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Abstract

For a category B the fibration ∂1 : B̂↓YB → B is equivalent to
the split fibration Set(B) over B where Set(B)(I) = Set(B/I)op .

For split fibrations, i .e. categories C internal to B̂, the split fi-
bration Sp/B(C,Set(B)) amounts to the category of B̂–valued

functors on C (internal to B̂).

Thus, for C,D ∈ cat(B̂) the split fibration Sp/B(Dop×C,Set(B))
amounts to the category of distributors from C to D (internal to

B̂). By analogy for fibrations P,Q ∈ Fib/B the internal category
of distributors from P to Q may be defined as

DistB(P,Q) = FuncB(Qop×P,Set(B))

where Qop is the fibration opposite to Q and FuncB stands for the
exponential in Fib/B.

1 Preliminaries

We first recall a result about fibrations generalising the well-known fact that
presheaf toposes are closed under slicing.

Theorem 1.1 Let B be a category and P : X → B be a discrete fibration
over B. Then (Fib/B)/P is 2-isomorphic to Fib/X. Moreover, this isomor-
phism preserves discreteness in the sense that it restricts to an isomorphism
between (Disc/B)/P and Disc/X.



Proof: First we show that a functor F : Y → X is a fibration iff Q = P ◦F
is a fibration and F ∈ CartB(Q,P ). The implication from left to right is easy.

For the reverse direction assume that F ∈ CartB(Q,P ). For showing that
F is a fibration over X suppose that X ∈ Y and f : A → F (X) in X. Let
ϕ : Y → X be a Q-cartesian arrow over P (f). We claim that ϕ is F -cartesian
over f . As F (ϕ) and f have the same codomain and are both above F (f) it
follows from discreteness of the fibration Q that F (ϕ) = f . Thus, the arrow
ϕ is over f . For F -cartesianness of ϕ suppose that ψ : Z → X and g : B → A
with F (ψ) = f ◦ g. As f is Q-cartesian there exists a θ : Z → Y over P (g)
with ψ = ϕ ◦ θ. As P (g) = Q(θ) = P (F (θ)) and both g and F (θ) have the
same codomain A it follows by discreteness of P that g = F (θ). Uniqueness
of θ is immediate from Q-cartesianness of ϕ as if θ′ : Z → Y with ϕ ◦ θ′ and
F (θ′) = g then Q(θ′) = P (F (θ′)) = P (g) and thus θ = θ′.

Actually, we have shown that a morphism ϕ in Y is cartesian w.r.t. F iff
it is cartesian w.r.t. P ◦ F . Moreover, as P is a discrete fibration it reflects
identities and, therefore, a morphism v in Y is vertical w.r.t. F iff it is vertical
w.r.t. P ◦ F .

Thus, if G is a fibration over X and U : G → F in Cat/X then U is
a cartesian functor from G to F over X iff U is a cartesian functor from
P ◦ G to P ◦ F . If U and U ′ are morphisms from G to F in Cat/X and τ
is a natural transformation from U to U ′ then τ is cartesian over X iff it is
cartesian over B.

As P reflects identities it follows that a fibration F : Y → X is discrete
iff P ◦ F is discrete. �

As for arbitrary B the presheaf category B̂ is equivalent to Disc/B we
get as an immediate consequence of Theorem 1.1 the following corollary.

Corollary 1.1 For every X ∈ B̂ we have B̂/X ' Êl(X) where PX =
∂0 : El(X) = YB↓X → B is the discrete fibration obtained from X via
the Grothendieck construction.

Proof: By Theorem 1.1 we have (Disc/B)/PX ∼= Disc/El(X). The claim

follows as B̂/X ∼= (Disc/B)/PX and Disc/El(X) ' Êl(X). �

In the following we will often tacitly use Corollary 1.1 for constructing
maps to X by exhibiting the corresponding presheaf over El(X).

