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Abstract In this short note we will give a survey of the fibrational aspects of
(generalised) geometric morphisms. Almost all of these results and observations
are due to Bénabou’s work on fibrational category theory.
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1 Minimal Structural Requirements
for the Base of a Fibration

What are the minimal structural requirements on a category B in order to
develop category theory over base B ? We always want to be able to consider
the base B as fibred over itself. That means that we require that the functor
PB = ∂1 : B21 → B is a fibration. This is equivalent to B having all pullbacks.

Furthermore in order to simply state that a bifibration P : X → B satisfies
the Beck-Chevalley condition the base B must have pullbacks.

2 Change of Base and Geometric Morphisms

Let F : A → B be a functor and let F ∗ : Fib(B) → Fib(A) be the functor
reindexing fibrations along F , i.e. performing change of base along F .

Already in [Bén80] Jean Bénabou has identified elementary conditions on
a functor F which are equivalent to the preservation of “good properties” of
fibrations by change of base along F .

Theorem 2.1 (Bénabou)
Let F : A→ B be an arbitrary functor. Then change of base along F preserves
smallness of fibrations iff F has a right adjoint.

Proof. ⇒ : Suppose that change of base along F preserves smallness of fibra-
tions. Then for any X ∈ B the fibration ∂0 : F/X → A is small it is obtained
by change of base along F from the small fibration ∂0 : B/X → B. But if the
discrete (and therefore split) fibration ∂0 : F/X → A is small then there exists
an object UX ∈ A such that the fibrations ∂0 : F/X → A and ∂0 : A/UX → A
are isomorphic. As both fibrations are discrete and therefore split this means
that B(F ,X) and A( , UX) are naturally isomorphic. As such a UX exists for
all X ∈ B it follows that F has a right adjoint U .
⇐ : Suppose that F has a right adjoint U . Then U preserves all limits existing
in B and maps any category C internal to B to a category U(C) internal to
A. A small fibration P over B is by definition isomorphic to a fibration of the

2



form cat(C), the externalisation of C, for some category C internal to B But as
F ∗cat(C) is canonically isomorphic to cat(U(C)) we get that F ∗P is isomorphic
to cat(U(C)). Thus, F ∗P is a small fibration. �

Theorem 2.2 Let A and B be categories with pullbacks and F : A→ B. Then
the following are equivalent

1. change of base along F preserves the property of having internal sums
satisfying the Beck-Chevalley condition

2. the fibration ∂1 : B/F → A has internal sums satisfying the Beck-Chevalley
condition

3. F preserves pullbacks.

Proof. It is well known from [Bén80] that change of base along a pullback
preserving functor between categories with pullbacks preserves the property of
having internal sums satisfying the Beck-Chevalley condition.

If change of base along F preserves the property of having internal sums
satisfying the Beck-Chevalley condition then F ∗PB = partial1 : B/F → A has
internal sums satisfying the Beck-Chevalley condition as PB = ∂1 : B/B → B
has internal sums satisfying the Beck-Chevalley condition.

For closing the circle it remains to show that F preserves pullbacks if F ∗PB =
∂1 : B/F → A has internal sums satisfying the Beck-Chevalley condition.

Let

U
q - Y

X

p

?

f
- Z

g

?

be a pullback in A. We have to show that

FU
Fq- FY

FX

Fp

?

Ff
- FZ

Fg

?

is a pullback in B.
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Consider the following diagram in B/F

FU
Fq- FY

idFY- FY

FU

idFU

?

Fq
- FY

idFY

?

Fg
- FZ

Fg

?

where the left square is cartesian over q and the right square is cocartesian over
g. Notice that the outer rectangle of the diagram above coincides with the outer
rectangle of the following diagram

FU

V
q′
-

......................α -
FY

Fq

-

FU

idFU

?

Fp
- FX

p′

?

Ff
- FZ

Fg

?

as Ff ◦ Fp = F (f ◦ p) = F (g ◦ q) = Fg ◦ Fq.
Due to the assumption that the fibration ∂1 : B/F → A has sums satisfying

the Beck-Chevalley condition we know that cocartesian arrows in B/F are stable
under pullbacks along arbitrary cartesian arrows. As in the previous diagram
the right hand square is cartesian over f the left hand square must be cocartesian
over p, i.e. α must be an isomorphisms.

Therefore the square

FU
Fq- FY

FX

Fp

?

Ff
- FZ

Fq

?

is a pullback square.
Thus F preserves pullbacks. �

Thus if A and B are categories with pullbacks then a necessary condition
for F ∗ preserving all good properties of fibrations under reindexing along F is
that F preserves pullbacks and has a right adjoint. It can be shown that this
condition on F is also sufficient for reindexing along F to preserve all good
properties of fibrations.
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Thus a functor between categories with pullbacks preserves all
good properties of fibrations under reindexing iff it preserves pull-
backs and has a right adjoint.

If A and B are categories with pullbacks then a functor F : A → B that
preserves pullbacks and has a right adjoint will be called (the inverse image
part of) a generalised geometric morphism.

Thus a functor between categories with pullbacks preserves all
good properties of fibrations under reindexing iff it is (the inverse
image part of) a generalised geometric morphism.

If F : A→ B is (the inverse image part of) a generalised geometric morphism
then it is more general than an ordinary geometric morphism only in the aspect
that it need not preserve all finite limits existing in A (but only those whose
existence is guaranteed by A having pullbacks). From the point of view that
the categories involved are required only to have pullbacks it is more natural to
require only preservation of pullbacks.

A generalised geometric morphism F (a U) will be called a proper geometric
morphism or simply a geometric morphism iff F preserves all finite limits exist-
ing in the source of F . At first sight for lex categories A and B the adequate
notion of ’geometric morphism’ seems to that of a proper geometric morphism.
That this definitely is not the case will be shown by the following examples.

If A and B have pullbacks and A furthermore has a terminal object then a
generalised geometric morphism F : A→ B need not preserve it. Actually there
is a lot of important examples of generalised geometric morphisms that do not
preserve terminal objects.
(i) If f : J → I is a morphism in B then Σf : B/J → B/I preserves pullbacks
and has right adjoint f∗ : B/I → B/J .
Of course, the slice categories B/I and B/J have terminal objects but Σf :
B/J → B/I preserves terminal objects if and only if the morphism f is an
isomorphism in B.
(ii) If furthermore B has binary products then for any object I in B the functor
ΣI : B/I → B preserves pullbacks and has right adjoint I∗ : B→ B/I.
Of course, the category B/I has a terminal object but ΣI preserves terminal
objects if and only if the object I itself is terminal in B.

The functors F considered in the previous examples are instances of so called
inclusions of localizations meaning that the functor F1 : A→ BF1 is an isomor-
phism. Inclusions of localizations are precisely those functors F : A → B such
that there is an isomorphism of categories G : A→̃B/F1 such that F = ΣF1◦G.

If A has finite limits and B has pullbacks then a pullback preserving functor
F : A→ B can be factored as

F = ΣF1 ◦ F1

where F1 : A→ B/F1 preserves all finite limits.
This factorization is maximal in the sense that whenever F = H ◦G for some

H : C → B and G : A → C where C has all finite limits and G preserves them
and H preserves pullbacks then there is a unique functor K : C → B/F1 such
that H = ΣF1 ◦K and F = K ◦G.
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Thus any pullback preserving functor F : A→ B uniquely up to isomorphism
factors as a lex functor followed by an inclusion of a localization.

If F : A → B has a right adjoint U then the functor F1 has right adjoint
η∗1 ◦ UF1 where η1 : 1→ UF1 is the counit at 1 of the adjunction F a U . Thus
if F preserves pullbacks and has a right adjoint U then F1 a η∗1 ◦UF1 is a proper
geometric morphism from B/F1 to A as F1 : A → B/F1 preserves pullbacks
and the terminal object and therefore all finite limits. If we assume that B has
all binary products then ΣF1 has also a right adjoint (F1)∗ : B→ B/F1 sending
X ∈ B to π : F1 × X → F1 in B/F1. Notice that this does not require B to
have a terminal object.

When restricted to lex categories our notion of generalised geometric mor-
phism is slightly more general than the usual one as the inverse image part need
not preserve terminal objects. The typical examples of generalised geometric
morphisms not preserving the terminal object are the inclusions of localisa-
tions. Those actually form the “ortho-complement” of the proper geometric
morphisms as in the category of generalised geometric morphisms the proper
geometric morphisms and the inclusions of localisations form a factorisation
system (in the appropriate 2-categorical sense).

As a generalised geometric morphism F a U from B to A corresponds in a
unique way to a proper geometric morphism F1 a η∗1 ◦UF1 from B/F1 to A, i.e.
a geometric morphism to A with source B/F1, generalised geometric morphisms
are sometimes also called partial geometric morphisms. Then the domain of def-
inition of the proper geometric morphism corresponding to a partial geometric
morphism from B to A is the slice B/F1 considered a part of B via the inclusion
of localisation morphism ΣF1 : B/F1→ B.

We conclude this section by the observation that for a pullback preserving
functor F : A→ B where A has finite limits and B has pullbacks the following are
equivalent : F preserves binary products iff F1 is subterminal. Let F : A→ B
preserve pullbacks and binary products then 〈idF1, idF1〉 = F (〈id1, id1〉) is an
isomorphism as F preserves isomorphism and 〈id1, id1〉 is an isomorphism. Thus
F1 is a subterminal in B, i.e. any two morphisms to F1 are equal. On the other
hand if F : A→ B preserves pullbacks and F1 is a subterminal then F preserves
all binary products. The reason is that for objects A,B ∈ A any pullback cone
for F (A → 1) and F (B → 1) in B is a product cone as F1 is subterminal by
assumption. As F preserves pullbacks the morphisms F (π1 : A × B → A) and
F (π2 : A × B → B) form a pullback cone for F (A → 1) and F (B → 1) and
therefore give rise to a product cone for FA and FB in B.

For such a functor F : A→ B preserving pullbacks and binary products we
obviously have the following equivalence : F1 is terminal in B iff for any X ∈ B
there is a morphism X → F1.
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3 Partial Lex Categories and Other Partial Doc-
trines

As already seen in the first section the minimum requirement for a base B is
that B has pullbacks. That means that each slice B/I has finite limits. An
equivalent condition is that for any morphism f in B the functor Σf has a right
adjoint f∗. This especially guarantees that for any morphism f : J → I in B
change of base along Σf : B/J → B/I preserves all good properties of fibrations.

Now for a category B with pullbacks any functor ΣI : B/I → B preserves
pullbacks. Change of base along ΣI preserves all good properties of fibrations
iff ΣI has a right adjoint I∗. Equivalently, products of I and X exist for all
objects X ∈ B. Thus change of base along ΣI preserves all good properties of
fibrations for all I ∈ B iff B has all binary products. Again it is not necessary
that B has a terminal object.

