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Abstract
We show how the internal language of B̂ = SetB

op

can be used
for speaking about fibrations over B. The key point is that every
(split) fibration over B appears as internal category in B̂ where,
of course, the category Set has to be chosen as large enough.
The objects of B̂ have to be thought of as “big” sets, i .e. “classes”,
and representable presheaves play the role of “small” classes, i .e.
“sets”. Grothendieck’s notion of representable morphism between
presheaves provides the appropriate notion of family of small ob-
jects indexed by a possibly big object. It turns out that a fibration
is locally small iff for the corresponding category internal to B̂
its family of morphisms is representable.
Viewing fibrations over B as categories internal to B̂ allows us
to define an appropriate notion of distributor between fibrations.
We show that distributors between categories X and Y internal
to B̂ correspond to cartesian functors from Yop×X to Set(B),

i .e. B̂ fibred over B.

1 Introduction

The theory of fibred categories has been developed by the first named author
since about thirty years to an extent that category theory can be developed
over fairly general base categories B instead of only Set. For a large part of
elementary category theory it suffices that B has finite limits though some-
times it turns out as necessary to assume that B is for example regular or
even an elementary topos.



In this fibrational approach to category theory over base categories B
the rôle of categories is played by fibrations over B, the role of functors is
played by cartesian functors between fibrations over B and the role of nat-
ural transformations is played by cartesian natural transformations between
cartesian functors over B (i .e. natural transformations all whose components
are vertical arrows). This way fibrations over B organise into a 2-category
denoted as Fib/B. According to this view properties of categories in elemen-
tary category theory like (local) smallness, completeness, well-poweredness
etc. have to be reformulated as corresponding properties of fibrations over
B (coinciding, of course, with the original ones if B equals 1, the terminal
category with one object and one morphism).

Although this programme has turned out as working quite smoothly it
still suffers from the drawback that such properties of fibrations (and carte-
sian functors and natural transformations) have to be formulated externally.
Following the practice of elementary category theory (over Set) one would
rather like to formulate these properties within the internal language of the
base category B. Actually, already for B = Set this is not literally possi-
ble when the category C under consideration is not small. The commonly
accepted way out of this dilemma is to employ Grothendieck universes, i .e.
to assume that C is a category internal to some Grothendieck universe U
inside Set. It is not clear at first sight how to do something similar for base
categories B different from Set.

However, as happens very often, the Yoneda lemma tells us how to over-
come this problem: we simply replace base B by B̂ = SetB

op

, the category of
presheaves over B, where, of course, the category Set has to be chosen large
enough. An obvious advantage of such a procedure is that even if base B
has moderately good properties the extended base B̂ is a very simple topos
and, therefore, has excellent logical properties.

Of course, some problems have to be solved for putting this idea to work.
Firstly, in Section 2 we show via the fibred Yoneda lemma how up to

equivalence fibrations over B can be considered as internal categories in B̂
and this way extend to split fibrations over B̂.

Secondly, in Section 3 we show how the Yoneda embedding of B into
B̂ can be lifted to the fibrational level by identifying a full subfibration of
PB̂ = ∂1 : B̂2 → B̂ as given by the representable morphisms in B̂ in the

sense of Grothendieck. Representable morphisms in B̂ may be thought of
families of small, i .e. representable, objects indexed by a big object, i .e. an
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arbitrary presheaf over B. It turns out that this subfibration is equivalent to
the one obtained by externalising the internal category in B̂ obtained from
the fundamental fibration PB = ∂1 : B2 → B for B in the way as described
in Section 2.

In Section 5 we define a notion of distributor between fibrations over
B. As from Section 2 we know that fibrations over B can be considered as
internal categories in B̂ in a canonical way this just amounts to explicitating
the well-established notion of distributor between internal categories (see e.g .
Chapter 3 of [Joh]) in some category C with finite limits for the particularly

simple case where C = B̂.
In Section 4 we identify a split fibration Set(B) equivalent over B to

YB
∗PB̂, the restriction of the fundamental fibration PB̂ : B̂2 → B̂ for B̂

along the Yoneda embedding YB. The split fibration Set(B) is motivated by
the desire that the equivalence

