Can one split dictoses?

M. Hofmann and T. Streicher

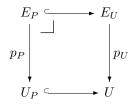
October 2015 – May 2017

A most natural notion of model for the Calculus of Constructions (CC) is T. Ehrhard's notion of a *dictos*, i.e. a locally cartesian closed category \mathbb{C} together with a map $p_{Prop} : Prf \to Prop$ such that the class \mathcal{P} of maps in \mathbb{C} which can be obtained as pullback of p_{Prop} are closed under dependent products in \mathbb{C} , i.e. $\Pi_u a \in \mathcal{P}$ whenever $a : A \to J$ in \mathcal{P} and $u : J \to I$ in \mathbb{C} . However, in order to interpret CC in a dictos we have to "split" it for the sake of interpreting the syntax of CC.

As well known the Yoneda functor $Y_{\mathbb{C}} : \mathbb{C} \to \mathbf{Set}^{\mathbb{C}^{op}}$ preserves finite limits and dependent products. Moreover, if \mathcal{U} is a Grothendieck universe such that \mathbb{C} lives in \mathcal{U} , i.e. \mathbb{C} is internal to the category \mathcal{U} , then the Yoneda functor $Y_{\mathbb{C}} : \mathbb{C} \to \mathbf{Set}^{\mathbb{C}^{op}}$ factors through the inclusion $\mathcal{U}^{\mathbb{C}^{op}} \hookrightarrow \mathbf{Set}^{\mathbb{C}^{op}}$. We also write $Y_{\mathbb{C}} : \mathbb{C} \to \mathcal{U}^{\mathbb{C}^{op}}$ for the corresponding corestriction of $Y_{\mathbb{C}} : \mathbb{C} \to \mathbf{Set}^{\mathbb{C}^{op}}$ and notice that it also preserves finite limits and dependent products. Most of the time, however, we will simply write Y for $Y_{\mathbb{C}}$.

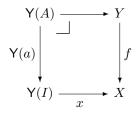
If we choose \mathcal{U} by enough for \mathbb{C} being internal to \mathcal{U} we may consider \mathbb{C} as a small full subcategory of $\widehat{\mathbb{C}} = \mathbf{Set}^{\mathbb{C}^{\mathrm{op}}}$ as induced by a certain representable morphism $p_U : E_U \to U$ in $\widehat{\mathbb{C}}$ which can be described as follows. For $I \in \mathbb{C}$ let $U(I) = \{A \in \mathcal{U}^{(\mathbb{C}/I)^{\mathrm{op}}} \mid A \text{ representable}\}$ and for $u : J \to I$ in \mathbb{C} let U(u) = $\mathcal{U}^{\Sigma_u^{\mathrm{op}}}$. We define p_U via its corresponding presheaf E_U over $\mathsf{Elts}(U)$ as follows: $\mathsf{E}_U(I, A) = A(\mathrm{id}_I)$ and $\mathsf{E}_U(u : u^*A \to A) = A(u : u \to \mathrm{id}_I)$. Notice that p_U is universal among the class \mathcal{S} of representable morphisms in $\widehat{\mathbb{C}}$. This class \mathcal{S} is stable under pullbacks along arbitrary morphisms in $\widehat{\mathbb{C}}$ and is it stable under dependent products in $\widehat{\mathbb{C}}$ (since $\mathsf{Y}_{\mathbb{C}}$ preserves Π).

We always can choose \mathcal{U} so big that there is a Grothendieck universe $\mathcal{U}_0 \in \mathcal{U}$ with \mathbb{C} internal to \mathcal{U}_0 . Let U_P be the subpresheaf of U where $U_P(I)$ consists of all presheaves $A : (\mathbb{C}/I)^{\mathsf{op}} \to \mathcal{U}_0$ representable by a map in \mathcal{P} with codomain I. Then the map p_P in



is universal for the class \mathcal{S}_P of \mathcal{P} -representable morphisms, i.e. morphisms f:

 $Y \to X$ which for all $x : \mathsf{Y}(I) \to X$ fit into a pullback diagram



for some $a \in \mathcal{P}$.

Lemma 0.1 If $f: Y \to X$ is in S and $g: Z \to Y$ is in S_P then $\Pi_f g$ is in S_P .