We have seen thatX-indexed families of fibrations correspond to cartesian
functors to X considered as a discrete fibration over B. The dual concept
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of a cartesian functor from X to a fibration P over B can be understood as
the notion of “X-indexed family of objects” of the category over B as given
by P . Accordingly, we may associate with every P ∈ Fib/B the functor

Ŝp(P ) : B̂op → Cat defined as

Ŝp(P )(X) = Fib/B(X,P ) Ŝp(P )(f) = Fib/B(f, P )

where X ∈ B̂ understood as a discrete fibration over B and f : Y → X is a
morphism in B̂ understood as a cartesian functor between discrete fibrations
over B. Now restricting Ŝp(P ) along the Yoneda functor YB : B ↪→ B̂

gives rise to Sp(P ) = Ŝp(P ) ◦ YB : Bop → Cat canonically equivalent to P
according to the fibred Yoneda lemma (see [B80]).1

Notice that Sp/B, the 2-category of split fibrations over B, is isomorphic

to cat(B̂), the 2-category of internal categories in B̂. As for all X ∈ B̂ there
is a canonical isomorphism

Fib/B(X,P ) ∼= Sp/B(X, Sp(P ))

natural in X we get that Ŝp(P ) is canonically isomorphic to the externalisa-

tion of Sp(P ) considered as a category internal to B̂.

Due to the above mentioned identification of Sp/B and cat(B̂) one may

use the internal language of B̂ for speaking about Sp/B. However, its ex-
pressivity is limited for the following reason. For an internal functor F the
logic of B̂ validates the proposition “F is an equivalence” if and only if U(F )
is an equivalence in Fib/B (we call such F weak equivalences). Accordingly,

1The full version of the fibred Yoneda lemma (see [Str] but due to J. Bénabou) says
that the forgetful 2-functor U : Sp/B→ Fib/B has a right 2-adjoint Sp, i .e.

Fib/B(U(S), P ) ' Sp/B(S,Sp(P ))

naturally in S ∈ Sp/B and P ∈ Fib/B. For this 2-adjunction the components of the
counit E : U◦Sp → IdFib/B are all equivalences whereas the components of the unit
H : IdSp/B → Sp◦U in general are not equivalences in Sp/B although all U(HS) are
equivalences in Fib/B.

Thus, one may obtain Fib/B from Sp/B by freely quasi-inverting weak equivalences in
Sp/B, i .e. those split cartesian functors in Sp/B whose image under U gets an equivalence
in Fib/B, where “quasi-inverting” means “sending to an equivalence”. This, however,
does not mean that SpP,Q : Fib/B(P,Q) → Sp/B(Sp(P ),Sp(Q)) : F 7→ Sp(F ) is an
isomorphism of categories, it just is an equivalence of categories.
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in B̂ one cannot express the notion of equivalence. Actually, this fails already
for functors to discrete internal categories in B̂ as in its internal logic one
can express that a morphism is epic but not that it is split epic.2

¿ Does that mean that Sp/B looks like Fib/B from point of view of B̂ ?

In [B80] one finds the following characterisation of “fibred fibrations”.

Theorem 1.2 Let P : X → B be a fibration. Then a F : Y → X is a
fibration if and only if Q = P◦F is a fibration and F is a cartesian functor
from Q to P such that

(1) every FI : YI → XI is a fibration and

(2) for every commuting square

Y1

ϕ1- X1

Y2

g
?

ϕ2

- X2

f
?

with ϕ1 and ϕ2 Q-cartesian over u : J → I and f and g Q-vertical the
arrow g is FJ-cartesian whenever f is FI-cartesian.

Definition 1.1 Let B be a category. We write Fib//B for the 2-fibration
obtained from the 2-fibration Fib → Cat by change of base along B/(−) :
B → Cat. Similarly, we write Disc//B and Sp//B for the 2 fibrations
we get by change of base along B/(−) : B → Cat from the 2-fibrations
Disc→ Cat and Sp→ Cat, respectively. ♦

2 B as a Universe of Small Objects in B̂

One wants to think of the representable objects in B̂ as “small” objects in
B̂ whereas non-representable presheaves are thought of as “big” objects in
B̂. As usual for arbitrary X ∈ B̂ a family of possibly big objects indexed
by X is simply a morphism f : Y → X in B̂. However, there arises the

2But if B has a terminal object then for a fixed morphism f : X → Y one can express
in the internal language of B̂ that it is a split epi by the formula ∃s:XY .f ◦ s = id since
if it is forced at 1 then there does exist an element s of XY over 1 with f ◦ s = id .
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question of what is a family of “small” objects indexed by a possibly big
object. An answer to this question is provided by A. Grothendieck’s notion
of representable morphism.

Definition 2.1 A morphism f : Y → X in B̂ is called representable or a
family of small objects iff for all pullbacks

J - Y

I
?