Thus a category B has pullbacks and binary products iff functors of the form
Σf or ΣI have right adjoints f∗ and I∗, respectively. Equivalently the category
B has lex slices and change of base along functors of the form Σf or ΣI preserves
all good properties of fibrations.

This motivates the definition of a partial lex category as a category hav-
ing pullbacks and binary products, i.e. a category where all finite nonempty
diagrams have a limit.

Accordingly, a category B is a partial locally cartesian closed category (a
partial lccc) iff B is partial lex and for any morphism f in B there is a string of
adjoints Σf a f∗ a Πf . If, additionally, for any object I of B one would require
the existence of a string of adjoints ΣI a I∗ a ΠI then B would be a locally
cartesian closed category provided B is nonempty as ΠI idI would give rise to
a terminal object in B (as idI is terminal in B/I and ΠI being a right adjoint
preserves terminal objects).

Similarly one can define the notion of a partial topos. It is well known that a
category B is a(n elementary) topos iff B has finite limits and the fundamental
fibration ∂1 : B21 → B of B is well-powered. Equivalently, B is a(n elementary)
topos iff B has finite limits and any slice of B is a(n elementary) topos.

Now one might define a partial topos as a category B such that the fundamen-
tal fibration of B is well-powered. The existence of the fundamental fibration of
B is equivalent to B having pullbacks (cf. sction 1) and the well-poweredness of
the fundamental fibration of B is equivalent to any slice of B being a(n elemen-
tary) topos. But as any groupoid has pullbacks and all its slices are (elementary)
toposes (as they are equivalent to the terminal category) the definition seems
to be too general.

Therefore we define a category B to be a partial topos iff B is partial lex and
any slice is a(n elementary) topos. Equivalently, B is a partial topos iff B is
partial lex and its fundamental fibration is well-powered.

Examples of partial toposes :

1. the category of topological spaces and local homeomorphisms
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2. the category of small categories and discrete fibrations

3. the full subcategory EF of a topos E consisting of those objects X such
that suppX ∈ F where F is a downward closed subset of SubE(1) and
suppX = im(X → 1)

4. more generally if B is already a partial topos (including the case that it is
an ordinary topos) and X is a subclass of the class of objects of A then let
AX be the full subcategory of A on those objects Z having a morphism to
some X ∈ X; without any assumptions on X every slice of AX/Z = A/Z
is an elementary topos and if X is assumed to be closed under binary
products then A/X has also binary products (as e.g. a downward closed
class of subterminals) and therefore is a partial topos;

5. the category of finite trees considered as a full subcategory of the category
Tree = Setω

op

(notice that the terminal objects is an infinite tree)

We finish this section by some remarks on pullback preserving functors and
generalised geometric morphims F : A → B where A has pullbacks and B is
partial lex.

Now firstly assume that F : A→ B preserves pullbacks. As A is not required
to have a terminal object we cannot factor F as “F = ΣF1 ◦F1” since the right
hand side of the equation is meaningless as 1 need not exist in A.

Nevertheless for any object I of A we have that

F ◦ ΣI = ΣFI ◦ FI

where, obviously, FI : A/I → B/FI is a lex functor between lex categories.
That means that though for the functor F itself we do not have a canonical
factorisation as a lex functor followed by an inclusion of a localisation - we do
have such a factorisation for each restriction of F along the inclusion ΣI of the
localisation A/I into A.

Now if, moreover, the pullback preserving functor F : A → B has a right
adjoint U then for every object I of A the lex functor FI has right adjoint
η∗I ◦ UFI where ηI : I → UFI is the counit of the adjunction F a U at I. As B
is partial lex the functor ΣFI has a right adjoint (FI)∗. Therefore the functor
F ◦ ΣI = ΣFI ◦ FI has right adjoint η∗I ◦ UFI ◦ (FI)∗ and factors canonically
as the inverse image part of geometric morphism followed by an inclusion of
a localisation where the latter is even the inverse image part of a generalised
geometric morphism.

Notice that for F ◦ ΣI = ΣFI ◦ FI having a right adjoint it would also be
sufficient that A is partial lex as then ΣI has a right adjoint I∗ and therefore
F ◦ΣI a I∗ ◦U . But as the requirement that A is partial lex in general does not
entail B to be partial lex as well it is appropriate to require that both A and B
are partial lex. In that case we have that both I∗ ◦ U and η∗I ◦ UFI ◦ (FI)∗ are
right adjoint to F ◦ ΣI = ΣFI ◦ FI and therefore isomorphic.

One might wonder whether a pullback preserving functor F : A→ B between
partial toposes has a right adjoint already if each FI : A/I → B/FI has a right
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adjoint U(I). We have seen that this definitely is the case if A has a terminal
object. The following example demonstrates that if A is properly partial, i.e.
does not have a terminal object, then each FI may have a right adjoint though
F itself does not, i.e. the “local right adjoints” (of the FI ’s) cannot be ”glued
together” to a “global right adjoint” of F .

Let E be the topos SetN whose lattice of subobjects of 1E is (isomorphic
to) P(N). We consider the following (nonempty) downward closed subsets of
P(N) : F0 = Pfin(N), F1 = { {n} | n ∈ N }. The inclusion F of EF1

into EF0

preserves pullbacks (and binary products !) and any FI is an isomorphism and
therefore has a right adjoint. But F does not have a right adjoint U as there are
objects A,B in EF1 which are unbounded in EF1 , i.e. there are no morphisms
f : A→ C and g : B → C in EF1 , although they are bounded in EF0 , i.e. there
do exist f : A → C and g : B → C in EF0

. Take e.g. for A and B objects in
EF1

s.t. A0 and B1 are nonempty.
We finally give an example of a generalised geometric morphism between

partial toposes neither of which contains a terminal object. Again we employ
the topos E = SetN from above. Let F2 = { {2n} | n ∈ N } and consider the
inclusion F of F2 into F1. Both partial toposes surely do not have a termi-
nal object and the inclusion preserves pullbacks (and binary products). The
inclusion functor F has a right adjoint U which sends objects A with suppA
containing an even number to A and all other objects to the initial object O
(i.e. On = ∅ for all n ∈ N). The functor U sends a morphism f : A→ B to f if
suppA does contain an even number and to idO otherwise. Though this kind of
example is generic it nevertheless would be interesting to find (and study) ex-
amples of generalised geometric morphism between proper partial toposes that
are not (full) inclusions.

4 Partial Lex Categories and Partial Toposes
with Support

The treatment of the various questions about partial lex categories/toposes is
facilitated by assuming that any such category “has supports”.

That means that for any object A there is a least subterminal object U
admitting a morphism A → U . An object U of a category A is subterminal
iff any morphisms f, g : A → U in A are equal. If A has a terminal object
then U is subterminal iff U → 1 is a mono, i.e. U is a subobject of 1 which
justifies the name “subterminal”. Let subT (A) denote the full subcategory of
A on subterminal objects. The category subT (A) actually is a quasi-order. We
say that A has supports iff the inclusion i : subT (A) → A has a left adjoint
supp a i. Thus supp(A) → U iff A → i(U), i.e. supp(A) is a least subterminal
U with A → U . Of course, A has a terminal object iff subT (A) has a greatest
element which then is a terminal object.

From now on let us assume that A has pullbacks. If A has supports then
there exist binary products of objects whose supports are bounded in subT (A).
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Furthermore one can show that A has binary products iff subT (A) has binary
infima. For U, V ∈ subT (A) let U ∧ V denote an infimum of U and V in
subT (A). Let A and B be objects in A then their product is obtained by taking
the product A′×B′ where A′ and B′ are obtained by pulling back A→ supp(A)
and B → supp(B) along the inclusions of supp(A) ∧ supp(B) into supp(A) and
supp(B), respectively. The product of A′ and B′ exists as their supports are
bounded by supp(A) ∧ supp(B). The projections for the product of A and B
are obtained by composing the projections of the product of A′ and B′ with
the inclusions A′ → A and B′ → B, respectively, which are obtained from
the pullback construction of A′ and B′, respectively. On the other hand if A
has binary products then supp(A) has binary infima as subterminals are closed
under binary products in A and such are infima in supp(A).

If A has binary products then an object X ∈ A is subterminal iff δX =
〈idX , idX〉 : A→ A× A is an isomorphism.

A further benefit of the property of having supports is the following. If A is
a partial topos having supports then A is guaranteed to have all coequalisers as
any pair of arrows f, g : A→ B is coequalised by B → supp(B). Now take the
coeqaliser of f, g : (A → supp(B)) → (B → supp(B)) in the topos A/supp(B)
and then apply the colimit preserving Σsupp(B) : A/supp(B) → A which gives
the coequaliser in A.

Next we take a closer look at pullback preserving functors between partial
lex categories having supports. Let A and B be partial lex categories having
supports and let F : A→ B preserve pullbacks. The functor F preserves monos
as F by assumption preserves pullbacks. Therefore F restricts to a functor
F|subT (A) : subT (A)→Mono(B).

If furthermore F preserves binary products then F maps subterminals of
A to subterminals of B as F preserves diagonals and isomorphisms. On the
other hand the requirement on a pullback preserving functor to preserve also
subterminal objects is not sufficient for guaranteeing the preservation of binary
products as exhibited by the embedding of the category of shape V into the
category of shape Y discussed in Section 5. (The intuitive explanation is that
the fictitious F1 is not subterminal !)

But we have that F preserves binary products iff F preserves binary products
of subterminals (and therefore also preserves subterminals).

As right adjoints to functors between partial lex categories having supports
preserves all limits they also preserve subterminal objects. Thus, if we have a
functor F : A → B between partial lex categories having supports such that
F preserves pullbacks and binary products and has a right adjoint U then by
restriction to subterminal objects we get an adjunction between subT (A) and
subT (B).

5 Geometric Morphisms as Fibrations

Let B be a category with pullbacks.
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A fibration P : X → B has sums iff P is also a cofibration and pullbacks of
cocartesian arrows along cartesian arrows exist and are cocartesian again.

A fibration of categories with pullbacks over B is a fibration P : X→ B such
that X is has pullbacks and P preserves them. Such a fibration P is a fibration
of lex categories iff moreover any fiber of P has a terminal object and those are
preserved by reindexing.

For any morphism ϕ : Y → X let δϕ be the unique mediating arrow from
the pair idY , idY to the kernel pair of ϕ.

Let P be a fibration of lex categories over B. The fibration P has stable sums
iff P is also a cofibration and cocartesian arrows are preserved by pullbacks
along arbitrary morphisms in X and P has disjoint sums iff P has sums and δϕ
is cocartesian whenever ϕ is cocartesian.

