let $\mathbf{Set}(\mathbf{B})$ be the presheaf of large categories over \mathbf{B} with

$$\mathbf{Set}(\mathbf{B})(I) = \mathbf{Set}^{(\mathbf{B}/I)^{\mathsf{op}}} \qquad and \qquad \mathbf{Set}(\mathbf{B})(\alpha) = \mathbf{Set}^{(\Sigma_{\alpha})^{\mathsf{op}}}$$

for objects I and morphisms α in **B**.

We write $Set(\mathbf{B})$ for $|Set(\mathbf{B})|$, i.e. $Set(\mathbf{B})(I) = |Set(\mathbf{B})(I)|$, the class of objects of $Set(\mathbf{B})(I) = \widehat{\mathbf{B}/I}$.

Notice that the split fibration $\mathbf{Set}(\mathbf{B})$ is equivalent to $\mathsf{Y}^*_{\mathbf{B}}P_{\widehat{\mathbf{B}}}$ where $P_{\widehat{\mathbf{B}}} = \partial_1 : \widehat{\mathbf{B}}^2 \to \widehat{\mathbf{B}}$ is the fundamental fibration for $\widehat{\mathbf{B}}^{.4}$.

³If **B** has pullbacks then for all $\alpha : J \to I$ in **B** change of base along Σ_{α} preserves representability of presheaves as $(\Sigma_{\alpha})^* \mathbf{Y}_{\mathbf{B}/I}(\beta) = (\Sigma_{\alpha})^* \mathbf{B}/I(-,\beta) \cong \mathbf{B}/J(-,\alpha^*\beta) = \mathbf{Y}_{\mathbf{B}/J}(\alpha^*\beta).$

⁴Notice that $Y_{\mathbf{B}}^*P_{\widehat{\mathbf{B}}}$ is the fibration of discrete fibrations over **B** in analogy to the fibration $\mathbf{Fib}/\mathbf{B} \rightarrow \mathbf{B}$ of fibrations over **B** as discussed at the end of the first chapter of [B80] which is constructed from the fibration $\mathbf{Fib} \rightarrow \mathbf{Cat}$ by change of base along $Y_{\mathbf{B}}$. Obviously, the fibration $Y_{\mathbf{B}}^*P_{\widehat{\mathbf{B}}}$ is a full subfibration of $\mathbf{Fib}/\mathbf{B} \rightarrow \mathbf{B}$.

Again as in the proof of Lemma 2.1(3) we can construct a presheaf Eover $\mathbf{El}(Set(\mathbf{B}))$ sending $A \in Set(\mathbf{B})(I)$ to $E(A) = A(id_I)$ and $\alpha : \alpha^*A \to A$ to $E(\alpha) = A(\alpha \xrightarrow{\alpha} id_I)$. This presheaf E is generic in the sense that for every presheaf $A : \mathbf{El}(X)^{\mathsf{op}} \to \mathbf{Set}$ we have $A \cong E \circ \widehat{A}$ where $\widehat{A} : \mathbf{El}(X) \to$ $Set(\mathbf{B})$ is the functor sending $x \in X(I)$ to $A \circ \widehat{x}^{\mathsf{op}}$ where $\widehat{x} : \mathbf{B}/I \to \mathbf{El}(X)$ is the cartesian functor (over \mathbf{B}) with $\widehat{x}(id_I) = x$. The discrete fibration corresponding to E is denoted as $El : E \to Set(\mathbf{B})$.

Notice that $set(\mathbf{B})$ (as constructed in the proof of Lemma 2.1(3)) is the greatest subpresheaf of $Set(\mathbf{B})$ such that the restriction of El to it gives rise to a small map.

4 Split Distributors between Split Fibrations

The theory of internal distributors between internal categories has been investigated in chapter 2 of [Joh]. As \mathbf{Sp}/\mathbf{B} and $\mathbf{cat}(\widehat{\mathbf{B}})$ are strongly equivalent this gives rise to a notion of *split distributors between split fibrations*. From Section 3 it follows that for $A, B \in \mathbf{Sp}/\mathbf{B}$ an internal distributor from A to B is a split cartesian functor $\phi : B^{\mathsf{op}} \times A \to \mathbf{Set}(\mathbf{B})$.