- X

f
?

the object J is representable whenever I is representable. ♦

Notice that YB(α) is representable iff all pullbacks of α exists in B (as YB

preserves and reflects finite limits). Thus, under the (reasonable) assump-
tion that B has pullbacks families of small objects indexed by representable
objects are precisely the maps in B. A terminal projection X → 1 is small
iff YB(I) × X is representable for all I ∈ B. Thus, even for representable
presheaves X the terminal projection X → 1 need not be a representable
morphism unless B has binary products. Moreover, the terminal object in
B̂ need not be representable unless B has a terminal object.

We now investigate some closure properties of representable maps relevant
when viewing them as families of small objects.

Lemma 2.1 Let B be a category. Then for the collection S of representable
maps in B̂ it holds that

(1) S is stable under pullbacks along arbitrary morphisms in B̂.

(2) S is a subcategory of S containing all isomorphism of B̂.

(3) There exists a generic family for S, i .e. a map el : E → set(B) in S
such that every map in S can be obtained as pullback of el .

(4) If B is locally cartesian closed then S is closed under dependent prod-
ucts, i .e. whenever f : Y → X and g : Z → Y are in S then Πf (g) ∈ S,
too.
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Proof: It is obvious from Definition 2.1 that f : Y → X is in S iff for
every s : I → X with I representable it holds that s∗f is a map between
representable objects. From this it is clear that S is stable under pullbacks
along arbitrary morphisms in B̂ and that S contains all isos. For closure
under composition suppose f : Y → X and g : Z → Y are in S. Let
s : I → X with I representable. Consider the pullback

K - Z

J
?

- Y

g
?

I
?

s
- X

f
?

As f ∈ S it follows that J is representable and, therefore, as g ∈ S it follows
that K is representable, too. Thus S satisfies (1) and (2).

ad (3) : According to Corollary 1.1 morphisms in B̂ to I ∈ B correspond to
presheaves over B/I, the category of elements of YB(I). One easily sees that
A is a representable presheaf over B/I iff the source of the corresponding

morphism to I in B̂ is a representable presheaf over B. Thus, a presheaf
A : (B/I)op → Set corresponds to a small map to I iff for all α : J → I
in B the presheaf (Σα)∗A = A ◦ (Σα)op : (B/J)op → Set is representable.
Such presheaves A we call “stably representable” and they organise into a
presheaf set(B) : Bop → Set putting

set(B)(I) = {A ∈ B̂/I | A stably representable} and set(B)(α) = (Σα)∗ .

Now we describe the generic map el : E → set(B) in terms of its corre-
sponding presheaf (also denoted as E) on El(set(B)) : if A ∈ set(B)(I)
then E(I, A) = A(id I) and for α : α∗A → A in El(set(B)) we define
E(α) = A(α

α→id I). One readily checks that for a : I → set(B) the map
el(a) = a∗el is isomorphic to a(id I) via Theorem 1.1. Thus, the map el is
a family of small objects. It is generic for families of small objects as every
f : Y → X in S is isomorphic to χ∗fel where χf : X → set(B) is defined as
follows: for x ∈ X(I) the presheaf (χf )I(x) : (B/I)op → Set is given by

(χf )I(x)(α) = {y | fy = xα} and (χf )I(β : αβ → α)(y) = yβ .
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ad (4) : Suppose f : Y → X and g : Z → Y are in S. We have to
show that for s : I → X with I representable the map s∗Πf (g) ∼= Πα(β) is
representable, too, where

K - Z

J

β
?

- Y

g
?

I

α
?

- Z

f
?

Now α and β are in B as f and g are in S, respectively. The map Πα(β) is
in B as YB preserves locally cartesian closed structure. �

As representable objects are never initial for every X ∈ B̂ the morphism
0 → X is not small unless X is initial. Thus, if f : Y → X is in S and
m : Z � Y is monic the composite f ◦ m in general will not be in S.
However, if B has finite (nonempty) limits then for h1, h2 : g → f with

f, g ∈ S it holds that g ◦ e ∈ S where e is the equalizer of h1 and h2 in B̂.
In general ΩB̂ → 1 will not be in S. For example if B is a poset with a

terminal object then ΩB̂ → 1 is not in S as ΩB̂ is not representable (because
ΩB̂ is not subterminal).