DistB(X,Y) ∼= FuncB(Yop×X,Set(B)) ∼= FuncB(X,Set(B)Y
op

)

holds for all categories X and Y internal to B̂ in analogy to the theory of
distributors over Set. As in the latter we have Dist(1,1) ∼= Set the analogy
forces us to define Set(B) as a split fibration isomorphic to DistB(1,1).
Explicitating the construction of DistB(1,1) from Section 5 suggests to define
Set(B) as

Set(B)(−) = Set(B/−)op

i .e. Set(B)(I) = B̂/I for I ∈ B and Set(B)(α) is change of base along
B/α = Σα : B/I → B/J for morphisms α : J → I in B. Evidently Set(B)
is a split fibration over B which is too big to be considered as a category
internal to B̂. However, there is a canonical equivalence between B̂/X and

CartB(X,Set(B)) natural inX ∈ B̂ in which sense Set(B) may be considered

as an internalisation of B̂ fibred over itself.

2 Fib/B within B̂

The aim of this section is to show that B̂ = SetB
op

provides a suitable
internal language for speaking about B and fibrations over B when choosing
Set large enough.

For this purpose we first recall a useful fact entailing that presheaf toposes
are closed under slicing.
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Theorem 2.1 Let B be a category and P : X → B be a discrete fibra-
tion over B. Then (Fib/B)/P is 2-isomorphic to Fib/X. Moreover, this
isomorphism preserves discreteness of fibrations.

Proof: First we show that a functor F : Y → X is a fibration iff Q = P ◦F
is a fibration and F ∈ CartB(Q,P ). The implication from left to right is easy.
For the reverse direction assume that F ∈ CartB(Q,P ). For showing that F
is a fibration over X suppose that X ∈ Y and f : A → F (X) in X. Let
ϕ : Y → X be a Q-cartesian arrow over P (f). We claim that ϕ is F -cartesian
arrow over f . As F (ϕ) and f have the same codomain and are both above
F (f) it follows from discreteness of the fibration Q that F (ϕ) = f . Thus,
the arrow ϕ is over f . For F -cartesianness of ϕ suppose that ψ : Z → X and
g : B → A with F (ψ) = f ◦ g. As f is Q-cartesian there exists a θ : Z → Y
over P (g) with ψ = ϕ ◦ θ. As P (g) = Q(θ) = P (F (θ)) and both g and F (θ)
have the same codomain A it follows by discreteness of P that g = F (θ).
Uniqueness of θ is immediate from Q-cartesianness of ϕ as if θ′ : Z → Y
with ϕ ◦ θ′ and F (θ′) = g then Q(θ′) = P (F (θ′)) = P (g) and thus θ = θ′.

Actually, we have shown that a morphism ϕ in Y is cartesian w.r.t. F iff
it is cartesian w.r.t. P ◦ F . Moreover, as P is a discrete fibration it reflects
identities and, therefore, a morphism v in Y is vertical w.r.t. F iff it is vertical
w.r.t. P ◦ F .

Thus, if G is a fibration over X and U : G → F in Cat/X then U is
a cartesian functor from G to F over X iff U is a cartesian functor from
P ◦ G to P ◦ F . If U and U ′ are morphisms from G to F in Cat/X and τ
is a natural transformation from U to U ′ then τ is cartesian over X iff it is
cartesian over B.

As P reflects identities it follows that a fibration F : Y → X is discrete
iff P ◦ F is discrete. �

Using that for arbitrary B the presheaf category B̂ is equivalent to Fibd/B,
the category of discrete fibrations over B, we get as an immediate conse-
quence of Theorem 2.1 the following corollary.

Corollary 2.1 For every X ∈ B̂ we have B̂/X ' Êl(X) where PX =
∂0 : El(X) = YB↓X → B is the discrete fibration obtained from X via
the Grothendieck construction.

Proof: By Theorem 2.1 we have (Fibd/B)/PX ∼= Fibd/El(X). The claim
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follows as B̂/X ' (Fibd/B)/PX and Fibd/El(X) ' Êl(X). �

In the sequel we will often tacitly use Corollary 2.1 for constructing maps
to X by exhibiting the corresponding presheaf over El(X).

