
Lifting Grothendieck Universes

Martin HOFMANN, Thomas STREICHER
Fachbereich 4 Mathematik, TU Darmstadt
Schlossgartenstr. 7, D-64289 Darmstadt

mh|streicher@mathematik.th-darmstadt.de

Spring 1997

Both in set theory and constructive type theory universes are a useful and
necessary tool for formulating abstract mathematics, e.g. when one wants to
quantify over all structures of a certain kind. Structures of a certain kind
living in universe U are usually referred to as “small structures” (of that kind).
Prominent examples are “small monoids”, “small groups” . . . and last, but not
least “small sets”.

For (classical) set theory an appropriate notion of universe was introduced
by A. Grothendieck for the purposes of his development of Grothendieck toposes
(of sheaves over a (small) site). Most concisely, a Grothendieck universe can be
defined as a transitive set U such that (U ,∈�U×U ) itself constitutes a model of
set theory.1

In (constructive) type theory a universe (in the sense of Martin–Löf) is
a type U of types that is closed under the usual type forming operations as
e.g. Π, Σ and Id. More precisely, it is a type U together with a family of
types (El(A) | A ∈ U ) assigning its type El(A) to every A ∈ U . Of course,
El(A) = El(B) iff A = B ∈ U .

For the purposes of Synthetic Domain Theory (see [6, 3]) or Semantic Nor-
malisations Proofs (see [1]) it turns out to be necessary to organise (pre)sheaf
toposes into models of type theory admitting a universe. In this note we show
how a Grothendieck universe U gives rise to a type-theoretic universe in the
presheaf topos Ĉ where C is a small category (i.e. C lives in U). The problems
of extending this construction to toposes of sheaves will be discussed later.

A presheaf F ∈ Ĉ is called small iff F (I) ∈ U for all I ∈ C.
Before defining the notion of family of small presheaves over a given (not

necessarily small) presheaf F recall the following equivalence

Ĉ↓F ' Êlts(F )

where Elts(F ), the category of generalised elements of F , is given by the comma
category YC↓F , see e.g. [5]. Accordingly, a family of small presheaves over

1In the slang of set theory this is called a small inner model as in set theory inner models
are defined as transitive classes M such that (M,∈�M×M) constitutes a model of set theory.



F ∈ Ĉ is defined as a small presheaf over Elts(F ). Instead of “family of small
presheaves” we often simply say “small family”. We write sf(F ) for the collec-
tion of all small families over F .

A type-theoretic universe in Ĉ is now given by a small family El over a (non-
small) presheaf U such that El classifies small families. More explicitely, this

means that for every F ∈ Ĉ we have

sf(F ) ∼= Ĉ(F,U)

naturally in F . Thus, by the Yoneda lemma we have

U(I) ∼= Ĉ(YC(I), U) ∼= sf(YC(I)) ∼= U (C↓I)op

suggesting the following definition.
The presheaf U is defined as

U(I) := Ĉ↓I U(f)(A) := A ◦ (C↓f)op

and El ∈ Êlts(U) is defined as

El(〈I, A〉) := A(idI) El(f : 〈J, U(f)(A)〉 → 〈I, A〉)(a) := A(f : f → idI)(a) .

A small family G ∈ sf(F ), i.e. G ∈ Êlts(F ), is classified by the map χ : F →
U in Ĉ where for x ∈ F (I) the presheaf χI(x) over C↓I is given by

χI(x)(f : J → I) := G(〈J, F (f)(x)〉)

and
χI(x)(g : f ◦ g → f) := G(g : 〈K,F (f ◦ g)(x)〉 → 〈J, F (f)(x)〉)

for g : K → J .
On the other hand a χ : F → U classifies the G ∈ sf(F ) where

G(〈I, x〉) := χI(x)(idI)

and
G(f : 〈J, F (f)(x)〉 → 〈I, x〉) := χI(x)(f : f → idI)

for f : J → I.
It is straightforward to check that these correspondences are inverse to each

other.
But, alas, it is not clear how to perform a similar construction for proper

sheaf toposes shJ (C) where J is a Grothendieck toplogy on C. Of course,
one may restrict U to the sub-presheaf UJ where UJ (I) consists of all F :
(C ↓ I)op → U which are sheaves w.r.t. the topology JI := Σ−1I (J ) where
ΣI = ∂0 : C ↓ I → C. But, the problem is that in general UJ will not be a
J -sheaf. Alas, this would be necessary for considering the sheaf models for SDT
of [3] as models of SDT in the sense of [6].
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Another open question is how our universe construction for presheaf toposes
is related to the the universes constructed in Joyal and Moerdijk’s work on
Algebraic Set Theory (see [4]).

Finally we want to explain how our construction of U and El is related to
a somewhat more general construction of [2] where J. Bénabou introduced the
fibration Fib(C)→ C where a morphism over f : J → I is a commuting square

Y
F - X

C ↓ J

Q

?

Σf

- C ↓ I

P

?

where P and Q are fibrations and F is cartesian, i.e. F maps Q-cartesian arrows
to P -cartesian arrows.

Our U appears as a “split” version of the restriction of Fib(C)→ C to those
squares of the above form which are are pullbacks in Cat and where P and Q
are discrete fibrations whose fibers live in U .

Finally, our El appears as the restriction to base U of the fibration of “pointed
objects” of Fib(C)→ C whose arrows over morphism

Y
F - X

C ↓ J

Q

?

Σf

- C ↓ I

P

?

in Fib(C)→ C are commuting squares of the form

C ↓ J
Σf- C ↓ I

Y

T

?

F
- X

S

?

where S and T are cartesian sections of P and Q, respectively. The reason
is that cartesian sections of a discrete fibration P over C ↓ I are in canonical
correspondance with P (idI).
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