By Lemma 2.1(1) the collection S of representable morphisms in B̂ deter-

mines a full subfibration S/B of the fundamental fibration PB̂ = ∂1 : B̂2 → B̂

for B̂. That S/B is definable (in the sense of [B80]) as a full subfibration of
PB̂ follows from the next lemma.

Lemma 2.2 For maps f : Y → X in B̂ there exists a subobject i : X0 ↪→ X
such that for all g : Z → X it holds that g∗f ∈ S iff g factors through i.

Proof: Define X0(I) as the set of all s : I → X such that s∗f is a rep-
resentable morphism. Obviously, if x ∈ X0(I) and α : J → I in B then
sα ∈ X0(J) as by Lemma 2.1 representable morphisms are stable under

pullbacks in B̂ and, therefore, X0 is a subpresheaf of X. Let i be the corre-
sponding inclusion. Suppose g : Z → X in B̂. Then g∗f is a representable
morphism iff for all generalised elements s : I → Z the map s∗g∗f ∼= (gs)∗f
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is a representable morphism, i .e. iff gs ∈ X0(I) for all generalised elements
s : I → Z, i .e. if g factors through i. �

That representable morphisms capture the right notion of smallness is
supported by the following Theorem we mention here just pars pro toto.

Theorem 2.1 A split fibration S is locally small iff for the corresponding
internal category C the “hom-family” C1 → C0×C0 is a representable mor-
phism. Moreover, the split fibration S is small iff S is locally small and C0

is representable.

3 A Large Internal Category Set(B)

Inspecting the proof of Lemma 2.1(3) one easily sees that if B has pullbacks
then the fundamental fibration PB = ∂1 : B2 → B is equivalent to the split
fibration set(B) sending I ∈ B to the category set(B)(I) of representable
presheaves over B/I and α : J → I to Σ∗α, i .e. change of base along Σα.3

The same constructions as in the proof of Lemma 2.1(3) can be performed
when dropping the restriction to stably representable presheaves.

Definition 3.1 For a category B let Set(B) be the presheaf of large cate-
gories over B with

Set(B)(I) = Set(B/I)op and Set(B)(α) = Set(Σα)op

for objects I and morphisms α in B.
We write Set(B) for |Set(B)|, i .e. Set(B)(I) = |Set(B)(I)|, the class of

objects of Set(B)(I) = B̂/I. ♦

Notice that the split fibration Set(B) is equivalent to Y∗BPB̂ where PB̂ =

∂1 : B̂2 → B̂ is the fundamental fibration for B̂.4

3If B has pullbacks then for all α : J → I in B change of base along Σα preserves
representability of presheaves as (Σα)∗YB/I(β) = (Σα)∗B/I(−, β) ∼= B/J(−, α∗β) =
YB/J(α∗β).

4Notice that Y∗BPB̂ is the fibration of discrete fibrations over B in analogy to the
fibration Fib/B→B of fibrations over B as discussed at the end of the first chapter of
[B80] which is constructed from the fibration Fib→Cat by change of base along YB.
Obviously, the fibration Y∗BPB̂ is a full subfibration of Fib/B→B.
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Again as in the proof of Lemma 2.1(3) we can construct a presheaf E
over El(Set(B)) sending A ∈ Set(B)(I) to E(A) = A(id I) and α : α∗A→ A
to E(α) = A(α

α→id I). This presheaf E is generic in the sense that for every

presheaf A : El(X)op → Set we have A ∼= E ◦ Â where Â : El(X) →
Set(B) is the functor sending x ∈ X(I) to A ◦ x̂op where x̂ : B/I → El(X)
is the cartesian functor (over B) with x̂(id I) = x. The discrete fibration
corresponding to E is denoted as El : E → Set(B).

Notice that set(B) (as constructed in the proof of Lemma 2.1(3)) is the
greatest subpresheaf of Set(B) such that the restriction of El to it gives rise
to a small map.

4 Split Distributors between Split Fibrations

The theory of internal distributors between internal categories has been in-
vestigated in chapter 2 of [Joh]. As Sp/B and cat(B̂) are strongly equivalent
this gives rise to a notion of split distributors between split fibrations. From
Section 3 it follows that for A,B ∈ Sp/B an internal distributor from A to
B is a split cartesian functor φ : Bop×A→ Set(B).

