The World's Simplest Proof of Moens's Lemma

Let \mathbb{B} be a category with finite limits and $P : \mathbb{X} \to \mathbb{B}$ be a fibration of finite limit categories which is also a cofibration. For $I \in \mathbb{B}$ let $\varphi_I : 1_I \to \Delta(I)$ be a cocartesian arrow from 1_I (terminal object in the fibre \mathbb{X}_I) over the terminal projection $I \to 1$ in \mathbb{B} . For $u : J \to I$ in \mathbb{B} let $\Delta(u) : \Delta(J) \to \Delta(I)$ be the unique vertical arrow making the diagram

$$\begin{array}{c|c} 1_J & \stackrel{\varphi_J}{\longrightarrow} & \Delta(J) \\ 1_u & \downarrow & (1) & \downarrow \Delta(u) \\ 1_I & \stackrel{\varphi_I}{\longrightarrow} & \Delta(I) \end{array}$$

commute. This gives rise to a functor $\Delta : \mathbb{B} \to \mathbb{X}_1$.

A fibration P as above is called *internally extensive* iff every commuting diagram with α and β vertical

is a pullback iff φ is cocartesian.^1

Obviously, for internally extensive fibrations P the functor $\varphi_I^* : \mathbb{X}_1 / \Delta(I) \to \mathbb{X}_I / \mathbb{1}_I \cong \mathbb{X}_I$ is an equivalence and thus, since (1) commutes, the diagram

commutes up to isomorphism for all $u: J \to I$ in \mathbb{B} and thus $P \simeq P_{\Delta} = \Delta^* P_{\mathbb{X}_1}$ (where $P_{\mathbb{X}_1} = \partial_1 : \mathbb{X}_1^2 \to \mathbb{X}_1$ is the fundamental fibration of \mathbb{X}_1).

Obviously, the functor Δ preserves 1. Recall² that a functor $F : \mathbb{B} \to \mathbb{C}$ between categories with pullbacks preserves pullbacks iff $P_F = F^* P_{\mathbb{C}}$ has internal sums, i.e. cocartesian arrows are stable under pullbacks along cartesian arrows. Thus, the fibration $P \simeq P_{\Delta} = \Delta^* P_{\mathbb{X}_1}$ has internal sums iff Δ preserves pullbacks (and thus all finite limits).

¹Equivalently one may require that (1) cocartesian arrows are stable under pullbacks along vertical arrows and (2) from φ and $\varphi \alpha$ cocartesian and α vertical it follows that α is an iso, i.e. \coprod_{u} reflects isos for all u in \mathbb{B} .

 $^{^{2}}$ see Lemma 13.2 (on pp.46-47) of my notes on *Fibred Categories*