In particular such a split distributor ϕ satisfies (1)

for $u: J \to I$. Due to the adjoint correspondences

$$\frac{B(I)^{\mathsf{op}} \times A(I) \to \mathbf{Set}^{(\mathbf{B}/I)^{\mathsf{op}}}}{(\mathbf{B}/I)^{\mathsf{op}} \times B(I)^{\mathsf{op}} \times A(I) \to \mathbf{Set}}}{(\mathbf{B}/I)^{\mathsf{op}} \to \mathbf{Set}^{B(I)^{\mathsf{op}} \times A(I)}}$$

condition (1) can be formulated equivalently as (2)

$$(\mathbf{B}/I)^{\mathsf{op}} \times B(I)^{\mathsf{op}} \times A(I) \xrightarrow{\phi_I} \mathbf{Set}$$

$$(\Sigma_u)^{\mathsf{op}} \times B(I)^{\mathsf{op}} \times A(I) \xrightarrow{f} \phi_J$$

$$(\mathbf{B}/J)^{\mathsf{op}} \times B(I)^{\mathsf{op}} \times A(I) \xrightarrow{(\mathbf{B}/J)^{\mathsf{op}} \times u^* \times u^*} (\mathbf{B}/J)^{\mathsf{op}} \times B(J)^{\mathsf{op}} \times A(J)$$

and as (3)

$$\begin{array}{c|c} (\mathbf{B}/J)^{\mathsf{op}} & \xrightarrow{(\Sigma_u)^{\mathsf{op}}} & (\mathbf{B}/I)^{\mathsf{op}} \\ & \phi_J \\ & & \downarrow \\ \mathsf{Dist}(A(J), B(J)) & \xrightarrow{(B(u)^{\mathsf{op}} \times A(u))^*} \mathsf{Dist}(A(I), B(I)) \end{array}$$

for $u: J \to I$. Notice that (3) says that

$$\phi_{uv} = (B(u)^{\mathsf{op}} \times A(u))^* \phi_v$$

where we write ϕ_u as an abbreviation for $\phi_I(u)$. Using ϕ_I also as a shorthand for $\phi_I(id_I)$ we get as an instance that

$$\phi_u = (B(u)^{\mathsf{op}} \times A(u))^* \phi_J$$

for $u: J \to I$.

Using this latter view as presheaves of distributors we can formulate composition of split distributors $\phi : A \longrightarrow B$ and $\psi : B \longrightarrow C$ as follows. For $I \in \mathbf{B}$ we put

$$(\psi\phi)_I = \psi_I\phi_I$$

and for $u: J \to I$ in **B** we put

$$(\psi\phi)_u = (C(u)^{\mathsf{op}} \times A(u))^* (\psi\phi)_J$$

as we are forced to do by condition (3). Notice, however, that in general it does *not* hold that reindexing of distributors preserves composition and,

accordingly, in general we do not have $(\psi\phi)_u \cong \psi_u \phi_u$ as one might expect. For $u: J \to I$ we define $(\psi\phi)_{u \xrightarrow{u} i d_I} : (\psi\phi)_I \to (\psi\phi)_u$ as

where u^* is a shorthand for $(B(u)^{\mathsf{op}} \times A(u))^*$ and μ is the obvious natural transformation. For $u: J \to I$ and $v: K \to J$ in **B** we define $(\psi\phi)_{uv \to u}$ as $u^*(\psi\phi)_{v \to id_J}$ in order to make condition (3) hold for $\psi\phi$. It is a tedious, but straightforward exercise to verify that $\psi\phi$ defined this way is actually a split distributor from A to C.