In theorem 2.1 we have seen that X-indexed families of fibrations cor-
respond to cartesian functors over B to X ∈ B̂ considered as a discrete
fibration over B. The dual concept of cartesian functors from X to a fi-
bration P : X → B can be understood as the notion of X-indexed “family
of objects” of the category over B as given by P . More generally, we may
associate with every P ∈ Fib/B the functor SP(P ) : B̂op → Cat defined as

SP(P )(X) = CartB(X,P ) SP(P )(f) = CartB(f, P )

where X ∈ B̂ understood as a discrete fibration over B and f : Y → X is a
morphism in B̂ understood as a cartesian functor between discrete fibrations
over B. Notice, that Sp(P ), the restriction of SP(P ) along YB, is canonically
equivalent to P according to the fibred Yoneda lemma (see [B80]). Notice
that Fibsp(B), the 2-category of split fibrations over B, is isomorphic to

cat(B̂), the 2-category of internal categories in B̂. As for all X ∈ B̂ there is
a canonical isomorphism

CartB(X,P ) ∼= Fibsp(B)(X,Sp(P ))

natural in X we get that SP(P ) is canonically isomorphic to the externali-

sation of Sp(P ) considered as a category internal to B̂.

3 B as a Universe of Small Objects in B̂

One wants to think of the representable objects in B̂ as “small” objects.
Nonrepresentable presheaves are thought of as “big” objects in B̂. As usual
for arbitrary X ∈ B̂ a family of possibly big objects indexed by X is simply
a morphism f : Y → X in B̂. However, there arises the question of what is a
family of “small” objects indexed by a possibly big object. The answer to this
question is provided by A. Grothendieck’s notion of representable morphism.
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Definition 3.1 A morphism f : Y → X in B̂ is called representable or a
family of small objects iff for all pullbacks

J - Y

I
?

- X

f
?

the object J is representable whenever I is representable.

Notice that YB(α) is representable iff all pullbacks of α exists in B (as YB

preserves and reflects finite limits). Thus, under the (reasonable) assumption
that B has pullbacks families of small objects indexed by small objects are
precisely the maps in B. Notice that X → 1 is small iff I×X is representable
for all I ∈ B. Thus, for representable X the terminal projection X → 1 need
not be a representable morphism (unless B has binary products). Moreover,

the terminal object in B̂ need not be representable (unless B has a terminal
object).

However, under the reasonable assumption that B has finite limits we
have that an object X is representable iff its terminal projection X → 1 is
a representable morphism and that a morphism from X to a representable
object I is representable iff X is a representable object. Thus, if B has finite
limits a family is a family of small objects iff all its subfamilies indexed by a
small object are families of small objects.

We now investigate some closure properties of representable maps relevant
when viewing them as families of small objects.

Lemma 3.1 Let B be a category and S the collection of representable maps
in B̂. Then we have

(1) S is stable under pullbacks along arbitrary morphisms in B̂.

(2) S is a subcategory of S containing all isomorphism of B̂.

(3) There exists a map el : E → set(B) in S such that every map in S
can be obtained as pullback of el .

(4) If B is locally cartesian closed then for all f : Y → X and g : Z → Y
in S it holds that Πf (g) ∈ S, too.
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Proof: It is obvious from Definition 3.1 that f : Y → X is in S iff for
every s : I → X with I representable it holds that s∗f is a map between
representable objects. From this it is clear that S is stable under pullbacks
along arbitrary morphisms in B̂ and that S contains all isos. For closure
under composition suppose f : Y → X and g : Z → Y are in S. Let
s : I → X with I representable. Consider the pullback

K - Z

J
?

- Y

g
?

I
?

s
- X

f
?

As f ∈ S it follows that J is representable and, therefore, as g ∈ S it follows
that K is representable, too.
ad (3) : According to Lemma 2.1 morphisms in B̂ to I ∈ B correspond to
presheaves over B/I, the category of elements of YB(I). One easily sees that
A is a representable presheaf over B/I iff the source of the corresponding

morphism to I in B̂ is a representable presheaf over B. Thus, a presheaf
A : (B/I)op → Set corresponds to a small map to I iff for all α : J → I
in B the presheaf (Σα)∗A = A ◦ (Σα)op : (B/J)op → Set is representable.
Such presheaves A we call “stably representable” and they organise into a
presheaf set(B) : Bop → Set putting

set(B)(I) = {A ∈ B̂/I | A stably representable} and U(α) = Σ∗α .