In particular such a split distributor φ satisfies (1)

B(J)op×A(J) �
B(u)op×A(u)

B(I)op×A(I)

B̂/J

φJ

?

�
(Σu)

∗ B̂/I

φI

?

for u : J → I. Due to the adjoint correspondences

B(I)op×A(I)→ Set(B/I)op

(B/I)op×B(I)op×A(I)→ Set

(B/I)op → SetB(I)op×A(I)

9



condition (1) can be formulated equivalently as (2)

(B/I)op×B(I)op×A(I)
φI - Set

(B/J)op×B(I)op×A(I)

(Σu)
op×B(I)op×A(I)

6

(B/J)op×u∗×u∗
- (B/J)op×B(J)op×A(J)

φJ

6

and as (3)

(B/J)op
(Σu)

op
- (B/I)op

Dist(A(J), B(J))

φJ

?

(B(u)op×A(u))∗
- Dist(A(I), B(I))

φI

?

for u : J → I. Notice that (3) says that

φuv = (B(u)op×A(u))∗φv

where we write φu as an abbreviation for φI(u). Using φI also as a shorthand
for φI(id I) we get as an instance that

φu = (B(u)op×A(u))∗φJ

for u : J → I.
Using this latter view as presheaves of distributors we can formulate com-

position of split distributors φ : A +- B and ψ : B +- C as follows. For
I ∈ B we put

(ψφ)I = ψIφI

and for u : J → I in B we put

(ψφ)u = (C(u)op×A(u))∗(ψφ)J

as we are forced to do by condition (3). Notice, however, that in general
it does not hold that reindexing of distributors preserves composition and,
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accordingly, in general we do not have (ψφ)u ∼= ψuφu as one might expect.
For u : J → I we define (ψφ)

u
u→idI

: (ψφ)I → (ψφ)u as

ψIφI
(ψ

u
u→idI

)(φ
u
u→idI

)
- (u∗ψJ)(u∗ψJ)

u∗(ψφ)J

µ

?

(ψφ)
u u→id

I -

where u∗ is a shorthand for (B(u)op×A(u))∗ and µ is the obvious natural
transformation. For u : J → I and v : K → J in B we define (ψφ)

uv
v→u as

u∗(ψφ)
v
v→idJ

in order to make condition (3) hold for ψφ. It is a tedious, but
straightforward exercise to verify that ψφ defined this way is actually a split
distributor from A to C.

Next we discuss the relation between ordinary distributors between or-
dinary categories and split distributors between the associated split family
fibrations. If φ : A +- B then the associated split distributor Fam(φ) :
Fam(A)→ Fam(B) is given by

Fam(φ)I(J
u→I)(Y,X) =

∏
j∈J

φ(Yu(j), Xu(j))

in accordance with the usual5 definition of Fam : Cat→ Sp/Set. Whereas
for functors F : A → B, G : B → C it holds that Fam(G)Fam(F ) =
Fam(GF ) this does not hold for Fam : Dist → SpDist/Set. The reason is
that for ordinary distributors φ : A +- B and ψ : B +- C it will not hold
in general that Fam(ψ)Fam(φ) ∼= Fam(ψφ) because—as already remarked
above—change of base for distributors does not commute with composition
(see Appendix A for details).

Extending the observations of Section 3 we get a 1-1-correspondence be-
tween morphism Cop → Set(B) in Sp/B and discrete fibrations over

∫
C,

5Notice that according to the usual definition of Fam we have Fam(φ) : Fam(Bop) ×
Fam(A) → Fam(Set) where Fam(φ)I(Y,X) = (φ(Yi, Xi))i∈I . Moreover, we have
Fam(Set) ' set(Set) where (Si)i∈I in Fam(Set)(I) corresponds to the the presheaf

A : (Set/I)op → Set with A(J
u→I) =

∏
j∈J Su(j) and A(uv

v→u)(s) = s ◦ v. This explains

why we have defined Fam(φ)I(J
u→ I)(Y,X) as

∏
j∈J φ(Yu(j), Xu(j)).