Next we discuss the relation between ordinary distributors between ordinary categories and split distributors between the associated split family fibrations. If $\phi : \mathbb{A} \longrightarrow \mathbb{B}$ then the associated split distributor $Fam(\phi) :$ $Fam(\mathbb{A}) \rightarrow Fam(\mathbb{B})$ is given by

$$Fam(\phi)_I(J \xrightarrow{u} I)(Y, X) = \prod_{j \in J} \phi(Y_{u(j)}, X_{u(j)})$$

in accordance with the usual⁵ definition of $Fam : \mathbf{Cat} \to \mathbf{Sp/Set}$. Whereas for functors $F : \mathbb{A} \to \mathbb{B}$, $G : \mathbb{B} \to \mathbb{C}$ it holds that Fam(G)Fam(F) = Fam(GF) this does not hold for $Fam : \mathbf{Dist} \to \mathbf{SpDist/Set}$. The reason is that for ordinary distributors $\phi : \mathbb{A} \longrightarrow \mathbb{B}$ and $\psi : \mathbb{B} \longrightarrow \mathbb{C}$ it will not hold in general that $Fam(\psi)Fam(\phi) \cong Fam(\psi\phi)$ because—as already remarked above—change of base for distributors does not commute with composition (see Appendix A for details).

Extending the observations of Section 3 we get a 1-1-correspondence between morphism $C^{op} \to \mathbf{Set}(\mathbf{B})$ in \mathbf{Sp}/\mathbf{B} and discrete fibrations over $\int C$,

⁵Notice that according to the usual definition of Fam we have $Fam(\phi) : Fam(\mathbb{B}^{op}) \times Fam(\mathbb{A}) \to Fam(\mathbf{Set})$ where $Fam(\phi)_I(Y, X) = (\phi(Y_i, X_i))_{i \in I}$. Moreover, we have $Fam(\mathbf{Set}) \simeq \mathbf{set}(\mathbf{Set})$ where $(S_i)_{i \in I}$ in $Fam(\mathbf{Set})(I)$ corresponds to the the presheaf $A : (\mathbf{Set}/I)^{op} \to \mathbf{Set}$ with $A(J \stackrel{u}{\to} I) = \prod_{j \in J} S_{u(j)}$ and $A(uv \stackrel{v}{\to} u)(s) = s \circ v$. This explains why we have defined $Fam(\phi)_I(J \stackrel{u}{\to} I)(Y, X)$ as $\prod_{j \in J} \phi(Y_{u(j)}, X_{u(j)})$.

the total category of the split fibration C. Thus, in particular, one may consider $\phi: B^{\mathsf{op}} \times A \to \mathbf{Set}(\mathbf{B})$ as a discrete fibration over $\int (B \times A^{\mathsf{op}})$, *i.e.* as a(n ordinary) presheaf $\Phi: (\int (B \times A^{\mathsf{op}}))^{\mathsf{op}} \to \mathbf{Set}$, which seems much easier to handle than the ϕ .

Such a Φ is given by a distributor $\Phi_I : B(I)^{op} \times A(I) \to \mathbf{Set}$ for all Iin \mathbf{B} (Φ_I corresponds to $\varphi_I(id_i)$ above) and for every $u : J \to I$, $X \in A(I)$ and $Y \in B(I)$ a map $\Phi_{u,Y,X} : \Phi_I(Y,X) \to \Phi(J)(u^*Y,u^*X)$ which data are related by the law

$$\Phi_J(u^*\beta, u^*\alpha) \circ \Phi_{u,Y,X} = \Phi_{u,Y'X'} \circ \Phi_I(\beta, \alpha)$$

for $\alpha : X \to X'$ in A(I) and $\beta : Y' \to Y$ in B(I). Diagramatically this amounts to the commutation of the square

i.e. that $\Phi_u : \Phi_I \Rightarrow \Phi_J \circ (B(u)^{\mathsf{op}} \times A(u))$. Moreover, these natural transformations satisfy the coherence conditions $\Phi_{id_I} = id_{\Phi_I}$ and $\Phi_{uv} = (\Phi_v)_{u^*} \circ \Phi_u$.

Next we will argue why also from this point of view composition of distributors between split fibrations is fibrewise. Let us recall this construction from Ch. 2 of [Joh] where he discusses distributors between internal categories and their composition.