A pre-geometric fibration over B is a fibration of lex categories over B having
stable disjoint sums.

For pre-geometric fibrations it holds that for any f : I → J in B and X ∈
P (I) = XI there is a canonical equivalence between XI/X and XJ/f∗X.

In one direction this equivalence is given by sending a vertical arrow α :
Y → X in XI/X to the vertical arrow β = f∗α. The reverse direction is given
by sending a vertical arrow β : Z → f∗X to the vertical arrow α = ϕ∗β where
ϕ : X → f∗X is some cocartesian arrow from X over f .

That this actually is an equivalence is ensured by Moens’ Theorem saying
that

Y
ψ - f∗Y

X

α

?

ϕ
- f∗X

β

?

provided it commutes in X and ϕ and ψ cocartesian and α and β vertical.
But, before proving Moens’ Theorem we need two auxiliary lemmas.

Lemma 5.1 Let ϕ : Y → X and ψ : Z → Y be maps in X. If ϕ is cocartesian
then the mediating map γ : Z → Q in

Z

Q
θ
-

γ

-

Y

ψ

-

Z

ϕ′

?

ϕ ◦ ψ
-

id
Z

-

X

ϕ

?
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is cocartesian.

Proof. First consider the diagram

Z
ψ

- Y

Q
ψ′
-

................................

γ

-

P

δϕ

?

ϕ1

- Y

id
Y

-

Z

ϕ′

?

ψ
-

id
Z

-

Y

ϕ0

?

ϕ
- X

ϕ

?

where ϕi ◦ δϕ = idY for i = 0, 1.
Thus we have

Z
ψ
- Y

Q

γ

?

ψ′
- P

δϕ

?

ϕ1

- Y

id
Y

-

Z

ϕ′

?

ψ
- Y

ϕ0

?

ϕ
- X

ϕ

?

with ϕ′ ◦ γ = idZ .
As P has disjoint sums δϕ is cocartesian and as P has stable sums γ is

cocartesian as it arises as pullback of δϕ along ψ′.
Thus with θ := ϕ1 ◦ ψ′ we have

Z

Q
θ
-

γ

-

Y

ψ

-

Z

ϕ′

?

ϕ ◦ ψ
-

id
Y

-

X

ϕ

?
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with γ cocartesian. �

From this we get the following useful fact.

Lemma 5.2 Let P : X → B be a pre-geometric fibration. Let ϕ : Y → X and
ψ : Z → Y be maps in X. Then ψ is cocartesian if ϕ and ϕ ◦ψ are cocartesian.

Proof. Consider the diagram

Z

Q
θ
-

γ

-

Y

ψ

-

Z

ϕ′

?

ϕ ◦ ψ
-

id
Y

-

X

ϕ

?

where γ is cocartesian by Lemma 5.1 and θ is cocartesian as it arises as pullback
of cocartesian ϕ ◦ ψ along ϕ. Thus, ψ = θ ◦ γ is cocartesian as it arises as
composition of two cocartesian arrows. �

Now we are ready to prove Moens’ Theorem.

Theorem 5.3 Let P : X→ B be a pre-geometric fibration. Then any commut-
ing square

Y
ψ - f∗Y

X

α

?

ϕ
- f∗X

β

?

in X with ϕ and ψ cocartesian and α and β vertical is already a pullback square
in X.

Therefore, for any f : I → J in B and X ∈ P (I) = XI it holds that XI/X
is equivalent to XJ/f∗X by sending a vertical arrow α : Y → X in XI/X to
the vertical arrow β = f∗α and sending a vertical arrow β : Z → f∗X to the
vertical arrow α = ϕ∗β.
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Proof. We will give two variants of proof. The first is very short by using
Lemma 5.2 whereas the second variant is Moens’ original proof.

1. Variant.
Consider the diagram

Y

Q
ϕ′
-

θ

-

f∗Y

ψ

-

X
?

ϕ
-

α

-

f∗X

β

?

where θ is cocartesian by Lemma 5.2 as ψ = ϕ′ ◦ θ is cocartesian by assump-
tion and ϕ′ is cocartesian as it arises as pullback of the cocartesian arrow ϕ
along β. As θ is cocartesian over an isomorphisms it follows that θ itself is an
isomorphism. Thus,

Y
ψ - f∗Y

X

α

?

ϕ
- f∗X

β

?

is a pullback diagram.

2. Variant.
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As ϕ ◦ α = β ◦ ψ we have the diagramm

Y

Q -

γ
-

Y

id
Y

-

Z

ψ′

?

ϕ′
- f∗Y

ψ

?

X
?

ϕ
-

α

-

f∗X

β

?

where γ is cocartesian by Lemma 5.1 (which is applicable as ϕ ◦ α = β ◦ ψ).
The morphism ψ′ is cocartesian as it appears as pullback of the cocartesian
morphism ψ. Therefore ψ′ ◦ γ is cocartesian over an isomorphism. Thus, ψ′ ◦ γ
is itself an isomorphism from which it follows immediately that

Y
ψ - f∗Y

X

α

?

ϕ
- f∗X

β

?

is a pullback diagram. �

Choosing X = 1I we now get that XI is equivalent to XJ/f∗1I . Now if B has
a terminal object 1 then by choosing J = 1 we finally get that XI is equivalent
to X1/!I∗1I .

This gives rise to the following generalisation of a result of Moens in his
Thesis (1982). Namely, that for categories B with finite limits pre-geometric
fibrations over B are precisely those fibrations over B which are equivalent to a
fibration ∂1 : E/F → B for some lex functor F : B→ E between lex categories.
The lex functor F is determined uniquely up to equivalence by the fibration P .

Notice that for this generalisation of Moens’ result one definitely needs that
the base category B has a terminal object because when given a fibration P :
X → B the E of the functor F : B → E with P equivalent to ∂1 : E/F → B is
equivalent to the fibre of P over the terminal object in B.
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It is well known that a functor F : B→ E between lex categories has a right
adjoint iff the fibration ∂1 : E/F → B has small global sections .

Therefore a fibration over a lex category will be called geometric iff it is
pre-geometric and has small global sections. In the light of the the discussion
above a geometric fibration over B is a fibration equivalent to one of the form
∂1 : E/F → B for some geometric morphism to B with inverse image F : B→ E.

Some years later in 1990 M. Jibladze has shown that for an elementary topos
B cocomplete fibred toposes over B are precisely those fibrations equivalent to
fibrations ∂1 : E/F → B where F : B→ E is a lex functor between toposes.

Already from the appendix of PTJ’s Topos Theory one knows that a functor
F : B → E between toposes has a right adjoint if and only if the fibration
∂1 : E/F → B is locally small.

Thus Jibaldze’s result says that locally small, cocomplete fibred toposes over
a base topos B are up to equivalence precisely those fibrations ∂1 : E/F → B
where F is the inverse image part of a geometric morphism from E to B.

This analogy can be extended in as far as for a geometric morphism F `
U : E → B the fibration ∂1 : E/F → B has a (small) generating family iff the
geometric morphism is bounded, i.e. there exists an object S in E such that any
object X in E is a subquotient of FI × S for some object I in B.

This makes precise in which sense bounded geometric morphisms to a base
topos B are considered (as representations of) Grothendieck toposes over B as
bounded geometric morphisms to B correspond to locally small, cocomplete
fibred toposes over B admitting a small family of generators.

6 Pullback Preserving Functors and
Generalised Geometric Morphisms
between Partial Lex Categories

In this section we study pullback preserving functors and generalised geometric
morphisms between partial lex categories. In the first subsection we show how
such F : A→ B correspond to A-indexed families of pullback preserving functors
and in the second how they correspond to A-indexed families of lex functors
together with a natural family of Σ-embeddings. In the third subsection we
show how they can be represented by certain fibrations over 1(A) (where 1(A)
is obtained from A by freely adjoining a fresh terminal object).

6.1 Pullback Preserving Functors and
Generalised Geometric Morphisms
as Families of Generalised Geometric Morphisms

As partial lex categories and partial toposes are especially categories with pull-
backs Bénabou’s results as discussed in Section 2 are valid for them, i.e. a functor
F : A → B between such categories preserves all good properties of fibrations
by change of base along F iff F preserves pullbacks and has a right adjoint U .
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Now if A has a terminal object 1 then change of base along F preserves all
good properties of fibrations iff F1 : A/1→ B/F1 is the inverse image part of a
geometric morphism. The reason is that F preserves pullbacks iff F1 is lex and
F has a right adjoint iff F1 has a right adjoint. Of course, this argument does
not at all require that B also has a terminal object.

Now if A does not have a terminal object then we still have that F preserves
pullbacks iff FI : A/I → B/FI is lex for all I in A. But, alas, F having a right
adjoint is not ensured by F locally having right adjoints, i.e. for all I in A the
functor FI may have a right adjoint although F itself does not have a right
adjoint (globally).

A nice example for this situation is the embedding F : EF → EG where
E = SetN, F = {{n} | n ∈ N} and G = Pfin(N). This functor F between partial
toposes clearly preserves pullbacks and binary products and nevertheless does
not have a right adjoint.

Thus, though any adjunction F a U gives rise to an induced family of gen-
eralised geometric morphisms

F ◦ ΣI a U ◦ I∗ (I ∈ A)

such that for any f : J → I in A we have

F ◦ ΣI ◦ Σf = F ◦ ΣJ

and therefore also
f∗ ◦ I∗ ◦ U∗∼=J∗ ◦ U

such data are not necessarily induced by (the inverse image part of) a generalised
geometric morphism.

Nevertheless, one can reconstruct F from these data as the mediating functor
from the (pseudo-)colimit cone of the pseudo-functor A/(−) : A→ Cat (whose
cocone is given by ΣI : A/I → A (I ∈ A) as A is partial lex). The point is only
that such data do not ensure that the reconstructed F has a right adjoint. But,
of course, it is a property of these data that the reconstructed F has a right
adjoint because for the reconstruction of F one needs just these data and the
right adjoint to F is fully determined by F .