11



the total category of the split fibration C. Thus, in particular, one may con-
sider φ : Bop × A→ Set(B) as a discrete fibration over

∫ (
B × Aop

)
, i .e. as

a(n ordinary) presheaf Φ :
(∫ (

B×Aop
))op

→ Set, which seems much easier

to handle than the φ.
Such a Φ is given by a distributor ΦI : B(I)op × A(I) → Set for all I

in B (ΦI corresponds to ϕI(id i) above) and for every u : J → I, X ∈ A(I)
and Y ∈ B(I) a map Φu,Y,X : ΦI(Y,X) → Φ(J)(u∗Y, u∗X) which data are
related by the law

ΦJ(u∗β, u∗α) ◦ Φu,Y,X = Φu,Y ′X′ ◦ ΦI(β, α)

for α : X → X ′ in A(I) and β : Y ′ → Y in B(I). Diagramatically this
amounts to the commutation of the square

ΦJ(u∗Y, u∗X) �
Φu,Y,X

ΦI(Y,X)

ΦJ(u∗Y ′, u∗X ′)

ΦJ(u∗β, u∗α)
?

�
Φu,Y ′,X′

ΦI(Y
′, X ′)

ΦI(β, α)
?

i .e. that Φu : ΦI ⇒ ΦJ ◦ (B(u)op × A(u)). Moreover, these natural transfor-
mations satisfy the coherence conditions ΦidI = idΦI and Φuv = (Φv)u∗ ◦Φu.

Next we will argue why also from this point of view composition of dis-
tributors between split fibrations is fibrewise. Let us recall this construction
from Ch. 2 of [Joh] where he discusses distributors between internal categories
and their composition.

Let A, B and C be split fibrations over B and Φ : A +- B and Ψ :
B +- C. For defining the composite ΨΦ first consider the presheaf D over
B with

D(I) =
∐

Z∈C(I)

∐
X∈A(I)

∐
Y ∈B(I)

ΨI(Z, Y )× ΦI(Y,X)

the presheaf E over B with

E(I) =
∐

Z∈C(I)

∐
X∈A(I)

∐
Y1,Y2∈B(I)

ΨI(Z, Y2)× Y (I)(Y2, Y1)× ΦI(Y1, X)

and the natural transformations τ1 and τ2 from E to D defined as

τ1(g, β, f) = (ΨI(Z, β)(g), f) and τ2(g, β, f) = (g,ΦI(β,X)(f)
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respectively. Let π = 〈π1, π2〉 : D → |C| × |A| be the obvious projection and
notice that π coequalizes τ1 and τ2. We define |ΨΦ| as the coequalizer of τ1

and τ2 giving rise to a unique morphism |ΨΦ| making the diagram

E
τ1-

τ2

- D
coeq.

-- •

|C| × |A|

|ΨΦ|
?

π -

commute. Since coequalizers are computed fibrewise in B̂ it follows that
(ΨΦ)u([g, f ]) = [Ψu(g),Φu(f)]. Moreover, for f ∈ ΦI(Y,X), g ∈ ΨI(Y,X),
α : X → X ′ and γ : Z ′ → Z defining (ΨΦ)I(γ, α)([g, f ]) = [gγ, αf ] makes
ΨΦ into a presheaf over C × Aop as desired.

5 Distributors between Fibrations

For a category C internal to B the analogue of the category of set valued
presheaves over C is given by the fibration PB

PC ' set(B)PC over B where
PC is the externalisation of C. Now as split fibrations P over B appear as
categories internal to B̂ the fibrational version of category of presheaves over
P is given by PB̂

P ' Set(B)P .
In [B73, Joh] it has been defined and investigated what are distributors

between internal categories. For internal categories A,B a distributor from
A to B is given by a family Φ0 : F → B0×A0 together with an action Φ1 of
the morphisms of A and B. As arbitrary fibrations over B are equivalent to
split fibrations and, therefore, to categories internal to B̂ it is clear what is
a distributor between split fibrations A and B, namely a family Φ0 : F →
B0×A0 together with an action Φ1. Such a distributor Φ will be called locally
small iff the map Φ0 is a family of small objects (in the sense of Def. 2.1).