Proof: By assumption on f and g for all $x : Y_I(I) \to X$ we have

$$\begin{array}{c} \mathsf{Y}(A) \longrightarrow Z \\ \mathsf{Y}(a) \downarrow \longrightarrow \downarrow \\ \mathsf{Y}(J) \longrightarrow Y \\ \mathsf{Y}(J) \longrightarrow Y \\ \mathsf{Y}(u) \downarrow \longrightarrow \downarrow \\ \mathsf{Y}(I) \longrightarrow X \end{array}$$

for some $u: J \to I$ in \mathbb{C} and $a: A \to J$ in \mathcal{P} .

Since Yoneda preserves Π we have $x^*\Pi_f g \cong \Pi_{\mathsf{Y}(u)}\mathsf{Y}(a) \cong \mathsf{Y}(\Pi_u a)$ from which the claim follows since $\Pi_u a$ is in \mathcal{P} . \Box

Now, if U_P were in U we could apply Voevodsky's "method of universes" for splitting the original dictos within $\mathbf{Set}^{\mathbb{C}^p}$. Dependent products for representable morphisms are dealt with as in *loc.cit*. For impredicative universal quantification we proceed as follows. Consider the generic context

$$\Gamma_G \equiv A : U, p : U_P^{E_U(A)}$$

and the families

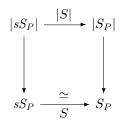
$$a_G \equiv \Gamma_G \vdash E_U(A)$$
 and $p_G \equiv \Gamma_G, a : E_U(A) \vdash E_P(P(a))$

in S and S_P , respectively. By Lemma 0.1 conclude that $\prod_{a_G} p_G$ is in S_P . Thus, since p_P is generic for S_P there is a morphism $\forall : \Gamma_G \to U_P$ with

$$\Pi_{a_G} p_G \bigvee \begin{array}{c} & & & \\ &$$

which allows us to interpret impredicative quantification.

Unfortunately, the presheaf U_P is not representable as opposed to $\Upsilon(Prop)$. But one can define a morphism $|S| : \Upsilon(Prop) \to U_P$ in $\widehat{\mathbb{C}}$ sending $a : I \to Prop$ to the presheaf $|S|_I(a)$ over \mathbb{C}/I with $|S|_I(a)(u) = \{f : I \to Prf \mid p_{Prop} \circ f = a \circ u\}$ and $|S|_I(a)(v : uv \to u)(f) = f \circ v$. Obviously, every $A \in U_P(I)$ is isomorphic to $|S|_I(a)$ for some $a : I \to Prop$ in the category $\mathcal{U}_0^{(\mathbb{C}/I)^{\circ p}}$. Let us write S_P for the split fibration sending $I \in \mathbb{C}$ to the full subcategory of $\mathcal{U}_0^{(\mathbb{C}/I)^{\circ p}}$ on representable presheaves. Obviously, we have $U_P = |S_P|$. Let sS_P be the split fibration where $sS_P(I)$ is the category whose objects are morphisms from I to Prop and where $sS_P(I)(a, b) = \widehat{\mathbb{C}}(|S|_I(a), |S|_I(b))$. Obviously, we have $\Upsilon(Prop) = |sS_P|$. We write S for the split cartesian functor from sS_P to S_P whose object part is given by |S| and which is the identity on morphisms. Then in the category $\mathbf{Sp}(\mathbb{C})$ of split fibrations over \mathbb{C} we have



where the vertical arrows are the canonical¹ maps $|sS_P| \rightarrow sS_P$ and $|S_P| \rightarrow S_P$, respectively, and S is a weak equivalence, i.e. all S_I are weak equivalences in the ordinary sense.

The reason why we can't work with Y(Prop) instead of U_P is that the latter is closed under the respective type forming operations up to equality and not just up to isomorphism as is the former.

If we start from a situation where \mathcal{E} is some finite limit category, \mathcal{S} is a pullback stable class of maps closed under composition and Π , contains all regular monos and a generic family $p_U : E_U \to U$ then we can use Voevodsky's "method of universes" for obtaining a split model (using global choice). If, moreover, we have a pullback stabe subclass \mathcal{S}_P of \mathcal{S} such that

- (P1) $\Pi_f a \in \mathcal{S}_P$ whenever $a \in \mathcal{S}_P$ and $f \in \mathcal{S}$
- (P2) there is a subobject $m_P : U_P \rightarrow U$ with $m_P^* p_U$ generic for S_P and the terminal projection $U_P \rightarrow 1_{\mathcal{E}}$ in S

then the above splitting of S restricts to one of S_P . The attempt described in this note was motivated by establishing such a situation for $\mathcal{E} = \widehat{\mathbb{C}}$. It "only" failed in the respect that we couldn't achieve that $U_P \to 1_{\mathcal{E}}$ is in S.