Let A, B and C be split fibrations over **B** and $\Phi : A \longrightarrow B$ and $\Psi : B \longrightarrow C$. For defining the composite $\Psi \Phi$ first consider the presheaf D over **B** with

$$\mathbf{D}(I) = \prod_{Z \in C(I)} \prod_{X \in A(I)} \prod_{Y \in B(I)} \Psi_I(Z, Y) \times \Phi_I(Y, X)$$

the presheaf E over **B** with

$$E(I) = \prod_{Z \in C(I)} \prod_{X \in A(I)} \prod_{Y_1, Y_2 \in B(I)} \Psi_I(Z, Y_2) \times Y(I)(Y_2, Y_1) \times \Phi_I(Y_1, X)$$

and the natural transformations τ_1 and τ_2 from E to D defined as

$$\tau_1(g,\beta,f) = (\Psi_I(Z,\beta)(g),f)$$
 and $\tau_2(g,\beta,f) = (g,\Phi_I(\beta,X)(f))$

respectively. Let $\pi = \langle \pi_1, \pi_2 \rangle : D \to |C| \times |A|$ be the obvious projection and notice that π coequalizes τ_1 and τ_2 . We define $|\Psi\Phi|$ as the coequalizer of τ_1 and τ_2 giving rise to a unique morphism $|\Psi\Phi|$ making the diagram

commute. Since coequalizers are computed fibrewise in \mathbf{B} it follows that $(\Psi\Phi)_u([g, f]) = [\Psi_u(g), \Phi_u(f)]$. Moreover, for $f \in \Phi_I(Y, X), g \in \Psi_I(Y, X), \alpha : X \to X'$ and $\gamma : Z' \to Z$ defining $(\Psi\Phi)_I(\gamma, \alpha)([g, f]) = [g\gamma, \alpha f]$ makes $\Psi\Phi$ into a presheaf over $C \times A^{op}$ as desired.

5 Distributors between Fibrations

For a category C internal to \mathbf{B} the analogue of the category of set valued presheaves over C is given by the fibration $P_{\mathbf{B}}{}^{P_C} \simeq \operatorname{set}(\mathbf{B})^{P_C}$ over \mathbf{B} where P_C is the externalisation of C. Now as split fibrations P over \mathbf{B} appear as categories internal to $\widehat{\mathbf{B}}$ the fibrational version of category of presheaves over P is given by $P_{\widehat{\mathbf{B}}}{}^P \simeq \operatorname{Set}(\mathbf{B})^P$.

In [B73, Joh] it has been defined and investigated what are distributors between internal categories. For internal categories A, B a distributor from A to B is given by a family $\Phi_0: F \to B_0 \times A_0$ together with an action Φ_1 of the morphisms of A and B. As arbitrary fibrations over \mathbf{B} are equivalent to split fibrations and, therefore, to categories internal to $\hat{\mathbf{B}}$ it is clear what is a distributor between split fibrations A and B, namely a family $\Phi_0: F \to B_0 \times A_0$ together with an action Φ_1 . Such a distributor Φ will be called locally small iff the map Φ_0 is a family of small objects (in the sense of Def. 2.1).

From section 3 it is clear that distributors from split fibration A to split fibration B are just split cartesian functors from $B^{op} \times A$ to $\mathbf{Set}(\mathbf{B})$ which are locally small iff they factor through $\mathbf{set}(\mathbf{B})$. Moreover, distributors from Ato B themselves organise into the split fibration as given by the exponential $\mathbf{Set}(\mathbf{B})^{B^{op} \times A}$ in \mathbf{Sp}/\mathbf{B} .

For distributors between ordinary categories we know that $\mathsf{Dist}(\mathbf{C},\mathbf{D}) \simeq$

 $\text{Dist}(\mathbf{C}', \mathbf{D}')$ whenever $\mathbf{C} \simeq \mathbf{C}'$ and $\mathbf{D} \simeq \mathbf{D}'$.⁶ Analogously, as by the fibred Yoneda lemma every fibration P is equivalent to the split fibration Sp(P) any reasonable notion of distributors between fibrations should satisfy

$$\mathsf{Dist}_{\mathbf{B}}(P,Q) \simeq \mathsf{Dist}_{\mathbf{B}}(Sp(P), Sp(Q)) = \mathbf{Set}(\mathbf{B})^{Sp(Q)^{\mathsf{op}} \times Sp(P)}$$

for all $P, Q \in \mathbf{Fib}/\mathbf{B}$.