Now we describe the generic map el : E → set(B) in terms of its corre-
sponding presheaf (also denoted as E) on El(set(B)) : if A ∈ set(B)(I)
then E(A) = A(id I) and for α : α∗A → A in El(set(B)) we define E(α) =
A(α

α→id I). One readily checks that for a : I → set(B) the map el(a) = a∗el
is isomorphic to the small map whose corresponding representable presheaf
is A = a(id I). Thus, the map el is small. It is generic for small maps as
every f : Y → X in S is isomorphic to χ∗el where χ : X → set(B) is defined
as follows: for x ∈ X(I) the presheaf χI(x) : (B/I)op → Set is given by

χI(x)(α) = {y | fy = xα} and χI(β : αβ → α)(y) = yβ .
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ad (4) : Suppose f : Y → X and g : Z → Y are in S. We have to
show that for s : I → X with I representable the map s∗Πf (g) ∼= Πα(β) is
representable, too, where

K - Z

J

β
?

- Y

g
?

I

α
?

- Z

f
?

but Πα(β) is in B as YB preserves locally cartesian closed structure. �

As representable objects are never initial for every X ∈ B̂ the morphism
0 → X is not small unless X is initial. Thus, if f : Y → X is in S and
m : Z � Y the composite f ◦ m will in general not be contained in S.
However, if B has finite limits then for h1, h2 : g → f with f, g ∈ S it holds
that g ◦ e ∈ S where e is the equalizer of h1 and h2 in B̂.

In general ΩB̂ → 1 will not be in S. For example if B is a poset with a
terminal object then ΩB̂ → 1 is not small as ΩB̂ is not representable (as it is
not subterminal).

By Lemma 3.1(1) the collection S of representable morphisms in B̂ de-

termines a full subfibration of PB̂ : B̂2 → B̂ which is definable in the sense
of [B80].

Lemma 3.2 For maps f : Y → X in B̂ there exists a subobject i : X0 ↪→ X
such that for all g : Z → X, g∗f ∈ S iff g factors through i.

Proof: Define X0(I) as the set of all s : I → X such that s∗f is representable.
Obviously, if x ∈ X0(I) and α : J → I in B then sα ∈ X0(J) as by

Lemma 3.1 representable morphisms are stable under pullbacks in B̂. Thus
X0 is a subpresheaf of X. Let i be the corresponding inclusion. Suppose
g : Z → X in B̂. Then g∗f is representable iff for all generalised elements
s : I → Z the map s∗g∗f ∼= (gs)∗f is representable, i .e. iff gs ∈ X0(I) for all
generalised elements s : I → Z, i .e. if g factors through i. �

That representable morphisms capture the right notion of smallness is
supported by the following Theorem.
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Theorem 3.1 A fibration P : X → B is locally small iff for the corre-
sponding internal category C = Sp(P ) the “hom-family” C1 → C0×C0 is a
representable morphism.

Moreover, P is small iff P is locally small and C0 is representable.

4 A Large Internal Category Set(B)

It follows from the proof of Lemma 3.1(3) that if B has pullbacks then the
fundamental fibration PB = ∂1 : B2 → B is equivalent to the split fibration
set(B) sending I ∈ B to the category set(B)(I) of representable presheaves
over B/I and α : J → I to Set(Σα)op , i .e. change of base along Σα.1

The same constructions as in the proof of Lemma 3.1(3) can be performed
when dropping the restriction to stably representable presheaves.

Definition 4.1 For a category B let Set(B) be the presheaf of large cate-
gories over B with

Set(B)(I) = Set(B/I)op and Set(B)(α) = Set(Σα)op

for objects I and morphisms α in B.

Notice that the split fibration Set(B) is equivalent to Y∗BPB̂ where PB̂ =

∂1 : B̂2 → B̂ is the fundamental fibration for B̂.2

Again as in the proof of Lemma 3.1(3) we can construct a presheaf E over
El(Set(B)) sending A ∈ Set(B)(I) to E(A) = A(id I) and α : α∗A → A to
E(α) = A(α

α→id I). This presheaf E is generic in the sense that for every

presheaf A : El(X)op → Set we have A ∼= E ◦ Â where Â : El(X) →
Set(B) is the functor sending x ∈ X(I) to A ◦ x̂op where x̂ : B/I → El(X)
is the cartesian functor (over B) with x̂(id I) = x. The discrete fibration
corresponding to E is denoted as El : E → Set(B).