Quite generally, there arises the question whether for a finite limit category \mathbb{C} together with a map $p_U : E \to U$ in \mathbb{C} there does exist a splitting $S_{\mathbb{C}}$ of the fundamental fibration $P_{\mathbb{C}} = \partial_1 : \mathbb{C}^2 \to \mathbb{C}$ such that the cartesian equivalence $F : P_{\mathbb{C}} \xrightarrow{\simeq} S_{\mathbb{C}}$ restricts to an equivalence between the full subfibrations generated by p_U and $F_U(p_U)$, respectively.

¹including its presheaf of objects into a split fibration

Well, we may achieve something quite close to this even for general Grothendieck fibrations $P : \mathbb{X} \to \mathbb{B}$ using the left adjoint splitting L(P) of P. We consider the variant of L(P) used by Lumsdaine and Warren making use of a normalized cleavage Cart_P of P. For $X \in \mathbb{X}$ let $P|_X$ be the full subfibration of P on those objects from which there exists a cartesian arrow to X and $L(P)|_X$ the full split subfibration of L(P) on objects of the form (u, X) where the codomain of u is P(X). Notice that for (u, X) there is a unique v with $(u, X) = v^*(\operatorname{id}_{PX}, X)$, namely u. One may find a non-split equivalence $E_X :$ $P|_X \to L(P)|_X$ such that the diagram

commutes up to isomorphism in $Fib(\mathbb{B})$.

A Natural Notion of (Impredicative) Universe

In Awodey's article on 'natural semantics' of type theory he did not consider universes. We now suggest a "natural notion of universe" within a locally cartesian closed category \mathbb{C} . First, for sake of exposition, we rebaptize $p_U : E_U \to U$ as $p_{\mathbb{C}} : E_{\mathbb{C}} \to U_{\mathbb{C}}$ because it is a representable family within $\widehat{\mathbb{C}}$ from which all representable morphisms can be obtained as pullback.

Now a universe in \mathbb{C} is given by a global element $U : 1 \to U_{\mathbb{C}}$ together with a map (typically an inclusion!) $E : U \to U_{\mathbb{C}}$ as depicted in

$$U \longrightarrow E_{\mathbb{C}} \qquad E \longrightarrow E_{\mathbb{C}}$$

$$\downarrow \Box \qquad \downarrow p_{\mathbb{C}} \qquad p \qquad \downarrow \Box \qquad \downarrow p_{\mathbb{C}}$$

$$1 \longrightarrow U_{\mathbb{C}} \qquad U \longrightarrow U_{\mathbb{C}}$$

where U and E are identified with their weak classifiers. Now consider the generic context

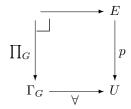
$$\Gamma_G \equiv A : U_{\mathbb{C}}, P : E_{\mathbb{C}}(A) \to U$$

and the families

$$a_G \equiv \Gamma_G \vdash E_{\mathbb{C}}(A)$$
 and $p_G \equiv \Gamma_G, a : E_{\mathbb{C}}(A) \vdash E(P(a))$

where both a_G and p_G are representable. Of course, the dependent product $\prod_G \equiv \prod_{a_G} p_G$ is a representable morphism with codomain Γ_G . We say that the

universe (U, E) is **impredicative** iff \prod_G can be obtained from p via pullback along some $\forall : \Gamma_G \to U$



This may be seen as a rational reconstruction of the notion of **split dictos** as considered in M. Hofmann's 1994 CSL paper.

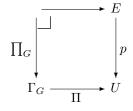
Of course, we can define a **predicative notion of universe closed under dependent products** by considering the generic context

$$\Gamma_G \equiv A : U, B : E(A) \to U$$

and the families

$$a_G \equiv \Gamma_G \vdash E(A)$$
 and $b_G \equiv \Gamma_G, a : E(A) \vdash E(B(a))$

and requiring that $\prod_G \equiv \prod_{a_G} b_G$ fits into a pullback square



for some map $\Pi: \Gamma_G \to U$.

Voevodsky's Version of Universes in LCCC's

Let \mathcal{E} be a locally cartesian closed category or even topos which typically will later be instantiated by $\widehat{\mathbb{C}}$. A map $p: E \to U$ in \mathcal{E} may be understood as a universe in \mathcal{E} . For $a: A \to I$ in \mathcal{E} we say that p is closed under a-products iff $\Sigma_I[a \to I^*p]$ appears as pullback of p, i.e.

for some maps Π and λ .

