Fibered View of Geometric Morphisms

Thomas Streicher (TU Darmstadt)

June 2011

between toposes are usually motivated by example and analogy.

Every continuous $f: Y \to X$ induces a functor $f^*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ by pullback. This f^* preserves finite limits and has a right adjoint f_* . The restriction of f^* to subterminal objects is (isomorphic to) the monotone map $f^{-1}: \mathcal{O}(X) \to \mathcal{O}(Y)$ which preserves finite meets and all sup's (i.e. has a right adjoint).

By analogy a geometric morphism $f : \mathbf{F} \to \mathbf{E}$ between elementary toposes is defined as an adjunction $f^* \dashv f_* : \mathbf{F} \to \mathbf{E}$ where f^* preserves finite limits. One thinks of \mathbf{E} (and \mathbf{F}) as a generalisation of $\mathcal{O}(X)$ (and $\mathcal{O}(Y)$) and of f as a generalised continuous map.

Geometric Morphisms as Fibrations

A continuous map $f: Y \to X$ is thought of as a space Y continuously varying over X. Analogously, a geometric morphism $f: \mathbf{F} \to \mathbf{E}$ is thought of as a topos \mathbf{F} over \mathbf{E} . Another reading of this phrase is a fibration $P: \mathbf{X} \to \mathbf{E}$ of toposes with $\mathbf{F} \simeq \mathbf{X}_1$.

What is the relation between these two readings ?

With every geometric morphism $F \dashv U : \mathbf{F} \to \mathbf{E}$ one may associate the fibration $P_F = F^* P_{\mathbf{E}} = \partial_1 : \mathbf{F}/F \to \mathbf{E}$ where $P_{\mathbf{E}} = \partial_1 : \mathbf{E}/\mathbf{E} \to \mathbf{E}$ is the fundamental fibration of \mathbf{E} .

The fibration P_F over \mathbf{E} is a **fibration of toposes** since for every map $u : J \to I$ in \mathbf{E} the pullback functor $(Fu)^* : \mathbf{F}/FI \to \mathbf{F}/FJ$ is logical. Can one recover F from P_F and

how can one characterize fibrations of the form P_F ?

Fibrations of Finite Limit Categories

Let B be a category with finite limits. JB has shown that $P : \mathbf{X} \to \mathbf{B}$ is a **fibration of categories with finite limits** iff P is a fibration where X has and P preserves finite limits. Moreover, for such fibrations cartesian arrows are stable under arbitrary pullbacks.

Let B be a category with 1. Then $P_B = \partial_1 : B/B \to B$ is a fibration iff B has finite limits. In this case P_B is a fibration of categories with finite limits.

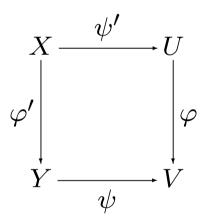
Moreover, for every $F : \mathbf{A} \to \mathbf{B}$ the fibration $P_F = F^* P_{\mathbf{B}} : \mathbf{B}/F \to \mathbf{A}$ is a fibration of categories with finite limits.

Fibrations of Cats with (Internal) Sums

over a category ${\bf B}$ with finite limits are bifibrations $P:{\bf X}\to {\bf B}$ satisfying the Chevalley Condition saying that

cocartesian arrows are stable under pullbacks along cartesian arrows

i.e. for every commuting square

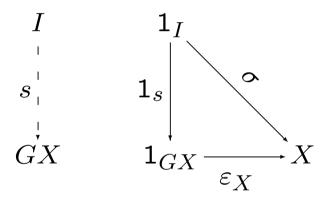


in ${\bf X}$ above a pullback square in ${\bf B}$ with φ and φ' cartesian

 ψ cocartesian implies ψ' cocartesian

Fibrations with (Lawvere) Comprehension

 $P: \mathbf{X} \to \mathbf{B}$ is a fibration of cats with terminal objects iff P has a right adjoint right inverse 1 (picking a terminal object in each fibre). Such a P has (*Lawvere*) Comprehension iff 1 has a right adjoint G, i.e. for every $\sigma: \mathbf{1}_I \to X$ there is a unique $s: I \to GX$ with



Thus GX can be thought of as hom $(1_{PX}, X)$ in the sense of Bénabou's notion of *local smallness*.

Fibrational Motivation of GM's

In his 1974 Montreal lectures JB has proven that for a functor F: A \rightarrow B between finite limit categories with F1 terminal it holds that

(1) P_F has internal sums iff F preserves pullbacks

(2) P_F has comprehension iff F has a right adjoint U.

One obtains F from P_F since $FI \cong \coprod_I 1_I = \Delta(I)$. Moreover, we have $UX = hom(1, X) = \Gamma(X)$.

Thus, a functor $F : \mathbf{S} \to \mathbf{E}$ between toposes is the inverse image part of a geometric morphism $\mathbf{E} \to \mathbf{S}$ iff F preserves 1 and P_F is a fibration of locally small toposes with internal sums.