At first one might be inclined to define $\text{Dist}_{\mathbf{B}}(P,Q)$ as the exponential $\mathbf{Set}(\mathbf{B})^{Q^{op}\times P}$ which, however, has to be taken in \mathbf{Fib}/\mathbf{B} and, therefore, is given by $\text{Func}_{\mathbf{B}}(Q^{op}\times P, \mathbf{Set}(\mathbf{B}))$. Alas, this does not seem to work as for split fibrations P and Q it does *not* hold that

 $\mathbf{Fib}/\mathbf{B}(Q^{\mathsf{op}} \times P, \mathbf{Set}(\mathbf{B})) \simeq \mathbf{Sp}/\mathbf{B}(Q^{\mathsf{op}} \times P, \mathbf{Set}(\mathbf{B}))$

as $H_{\mathbf{Set}(\mathbf{B})}$: $\mathbf{Set}(\mathbf{B}) \to Sp(U(\mathbf{Set}(\mathbf{B})))$ is not an equivalence.

6 Coherence Conditions for Cartesian Functors from P to Set(B)

Usually for fibrations $P : \mathbf{X} \to \mathbf{B}$ the analogue of a (covariant) "set-valued" presheaf (over the category as given by P) is a cartesian functor from P to $P_{\mathbf{B}} = \partial_1 : \mathbf{B}^2 \to \mathbf{B}$. Accordingly, the analogue of a (covariant) "class-valued" presheaf (over the category as given by P) is a cartesian functor from P to $\mathbf{Y}_{\mathbf{B}}^* P_{\widehat{\mathbf{B}}}$. Of course, up to equivalence one may replace $P_{\mathbf{B}}$ and $\mathbf{Y}_{\mathbf{B}}^* P_{\widehat{\mathbf{B}}}$ by the equivalent split fibrations $\mathbf{set}(\mathbf{B})$ and $\mathbf{Set}(\mathbf{B})$, respectively.

For sake of concreteness we explicitly state the coherence conditions for the indexed functors corresponding to cartesian functors from a fibration P to a split fibration U(S). Let $F : P \to U(S)$ be cartesian. Then the corresponding indexed functor is given by the family of functors $F_I : \mathbf{X}_I \to$ \mathbf{Y}_I together with the family of natural isomorphisms $\theta_u : F_J \circ u^* \Rightarrow u^* \circ F_I$ for $u : J \to I$ in **B** where $\theta_{u,X}$, the component of θ_I at $X \in \mathbf{X}_I$, is given by

⁶If $e : \mathbf{C} \xrightarrow{\sim} \mathbf{C}'$ and $f : \mathbf{D} \xrightarrow{\sim} \mathbf{D}'$ are equivalences then $f^* \circ (-) \circ \phi_e : \text{Dist}(\mathbf{C}', \mathbf{D}') \xrightarrow{\sim} \text{Dist}(\mathbf{C}, \mathbf{D})$ where $\phi_f \dashv f^*$. Notice that $f^* \circ \phi' \circ \phi_e(C, D) = \phi'(fD, eC)$.

where $\theta_{u,X}$ is the unique vertical arrow making the diagram commute. Let $K \xrightarrow{v} J \xrightarrow{u} I$ and $X \in \mathbf{X}_I$. Then we have

and

where $c_{u,v,X}$ is the unique vertical arrow with $u_X \circ v_{u^*X} = (uv)_X \circ c_{u,v,X}$. As U(S) is split we have $u_{F(X)} \circ v_{u^*X} = (uv)_{F(X)}$ from which it follows that $v^*\theta_{u,X} \circ \theta_{v,u^*X} = \theta_{uv,X} \circ F(c_{u,v,X})$.

Thus, the coherence condition for θ is

$$v^*\theta_u \circ \theta_v u^* = \theta_{uv} \circ Fc_{u,v}$$

i.e.

for all $u: J \to I$ and $v: K \to I$.