From section 3 it is clear that distributors from split fibration A to split
fibration B are just split cartesian functors from Bop×A to Set(B) which are
locally small iff they factor through set(B). Moreover, distributors from A
to B themselves organise into the split fibration as given by the exponential
Set(B)B

op×A in Sp/B.
For distributors between ordinary categories we know that Dist(C,D) '
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Dist(C′,D′) whenever C ' C′ and D ' D′.6 Analogously, as by the fibred
Yoneda lemma every fibration P is equivalent to the split fibration Sp(P )
any reasonable notion of distributors between fibrations should satisfy

DistB(P,Q) ' DistB(Sp(P ), Sp(Q)) = Set(B)Sp(Q)op×Sp(P )

for all P,Q ∈ Fib/B.
At first one might be inclined to define DistB(P,Q) as the exponential

Set(B)Q
op×P which, however, has to be taken in Fib/B and, therefore, is

given by FuncB(Qop×P,Set(B)). Alas, this does not seem to work as for
split fibrations P and Q it does not hold that

Fib/B(Qop×P,Set(B)) ' Sp/B(Qop×P,Set(B))

as HSet(B) : Set(B)→ Sp(U(Set(B))) is not an equivalence.

6 Coherence Conditions for

Cartesian Functors from P to Set(B)

Usually for fibrations P : X→ B the analogue of a (covariant) “set-valued”
presheaf (over the category as given by P ) is a cartesian functor from P to
PB = ∂1 : B2 → B. Accordingly, the analogue of a (covariant) “class-valued”
presheaf (over the category as given by P ) is a cartesian functor from P to
YB
∗PB̂. Of course, up to equivalence one may replace PB and YB

∗PB̂ by the
equivalent split fibrations set(B) and Set(B), respectively.

For sake of concreteness we explicitly state the coherence conditions for
the indexed functors corresponding to cartesian functors from a fibration
P to a split fibration U(S). Let F : P → U(S) be cartesian. Then the
corresponding indexed functor is given by the family of functors FI : XI →
YI together with the family of natural isomorphisms θu : FJ ◦ u∗ ⇒ u∗ ◦ FI
for u : J → I in B where θu,X , the component of θI at X ∈ XI , is given by

6If e : C
∼→ C′ and f : D

∼→ D′ are equivalences then f∗ ◦ (−) ◦ φe : Dist(C′,D′)
∼→

Dist(C,D) where φf a f∗. Notice that f∗ ◦ φ′ ◦ φe(C,D) = φ′(fD, eC).
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F (u∗X)

u∗F (X)

θu,X

?

uF (X)

- F (X)

F
(u
X )

-

where θu,X is the unique vertical arrow making the diagram commute.

Let K
v→ J

u→ I and X ∈ XI . Then we have

F (v∗u∗X)

v∗F (u∗X)

θv,u∗X

?

vF (u∗X)

- F (u∗X)

F (v
u ∗
X )

-

v∗u∗F (X)

v∗θu,X

?

vu∗F (X)

- u∗F (X)

θu,X

?

uF (X)

- F (X)

F
(u
X )

-

and

F (v∗u∗X)

F ((uv)∗X)

F (cu,v,X)

?

(uv)∗F (X)

θuv,X

?

(uv)F (X)

- F (X)

F
(u
X v
u ∗
X )

-

F ((uv)X ) -
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where cu,v,X is the unique vertical arrow with uX ◦ vu∗X = (uv)X ◦ cu,v,X .
As U(S) is split we have uF (X) ◦ vu∗X = (uv)F (X) from which it follows that
v∗θu,X ◦ θv,u∗X = θuv,X ◦ F (cu,v,X).

Thus, the coherence condition for θ is

v∗θu ◦ θvu∗ = θuv ◦ Fcu,v

i.e.

FKv
∗u∗

θvu
∗
- v∗FJu

∗

FK(uv)∗

Fcu,v

?

θuv
- (uv)∗FI

v∗θu

?

= v∗u∗FI

for all u : J → I and v : K → I.
Of course, for split cartesian functors the θ’s are identities and one simply

has

XJ
�
u∗

XI

YJ

FJ
?
�
u∗

YI

FI
?

for all u : J → I.

7 Distributors between Fibrations

as Fibred Discrete Fibrations

For fibrations P : X→ B and Q : Y → B a distributor from P to Q is given
by a discrete fibration F : F→ Xop×BY as in

F
F
- Xop×BY

B

P op×BQ
?-
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i .e. a fibred discrete fibration to P op×BQ (see Theorem 1.2). Every FI :
FI → Xop

I ×YI is a discrete fibration over Xop
I ×YI corresponding to a functor

from Yop
I ×XI to Set, i .e. a distributor from XI to YI , and for every u :

J → I the diagram

FJ
�

u∗
FI

∼=

Xop
J ×YJ

FJ
?