Of course, when instantiating a by p this amounts to the requirement that p is closed under dependent products. But it is a stronger condition than requiring that the class of pullbacks of p be closed under dependent products.

If \mathbb{C} is a locally cartesian closed category a map $p: E \to U$ in \mathbb{C} is an *impredicative universe* iff Y(p) is closed under $p_{\mathbb{C}}$ -products in $\widehat{\mathbb{C}}$. One may consider this as a rational reconstruction of Hofmann's notion of "split dictos".²

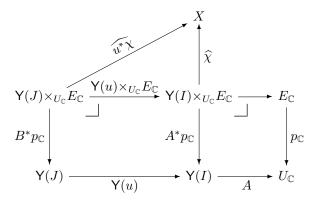
For $X \in \widehat{\mathbb{C}}$ we explicitate $\sum_{U_{\mathbb{C}}} [p_{\mathbb{C}} \to_{U_{\mathbb{C}}} U_{\mathbb{C}}^*X]$ as follows. A generalized element at stage $I \in \mathbb{C}$ is given by $A \in U_{\mathbb{C}}(I)$ together with a natural transformation $\chi : A \times_{U_{\mathbb{C}}} p_{\mathbb{C}} \to U_{\mathbb{C}}^*X$ in $\widehat{\mathsf{Elts}}(U_{\mathbb{C}})$. Let us write P_A for $A \times_{U_{\mathbb{C}}} p_{\mathbb{C}}$ in $\widehat{\mathsf{Elts}}(U_{\mathbb{C}})$. For $J \in \mathbb{C}$ and $B \in U_{\mathbb{C}}(J)$ we have

$$P_A(\langle J, B \rangle) = \{ \langle u, b \rangle \mid u : J \to I, B = u^*A \text{ and } b \in B(\mathrm{id}_J) \}$$

and

$$v^* \langle u, b \rangle = \langle uv, (v : uv \to u)(b) \rangle$$

for $v: K \to J$.³ Now we explicitate reindexing in $\Sigma_{U_{\mathbb{C}}}[p_{\mathbb{C}} \to_{U_{\mathbb{C}}} U_{\mathbb{C}}^*X]$ along $u: J \to I$. Given $\langle A, \chi \rangle$ in $\Sigma_{U_{\mathbb{C}}}[p_{\mathbb{C}} \to_{U_{\mathbb{C}}} U_{\mathbb{C}}^*X]$, i.e. $A \in U_{\mathbb{C}}(I)$ and $\chi: A \times_{U_{\mathbb{C}}} p_{\mathbb{C}} \to U_{\mathbb{C}}^*X$ which we identify with its transpose $\hat{\chi}: Y(I) \times_{U_{\mathbb{C}}} E_{\mathbb{C}} \to X$, its reindexing $u^*\langle A, \chi \rangle = \langle B, u^*\chi \rangle$ where $B = u^*A$ and $u^*\chi$ is the transpose of $\widehat{u^*\chi}$ as depicted in



where $\mathsf{Y}(u) \times_{U_{\mathbb{C}}} E_{\mathcal{C}}$ sends $\langle v, b \rangle$ to $\langle uv, b \rangle$. Thus, we have $u^* \langle A, \chi \rangle = \langle u^*A, u^*\chi \rangle$ with $u^*\chi(\langle v, b \rangle) = \chi(\langle uv, b \rangle)$.

 2 The map

$$\Sigma_{U_{\mathbb{C}}}[p_{\mathbb{C}} \rightarrow_{U_{\mathbb{C}}} \mathsf{Y}(p)]$$

is the display map for the family of types

$$A: U_{\mathbb{C}}, p: E_{\mathbb{C}}(A) \to \mathsf{Y}(U) \vdash (\Pi a: E_{\mathbb{C}}(a))E(p(a))$$

considered in the previous paragraph.

³Alternatively, we may describe P_A as the corresponding morphism $p_A : \int P_A \to U_{\mathbb{C}}$ in $\widehat{\mathbb{C}}$. The fibre of $\int P_A$ over J consists of all pairs $\langle u, a \rangle$ where $u : J \to I$ and $a \in A(u)$. For $v : K \to J$ reindexing along v sends $\langle u, a \rangle$ to $\langle uv, A(v : uv \to u)(a) \rangle$. The map p_A sends $\langle u, a \rangle$ to u^*A .