1If B has pullbacks then for all α : J → I in B change of base along Σα preserves
representability of presheaves because (Σα)∗B/I(−, β) ∼= B/J(−, α∗β).

2Notice that Y∗
BPB̂ is the fibration of discrete fibrations over B obtained as restriction

of the fibration Fib(B)→B of fibrations over B as discussed at the end of the first chapter
of [B80] where Fib(B)→B is constructed from the fibration Fib→Cat by change of base
along YB.

One may consider the following category EB fibered over (the domain of) Fib(B)→B
and thus over B. Objects of EB over I in B are pairs (P, S) where P is a fibration over
B/I and S is a cartesian section of P . Morphisms over u : J → I from (Q,T ) to (P, S)
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are functors F rendering the following diagram

B/J
Σu- B/I

Y

T

? F- X

S

?

B/J

Q
?

Σu
- B/I

P
?

commutative and which are cartesian as functors from Q to P over Σu, i.e. send Q-
cartesian arrows to P -cartesian arrows. Such a morphism is cartesian iff the lower square
is a pullback (in which case also the upper square is a pullpack). The category EB is
fibered (over the domain of) Fib(B)→B by first projection, i.e. sending (P, S) to P and
F : (Q,T )→ (P, S) to F .

The fibration EB over Fib(B)→B weakly classifies fibrations over fibrations over B in
the sense that for a fibration P : X→ B fibrations over P (i.e. over X) up to equivalence
correspond to cartesian functors from P to Fib(B)→B via pullback of EB over Fib(B)→B
along them.

But there is a problem. This claim can hold only in a very weak sense for the following
reason. Let P : X → B and Q : Y → X be fibrations. For a (split) cartesian functor
X : I → P we may consider the pullback

YX
- Y

B/I

QX
?

X
- X

Q

?

which, of course, involves choice. For u : J → I in B we may now consider

Yu∗X
- YX

- Y

B/J

Qu∗X

?

Σu
- B/I

QX

?

X
- X

Q

?

where u∗X stands for X ◦ Σu. Obviously, these choices define a cartesian functor Q(−) :
Sp(P ) → [Fib(B)→B] such that pulling back EB → [Fib(B)→B] along it gives rise to
the pullback of Q along EP : U(Sp(P )) → P , the counit of U a Sp at P , which, alas, is
only equivalent to Q in Fib over Cat.
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Notice that set(B) (as constructed in the proof of Lemma 3.1(3)) is the
greatest subpresheaf of Set(B) such that the restriction of El to it gives rise
to a small map.

For a category C in B the analogue of the category of set valued presheaves
over C is given by the fibration PB

C ' set(B)C over B. Now as fibrations

over B appear as internal categories in B̂ the category of presheaves over P
is given by PB̂

P ' Set(B)P .

5 Distributors between Fibrations over B

In [B73, Joh] it has been defined and investigated what are distributors be-
tween internal categories. As arbitrary fibrations over B may be considered
a categories internal to B̂ this opens up the possibility to define what is a
distributor between arbitrary (non-small) fibrations. For internal categories
A,B a distributor from A to B is given by a family Φ : F → A0×B0 together
with an action of the morphisms of A and B. We will call a distributor locally
small iff the map Φ is representable (in the sense of Def. 3.1).
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6 Garbage

This can be achieved in a very pleasing way via the fibred Yoneda lemma
giving rise to a full and faithful 2-functor Sp : Fib/B → Fibsp(B) where
Fibsp(B) is the 2-category of split fibrations over B. (Under axiom of choice
Sp is even a 2-equivalence!) As split fibrations over B can be considered as

internal categories in B̂ an arbitrary fibration P : X → B gives rise to the
split fibration PSp(P ) : Sp(P ) → B̂ obtained by externalising the internal

category Sp(P ) in B̂. It is easy to see that Sp(P ) is isomorphic (over B)
to YB

∗PSp(P ), the restriction of the split fibration PSp(P ) along the Yoneda

embedding YB : B ↪→ B̂. Thus, by the fibred Yoneda lemma the fibration
P is equivalent over B to the split fibration YB

∗PSp(P ) isomorphic to Sp(P )
over B. Thus, as indicated in the diagram

X
'
- Sp(P ) - Sp(P )

B

Sp(P )

?
⊂

YB

-

P

-

B̂

PSp(P )

?

PSp(P ) provides the desired extension of P to a split fibration over B̂.
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