�
u∗

Xop
J ×YJ

FI
?

commutes up to isomorphism.
Choosing (normalized) cleavages for P and Q we can define a cartesian

functor F̃ : Qop×BP → Set(B) = Disc//B. For X ∈ XI and Y ∈ YI the

presheaf F̃ (Y,X) : (B/I)op → Set is defined as follows. For u : J → I we

define F̃ (Y,X)(u) as the (underlying) set (of the discrete category) F(u∗Y,u∗X).

For v : K → J we define F̃ (Y,X)(uv
v→u) : F̃ (Y,X)(uv) → F̃ (Y,X)(u) as

the reindexing map ϕ∗ : F(u∗Y,u∗X) → F((uv)∗Y,(uv)∗X) where ϕ = (ϕ2, ϕ1) is
the unique cartesian arrow over v such that the following diagrams commute

(uv)∗X (uv)∗Y

u∗X

ϕ1

?

Cart(u,X)
- X

Cart(uv,X
)
-

u∗Y

ϕ2

?

Cart(u, Y )
- Y

Cart(uv, Y
)
-

with ϕ1 and ϕ2 over v. For every u : J → I one can construct a canonical
isomorphism between F̃ (u∗Y, u∗X) and (Σu)

∗F̃ (Y,X) = F̃ (Y,X) ◦ (Σu)
op.

Using this canonical isomorphism we can define the morphism part of the
cartesian functor F̃ : Qop×BP → Set(B). 7

Whereas single distributors from P to Q correspond to discrete fibra-
tions over Xop×Y the collection of all distributors from P to Q organ-
ises onto the fibration DistB(P,Q) over B whose fibre over I is given by

7This generalizes to fibrations F : F → Xop×Y corresponding to fibrations over
P op×BQ fibred over B. These correspond to cartesian pseudo-functors from P×BQ

op

to Fib//B which is obtained from the 2-fibration Fib → Cat by change of base along
B/(−) : Bop → Cat.
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Disc/
(
B/I×Xop

I ×YI

)
and whose morphisms over u : J → I in B are given

by squares

F
K

- E

B/J×BXop×BY

F

? B/u×BXop×BY
- B/I×BXop×BY

E

?

B
� P I

×B
P
op ×B

Q
P
J×

BP op×
BQ -

with K cartesian over B/u×BXop×BY.
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A Counterexample for Fam(ψφ) = Fam(ψ)Fam(φ)

The reason for this failure is that the operation er sending a relation R ⊆
X × X to the least equivalence relation er(R) on X containing R does not
commute with infinite products. Let I be an infinite set and Ri ⊆ Xi×Xi be
an I-indexed family of relations. Then in general the inclusion er(

∏
i∈I Ri) ⊆∏

i∈I er(Ri) will be proper.
The following counterexample makes use of this observation. Let A and

C be the terminal category 1 whose single object we denote by ∗ and let
B be the category whose shape is a zig-zag, i .e. whose objects are {Xn |
n ∈ N} ∪ {Yn | n ∈ N} and whose nontrivial morphisms are fn : Xn → Yn
and gn : Xn+1 → Yn. Obviously, in B there are no nontrivial compositions.
The distributors φ : A +- B and ψ : B +- C are both given as constant
functors to Set with value 1 = {∗}. Writing an and bn for the unique elements
of φ(∗, Xn) and ψ(Yn, ∗), respectively, we have

D(φ) D(ψ)

Xn

∗

a n
-

Yn

f
n

-

Xn+1

g n
-

a
n+

1
-

∗

b
n

-

Yn+1

b n+
1

-
f
n+

1
-

where D(φ) and D(ψ) are the display categories of φ and ψ, respectively.
Obviously, the composition ψφ is isomorphic to the Set-valued functor from
Cop×A with value 1. Notice, however, that for generating the equivalence
relation ∼ with

(ψφ)(∗, ∗) =
(∐
Z

ψ(∗, Z)×ψ(Z, ∗)
)
/∼

from the relation ∼0 = {〈(bn, fnan), (bnfn, an)〉 | n ∈ N} requires ω steps. For
this reason (Fam(ψ)NFam(φ)N)(∗, ∗) will contain more than one element as
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the families (b0f0, a0)n∈N and (bnfn, an)n∈N are not related by a finite path
w.r.t. the relation ∼N

0 .
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