There is a more intuitive characterisation of the situation that a family
(F(I) : A/I → B | I ∈ A)) of pullback preserving functors that is natural in I,
i.e. F(I) ◦ Σf = F(J) for all f : J → I in A, gives rise to a functor F : A → B
having a right adjoint (where F is obtained as the mediating functor to the
family F(I) | I ∈ A)) from the colimiting cocone (ΣI : AI → A)). Namely this
is the case when all F(I) have a right adjoint U(I) and the mediating functor
G : B → Ā from the cone (U(I) : B → A/I | I ∈ A) to the limiting cone
(τI : C → A/I | I ∈ A) of the pseudo-functor A/(−) : Aop → Cat factors
through the inclusion Inc : A→ C sending A in A to (πI,A : I ×A→ I | I ∈ A)
in C via a functor U : B→ A, i.e. Inc◦U = G, where U is then the right adjoint
of F .
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6.2 Pullback Preserving Functors and
Generalised Geometric Morphisms
as Families of Proper Geometric Morphisms

Notice that for I ∈ A we have the factorisation F ◦ ΣI = ΣFI ◦ FI where
ΣI a I∗ is a generalised geometric morphism and FI a η∗I ◦ UFI is a proper
geometric morphism between the lex categories A/I and B/FI. Thus U ◦ I∗
and η∗I ◦ UFI ◦ I∗ are isomorphic as they are right adjoint to the same functor
F ◦ ΣI = ΣFI ◦ FI .

Thus we may consider a generalised geometric morphism as giving rise to
the induced family of proper geometric morphisms

FI a η∗I ◦ UFI : B/FI → A/I (I ∈ A)

For any f : J → I in A we have that

FI ◦ Σf = ΣFf ◦ FJ

and therefore also have the isomorphism

f∗ ◦ η∗I ◦ UFI ∼= η∗J ◦ UFJ ◦ (Ff)∗.

From Moens’ work we know that such data amount to a fibred geometric
morphism between the lex fibrations ∂1 : B/F → A and ∂1 : A/A→ A which –
up to equivalence – are in a 1-1-correspondence with geometric fibrations over
A.

Moreover for any f : J → I in A we have that

ΣFI ◦ ΣFf = ΣFJ

and therefore also
(Ff)∗ ◦ (FI)∗ ∼= (FJ)∗

Given the families (FI | I ∈ A) and (ΣFI | I ∈ A) we can reconstruct F from
the family (ΣFI ◦ FI | I ∈ A) (i.e. the family (F ◦ ΣI | I ∈ A)) as described in
the previous subsection 5.1. Of course, the functor F cannot be reconstructed
alone from the family (FI | I ∈ A). This problem arises already if A has a
terminal object as in that case F also cannot be reconstructed from the functor
F1 : A → B/F1. Even in that case one must know the functor Σ1 : B/F1 → B
as well.

The factorisation F = ΣF1 ◦ F1 in the case of A having a terminal object
generalises to a family of factorisations (ΣFI ◦ FI | I ∈ A) if A does not have a
terminal object.

The only difference to the case where A has a terminal object is that if
(FI | I ∈ A) is a family of (inverse image parts of) geometric morphisms – as
given e.g. by a geometric fibration over A – not any family of (ΣFI | I ∈ A)
natural in I gives rise to a pullback preserving functor F having a right adjoint
such that F ◦ ΣI = ΣFI ◦ FI for all I ∈ A (as already demonstrated in the
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previous subsection). But it is still the case that one gets a pullback preserving
functor F from the data (FI | I ∈ A) and (ΣF I | I ∈ A).

Summarizing one can say that that a pullback preserving functor F from A
to some partial lex category B is given – up to equivalence – by a pre-geometric
fibration P : X → A together with a natural family of Σ-embeddings of P into
B, i.e. a family (EI : XI → B | I ∈ A) such that (EI)1XI

: XI → B/EI1XI
is an

isomorphisms for all I in A and EI ◦Σf = EJ for all morphisms f : J → I in A.
Accordingly, a pullback preserving functor F : A → B having a right adjoint,
i.e. (the inverse image part of) a geometric morphism is given by a geometric
fibration P : X → A together with a natural family (EI : XI → B | I ∈ A) of
Σ-embeddings of P into B such that the functor F reconstructed from (EI ◦FI |
I ∈ A) has a right adjoint.

6.3 Pullback Preserving Functors between
Partial Lex Categories as Fibrations

In subsection 6.2. we have seen that a pullback preserving functor from a partial
lex category A to some partial lex category B can be given equivalently as a pre-
geometric fibration P : X → A together with a natural family (EI : XI → B)
of Σ-embeddings. Such a pair (P,E) can more elegantly be represented by one
single fibration P : X→ 1(A) (where A is obtained from A by adjoining a fresh
terminal object 1) such that P satisfies the following requirements : X1 = B, the
restriction of P along Inc : A → 1(A) gives rise to the pre-geometric fibration
P : X → A and P is a cofibration such that for u : I → 1 in A, ϕ : X → ΣIX
cocartesian over u and vertical α : Y → ΣIX the pullback of ϕ along α exists
and is cocartesian, too, and any square

Y
ψ - ΣIY

X

f

?

ϕ
- ΣIX

g = ΣIf

?

is a pullback provided ψ : Y → u∗Y is cocartesian and f and g are vertical.
The latter condition establishes an equivalence ΣI/X : P (I)/X → P (1)/ΣIX
whose adjoint is given by pullback along ϕ : X → ΣIX. Specializing X to the
terminal object of P (I) we get the equivalence

EI = ΣI/1P (I) : P (I) = P (I)/1P (I) → P (1)/ΣI1P (I)

embedding the fibre P (I) as a slice category into B = P (1).
Of course, even if A has a terminal object P cannot be recovered from

P = Inc∗P . Counterexamples are given by pullback preserving functors that
do not preserve terminal objects.
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7 Proper Lex Functors and Geometric
Morphisms between Partial Lex Categories

There arises the question to which extent a pullback preserving functor F : A→
B (possibly having a right adjoint U and thus constituting the inverse image of
a generalsied geometric morphism) can be reconstructed alone from its induced
family (FI : A/I → B/FI | I ∈ A) of proper lex functors or proper geometric
morphisms.

First of all our extension of Moens’ Theorem tells us that even if categories A
and B are lex then a pullback preserving functor F : A→ B can be reconstructed
from its induced family of geometric morphisms (FI | I ∈ A) only if F is actually
lex. Otherwise, one simply “reconstructs” its “best approximating” lex functor
F1 : A→ B/F1.

One cannot avoid this “defect” by only requiring that F preserves also binary
products as this only enforces that F preserves subterminals (as F then preserves
diagonals and an object is subterminal iff its diagonal is an iso). Thus if X is
a lex category and U is a nontrivial subobject of 1X then ΣU : X/U → X
preserves pullbacks and binary products (and even has a right adjoint) but it
does not preserve terminal objects as ΣU (idU ) = U which by assumption is not
terminal in X. Thus if F : A → B is a pullback preserving functor between lex
categories such that F (1A)→ 1B is a monomorphism then F preserves pullbacks
as F = ΣF (1A) ◦ F1A and both ΣF (1A) and F1A preserves binary products. Thus
we get that a pullback preserving functor F : A → B between lex categories
preserves binary products iff F (1) is a subterminal.

This problem remains even if A and B do not have terminal objects as shown
by the following example. Let E = SetN, F = { {2n} | n ∈ N} and G = { {n} |
n ∈ N} then the embedding of partial toposes F : EF → EG preserves pullbacks
and binary products and has a right adjoint but its associated geometric fibration
PF = ∂1 : EG/F → EF is isomorphic to PIdEF = ∂1 : EF/IdEF → EF , i.e. the
fundamental fibration of EF .

Our extension of Moens’ Theorem shows that – up to equivalence – pre-
geometric fibrations over lex A correspond to lex functors F : A → B for some
lex category B. By analogy, in order to characterise pre-geometric fibrations
over a partial lex base A as corresponding – up to equivalence – to a certain
class of functors from A to some partial lex category B we have to clarify first
what it means for a functor F : A → B between partial lex categories to be
“proper lex”.

A possible solution which avoids the notorious problem of reconstructing
the functor F : A → B from its associated fibration PF = ∂1 : B/F → A is
to augment the properly partial lex category A with a fresh terminal object.
More explicitely, we consider the functor 1( ) left adjoint to the inclusion of
Catterm, the category of categories with a terminal object and functors pre-
serving terminal objects, into the category Cat of all categories and all functors
between them. More explicitely, 1(A) is the category whose objects are those
of A together with a fresh terminal object 1. The arrows of 1(A) are those of A
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together with a unique morphism A → 1 for every A ∈ A and id1 : 1 → 1, the
identity on 1. Notice that in 1(A) any morphism f : 1→ X is equal to id1, i.e.
any global element in 1(A) is the identity on 1 or, equivalently, when an object
in 1(A) has a global element then this object is already (the) terminal object.
If F : A→ B is a functor in Cat then 1(F ) : 1(A)→ 1(B) is the unique terminal
object preserving functor whose restriction to A is F .

If F : A → B is an arbitrary functor between arbitrary categories A and B
then F has a right adjoint iff 1(F ) has a right adjoint that reflects the terminal
object. If F a U then obviously 1(F ) a 1(U) and 1(U) reflects the terminal
object. On the other hand if 1(F ) a G then G reflects the terminal object as
if 1→ G(Y ) then 1(F )(1)→ Y and as 1 = 1(F )(1) the object Y in 1(B) has a
global element and therefore Y = 1 in 1(B). Thus G reflects 1 and therefore its
restriction U to the subcategory B provides a right adjoint to F .

Obviously, a category A is partial lex iff 1(A) is lex, i.e. has all finite limits (as
one can see easily that nontrivial pullbacks over 1 in 1(A) correspond to binary
cartesian products in A). Furthermore it is immediate that a functor F : A→ B
between partial lex categories preserves pullbacks and binary products iff 1(F )
is lex, i.e. preserves all finite limits.

In the light of these considerations one might be inclined to say that a
functor F : A → B between partial lex categories A and B is proper lex iff
1(F ) : 1(A) → 1(B) is lex, i.e. iff F preserves pullbacks and binary products,
and it is (the inverse image part of) a proper geometric morphism iff 1(F ) is
(the inverse image part of) a geometric morphism, i.e. iff F preserves pullbacks
and binary products and has a right adjoint.

Alas, this tentative definition is not conservative w.r.t. the case where both
A and B are proper lex as there are functors F : A → B between proper lex
categories that preserve pullbacks and binary products but do not preserve the
terminal object. A typical example is a functor ΣU : B/U → B for a proper
subterminal object U which preserves pullbacks and binary products but does
not respect the terminal object. Of course, when A and B lack a terminal
object one cannot require that F : A → B preserves this non-existent terminal
object. Thus we have to replace this property by an equivalent one that does
not mention terminal objects.