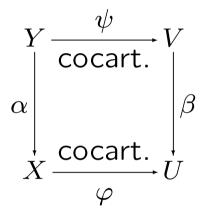
Thus all geometric morphisms are of the form $\Delta \dashv \Gamma$.

Characterize those fibrations which are of the form P_F for some finite limit preserving functor $F : \mathbf{A} \to \mathbf{B}$ between finite limit cats \mathbf{A} and \mathbf{B} . They are fibrations $P : \mathbf{X} \to \mathbf{B}$ of finite limit cats with internal sums having certain properties. These have been identified by *J.-L. Moens* in his 1982 Thése as the following ones

- (1) internal sums are **stable**, i.e. cocartesian arrows are stable under pullbacks along arbitrary vertical morphism
- (2) internal sums are **disjoint**, i.e. δ_{φ} is cocartesian whenever φ is cocartesian.

Moens' Lemma (2)

In presence of (1) condition (2) is equivalent to the requirement that every commuting square

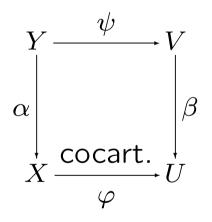


in X with α, β vertical is a pullback square.

Thus one can combine conditions (1) and (2) into a single one.

Moens' Lemma in Terms of Extensivity (1)

A fibration $P : \mathbf{X} \to \mathbf{B}$ is equivalent to one of the form P_F for a finite limit preserving functor F between categories with finite limits iff Pis a fibration of categories with finite limits and internal sums which are **extensive** in the sense that a commuting diagram



in X with α, β vertical

is a pullback square iff ψ is cocartesian.

Moens' Lemma in Terms of Extensivity (2)

It suffices to require this for the case where $X = 1_I$ and $\varphi = \varphi_I$: $1_I \to \Delta(I)$ is cocartesian over $I \to 1$. Thus extensivity says that for $u: J \to I$ in **B** the adjunction

$$\coprod_{u}/\mathbf{1}_{I}:\mathbf{X}_{I} \underbrace{\longrightarrow}_{I} \mathbf{X}_{1}/\Delta(I):\varphi_{I}^{*}$$

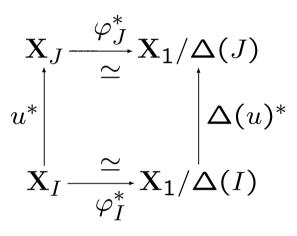
is an equivalence (which coincides with the usual notion of extensivity for sums when P = Fam(C)).

Thus, from commutation of

$$\begin{array}{c|c}
1_{J} & \xrightarrow{\varphi_{J}} \Delta(J) \\
1_{u} & & \downarrow \Delta(u) \\
1_{I} & & \downarrow \Delta(u) \\
& \varphi_{I} & \Delta(I)
\end{array}$$

Moens' Lemma in Terms of Extensivity (3)

it follows that



i.e. that

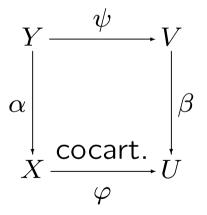
 $P\simeq P_{\Delta}$

as desired.

Generalised Moens' Lemma

This argument goes through if P is just a bifibration not necessarily validating the Chevalley condition.

Thus, a fibration $P : \mathbf{X} \to \mathbf{B}$ is equivalent to one of the form P_F for a terminal object preserving functor F between categories with finite limits iff P is a bifibration, \mathbf{X} has and P preserves finite limits and which is extensive in the sense that a commuting diagram



in X with α, β vertical is a pullback square iff ψ is cocartesian.

were recently introduced by M. Zawadowski (for very different purposes). They are fibrations $P : \mathbf{X} \to \mathbf{B}$ of finite limit cats over a finite limit cat \mathbf{B} which are also cofibrations where for every $u : J \to I$ in \mathbf{B} the functor $\coprod_u : \mathbf{X}_J \to \mathbf{X}_I$ preserves pullbacks and both unit and counit of the adjunction $\coprod_u \dashv u^*$ are "cartesian" natural transformations, i.e. all naturality squares are pullbacks.

One can show that cartesian bifibrations over \mathbf{B} are up to equivalence those of the form P_F for some terminal object preserving functor $F: \mathbf{B} \to \mathbf{C}$ between finite limit cats.

Fibrations of Grothendieck Toposes (1)

A Grothendieck topos is a locally small elementary topos with small sums and a small generating family. This can be straightforwardly generalised to fibrations.

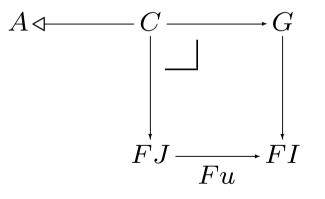
For locally small fibrations $P : \mathbf{X} \to \mathbf{B}$ over a base with finite products a small generating family is a $G \in \mathbf{X}_I$ such that every $A \in \mathbf{X}$ fits into a diagram

with φ cartesian and *e* collectively epic (i.e. for vertical $\alpha, \beta, \alpha e = \beta e$ implies $\alpha = \beta$).