Of course, for split cartesian functors the θ 's are identities and one simply has

for all $u: J \to I$.

7 Distributors between Fibrations as Fibred Discrete Fibrations

For fibrations $P : \mathbf{X} \to \mathbf{B}$ and $Q : \mathbf{Y} \to \mathbf{B}$ a distributor from P to Q is given by a discrete fibration $F : \mathbf{F} \to \mathbf{X}^{\mathsf{op}} \times_{\mathbf{B}} \mathbf{Y}$ as in

i.e. a fibred discrete fibration to $P^{\mathsf{op}} \times_{\mathbf{B}} Q$ (see Theorem 1.2). Every F_I : $\mathbf{F}_I \to \mathbf{X}_I^{\mathsf{op}} \times \mathbf{Y}_I$ is a discrete fibration over $\mathbf{X}_I^{\mathsf{op}} \times \mathbf{Y}_I$ corresponding to a functor from $\mathbf{Y}_I^{\mathsf{op}} \times \mathbf{X}_I$ to **Set**, *i.e.* a distributor from \mathbf{X}_I to \mathbf{Y}_I , and for every u: $J \to I$ the diagram

$$\begin{array}{c|c} \mathbf{F}_{J} & \stackrel{u^{*}}{\longleftarrow} \mathbf{F}_{I} \\ F_{J} & \stackrel{i}{\longleftarrow} & \stackrel{i}{\downarrow} F_{I} \\ \mathbf{X}_{J}^{\mathsf{op}} \times \mathbf{Y}_{J} & \stackrel{i}{\underbrace{u^{*}}} \mathbf{X}_{J}^{\mathsf{op}} \times \mathbf{Y}_{J} \end{array}$$

commutes up to isomorphism.

Choosing (normalized) cleavages for P and Q we can define a cartesian functor $\widetilde{F}: Q^{\mathsf{op}} \times_{\mathbf{B}} P \to \mathbf{Set}(\mathbf{B}) = \mathbf{Disc}//\mathbf{B}$. For $X \in \mathbf{X}_I$ and $Y \in \mathbf{Y}_I$ the presheaf $\widetilde{F}(Y, X): (\mathbf{B}/I)^{\mathsf{op}} \to \mathbf{Set}$ is defined as follows. For $u: J \to I$ we define $\widetilde{F}(Y, X)(u)$ as the (underlying) set (of the discrete category) $\mathbf{F}_{(u^*Y,u^*X)}$. For $v: K \to J$ we define $\widetilde{F}(Y, X)(uv \xrightarrow{v} u): \widetilde{F}(Y, X)(uv) \to \widetilde{F}(Y, X)(u)$ as the reindexing map $\varphi^*: \mathbf{F}_{(u^*Y,u^*X)} \to \mathbf{F}_{((uv)^*Y,(uv)^*X)}$ where $\varphi = (\varphi_2, \varphi_1)$ is the unique cartesian arrow over v such that the following diagrams commute

with φ_1 and φ_2 over v. For every $u: J \to I$ one can construct a canonical isomorphism between $\widetilde{F}(u^*Y, u^*X)$ and $(\Sigma_u)^*\widetilde{F}(Y, X) = \widetilde{F}(Y, X) \circ (\Sigma_u)^{\text{op}}$. Using this canonical isomorphism we can define the morphism part of the cartesian functor $\widetilde{F}: Q^{\text{op}} \times_{\mathbf{B}} P \to \mathbf{Set}(\mathbf{B})$.⁷

Whereas single distributors from P to Q correspond to discrete fibrations over $\mathbf{X}^{op} \times \mathbf{Y}$ the collection of all distributors from P to Q organises onto the fibration $\mathsf{Dist}_{\mathbf{B}}(P, Q)$ over \mathbf{B} whose fibre over I is given by

⁷This generalizes to fibrations $F : \mathbf{F} \to \mathbf{X}^{\mathsf{op}} \times \mathbf{Y}$ corresponding to fibrations over $P^{\mathsf{op}} \times_{\mathbf{B}} Q$ fibred over **B**. These correspond to *cartesian pseudo-functors* from $P \times_{\mathbf{B}} Q^{\mathsf{op}}$ to $\mathbf{Fib}//\mathbf{B}$ which is obtained from the 2-fibration $\mathbf{Fib} \to \mathbf{Cat}$ by change of base along $\mathbf{B}/(-): \mathbf{B}^{\mathsf{op}} \to \mathbf{Cat}$.