If both A and B do have terminal objects and F : A → B preserves them
then for any B ∈ B there is some morphism B → FA for some object A ∈ A (as
one may take for A the terminal object of A and the unique morphism B → FA
which exists as FA is terminal due to the assumption that F preserves terminal
objects and A is a terminal object. If A and B are lex and F : A→ B preserves
pullbacks and binary products then the condition above actually implies that
it preserves terminal objects. If for any B there is a morphism f : B → FA
then there is also the morphism F (!A) ◦ f : B → F (1A). As F preserves binary
products as well we know that F (1A) is subterminal. Thus for B = 1B then
there is a unique morphism t : 1B → F (1A). Let s =!F (1A) : F (1A) → 1B then
we have s ◦ t = id1B and t ◦ s = idF (1A) as F (1A) is subterminal. Thus we get
that F (1A) isomorphic to 1B and therefore terminal itself.

Thus a functor F : A→ B between partial lex categories is called proper lex
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iff F preserves pullbacks and binary products and for any B ∈ B the comma
category B/F is non-empty. We will show that the proper lex functors are
precisely those functors F that can be reconstructed from their induced fibration
PF = ∂1 : B/F → A.

Let A and B be partial lex categories which both lack a terminal object. We
have seen above that the functors F : A → B preserving pullbacks and binary
products are in a 1-1-correspondence with the lex functors from 1(A) to 1(B)
which reflect 1. By (our extension of) Moens’ Theorem the latter are – up to
equivalence – in a 1-1-correspondance with the pre-geometric fibrations P over
1(A) such that in P (1), the fiber of P over 1, the only objects having a global
element are the terminal objects and furthermore in the total category of P
any cocartesian arrow whose codomain is terminal in P (1) is already an isomor-
phism. As for lex fibrations over 1(A) the terminal objects of the total category
coincide with the terminal objects in the fiber over 1 this additional condition
on a pre-geometric fibration can be expressed more concisely as the requirement
that in the total category of the fibration any global element and any cocartesian
arrow to a terminal object is an isomorphism. Obviously, such pre-geometric
fibrations correspond to generalised geometric morphisms whose inverse image
part also preserves binary products iff they are geometric fibrations, i.e. also
have small global sections.

Notice that for a pre-geometric fibration P : X → 1(A) where any global
element and any cocartesian arrow to a terminal object is an isomorphism it
still may happen that there is a lot of objects in the fiber over 1 which are
neither terminal nor appear as codomains of cocartesian arrows which are not
isomorphisms, i.e. start from an object which is not in the fibre over 1 and
therefore can be considered as disjoint sums in a nontrivial way. Up to equiva-
lence it are those pre-geometric fibrations over 1(A) which are induced by a lex
F : 1(A) → 1(B) that reflect 1 but where not any B ∈ B lies above an FA via
some morphism B → FA. Such pre-geometric fibrations – even up to equiva-
lence – are not uniquely determined by P|A, the restriction of P to A, because
they are equivalent to PG = ∂1 : C/G→ A where C is the full subcategory of B
on those objects B having a morphism to some FA and G : A→ C is obtained
from F by restricting its codomain to C (which still has domain A as for any
A ∈ A we have idFA : FA→ FA).

Thus we get the following extension of Moens’ Theorem: the proper lex
functors from a partial lex category A to some partial lex category B are –
up to equivalence – in a 1-1-correspondence with those pre-geometric fibrations
over 1(A) where any global section and any cocartesian arrow to a terminal
object (in the total category of the fibration) is an isomorphism and any non-
terminal object in the fibre over 1 appears as the codomain of a non-isomorphic
cocartesian arrow.

For such P the fibre over 1 can be reconstructed from P|A by taking the
(pseudo-)colimit of the (covariant) pseudo-functor corresponding to the cofibra-
tion P|A and adding a fresh terminal object. Notice that the (pseudo-)colimit
of a cofibration C : X → A is obtained as ColimC = X[coCart(C)−1] employ-
ing the calculus of fractions. The cofibration P itself – and therefore also the
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fibration P – can be reconstructed accordingly from the colimit cone for C.
Notice that this reconstruction of B from ∂1 : B/F → A does work due to

the assumption that F : A → B preserves binary products as then we have for
morphisms f : Y → X, x1 : X → F (A1), x2 : X → F (A2) in B that there exists
a (unique) morphism x : X → F (A1 × A2) with F (πi) ◦ x = xi for i = 1, 2 and
therefore B/F (πi)(f : x◦f → x) = f : xi◦f → xi for i = 1, 2, i.e. f : x1◦f → x1

and f : x2 ◦ f → x2 get identified in the colimit.
Thus we may characterise proper lex functors F : A → B from A to some

partial lex category B as those pre-geometric fibrations P : X → A such that
their “completion” P : X→ 1(A) are pre-geometric fibrations (where X1 = P (1)
is obtained by freely adjoining a terminal object to the pseudo-colimit of the
cofibration P ). These in turn correspond – up to equivalence – to those pre-
geometric fibrations over 1(A) such that all global element and all cocartesian
arrows to a terminal object (in the total category of the fibration) are isomor-
phism.

On can prove that for any pre-geometric fibration P : X → A its “comple-
tion” P : X→ 1(A) (as described above) is pre-geometric, too. Thus we get that
for a partial lex A there is – up to equivalence – a 1-1-correspondence between
proper lex functors from A to some partial lex B and pre-geometric fibrations
over A.

Alas, such a characterisation is not available anymore for pullback preserving
functors F : A→ B between partial lex categories if F does not preserve binary
products – even if for any B ∈ B there is a morphism to some FA.

Firstly, for such F the induced fibration PF = ∂1 : 1(B)/1(F ) → 1(A) –
though having all (internal) sums – will not satisfy the Beck condition for sums
over nontrivial pullbacks over 1 because this is equivalent to F preserving binary
products.

(Notice that there is a difference between functors of the form 1(F ) for some
pullback preserving F : A → B and pullback preserving functors from 1(A)
to 1(B) because the latter in general don’t preserve 1 whereas the former in
general don’t preserve pullbacks over 1. Moreover, if G : 1(A)→ C is a pullback
preserving functor to a lex category C and G has a right adjoint V then V
will not reflect terminal objects if G(1) is not terminal as due to the counit
η1 : 1→ V G1 the object V G1 is equal to 1 in 1(A) although – by assumption –
G1 is not terminal.)

Secondly, for such F : A→ B the category B cannot be reconstructed fromits
induced fibration by taking its (pseudo-)colimit even if any B ∈ B admits an
arrow to some F (A). This can be seen from the following example.

Let A be the category arising from the poset with two maximal elements a
and b and a least element ⊥, i.e. its Hasse diagram has the shape of a V. Let B
be the proper partial lex category arising from the poset which is obtained by
adjoining to (the poset corresponding to) A a further element c which in B is
the infimum of a and b but still is strictly greater than the least element ⊥, i.e.
B has the shape of a Y. Clearly both A and B are proper partial lex categories.
The inclusion F from A into B preserves pullbacks but not binary products (as
⊥, the infimum of a and b in A, is sent by F to ⊥ and not to c, the infimum of
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a and b in B). Obviously, F has also a right adjoint U sending a and b to itself
and both c and ⊥ to ⊥. As all objects of B are below a = Fa or below b = Fb
it also holds that for any B ∈ B there is a morphism to some FA.

When we now consider the colimit of the cofibration PF then in B/F the
c over a and the c over b will never get identified in the colimit as there is no
cocartesian arrow in B/F from or to c → a or c → a which is not already an
isomorphism. Actually the colimit of PF is the poset C obtained by adjoining
a new least element 0 to the sum 21 + 21 (taken in the category of posets or
categories).

Of course, there is also the cocone (ΣFA : B/FA → B | A ∈ A) to B over
the diagram in Cat corresponding to the (split) cofibration ∂1 : B/F → A. The
mediating functor S : C → B to this cocone from the colimiting cocone sends
the object 0 to ⊥, the top elements of the two copies of 21 to a and b, respectively,
and the minimal elements ca and cb of the two distinct copies of 21 both to the
same object c in B. This illustrates how the colimiting process creates “two
versions of c” namely (the isomorphism classes of) c→ a and c→ b (in B/F ).

Notice that this counterexample can be lifted from posets to partial toposes
in the following way. Let E and F be the full subcategories of Â and B̂, re-
spectivly, on those objects whose support is linearly ordered. (Notice that the
support of a presheaf over a poset P is always a subobject of the terminal
presheaf, i.e. a downward closed subset of P.) Let F again denote the inclu-

sion of A into B then the reindexing functor F ∗ : B̂ → Â restricts to a functor
V : F → E. The left Kan extension of F restricts to a functor G : E → F
and is left adjoint to V . The functor G (can be chosen in a way such that it)

sends H ∈ Â to the presheaf K ∈ B̂ with K|A = H,K(c) = H(a) ∪ H(b) and
K(c→ x) is the inclusion of H(x) into H(a)∪H(b) for x ∈ {a, b}. Therefore G
can be seen easily to preserve pullbacks (but not all binary products). Again,
when taking the colimit of the cofibration F/G → E one can observe that if

τ1 : K → K1, τ2 : K → K2 are morphisms in B̂ such that K(c),K1(a),K2(b) are
nonempty but K(a) = ∅ = K(b) then τ1 and τ2 considered as objects of F/G
will not get identitified when taking the colimit of F/G→ E.

In a fairly restricted sense the factorisation of a pullback preserving functor
F : A→ B between lex categories as F = ΣF1◦F1 can be generalised to pullback
preserving functors between partial lex categories in the following way. Assume
that F : A→ B is a pullback preserving functor between partial lex categories.
Now we may take the colimit (MA : B/F (A)→ C | A ∈ A) of B/F ( ) considered
as a split opfibration. As (ΣF (A) : B/F (A)→ B | A ∈ A) is also a cocone there
is a unique mediating functor S : C → B such that S ◦MA = ΣF (A) for all
A ∈ A. If A has a terminal object then this functor S is ΣF1.

As we know that (ΣA : A/A → A)A∈A is a colimit cone for the split cofi-
bration A/ we get a functor F∞ : A → C defined as the mediating functor to
the cocone (MA ◦ FA | A ∈ A) (this actually is a cocone as for any f : J → I
in A we have ΣFf ◦ FJ = FI ◦ Σf ). We now get F = S ◦ F∞ generalising the
factorisation F = ΣF (1) ◦ F1 as F∞ preserves pullbacks and binary products.
Furthermore, if F has a right adjoint then F∞ has a right adjoint, too.
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Alas, the functor S—though preserving pullbacks—need not have a right
adjoint even if F has one. An example for this situation has been given already
above: for A take the poset of shape V and for B take the poset of shape Y
and let F be the inclusion of A into B which has a right adjoint; we have seen
that the colimit C of B/F (−) is the poset which is obtained from 21 + 21 by
adding a new bottom element 0. The functor S : C → B cannot have a right
adjoint T as we have S(ca) = c→ c and S(cb) = c→ c which implies that for a
hypothetical right adjoint T it would hold that ca → T (c) and cb → T (c) which
is impossible as ca and cb are unbounded in C. Nevertheless the embedding
functor F∞ : A → C still has a right adjoint U∞ which preserves minimal and
maximal elements and sends both ca and cb to ⊥ ∈ A.