Fibrations of Grothendieck Toposes (2)

Task Characterize those geometric morphisms $F \dashv U : \mathbf{E} \rightarrow \mathbf{S}$ between toposes for which P_F admits a small generating family, i.e. the Grothendieck toposes over \mathbf{S} .

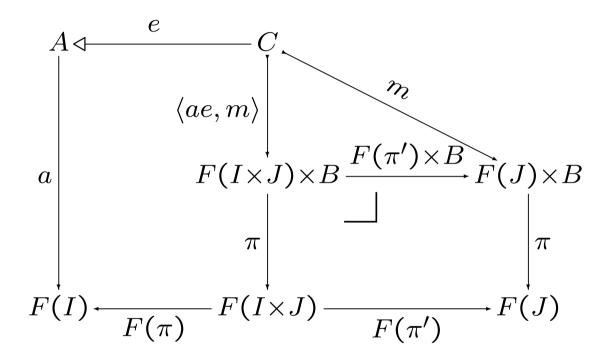
First notice that collective epis in \mathbf{E}/F are those squares whose top arrow is an epi. Thus, if $g: G \to FI$ is a small generating family for P_F then G is a bound for $F \dashv U$ because



and $C \rightarrow FJ \times G$.

Fibrations of Grothendieck Toposes (3)

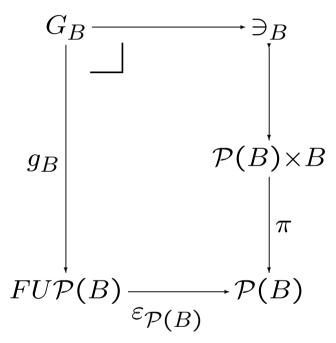
Suppose B is a bound for $F \dashv U$ and $a : A \rightarrow FI$. Consider



from which it follows that

Fibrations of Grothendieck Toposes (4)

the map $g_B : G_B \to FU\mathcal{P}(B)$ in



is a small generating family for P_F .

If g_B is a small generating family for P_F then B is a bound for $F \dashv U$.

Fibrations of Grothendieck Toposes (5)

Thus, we have shown that

a geometric morphism $F \dashv U : \mathbf{E} \to \mathbf{S}$ is bounded iff P_F is a fibered Grothendieck topos over \mathbf{S} .

Finite limit preserving functors and inverse image parts of (bounded / localic) geometric morphisms are closed under composition.

These facts can be understood as **iteration theorems** for the respective topos extensions. Triposes have been defined by Pitts et.al. to unify Heyting valued sets and realizability toposes.

A (moral) **tripos** over a base topos **S** is a **posetal** hyperdoctrine \mathbb{P} over **S** (pre-Heyting algebra fibred over **S** with internal sums and products) such that for every $I \in \mathbf{S}$ there is a predicate \in_I in $\mathbb{P}_{I \times P(I)}$ such that for every $R \in \mathbb{P}_{I \times J}$ it holds that

 $\forall j: J. \exists p: P(I). \forall i: I. R(i, j) \leftrightarrow i \in_I p$

i.e. $\mathbb P$ is a model of higher order intuitionistic logic over ${\bf S}.$

Geometric View of Triposes (2)

For every posetal hyperdoctrine \mathbb{P} over S one can "add quotients" obtaining $\Delta : S \to S[\mathbb{P}]$ which preserves finite limits. In his Thesis Pitts has shown that $S[\mathbb{P}]$ is a topos iff every object X of $S[\mathbb{P}]$ appears as subquotient of some $\Delta(I)$. Notice that $\mathbb{P} \simeq \Delta^* \operatorname{Sub}_{S[\mathbb{P}]}$.

Thus, triposes over ${f S}$ correspond to cocomplete toposes over ${f S}$ where subobjects of 1 generate, i.e.

"localic toposes over S not necessarily locally small" The corresponding Δ are called **"weakly localic"**. Notice that S[P] locally small over S iff P locally small over S iff $\mathbb{P} \simeq \operatorname{Fam}(\Omega)$ for some cHa Ω .

Geometric View of Triposes (3)

Is there an "Iteration Theorem for Tripos Extensions", i.e.

Are weakly localic functors closed under composition?

Pitts has shown that for weakly localic F and G their composite GF is weakly localic whenever G preserves regular epis. Can one drop this additional assumption?

Idea: For every Grothendieck topos \mathbf{E} over Set the functor $\Gamma : \mathbf{E} \to \mathbf{Set}$ is always weakly localic but in general does not preserve regular epis. Can one find a weakly localic $F : \mathbf{F} \to \mathbf{E}$ such that $\Gamma F : \mathbf{F} \to \mathbf{Set}$ is not weakly localic, i.e. not bounded by 1.