 $\mathbf{Disc}/(\mathbf{B}/I \times \mathbf{X}_I^{\mathsf{op}} \times \mathbf{Y}_I)$ and whose morphisms over $u: J \to I$ in \mathbf{B} are given by squares

with K cartesian over $\mathbf{B}/u \times_{\mathbf{B}} \mathbf{X}^{\mathsf{op}} \times_{\mathbf{B}} \mathbf{Y}$.

References

- [B71] J. Bénabou Problèmes dans les topos Lecture Notes by J.-R. Roisin of a Course from 1971, published as Tech. Rep. of Univ. Louvain-la-Neuve (1973).
- [B73] J. Bénabou Des Distributeurs Tech. Rep. no. 33 of Univ. Louvain-la-Neuve (1973).
- [B80] J. Bénabou *Des Catégories Fibrées* Lecture Notes by J.-R. Roisin of a Course at Univ. Louvain-la-Neuve (1980).
- [Joh] P. T. Johnstone Topos Theory Academic Press (1977).
- [Str] T. Streicher Fibred Categories à la Bénabou lecture notes based on a course given in Spring 1999 (latest update 2007) available at http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/FibLec.pdf.gz

A Counterexample for $Fam(\psi\phi) = Fam(\psi)Fam(\phi)$

The reason for this failure is that the operation er sending a relation $R \subseteq X \times X$ to the least equivalence relation $\operatorname{er}(R)$ on X containing R does not commute with infinite products. Let I be an infinite set and $R_i \subseteq X_i \times X_i$ be an *I*-indexed family of relations. Then in general the inclusion $\operatorname{er}(\prod_{i \in I} R_i) \subseteq \prod_{i \in I} \operatorname{er}(R_i)$ will be *proper*.

The following counterexample makes use of this observation. Let \mathbb{A} and \mathbb{C} be the terminal category **1** whose single object we denote by * and let \mathbb{B} be the category whose shape is a zig-zag, *i.e.* whose objects are $\{X_n \mid n \in \mathbb{N}\} \cup \{Y_n \mid n \in \mathbb{N}\}$ and whose nontrivial morphisms are $f_n : X_n \to Y_n$ and $g_n : X_{n+1} \to Y_n$. Obviously, in \mathbb{B} there are no nontrivial compositions. The distributors $\phi : \mathbb{A} \longrightarrow \mathbb{B}$ and $\psi : \mathbb{B} \longrightarrow \mathbb{C}$ are both given as constant functors to **Set** with value $1 = \{*\}$. Writing a_n and b_n for the unique elements of $\phi(*, X_n)$ and $\psi(Y_n, *)$, respectively, we have

where $\mathbf{D}(\phi)$ and $\mathbf{D}(\psi)$ are the display categories of ϕ and ψ , respectively. Obviously, the composition $\psi\phi$ is isomorphic to the **Set**-valued functor from $\mathbb{C}^{\mathsf{op}} \times \mathbb{A}$ with value 1. Notice, however, that for generating the equivalence relation \sim with

$$(\psi\phi)(*,*) = \left(\coprod_{Z} \psi(*,Z) \times \psi(Z,*)\right)_{/\sim}$$

from the relation $\sim_0 = \{ \langle (b_n, f_n a_n), (b_n f_n, a_n) \rangle \mid n \in \mathbb{N} \}$ requires ω steps. For this reason $(Fam(\psi)_{\mathbb{N}}Fam(\phi)_{\mathbb{N}})(*,*)$ will contain more than one element as the families $(b_0 f_0, a_0)_{n \in \mathbb{N}}$ and $(b_n f_n, a_n)_{n \in \mathbb{N}}$ are not related by a finite path w.r.t. the relation $\sim_0^{\mathbb{N}}$.