A further remarkable aspect of the functor S : C→ B is that all its slices FI :
C/I → B/SI are isomorphisms, i.e. for all I ∈ C the functor EI = ΣFI ◦ F/I :
C/I → B is an embedding as a slice category into B, and nevertheless F does not
have a right adjoint. Thus it serves as a most simple example demonstrating
that a functor need not have a right adjoint even if all its localisations are
embedding of slice categories (that even preserve binary products).

Finally we observe that Moens’ Theorem does not generalise to geometric
fibrations over partial lex B.

If B is a non-empty partial lex category then IdB : B → B is a geometric
fibration over B and by the considerations above it is canonically isomorphic to
∂1 : 11/F→ B where F : B→ 11 is the unique functor form B to the the terminal
category 11 (as 11∼= B[coCart(IdB)−1] ). The functor F preserves pullbacks and
binary products and for any X ∈ B there is a morphism X → FI for some I ∈ B.
But F has a right adjoint U if and only if B has a terminal object (namely U∗
where ∗ is the unique object in 11). Therefore, for any non-empty partial lex
category B the geometric fibration IdB over B corresponds to a partial geometric
morphism if and only if B has a terminal object.

8 The Right Notion of Geometric Morphism
between Partial Lex Categories

At the end of the last section we have seen that there is functor F : A → B
between partial lex categories A and B which does not have a right adjoint but
nevertheless F preserves binary products and ∂1 : B/F → A is a geometric
fibration. Thus, for partial lex categories in general one cannot require that
geometric morphisms have right adjoints. We will demonstrate below that the
condition of having a right adjoint has to be weakened to the condition that
each slice of F has a right adjoint, i.e. that F/I : A/I → B/FI has a right
adjoint for all I ∈ A.

Theorem 8.1 For an arbitrary functor F : A → B the fibration F ∗PB = ∂1 :
B/F → A has small global sections iff for all I ∈ A the functor F/I : A/I →
B/FI has a right adjoint.
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Proof. The fibration ∂1 : B/F → A has small global sections iff for any
x : X → FI there exists a morphism

FJ
εI,x - X

FJ

idFJ

?

Ff
- I

x

?

over f : J → I such that for any morphism

FK
s - X

FK

idFJ

?

Fg
- I

x

?

over g : K → I there exists a unique morphism h : K → J such that

X

FK
Fh
-

s

-

FJ

ε I
,x

-

FK

idFK

?

Fh
- FJ

idFJ

?

Ff
- FI

x

?

I

K ....................
h
-

g

-

J

f

-

But, obviously, this requirement is equivalent to the representability of the func-
tor B/FI(F/I , x).

Therefore, F ∗PB has small global sections iff F/I has a right adjoint for all
I ∈ A. �
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Theorem 8.2 Let A and B be categories with pullbacks. Then for a functor
F : A→ B the following are equivalent.

1. The fibration F ∗PB = ∂1 : B/F → A is pre-geometric.

2. The functor F preserves pullbacks.

3. For all I ∈ A the functor F/I : A/I → B/FI is lex, i.e. preserves finite
limits.

Proof. Of course, the functor F preserves pullbacks iff for all I ∈ A the functor
F/I preserves finite limits.

If F preserves pullbacks then the fibration F ∗PB is pre-geometric as as PB
is pre-geometric and change of base along F preserves this property.

By Theorem 2.2 the functor F preserves pullbacks if F ∗PB has internal sums
satisfying the Beck-Chevalley condition. Thus the functor F preserves pullbacks
especially if the fibration F ∗PB is pre-geometric. �

From these two theorem we get a characterisation of those functors F : A→
B between categories with pullbacks that induce a geometric fibration.

Theorem 8.3 Let F : A → B be a functor between categories with pullbacks.
Then the following are equivalent.

1. F ∗PB is a geometric fibration.

2. For all I ∈ A the functor F/I : A/I → B/FI is (the inverse image part
of) a geometric morphism, i.e. F/I preserves finite limits and has a right
adjoint.

3. The functor F preserves pullbacks and each slice of F has a right adjoint,
i.e. for all I ∈ A the functor F/I : A/I → B/FI has a right adjoint.

Proof. Immediate from Theorems 8.1 and 8.2. �

Therefore such functors will be called partial geometric morphisms between
categories with pullbacks.

Definition 8.1 A functor F : A→ B between categories with pullbacks is called
a partial geometric morphism iff F preserves pullbacks and each slice of F has
a right adjoint, i.e. iff each slice of F preserves finite limits and has a right
adjoint.

Notice that this notion of partial geometric morphism is conservative w.r.t.
the notion of partial geometric morphism between lex categories due to the
following lemma.

Lemma 8.4 Let A be a lex category and B be partially lex. Let F : A → B be
an arbitrary functor.Then F has a right adjoint iff all slices of F have a right
adjoint.
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Proof. If F has a right adjoint U then for all I ∈ A the slice functor F/I :
A/I → B/FI has the right adjoint η∗I ◦ U/FI .

If all slices of F have a right adjoint then F/1 : A ∼= A/1→ B/F1 has a right
adjoint U(1). Then F = ΣF1 ◦ F/1 a U(1) ◦ (F1)∗. �

In the light of the previous section this suggest the following definition of
(total) geometric morphism between partial lex categories.

Definition 8.2 A functor F : A → B between partial lex categories is (the
inverse image part of) a (total) geometric morphism iff the following conditions
are satisfied

1. The functor F : A→ B is (the inverse image part of) a partial geometric
morphism, i.e. for all I ∈ A the functor F/I : A/I → B/FI preserves
finite limits and has a right adjoint.

2. The functor F preserves binary products.

3. The functor F is cofinal, i.e. for any B ∈ B there is a morphism B → FA
in B for some A ∈ A.

Thus we get a 1-1-correspondence (up to equivalence) between
geometric fibrations over A and total geometric morphisms from A to
some partial lex B.

We will show that the definition of total geometric morphism can be sim-
plified considerably iff we assume that the partial lex catgeories involved have
“enough subterminals”.

Definition 8.3 Let C be a category. An object I ∈ C will be called subterminal
iff for any X ∈ C there exists at most one morphism X → I. We write st(C)
for the class of subterminals of C.
The category C has enough subterminals iff for any X ∈ C there is an I ∈ st(C)
with X → I, i.e. iff st(C) is cofinal in C.

Notice that any lex category has enough subterminals as it has a terminal
object. But not any lex category needs to have supports as this would imply
that all terminal projections admit an initial epi-mono-factorisation.

Notice that if a category C has pullbacks and enough subterminals then C
has binary products if and only if products of subterminals exist in C. For
I, J ∈ st(C) then I × J is also subterminal in C and therefore we write I ∩ J
(“intersection of I and J”) instead of I × J .

Now we have the following lemma.

Lemma 8.5 Let A and B be partial lex categories with enough subterminals and
F : A→ B preserve pullbacks. Then F preserves binary products iff F preserves
subterminals and their intersections.
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Thus we get the following characterisation of total geometric morphisms
between partial lex categories with enough subterminals.

Theorem 8.6 Let A and B be partial lex categories with enough subterminals.
A functor F : A→ B is a total geometric morphism iff

1. The functor F : A→ B is a partial geometric morphism.

2. The functor F preserves subterminals and their intersections.

3. The image of st(A) under F is cofinal in st(B), i.e. for any J ∈ st(B)
there exists an I ∈ st(A) with J → FI.

This characterisation can be improved using the following lemma.

Lemma 8.7 Let F : A → B be a functor between categories with pullbacks. If
A has enough subterminals then

1. F preserves pullbacks iff F/I preserves finite limits for all subterminals I.

2. If F preserves pullbacks then all slices of F have right adjoints iff F/I has
a right adjoint for all I ∈ st(A).

Proof. The implications from left to right are trivial.
For the reverse implications observe that for any A ∈ A there exists an

I ∈ st(A) with t : A→ I. Then the slice functor F/A is canonically isomorphic
to the slice of F/I at t : A→ I.

If F/I preserves finite limits then all its slices preserve finite limits and there-
fore F/A preserves finite limits.

If F/I preserves finite limits and has a right adjoint then all its slices preserve
finite limits and have a right adjoints. Thus F/A preserves finite limits and has
a right adjoint.

As A is assumed to have enough subterminals we get the desired implications
from right to left. �

So we get the following improved characterisations.

Theorem 8.8 Let A and B be partial lex categories.
If A has enough subterminals then a functor F : A→ B is a partial geometric

morphism iff for all I ∈ st(A) the functor F/I preserves finite limits and has a
right adjoint.

If both A and B have enough subterminals then a functor F : A → B is a
total geometric morphism iff the following conditions hold :

1. For all I ∈ st(A) the functor F/I preserves finite limits and has a right
adjoint.

2. The functor F preserves subterminals and their intersections.

3. The image of st(A) under F is cofinal in st(B), i.e. for any J ∈ st(B)
there exists an I ∈ st(A) with J → FI.
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Proof. The first claim follows is the same as the second claim of Lemma 8.7.
From this the second claim follows by Theorem 8.6. �

The following lemma shows that the notion of total geometric morphisms is a
conservative extension of the traditional notion of geometric morphism between
categories with finite limits.

Lemma 8.9 Let F : A → B be a functor between categories with finite limits.
Then F is a total geometric morphism (in the sense of Definition 8.2) iff F
preserves finite limits and has a right adjoint.

Proof. Suppose that F is a total geometric morphisms. Then by Lemma 8.4
it has a right adjoint. By definition F preserves pullbacks.

It remains to show that F preserves the terminal object. By Theorem 8.6
there exists a subterminal I ∈ st(A) and a morphism h : 1 → FI. But then
F (!I)◦h : 1→ F1. As F1 is subterminal (by Theorem 8.6) we get that F (!I)◦h
is an isomorphism and therefore F1 is terminal.

Suppose that F preserves finite limits and has a right adjoint. By Lemma
8.4 all slices of F have a right adjoint. If F preserves finite limits then all slices
of F preserve finite limits and F preserves binary products. As F1 is terminal
the functor F is cofinal in B. Thus F is a total geometric morphism in the sense
of Definition 8.2. �

We finally give examples of total geometric morphism between partial lex
categories that do not have right adjoints.

For any partial lex category B the functor F : B → 11 is a total geometric
morphism. But F has a right adjoint if and only if B has a terminal object.
Thus for all properly partial lex categories B the functor F : B → 11 is a total
geometric morphism which does not have a right adjoint.

Let E be the full subcategory of Tree = ω̂ = Setω
op

on those objects T ∈ ω̂
with T (n) = ∅ for some n ∈ ω. The category E is partial lex with enough
subterminals.
Let π : ω̂ → Set be the functor sending T ∈ ω̂ to T (0) and α : T1 → T2 to
α0. We have π a ∆ a Γ where Γ = ω̂(1, ) is the global sections functor. The
functor π preserves limits and therefore π is the inverse image part of a geometric
morphism. Let F : E → Set be the restriction of π to the full subcategory E.
Therefore the functor F preserves all limits existing in E. Moreover the image
of st(E) under F is cofinal in Set. For any T ∈ E the slice functor F/T is
canonically isomorphic to the slice functor π/T . As π/T has a right adjoint the
slice functor F/T has a right adjoint as well.
Thus, by Theorem 8.6 the functor F is a total geometric morphism. But F does
not have a right adjoint U as otherwise U(1) were terminal in E which does not
have a terminal object.
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9 Pre-Geometric Fibrations
are Induced by Glueing

In this section we prove that any pre-geometric fibration P : X → B over a
partial lex B is equivalent to a pre-geometric fibration of the form ∂1 : C/F → B
for some partial lex functor F : B→ C which is unique up to equivalence w.r.t.
this property. 1

We first observe that ΣP := coCart(P ) is a pullback congruence in the
sense of Bénabou’s [Bén89]. This means that ΣP satisfies the following three
conditions

1. Σ contains all isomorphisms.

2. Σ is stable under arbitrary pullbacks.

3. Whenever ϕ and ψ are maps in X such that ϕ◦ψ is defined then the three
maps ϕ, ψ and ϕ ◦ ψ are all in Σ whenever two of them are in Σ.

The first condition is obviously true. The second condition follows from stability
of sums for P . For the third condition the only nontrivial case is covered by
Lemma 5.2.

We now define C as X[Σ−1
P ]. Recall that the objects of C are the objects

of X and that C(X,Y ) consists of equivalence classes of spans from X to Y
where spans 〈ϕ0, ϕ1〉 and 〈ψ0, ψ1〉 are considered as equivalent iff there exist
cocartesian arrows θ and ϑ with ϕ0 ◦ θ = ψ0 ◦ ϑ and ϕ1 ◦ θ = ψ1 ◦ ϑ. We write
[ϕ0, ϕ1] for the equivalence class of the span 〈ϕ0, ϕ1〉.

Let Q : X→ C = X[Σ−1
P ] be the functor which is the identity on objects and

sends ϕ : X → Y to the morphism Q(ϕ) = [idX , ϕ] : X → Y in C. Notice that
Q is initial among the functors inverting all cocartesian arrows (i.e. sending all
cocartesian arrows to isomorphisms).

As ΣP is a pullback congruence on X (which has pullbacks) we can apply
Theorem 1.4 from [Bén89] telling us that C = X[Σ−1

P ] has pullbacks, Q : X→ C
preserves those finite limits which exists in X and that Σ = Ker(Q) (i.e. that
Σ contains all maps in X which QΣ maps to an isomorphisms). Thus, it follows
immediately that C = X[Σ−1

P ] has binary products as X has binary products, Q
preserves them and Q is the identity on objects. Thus Q is a partial lex functor.

Let 1 : B→ X be a right adjoint right inverse to P picking a terminal object
out of each fibre. As 1 : B → X is a right adjoint it preserves pullbacks and
binary products, i.e. 1 is partial lex. Thus, the functor F := Q ◦ 1 : B → C
is partial lex as both Q and 1 are partial lex. Furthermore, the image of F is
cofinal in C as the terminals in the fibers of P are cofinal in X and Q is the
identity on objects.

For obtaining our desired result it remains to show that there is a cartesian
equivalence H : X → C/F from P to Gl(F ) = ∂1 : C/F → B. An object
X ∈ P (I) is sent by H to Q(!IX) : X → 1I in C where !IX : X → 1I is the unique

1A category is partial lex iff it has binary pullbacks and products and a functor between
partial lex categories is called partial lex iff it preserves binary pullbacks and products.
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vertical map in X. A morphism ϕ : X → Y in X over f = P (ϕ) is sent to the
morphism (Q(ϕ), f) : H(X)→ H(Y ) in C/F .

The functor H : X→ C is cartesian as Q preserves pullbacks and

Y
ϕ - X

1J

!JY

?

1f
- 1I

!IX

?

is a pullback if ϕ is cartesian over f = P (ϕ) : J → I.
That H is faithful as a cartesian functor follows from the fact that whenever

ϕ,ψ : X → Y are arrows in X with P (ϕ) = P (ψ) and Q(ϕ) = Q(ψ) then ϕ = ψ.
This is the case as Q(ϕ) = Q(ψ) means that there exists a cocartesian θ with
ϕ ◦ θ = ψ ◦ θ and this implies ϕ = ψ as by the assumption P (ϕ) = P (ψ).

Next we show that H is full as a cartesian functor.
Suppose that 〈[ϕ0, ϕ1], f〉 : H(X) → H(Y ) in C/F , i.e. f : I → J in B,

X ∈ P (I), Y ∈ P (J) and [ϕ0 : Z → X,ϕ1 : Z → Y ] : X → Y in C with
Q(!JY ) ◦ [ϕ0, ϕ1] = F (f) ◦ Q(1IX) in C. The latter equality means in explicit
terms that there exists a cocartesian arrow θ : U → Z in X such that

X
!IX - 1I

X
�

id
X

U

ϕ0 ◦ θ

6

1J

1f

?

Z

θ

?

ϕ1

-

�

ϕ
0

Y

!JY

6

commutes, i.e. that !JY ◦ ϕ1 ◦ θ = 1f◦!IX ◦ ϕ0 ◦ θ.
But then P (ϕ1 ◦ θ) = P (ϕ1) ◦ P (θ) = f ◦ P (ϕ0) ◦ P (θ) and therefore there

exists a unique arrow ψ : X → Y in X over f with ψ ◦ ϕ0 ◦ θ = ϕ1 ◦ θ as ϕ0 ◦ θ
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is cocartesian. This situation is illustrated by the following diagram

X
!IX - 1I

X
�

id
X

U

ϕ0 ◦ θ

6

1J

1f

?

Z

θ

?

ϕ1

-

�

ϕ
0

Y

!JY

6

.........................................................

ψ

-

which commutes as ϕ0 ◦ θ is cocartesian and both 1f◦!IX and !JY ◦ ψ are over f
satisfying 1f◦!IX ◦ ϕ0 ◦ θ = !JY ◦ ϕ1 ◦ θ = !JY ◦ ψ ◦ ϕ0 ◦ θ.

Thus, [ϕ0, ϕ1] = [idX , ψ] = Q(ψ) and therefore Q(!JY )◦Q(ψ) = F (f)◦Q(!IX)
holds in C demonstrating that H(ψ : Y → X) = 〈Q(ψ), f〉 = 〈[ϕ0, ϕ1], f〉.

Thus H is full as a cartesian functor.
It remains to show that any object [ϕ0 : Z → Y, ϕ1 : Z → 1I ] : Y → F (I)

in C/F is isomorphic in the fiber over I to H(X) = [idX , !X ] : X → F (I) for
some X ∈ P (I). Let f = P (ϕ1) : J → I and ψ : Z → X be a cocartesian arrow
over f . Then [ϕ0, ψ] : Y → X is an isomorphism (with inverse [ψ,ϕ0]) such
that [idX , !X ]◦ [ϕ0, ψ] = [ϕ0, ϕ1], i.e. Q(!IX)◦ [ϕ0, ψ] = [ϕ0, ϕ1], establishing that
H(X) = Q(!IX) is isomorphic to [ϕ0, ϕ1] : Y → F (I) in the fiber over I (via the
isomorphism [ϕ0, ψ] : Y → X in C).

This finishes the proof that H : X→ C/F establishes a cartesian equivalence
between P and Gl(F ) = ∂1 : C/F → B.

It is clear that each slice of F has a right adjoint if P is a geometric fibration
as Gl(F ) is equivalent to P and the property of having small global sections is
invariant under equivalence.

Notice that in the proof above we have never used the requirement that B has
binary products but for showing that X[Σ−1

P ] has binary products and F = Q ◦ 1
preserves them. Therefore, we also get a Moens’ Theorem for categories B with
pullbacks : any pre-geometric fibration P : X → B is equivalent to Gl(F ) =
∂1 : C/F → B for some category C with pullbacks and some pullback preserving
functor F : B → C which are unique up to equivalence; furthermore, any slice
of F has a right adjoint iff P is a geometric fibration.

If G : B→ D is a pullback preserving functor between categories with pull-
backs (and binary products) then one may apply the above construction to the
pre-geometric fibration Gl(G) = ∂1 : D/G→ B. By the above construction this
gives rise to a functor F : B → C (with C = D/G[Σ−1

Gl(G)]) between categories

with pullbacks (and binary products) such that F preserves pullbacks (and bi-
nary products). Furthermore, by construction of F the pre-geometric fibrations
Gl(F ) and Gl(G) are equivalent.
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Moreover, there is a functor S : C→ D with G = S ◦F sending a morphism

A �
i
∼=

D
h - B

GI

a

?
�
Gf

GK

d

?

Gg
- GJ

b

?

in C = D/G[Σ−1
Gl(F )] (where i is an isomorphism as the left square is a cocarte-

sian) to the morphism h ◦ i−1 : A→ B in D. It can be shown that S preserves
pullbacks (but in general need not preserve binary products!) and every slice
of S has a right adjoint independent from whether every slice of G has a right
adjoint or not! But as we have seen already, it need not be the case at all that
S itself has a right adjoint.

Thus S : C → D generalises the functor ΣG1 : D/G1 → D to the case when
B does not have a terminal object. The functor S need not preserve binary
products even if B has a terminal object as S = ΣG1 : D/G1 → D preserves
binary products iff G1 is subterminal.

10 Characterisation of Local Homeomorphisms

Let C be a category with finite limits and B a category with pullbacks. A functor
F : C → B is a local homeomorphism iff F/1 : C → B/F1 is an equivalence and
ΣF1 : B/F1→ B has a right adjoint (F1)∗. Thus, F is a local homeomorphism
iff F is canonically equivalent to ΣF1 via F/1 (as F = ΣF1◦F/1) and the cartesian
product F1× B exists for all B ∈ B. Actually, if F/1 is an equivalence then F
has a right adjoint iff ΣF1 has a right adjoint (F1)∗ (again as F = ΣF1 ◦ F/1).

Thus, every local homeomorphism F : C→ B necessarily preserves pullbacks
and has a right adjoint, i.e. necessarily is a partial geometric morphism.

A pullback preserving functor F : C → B with F a U is a local home-
omorphism, i.e. F/1 is an equivalence 2, iff the (fibred) geometric morphism
∆ a Γ : PF/1

→ PC is an equivalence. Recall that PF ' PF/1
for all pullback

preserving functors F : C→ B. Thus, F is a local homeomorphism iff the fibred
geometric morphism ∆ a Γ : PF → PC is an equivalence, i.e. iff ∆ a Γ is both
injective and surjective as a (fibred) geometric morphism, i.e. iff the following
two conditions 3 hold

1. ∆ reflects isos (in the fiber over 1)

2. Γ is full and faithful (in the fiber over 1).

2If F/1 is an equivalence ΣF1 has a right adjoint due to the assumption F a U .
3As PF is a geometric fibration these conditions hold for every fiber iff they hold in the

fiber over 1.
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Recall that the counit of ∆ a Γ at b : B → FI is given by εb = εB ◦ F (Ub)∗ηI

FX
F (Ub)∗ηI- FUB

εB - B

FI

FΓIb

?

FηI
- FUFI

FUb

?

εFI
- FI

b

?

where εB and εFI are instances of the counit of F a U at B and

X
(Ub)∗ηI- UB

I

ΓIb

?

ηI
- UFI

Ub

?

and εFI ◦ FηI = idFI as F a U .
Thus, condition 2. can be reformulated as the requirement that εB◦F (Ub)∗η1

is an isomorphism for all b : B → F1 (as a right adjoint is full and faithful iff its
counit is an isomorphism). This latter condition on F a U has been introduced
in Funk’s Thesis [Fun90] under the name “Frobenius reciprocity” and therefore
we refer to it as “Funk’s Frobenius reciprocity” 4.

4The requirement that for all b : B → FI the morphism εB ◦ F (Ub)∗ηI is an isomorphism
is equivalent to the requirement that α̂ = εX ◦ Fα : FY → X is an isomorphism whenever
b : B → I and c : C → UI and

Y
α- UX

Uπ2- UB

C
?

ηC
- UFC

Uπ1

?

Uĉ
- UI

Ub

?

where

X
π2 - B

FC

π1

?

ĉ
- I

b

?

and ĉ = εI ◦ Fc. (The implication from left to right follows when instantiating I by C and b
by π1 and the implication from right to left follows when instantiating C by I, I by FI and
c by ηI .)

Notice that the right hand condition states that for all I ∈ B the adjunction ΣεI ◦F/UI a U/I
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Summarising we get the following elementary characterisation of local home-
omorphisms.

Theorem 10.1 If B and C are categories with pullbacks and C has a terminal
object then F : C→ B is a local homeomorphism, i.e. F/1 is an equivalence and
ΣF1 : B/F1→ B has a right adjoint (F1)∗, iff

1. F preserves pullbacks

2. F reflects isomorphisms

3. F has a right adjoint U with F a U satisfying Funk’s Frobenius reciprocity,
i.e. εB ◦ F (Ub)∗η1 is an isomorphism for all b : B → F1

4. the product X×F1 exists for all objects X in B.

11 Strongly Local Geometric Morphisms and
Unity and Identity of Adjoint Opposites

Recall that a local geometric morphism is a geometric morphism F a U : C→ B
where U has a right adjoint R.

From a fibrational point of view, however, it is more natural to require that
the fibred geometric morphism ∆ a Γ : PF → PB (associated with F a U) is a
fibred local geometric morphism, i.e. that Γ has a further fibred right adjoint ∇.
In this case F a U is called a strongly local geometric morphism.

If U has an ordinary right adjoint R then for every I ∈ B the functor
ΓI = η∗I ◦ U/FI has a right adjoint

∇I ≡ η∗FI ◦R/UFI ◦ΠηI

where ηFI : FI → RUFI is the unit of U a R at FI and ηI : I → UFI is the
unit of F a U at I.

Unfortunately, in general this does not entail that Γ has a fibred right adjoint
∇ because in this case the cartesian functor Γ has to be cocartesian, i.e. preserve
internal sums, as (Ff)∗ ◦∇I ∼= ∇J ◦ f∗ iff ΓI ◦ΣFf ∼= Σf ◦ ΓJ for all f : J → I
in B.

satisfies Lawvere’s original Frobenius condition, i.e. α̂ is an isomorphism where

c× U/Ib
ηc × U/Ib - U/I(ΣεI ◦ F/UI)c× U/Ib

U/I((ΣεI ◦ F/UI)c× b)
�

∼=α
-

as ĉ = εI ◦ Fc = (ΣεI ◦ F/UI)c.
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But if Γ is cocartesian then ηI : I → UFI is an isomorphism for all I ∈ B
which can be seen as follows. Applying Γ to the cocartesian arrow 〈!I , idFI〉

FI ======== FI

FI

wwwwwwwwww
F !I
- F1

F !I

?

we get

I

∼=
-

..................................

∼=
-

UFI

η
I

-

Γ(〈!I ,idFI〉)

I

wwwwwwwwwwwwwwwwwwwwwwww
!I
- 1
? ∼=

η1

- UF1

UF !I

?

from which it follows that ηI is an isomorphism.
On the other hand if η : IdB → UF is a natural isomorphism then Γ is

cocartesian. Thus, Γ is cocartesian iff η : IdB → UF is a natural isomorphism.
Thus, F a U is a strongly local geometric morphism iff U has a right adjoint

R and F is full and faithful, i.e. F a U a R is a UIAO (Unity and Identiy of
Adjoint Opposites) in the sense of Lawvere.

12 Locally Connected Geometric Morphisms

Recall that a geometric morphism F a U : C→ B is called locally connected iff
∆ has a fibred left adjoint π where ∆ a Γ : PF → PB is the fibred geometric
morphism associated with F a U .

More generally we may call a left exact functor F : B→ C locally connected
iff the cartesian functor ∆ : PB → PF has a fibred left adjoint π a ∆.

In particular this means that F has an ordinary left adjoint L a F . Then
ΣεI ◦ L/FI a F/I ≡ ∆I and ∆ has an ordinary left adjoint π with PB ◦ π = PF .
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Now it can be seen easily that this functor π is a cartesian iff for any pullback

A
g - B

FI

a

?

Ff
- FJ

b

?

the square

LA
Lg- LB

I

â

?

f
- J

b̂

?

is a pullback, too.

Let L a F a U : E→ S be a geometric morphism between toposes. A mor-
phism g in E is called S–definable or simply definable iff g appears as pullback of
F (f) for some morphism f in S. Accordingly, a monomorphism is definable iff
it appears as pullback of F (>S). One easily checks that a definable monomor-
phism m : P → A is canonically isomorphic to η∗ALm and every subobject
n : Q → LA is canonically isomorphic to Lη∗An (where in both cases ηA is the
unit of L a F at A). This way the definable subobjects of A are in natural
1–1–correspondence with the subobjects of LA.

Let F a U : E → S be a bounded geometric morphism beween toposes.
Then F a U is locally connected iff 5 F preserves the locally cartesian closed
structure.

Recall from [BD] that a geometric morphism F a U : E → S is called
atomic iff F : S → E is logical. It is known that in this case F has a left
adjoint L (sending X to the atoms of U(P(X)) as described in [BD]) and,
therefore, the geometric morphism F a U is locally cartesian closed as F being
logical it preserves in particular the locally cartesian closed structure. Thus, a
geometric morphism F a U is atomic iff it is locally connected and F preserves
the subobject classifier. One easily sees that for a locally connected geometric
morphism F a U : E → S its inverse image part F preserves the subobject

5As by the fibred adjoint functor theorem ∆F : PS → PF has a left adjoint iff ∆F is a
limit preserving cartesian functor, i.e. F preserves the locally cartesian closed structure (F
preserves finite limits anyway and F preserves Π iff ∆F preserves internal products).
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classifier if and only if all monomorphisms in E are (S–)definable, i.e. iff

P
ηP- FLP

A

m

?

ηA
- FLA

FLm

?

is a pullback for all monomorphisms m : P → A in E. As S–definable monomor-
phisms are stable under pullbacks it suffices to require that >E is S–definable.

Thus, a geometric morphism F a U : E → S is atomic iff it is locally
connected and

1E
η1E- FL1E

ΩE

>S

?

ηΩE

- FLΩE

FL>E

?

is a pullback.

13 Connected Geometric Fibrations

Traditionally, a geometric morphism between toposes is called connected iff the
unit of the adjunction is an isomorphism. Accordingly, a geometric fibration
P : X→ B is called connected iff the unit ηP of the fibred adjunction ∆P ` ΓP
is a natural isomorphism.

More explicitely, this means that for every morphism u : I → J in B the
morphism ηPu : I → GX is an isomorphism

1I
1ηPu - 1GX

X ∼=
∐
u

1I

εX

?

ϕ
-

where ϕ is cocartesian over u. Notice that ηPu is an isomorphism iff Gϕ is an
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isomorphism as 1Gϕ = 1ηPu ◦ ε1I

1G(1I)

1Gϕ- 1GX

1I

∼= ε1I

?

ϕ
- X

εX

?

and ε1I
is an isomorphism.

Thus, P is a connected geometric fibration iff 6 G inverts the cocartesian
arrows of X (i.e. send them to isomorphisms) which in turn is equivalent to the
requirement that ΓP is cocartesian 7.

Accordingly, we call a geometric fibration P : X → B is local iff ΓP has
a fibred right adjoint ∇P . But, then ΓP is cocartesian and, therefore, local
geometric fibrations are in particular connected. Thus, a geometric fibration P
is local iff for the corresponding geometric morphism F a U : E ≡ X1 → B it
holds that F is full and faithful and U has a right adjoint R (which has to be
full and faithful, too). Thus, local geometric fibrations correspond to UIAO’s
in the sense of Lawvere.

6If G inverts cocartesian arrows ϕ : 1I →
∐

u 1I then Gψ is an iso for every cocartesian
ψ : X → Y over u as G preserves pullbacks and, therefore, we have

GX
Gψ
∼=
- GY

G1I

Gα

? ∼=
Gϕ
- G

∐
u

1I

Gβ

?

where α and β are the unique vertical arrows with

X
ψ - Y

1I

α

?

ϕ
-

∐
u

1I .

β

?

7As ΓP (ϕ : X → Y ) is

GX
Gϕ- GY

PX

PεX

?

Pϕ
- PY

PεY

?

and, therefore, ΓP (ϕ) is cocartesian iff Gϕ is an isomorphism
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